JP2001296837A - Driving method for current controlled type display device - Google Patents

Driving method for current controlled type display device

Info

Publication number
JP2001296837A
JP2001296837A JP2000111642A JP2000111642A JP2001296837A JP 2001296837 A JP2001296837 A JP 2001296837A JP 2000111642 A JP2000111642 A JP 2000111642A JP 2000111642 A JP2000111642 A JP 2000111642A JP 2001296837 A JP2001296837 A JP 2001296837A
Authority
JP
Japan
Prior art keywords
current
display device
precharge
gradation
type display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000111642A
Other languages
Japanese (ja)
Inventor
Noboru Asahi
昇 朝日
Shigeo Fujimori
茂雄 藤森
Tetsuo Oka
哲雄 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000111642A priority Critical patent/JP2001296837A/en
Publication of JP2001296837A publication Critical patent/JP2001296837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the reproducibility of gradation expression and the luminance of a display picture by suppressing effect of stray capacity to be generated at electrodes, light emitting elements, wirings or the like. SOLUTION: This driving method of a display device is the driving method of a current controlled type display device in which light emitting elements are arranged in a matrix shape and in the driving method, pre-charging is performed prior to the supplying of a signal current and the amount of the pre-charging is different in accordance with gradation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表示素子、フラッ
トパネルディスプレイ、バックライト、インテリアなど
の分野に利用可能な電流制御型表示装置の駆動方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving a current control type display device which can be used in fields such as display elements, flat panel displays, backlights, and interiors.

【0002】[0002]

【従来の技術】近年、新しい表示素子の一つとして有機
電界発光素子が注目されている。本素子は、陽極から注
入された正孔と陰極から注入された電子とが両極に挟ま
れた有機発光層内で再結合することにより発光するもの
であり、低電圧で高輝度に発光することがコダック社の
C. W. Tang らによって初めて示された(Appl. Phys. L
ett. 51 (12) 21, pp.913, 1987)。
2. Description of the Related Art In recent years, an organic electroluminescent device has attracted attention as one of new display devices. This element emits light when holes injected from the anode and electrons injected from the cathode are recombined in the organic light emitting layer