JP2001297751A - High-capacity nonaqueous electrolyte lithium secondary cell - Google Patents

High-capacity nonaqueous electrolyte lithium secondary cell

Info

Publication number
JP2001297751A
JP2001297751A JP2000152141A JP2000152141A JP2001297751A JP 2001297751 A JP2001297751 A JP 2001297751A JP 2000152141 A JP2000152141 A JP 2000152141A JP 2000152141 A JP2000152141 A JP 2000152141A JP 2001297751 A JP2001297751 A JP 2001297751A
Authority
JP
Japan
Prior art keywords
manganese
lithium
positive electrode
ferrate
limn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000152141A
Other languages
Japanese (ja)
Inventor
Tatsu Takahashi
達 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000152141A priority Critical patent/JP2001297751A/en
Publication of JP2001297751A publication Critical patent/JP2001297751A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To control dissolving of manganese-ion in manganese-acid lithium when charging in discharging and to improve a cycle characteristic of lithium- ion cell, although manganese-ion tends to be dissolved into electrolyte and a cycle characteristic and a capacity of charging and discharging are lowered when manganese-acid lithium is used for positive electrode of lithium-ion cell. SOLUTION: This manganese-acid lithium of lithium-ion cell positive electrode active material is mixed with ferrate (VI) to generate a positive electrode, and Mn (II)-ion or the like which are generated by a non-uniform reaction or the like in charging and discharging Mn (III)-ion, are oxidized with ferrate (VI), and also coated with insoluble ferrate (VI), whereby, Mn solution is largely prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、リチュウムマン
ガン系非水電解液リチュウム2次電池のMn溶解による
不可逆的容量損失を抑制し、性能を改善して、高容量、
高温安定性の非水電解液リチュウム2次電池を得る。
The present invention relates to a lithium manganese-based non-aqueous electrolyte secondary battery, in which irreversible capacity loss due to Mn dissolution is suppressed, performance is improved, and high capacity is achieved.
A high temperature stable non-aqueous electrolyte lithium secondary battery is obtained.

【0002】[0002]

【従来の技術】 リチュウムイオン電池は放電容量が大
きく、且つ、高電圧、高エネルギー密度であるから、近
年その発展に大きな期待が寄せられ居てる。現在は、構
造の安定性、高容量、企業化の容易性などの点から、コ
バルト酸リチュウムを正極とした非水電解液リチュウム
イオン電池が主として使用されている。然し、原料コバ
ルトの高価格、生産面の不安定性などの問題によりニッ
ケル酸リチュウムやマンガン酸リチュウムなどを正極と
したリチュウムイオン電池が盛んに研究され、一部企業
化されている。
2. Description of the Related Art Lithium ion batteries have a large discharge capacity, a high voltage and a high energy density. At present, non-aqueous electrolyte lithium-ion batteries using lithium cobaltate as a positive electrode are mainly used in terms of structural stability, high capacity, and ease of commercialization. However, lithium ion batteries using lithium nickelate or lithium manganate as a positive electrode have been actively studied due to problems such as high price of raw material cobalt and instability of production, and some of them have been commercialized.

【0003】LiMnなどの正極活物質マンガン
酸リチュウムは資源的に豊富で、低価格、低毒性である
ために、非常に面白い正極活物質であるが、マンガン酸
リチュウム非電解液2次電池を完全に使い切らない内
に、マンガンが溶解し、サイクル特性が悪く、放電容量
の減少が著しい。マンガン溶解を抑制するために、非化
学量論的組成、例えば、Li[LiMn3+ 1.0
4+ 1.0]O などにすることにより、常温では、
マンガン溶解を相当改善することが出来る。然し、40
℃以上の高温で使用するときには、マンガン溶解の問題
は解決できていない。マンガン溶解は充放電中に生成し
たMn3+が不均化反応によりMn4+とMn2+が生
成し、Mn2+が2Liとイオン交換して、Mn2+
オンが電解液中に溶解する。このマンガン溶解が電極の
不可逆的容量損失を起こす大きな原因である。
Lithium manganate, a positive electrode active material such as LiMn 2 O 4 , is a very interesting positive electrode active material because it is abundant in resources, low in price, and low in toxicity. Before the battery is completely used up, manganese is dissolved, the cycle characteristics are poor, and the discharge capacity is significantly reduced. To suppress manganese dissolution, a non-stoichiometric composition such as Li [Li Y Mn 3+ 1.0 M
n 4+ 1.0] O 4 or the like, at room temperature,
Manganese dissolution can be significantly improved. But 40
The problem of manganese dissolution has not been solved when used at a high temperature of ℃ or more. Manganese dissolution Mn 4+ and Mn 2+ are generated by disproportionation reactions Mn 3+ generated in charging and discharging, Mn 2+ is exchanged 2Li and ions, Mn 2+ ions are dissolved in the electrolyte. This manganese dissolution is a major cause of irreversible capacity loss of the electrode.

【0004】其処で、従来より、LiMnスピネ
ル正極のマンガン溶解を抑制する方法として、LiMn
などの正極活物質中にコバルト、ニッケル、アル
ミニュウムなどの第3成分を固溶させたり、上記のよう
に非化学量論的組成や欠陥構造を作ったりして、マンガ
ン溶解を減少させたりしているが、常温ではマンガン溶
解を抑制できても、電気自動車のように50℃以上の高
温に長時間曝されたりするとき、マンガンの溶解を抑制
することは出来ない。
[0004] Conventionally, as a method of suppressing manganese dissolution in a LiMn 2 O 4 spinel positive electrode, LiMn 2 O 4
By dissolving a third component such as cobalt, nickel, and aluminum in a positive electrode active material such as 2 O 4 or forming a non-stoichiometric composition or a defect structure as described above, the manganese dissolution is reduced. However, even if the dissolution of manganese can be suppressed at room temperature, the dissolution of manganese cannot be suppressed when exposed to a high temperature of 50 ° C. or more for a long time as in an electric vehicle.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記方法によ
り、非化学量論的スピネルや第3成分をLiMn
などのマンガン複合酸化物に添加又は固溶しても、高温
における正極活物質の充放電工程において、マンガン溶
解を抑制することは出来なかった。従って、マンガン溶
解による正極の不可逆的容量損失を抑制することを目的
とする。
However, according to the above method, the non-stoichiometric spinel and the third component are made of LiMn 2 O 4
However, even when added to or dissolved in a manganese composite oxide, manganese dissolution could not be suppressed in the charge / discharge step of the positive electrode active material at a high temperature. Accordingly, an object is to suppress irreversible capacity loss of the positive electrode due to dissolution of manganese.

【0006】本発明は、上記問題を解決するためになさ
れたもので、電池の生産性を低下させることなく、従来
より高放電容量の高温でもサイクル特性のよい非水電解
液リチユウム2次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem, and a non-aqueous electrolyte lithium secondary battery having a higher discharge capacity and a higher cycle characteristic even at a high temperature than before, without reducing the productivity of the battery. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】即ち、本発明では、リチ
ュウムマンガン複合酸化物を含む正極と、リチュウムド
ープや脱ドープ可能な負極と有機溶媒に電解質を溶解し
た非水電解液とを有する非水電解液リチユウム2次電池
において、前記正極を構成する正極活物質が、LiMn
,LiMnOなどのリチュウムマンガン複合酸
化物とKFeO(VI)などの鉄酸塩(VI)との混
合複合酸化物であることを特徴とする。
That is, according to the present invention, there is provided a non-aqueous solution comprising a positive electrode containing a lithium-manganese composite oxide, a negative electrode capable of doping or dedoping lithium, and a non-aqueous electrolyte in which an electrolyte is dissolved in an organic solvent. In the lithium electrolyte secondary battery, the positive electrode active material constituting the positive electrode is LiMn.
It is a mixed complex oxide of a lithium manganese complex oxide such as 2 O 4 and LiMnO 2 and a ferrate (VI) such as KFeO 4 (VI).

【0008】また、本発明では、前記混合複合酸化物に
おける鉄酸塩(VI)の混合割合が重量比で3〜97%
であることを特徴とする。
Further, in the present invention, the mixing ratio of ferrate (VI) in the mixed composite oxide is 3 to 97% by weight.
It is characterized by being.

【0009】[0009]

【作用】本発明による効果としては以下のことが挙げら
れる。尚、便宜上、リチユウムとマンガンを主体とする
スピネル系複合酸化物LiMnや斜方晶系リチユ
ウムマンガン酸化物LiMnOなどをLiMn
で示し、鉄酸カリュウム、鉄酸バリュウムなどの鉄酸
塩をMFeO(VI)で示す。Mは2価金属を示して
いるが、1価金属の時は、K,Liとなる。
The effects of the present invention include the following. For convenience, a spinel-based composite oxide LiMn 2 O 4 mainly composed of lithium and manganese and an orthorhombic lithium manganese oxide LiMnO 2 are used as Li X Mn Y O 2.
4 , ferrates such as calcium ferrate and barium ferrate are represented by MFeO 4 (VI). M represents a divalent metal, but when it is a monovalent metal, it is K 2 or Li 2 .

【0010】本発明に係わるLiMnとMFe
を混合することにより、高容量、且つ、高温でもサ
イクル特性のよい、資源的にも豊富で、環境的にも優し
い、安価な高容量非水電解液2次電池となる。
[0010] Li X Mn Y O 4 according to the present invention and MFe
By mixing O 4 , an inexpensive high-capacity non-aqueous electrolyte secondary battery with high capacity, good cycle characteristics even at high temperatures, abundant in resources, and environmentally friendly is obtained.

【0011】また、LiMnとMFeO(V
I)を混合することにより、高放電容量のリチユウム2
次電池が得られる。例えば、LiMnの理論放電
容量は148mAh/g,4.2〜3.5V迄の実放電
容量は約110〜120mAh/gである。一方、MF
eO(VI)において、KFeO(VI),Li
FeO(VI),BaFeO(VI)の理論放電
容量はそれぞれ406,601,313mAh/gで、
実放電容量もそれぞれ約300mAh/g以上の値が得
られる。よって、LiMnのみを正極活物質と
して使用したリチュウム2次電池よりも相当高いエネル
ギー密度が得られる。
[0011] In addition, Li X Mn Y O 4 and MFeO 4 (V
By mixing I), lithium 2 having a high discharge capacity can be obtained.
The following battery is obtained. For example, the theoretical discharge capacity of LiMn 2 O 4 is 148 mAh / g, and the actual discharge capacity up to 4.2 to 3.5 V is about 110 to 120 mAh / g. On the other hand, MF
In eO 4 (VI), K 2 FeO 4 (VI), Li
2 The theoretical discharge capacities of FeO 4 (VI) and BaFeO 4 (VI) are 406, 601, 313 mAh / g, respectively.
The actual discharge capacity also has a value of about 300 mAh / g or more. Therefore, a considerably higher energy density can be obtained than in a lithium secondary battery using only Li X Mn Y O 4 as a positive electrode active material.

【0012】更に、LiMnとMFeOを混
合することにより、LiMnのみを正極活物質
として使用したリチュウム2次電池のマンガン溶解によ
りおこる不可逆的容量損失を抑制することが可能とな
る。充放電中のマンガン溶解は次の不均化反応により生
成した2価マンガンにより引き起こされる。
Furthermore, by mixing the Li X Mn Y O 4 and MFeO 4, inhibit irreversible capacity loss caused by dissolution of manganese Lithium secondary battery using only Li X Mn Y O 4 as a cathode active material It becomes possible. Manganese dissolution during charge and discharge is caused by divalent manganese generated by the following disproportionation reaction.

【化1】 2Mn3+ → Mn4+ + Mn2+ MFeO(VI)よりなる正極は3電子還元能力を持
っており、LiMnの1電子還元能力より3倍
の還元能力を持っている。従来のKMnO,Cr
,KCrOなどの酸化剤は強力な酸化性能を持
っているが、これらの金属は環境的にも問題である。ま
た、本発明の非水電解液リチュウム2次電池に使用出来
る為には、2価マンガンイオンを優先的に3価マンガン
や1部4価マンガンに酸化させ、非水電解液や電解質を
酸化させない選択的酸化能力を持っていることが必要で
ある。従来の上記酸化剤はこれらの特性を持っていな
い。然し、本発明のMFeO(VI)はこれらの特性
を有している。
The positive electrode composed of 2Mn 3+ → Mn 4 ++ Mn 2+ MFeO 4 (VI) has a three-electron reduction ability, and has a three-fold reduction ability compared to the one-electron reduction ability of Li X Mn Y O 4. I have. Conventional KMnO 4 , Cr
Oxidants such as O 3 and K 2 CrO 4 have strong oxidizing performance, but these metals are environmentally problematic. Further, in order to be able to be used for the nonaqueous electrolyte lithium secondary battery of the present invention, divalent manganese ions are preferentially oxidized to trivalent manganese or partially tetravalent manganese, and the nonaqueous electrolyte and the electrolyte are not oxidized. It is necessary to have selective oxidation ability. Conventional oxidants do not have these properties. However, the MFeO 4 (VI) of the present invention has these properties.

【0013】[0013]

【発明の実施の形態】 本発明は、リチュウムマンガン
複合酸化物を含む正極と負極と非水電解液とを具備する
高容量非水電解液リチュウム2次電池において、前記正
極を構成する正極活物質がLiMn,LiMnO
などのリチュウムとマンガンとの複合酸化物(A)と
MFeO4(Fe:VI,M:II価金属として) (B)との混合複合酸化物を用いるものである。これに
よって、高エネルギー密度で、高温でもサイクル特性の
優れた高容量非水電解液リチュウム二次電池を得ること
が出来る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a high-capacity non-aqueous electrolyte lithium secondary battery including a positive electrode containing a lithium-manganese composite oxide, a negative electrode, and a non-aqueous electrolyte, and a positive electrode active material constituting the positive electrode Are LiMn 2 O 4 and LiMnO
A mixed oxide of a complex oxide of lithium and manganese (A) such as No. 2 and MFeO4 (as Fe: VI, M: II valent metal) (B) is used. Thus, a high-capacity nonaqueous electrolyte lithium secondary battery having a high energy density and excellent cycle characteristics even at a high temperature can be obtained.

【0014】また、本発明は、リチュウムとマンガンと
の複合酸化物LiMnと6価鉄の鉄酸塩MFe
を混合した混合複合酸化物(A+B)における鉄酸
塩(VI)(B)の混合率(B/A+B:重量%)が3
〜97%としたが、少しでもマンガン溶解を抑制し、エ
ネルギー密度を向上させたいためである。例えば、リチ
ュウムとマンガンのスピネル系複合酸化物LiMn
の場合、4V系においては、Li[Mn3+ 1.0
4+ 1.0]Oの構造式で、八面体サイトのマンガ
ンが3価と4価陽イオンが半々に存在し、3価マンガン
イオンが不均化反応を起こして、3価マンガンイオンの
半分が2価マンガン陽イオンになる。即ち、LiMn
の1モル中、4分の1のマンガンが2価マンガン陽
イオンとなる。この2価マンガン陽イオンを全部3価マ
ンガン陽イオンにするためには、鉄酸塩(VI)(Fe
6価イオンが3価イオンになる)は3分の1で済むこと
になるから、リチュウムとマンガンのスピネル系複合酸
化物LiMn1モルより生成する2価マンガンを
3価マンガンにするためには、鉄酸塩は1/12モル必
要である。LiMn(A)1モル(分子量18
1)に対し、鉄酸カリ(B)KFeO(VI)(分
子量192)1/12モルとなるから、混合複合酸化物
(A+B)中の鉄酸カリ(B)の重量%(B/A+B)
は約8%となる。即ち、マンガン溶解を防止する為に
は、混合複酸化物中に8%以上、実際には8〜20%程
度添加すると、マンガンの溶解を大幅に低下することが
出来る。実際には、2価マンガンを3価マンガンに酸化
すると同時に、4価マンガンも同時に生成するから、過
剰に鉄酸塩を加える必要がある。
Further, the present invention includes a composite oxide Li X Mn Y O 4 with Lithium and manganese 6 ferric of ferrate MFe
The mixing ratio (B / A + B: wt%) of ferrate (VI) (B) in the mixed composite oxide (A + B) mixed with O 4 is 3
The content is set to be up to 97%, because it is desired to suppress the dissolution of manganese even a little and to improve the energy density. For example, a spinel composite oxide LiMn 2 O of lithium and manganese
In the case of No. 4, Li [Mn 3+ 1.0 M
n 4+ 1.0 ] O 4 , in which manganese at the octahedral site has trivalent and tetravalent cations in halves, and trivalent manganese ions undergo a disproportionation reaction to form trivalent manganese ions. Half become divalent manganese cations. That is, LiMn 2
One- fourth manganese becomes a divalent manganese cation in one mole of O 4 . In order to convert all the divalent manganese cations into trivalent manganese cations, ferrate (VI) (Fe
(Hexavalent ions are converted into trivalent ions), which is only one-third, so that divalent manganese produced from 1 mol of lithium and manganese spinel complex oxide LiMn 2 O 4 is converted into trivalent manganese. Requires 1/12 mole of ferrate. LiMn 2 O 4 (A) 1 mol (molecular weight 18
In comparison with 1), potassium ferrate (B) becomes 1/12 mol of K 2 FeO 4 (VI) (molecular weight 192), so that the weight% (B) of potassium ferrate (B) in mixed mixed oxide (A + B) / A + B)
Is about 8%. That is, in order to prevent the dissolution of manganese, the dissolution of manganese can be greatly reduced by adding 8% or more, in practice, about 8 to 20% to the mixed double oxide. Actually, divalent manganese is oxidized to trivalent manganese and, at the same time, tetravalent manganese is generated at the same time, so it is necessary to add an excessive amount of ferrate.

【0015】リチュウムとマンガンとの複合酸化物は4
V系ではスピネル系のLiMnが、また、3V系
では斜方晶系のLiMnOがよく用いられているが、
サイクル特性などを改善するために、前述の如く、C
o,Ni,Al,Cr,Bなどの第3成分が添加或いは
固溶されたり、また、非化学量論的化合物や欠陥化合物
などが使用されているが、本発明はこれらのリチユウム
マンガン複合酸化物も含まれる。鉄酸塩(VI)につい
ては、各種溶剤に対する溶解度や合成法の点より、鉄酸
カリュウムKFeO(VI)、鉄酸バリュウムBa
FeO(VI)や鉄酸リチュウムLiFeO(V
I)が好ましいが、Na,Ca,Mg,Zn,Rb,C
s,Inなどの金属塩も使用できる。非水電解液として
は、ジメチルエーテル、エチレンカーボネート、ジエチ
ルカーボネート、γ−ブチロラクトン、1.4ジオキサ
ン、アクリルニトリル、アセトン、ヘキサン、クロロホ
ルム、なども使用できる。電解質として、過塩素酸リチ
ュウム、トリフルオロメタンスルホン酸リチュウム、燐
フッ化リチュウム、硼フッ化リチュウムなどが使用され
る。
The composite oxide of lithium and manganese is 4
In the V system, spinel LiMn 2 O 4 is often used, and in the 3V system, orthorhombic LiMnO 2 is often used.
In order to improve cycle characteristics, etc., as described above, C
Although a third component such as o, Ni, Al, Cr, or B is added or solid-solved, or a non-stoichiometric compound or a defective compound is used, the present invention relates to a lithium manganese composite. Oxides are also included. Regarding ferrate (VI), potassium ferrate K 2 FeO 4 (VI) and barium ferrate Ba from the viewpoint of solubility in various solvents and synthesis methods.
FeO 4 (VI) or lithium ferrate Li 2 FeO 4 (V
I) is preferred, but Na, Ca, Mg, Zn, Rb, C
Metal salts such as s and In can also be used. As the non-aqueous electrolyte, dimethyl ether, ethylene carbonate, diethyl carbonate, γ-butyrolactone, 1.4 dioxane, acrylonitrile, acetone, hexane, chloroform and the like can also be used. As the electrolyte, lithium perchlorate, lithium trifluoromethanesulfonate, lithium phosphate, lithium borofluoride, or the like is used.

【0016】[0016]

【実施例】以下、本発明を実施例及び比較例を挙げて、
具体的に説明する。此処では、リチュウムとマンガンと
の複合酸化物として、スピネル構造を有するLiMn
と、鉄酸塩として鉄酸カリKFeO(VI)、
鉄酸リチュウムLiFeO(VI)を例に挙げて説
明する。
EXAMPLES Hereinafter, the present invention will be described with reference to Examples and Comparative Examples.
This will be specifically described. Here, as a composite oxide of lithium and manganese, LiMn 2 having a spinel structure is used.
O 4 , potassium ferrate K 2 FeO 4 (VI) as a ferrate,
The description will be made by taking lithium ferrate Li 2 FeO 4 (VI) as an example.

【0017】(実施例1)正極活物質であるスピネル系
リチュウムマンガン複合酸化物LiMn(A)と
鉄酸カリKFeO(VI)(B)はそれぞれ以下の
方法により合成する。
(Example 1) Spinel-type lithium manganese composite oxide LiMn 2 O 4 (A) and potassium ferrate K 2 FeO 4 (VI) (B), which are positive electrode active materials, are synthesized by the following methods.

【0018】LiMnは、出発原料として電解2
酸化マンガンと水酸化リチュウムLiOH・HOをL
i/Mn=1.00/2.00〜1.05/2.00と
なるように混合して、空気中、温度750〜800℃、
焼成時間20時間で合成した。この生成物を粉砕器によ
り粉砕後、分級して、LiMnを得た。
LiMn 2 O 4 is used as a starting material for electrolysis 2
Manganese oxide and lithium hydroxide LiOH.H 2 O
i / Mn = 1.00 / 2.00 to 1.05 / 2.00, mixed in air, at a temperature of 750 to 800 ° C,
The synthesis was performed in a firing time of 20 hours. This product was pulverized by a pulverizer and then classified to obtain LiMn 2 O 4 .

【0019】鉄酸カリKFeO(VI)は、出発原
料として、冷苛性カリ溶液中に塩素ガスを吹き込んで生
成した次亜塩素酸カリKClO3モルに対し、硝酸第2
鉄.9水塩Fe(NO)・9HO 2モルを温度0
℃、1時間よく攪拌しながら反応させ、苛性カリKOH
10〜15モル(PH11程度)溶液中に徐々に加え、
鉄酸カリKFeO(VI)を生成させる。この生成
鉄酸カリKFeO(VI)を濾過し、1モルの苛性
カリ水溶液で2回洗浄し、次にn−ペンタンで洗浄し
て、水分をn−ペンタンで置換して水分を除去し、更
に、メタノールで洗浄して、KOHなどの不純物を除去
し、次に、ジエチルエーテルで洗浄して、真空吸引、乾
燥する。鉄酸カリKFeO(VI)の収率は約75
%で、純度は98%であった。
Potassium ferrate K 2 FeO 4 (VI) is used as a starting material with respect to 3 moles of potassium hypochlorite KClO produced by blowing chlorine gas into a cold caustic solution, and nitric acid
iron. Nonahydrate Fe (NO) 3 · 9H 2 O 2 molar temperatures 0
C. for 1 hour with good agitation.
10 to 15 mol (about PH11) slowly added to the solution,
This produces potassium ferrate K 2 FeO 4 (VI). The resulting potassium ferrate K 2 FeO 4 (VI) is filtered, washed twice with 1 molar aqueous potassium hydroxide solution, then washed with n-pentane, and the water is replaced with n-pentane to remove water. Further, the resultant is washed with methanol to remove impurities such as KOH, and then washed with diethyl ether, vacuum-suctioned and dried. The yield of potassium ferrate K 2 FeO 4 (VI) is about 75
%, The purity was 98%.

【0020】以上のようにして得られた正極活物質をス
ピネル構造を有するLiMnと導電剤としての黒
鉛と結着剤ポリフッ化ビニリデンとの重量比を85/1
2/3の割合で混合したLiMn正極合剤(a)
と、鉄酸塩として鉄酸カリKFeO(VI)とLi
OHと黒鉛と上記結着剤との重量比を60/25/12
/3の割合でよく混合したKFeO(VI)系正極
合剤 (b)を作成する。この両正極合剤aとbをK
FeO(VI)/LiMn=15/85(重量
比)の割合で混合し、正極混合合剤を作成する。この正
極混合合剤をn−メチル−2−ピロリドンに分散させて
正極活物質合剤スラリーにし、厚さ20ミクロンのアル
ミニュウム箔の両面に均一に塗布した後、乾燥し、加圧
することにより正極を作成した。
The positive electrode active material obtained as described above was prepared by adjusting the weight ratio of LiMn 2 O 4 having a spinel structure, graphite as a conductive agent, and polyvinylidene fluoride binder to 85/1.
LiMn 2 O 4 cathode mixture (a) mixed at a ratio of 2/3
And potassium ferrate K 2 FeO 4 (VI) as a ferrate and Li
The weight ratio of OH, graphite and the binder is 60/25/12.
A K 2 FeO 4 (VI) -based positive electrode mixture (b) mixed well at a ratio of / 3 is prepared. The two positive electrode mixtures a and b are combined with K 2
The mixture is mixed at a ratio of FeO 4 (VI) / LiMn 2 O 4 = 15/85 (weight ratio) to prepare a positive electrode mixture. This positive electrode mixture was dispersed in n-methyl-2-pyrrolidone to form a slurry of a positive electrode active material mixture, uniformly applied to both surfaces of an aluminum foil having a thickness of 20 μm, dried, and pressed to form a positive electrode. Created.

【0021】負極は、活物質の黒鉛材料と結合材とを9
0/10(重量比)の割合で混合し、負極合剤を作成し
た。塗布金属箔が銅箔であること以外は正極と同様にし
て負極を作成した。
The negative electrode comprises 9 parts of a graphite material as an active material and a binder.
The mixture was mixed at a ratio of 0/10 (weight ratio) to prepare a negative electrode mixture. A negative electrode was prepared in the same manner as the positive electrode except that the applied metal foil was a copper foil.

【0022】この作成された帯状の正極と負極を微多孔
性ポリオレフィンフィルムよりなるセパレーターを介し
て、多数回巻いて、多巻き式電極体を作成した。この多
巻き式電極体をニッケルメッキの鉄製円筒型電池缶に収
納し、多巻き式電極体の上下に絶縁体を設置した。アル
ミニュウム製の集電リードを正極から導き出し、電池蓋
に設置した安全弁の突起部分に溶接した。一方、アルミ
ニュウム製の集電リードを負極から導き出し、電池缶の
底部に溶接した。
The prepared strip-shaped positive electrode and negative electrode were wound many times through a separator made of a microporous polyolefin film to prepare a multi-turn electrode body. The multi-turn electrode was housed in a nickel-plated iron cylindrical battery can, and insulators were placed above and below the multi-turn electrode. The aluminum current collector lead was led out of the positive electrode and welded to the protrusion of the safety valve installed on the battery lid. On the other hand, a current collecting lead made of aluminum was led out of the negative electrode and was welded to the bottom of the battery can.

【0023】これに電解液を注入した後、封口ガスケッ
トを介して電池缶をかしめることにより、電池蓋を固定
し、外径18mm、高さ65mmの円筒型電池を作成し
た。電解液はエチレンカーボネイトとジメチルカーボネ
ートの混合溶媒(体積比1対1)に過塩素酸リチユウム
LiClOを1モル/lになるように溶解した電解液
を使用した。この電池を実施例1のリチュウム2次電池
とする。
After injecting the electrolytic solution into this, the battery can was caulked through a sealing gasket to fix the battery lid, thereby producing a cylindrical battery having an outer diameter of 18 mm and a height of 65 mm. As the electrolytic solution, an electrolytic solution obtained by dissolving lithium perchlorate LiClO 4 in a mixed solvent of ethylene carbonate and dimethyl carbonate (volume ratio of 1 to 1) at a concentration of 1 mol / l was used. This battery is referred to as a lithium secondary battery of Example 1.

【0024】(実施例2)混合正極活物質のスピネル構
造を有するLiMnと鉄酸塩の鉄酸カリKFe
(VI)とをKFeO(VI)/LiMn
=50/50(重量比)の割合であること以外は、実
施例1と同様にして作成した。この電池を実施例2のリ
チュウム2次電池とした。
Example 2 LiMn 2 O 4 having a spinel structure of a mixed cathode active material and potassium ferrate K 2 Fe as a ferrate
O 4 (VI) and K 2 FeO 4 (VI) / LiMn 2 O
4 was prepared in the same manner as in Example 1 except that the ratio was 50/50 (weight ratio). This battery was used as the lithium secondary battery of Example 2.

【0025】(比較例1)正極活物質として、KFe
(VI)/LiMn=0/100(重量比)
の割合、即ち、LiMnのみを使用したこと以外
は、実施例1と同様にして作成した。この電池を比較例
1のリチユウム2次電池とした。
Comparative Example 1 K 2 Fe was used as a positive electrode active material.
O 4 (VI) / LiMn 2 O 4 = 0/100 (weight ratio)
Except that only LiMn 2 O 4 was used. This battery was used as a lithium secondary battery of Comparative Example 1.

【0026】(比較例2)正極活物質として、KFe
(VI)/LiMn=100/0(重量比)
の割合、即ち、KFeO(VI)のみを使用したこ
と以外は、実施例1と同様にして作成した。この電池を
比較例2のリチユウム2次電池とした。
Comparative Example 2 K 2 Fe was used as a positive electrode active material.
O 4 (VI) / LiMn 2 O 4 = 100/0 (weight ratio)
, Ie, except that only K 2 FeO 4 (VI) was used. This battery was used as a lithium secondary battery of Comparative Example 2.

【0027】以上のようにして作成したリチユウム2次
電池の実施例1と2及び比較例1と2とを用いて、温度
50℃、0.2Cの一定電流で、4.2V迄充電し、更
に2時間充電して、その後、4.2から3.5V迄放電
を行った。1サイクル目の放電容量と100サイクル目
の放電容量の比を求めて、容量保持率とした。
Using the lithium secondary batteries prepared as described above in Examples 1 and 2 and Comparative Examples 1 and 2, the battery was charged to 4.2 V at a constant temperature of 50 ° C. and 0.2 C, The battery was charged for another 2 hours and then discharged from 4.2 to 3.5V. The ratio between the discharge capacity at the first cycle and the discharge capacity at the 100th cycle was determined and defined as the capacity retention.

【0028】また、100サイクル後、電池電解液に溶
解したマンガンイオンを測定し、正極活物質LiMn
中のマンガンの溶解度を測定した。そのマンガン溶
解度を表1「放電容量とサイクル試験結果及びマンガン
溶解度」に示す。
After 100 cycles, the manganese ions dissolved in the battery electrolyte were measured, and the positive electrode active material LiMn 2
The solubility of O 4 in the manganese was measured. The manganese solubility is shown in Table 1 "Discharge capacity, cycle test result and manganese solubility".

【0029】 表1から解るように、スピネル系マンガ
ン酸リチュウムLiMnは比較例1のように、L
iMn単独で正極活物質として使用したときは、
初期放電容量が125mAh/gであり、50℃、10
0サイクル充放電を繰り返したときは、100サイクル
目で容量保持率は64%で、LiMn中のマンガ
ン量の57%もマンガンが溶解したことになる。然し、
実施例1のように混合正極活物質組成LiMn
FeO(VI)即ち、A/B=85/15の場
合、初期放電容量152mAh/gで、100サイクル
目の容量保持率は85%で、マンガン溶解量は20%で
ある。また、実施例2のLiMn/KFeO
(VI)=50/50の時は、初期放電容量210mA
h/g、100サイクル目の容量保持率は90%、マン
ガン溶解率は10%であった。斯くの如く、マンガン酸
リチュウム複合酸化物に鉄酸カリを混合した混合複合酸
化物正極では、容量保持率が大きく、且つ、マンガン溶
解度も大幅に減少することが出来た。
As can be seen from Table 1, the spinel lithium manganate LiMn 2 O 4 is L
When iMn 2 O 4 alone was used as the positive electrode active material,
The initial discharge capacity is 125 mAh / g,
When the 0-cycle charge / discharge was repeated, the capacity retention was 64% at the 100th cycle, which means that manganese was dissolved by 57% of the manganese amount in LiMn 2 O 4 . But
As in Example 1, the mixed positive electrode active material composition LiMn 2 O 4 /
In the case of K 2 FeO 4 (VI), that is, when A / B = 85/15, the initial discharge capacity is 152 mAh / g, the capacity retention at the 100th cycle is 85%, and the manganese dissolution amount is 20%. Further, the LiMn 2 O 4 / K 2 FeO 4 of Example 2 was used.
When (VI) = 50/50, the initial discharge capacity is 210 mA.
h / g, the capacity retention at the 100th cycle was 90%, and the manganese dissolution rate was 10%. As described above, in the mixed composite oxide positive electrode in which potassium ferrate was mixed with the lithium manganate composite oxide, the capacity retention was large, and the manganese solubility was significantly reduced.

【0030】[0030]

【表1】 [Table 1]

【0031】尚、本発明のリチュウム2次電池は上記実
施例に記載された正極活物質の出発原料、製造法、正
極、負極、電解液、セパレーター及び電池形状などに限
定されるものではない。電解液は固体電解質なども利用
することが出来る。
The lithium secondary battery of the present invention is not limited to the starting materials, the production method, the positive electrode, the negative electrode, the electrolyte, the separator, the battery shape, and the like of the positive electrode active material described in the above embodiments. As the electrolyte, a solid electrolyte or the like can be used.

【0032】[0032]

【発明の効果】本発明は、上記の如く、スピネル系マン
ガン酸リチュウムなどのリチュウム2次電池の正極活物
質は使用中にマンガン溶解による不可逆的容量損失があ
り、特に、50℃以上の高温でのマンガン溶解が非常に
問題であるが、鉄酸カリなどの鉄酸塩(VI)を混合す
ることにより、マンガン溶解による放電容量の不可逆的
損失を大幅に減少することが出来、また、マンガン酸リ
チユウム単独の場合より高放電容量で安価な高容量非水
電解液リチュウム2次電池を提供することが出来た。
As described above, according to the present invention, the positive electrode active material of a lithium secondary battery such as spinel lithium manganate has an irreversible capacity loss due to dissolution of manganese during use, and particularly at a high temperature of 50 ° C. or more. Is very problematic, but by mixing a ferrate (VI) such as potassium ferrate, irreversible loss of discharge capacity due to manganese dissolution can be greatly reduced. A high-capacity non-aqueous electrolyte lithium secondary battery with a higher discharge capacity and a lower price than lithium alone can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチユウムマンガン複合酸化物を含む正
極と負極と非水電解液とを具備する高容量非水電解液リ
チュウム2次電池において、前記正極を構成する正極活
物質がLiMn,LiMnOなどのリチュウム
とマンガンとの複合酸化物(A)とMFeO4(Fe:
VI,M:II価金属として)(B)との混合複合酸化
物であることを特徴とする高容量非水電解液リチュウム
2次電池
1. A high-capacity nonaqueous electrolyte lithium secondary battery comprising a positive electrode containing a lithium manganese composite oxide, a negative electrode and a nonaqueous electrolyte, wherein the positive electrode constituting the positive electrode is LiMn 2 O 4 , A composite oxide of lithium and manganese (A) such as LiMnO 2 and MFeO 4 (Fe:
VI, M: a high-capacity nonaqueous electrolyte lithium secondary battery characterized by being a mixed composite oxide with (B) (as a II-valent metal).
【請求項2】 前記混合複合酸化物(A+B)における
鉄酸塩(VI)(B)の混合率(B/A+B:重量%)
が3〜97%であることを特徴とする請求項1記載の高
容量非水電解液リチュウム2次電池
2. A mixing ratio of ferrate (VI) (B) in the mixed composite oxide (A + B) (B / A + B: wt%)
2. The high-capacity nonaqueous electrolyte lithium secondary battery according to claim 1, wherein
JP2000152141A 2000-04-14 2000-04-14 High-capacity nonaqueous electrolyte lithium secondary cell Pending JP2001297751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152141A JP2001297751A (en) 2000-04-14 2000-04-14 High-capacity nonaqueous electrolyte lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152141A JP2001297751A (en) 2000-04-14 2000-04-14 High-capacity nonaqueous electrolyte lithium secondary cell

Publications (1)

Publication Number Publication Date
JP2001297751A true JP2001297751A (en) 2001-10-26

Family

ID=18657602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152141A Pending JP2001297751A (en) 2000-04-14 2000-04-14 High-capacity nonaqueous electrolyte lithium secondary cell

Country Status (1)

Country Link
JP (1) JP2001297751A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298834A (en) * 2001-01-29 2002-10-11 Sanyo Electric Co Ltd Lithium secondary battery and positive electrode for the lithium secondary battery
CN114243100A (en) * 2021-08-30 2022-03-25 上海大学 Positive electrode metal salt additive capable of being used for positive electrode interface film construction of solid electrolyte and application thereof
CN116759583A (en) * 2023-08-23 2023-09-15 浙江帕瓦新能源股份有限公司 Coating modified precursor, preparation method thereof, positive electrode material and lithium ion battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298834A (en) * 2001-01-29 2002-10-11 Sanyo Electric Co Ltd Lithium secondary battery and positive electrode for the lithium secondary battery
CN114243100A (en) * 2021-08-30 2022-03-25 上海大学 Positive electrode metal salt additive capable of being used for positive electrode interface film construction of solid electrolyte and application thereof
CN114243100B (en) * 2021-08-30 2024-05-14 上海大学 Positive electrode metal salt additive capable of being used for construction of positive electrode interface film of solid electrolyte and application thereof
CN116759583A (en) * 2023-08-23 2023-09-15 浙江帕瓦新能源股份有限公司 Coating modified precursor, preparation method thereof, positive electrode material and lithium ion battery
CN116759583B (en) * 2023-08-23 2023-11-10 浙江帕瓦新能源股份有限公司 Coating modified precursor, preparation method thereof, positive electrode material and lithium ion battery

Similar Documents

Publication Publication Date Title
JP5894388B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5638542B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
US8021783B2 (en) Lithium manganese-based composite oxide and method for preparing the same
JP4716072B2 (en) Lithium vanadium composite oxide for negative electrode active material of water based lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP5100024B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4766040B2 (en) A positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP6340791B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5552685B2 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
US20160329564A1 (en) Doped nickelate compounds
JP4655599B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP5733571B2 (en) Method for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP2007502249A (en) Boron-substituted lithium insertion compounds, electrode active materials, batteries and electrochromic devices
JP6201146B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013511802A (en) Galvanic cell containing oxygen-containing conversion electrode
JP2008198363A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
KR100300334B1 (en) Positive active material for lithium secondary battery and method of preparing the same
JP5109447B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP4274630B2 (en) Method for producing spinel type lithium manganate
JP2013060319A (en) Lithium manganese (iv) nickel (iii)-based oxide, positive electrode active material for lithium ion secondary battery containing the oxide, lithium ion secondary battery using the material, and vehicle carrying the battery
JP2013012336A (en) Secondary battery and charging method of the same
JP2018067549A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2017162614A (en) Manganese oxide mixture, mixed positive electrode active material, and lithium secondary battery using the same
JP5828282B2 (en) Method for producing active material for non-aqueous electrolyte secondary battery and secondary battery using the same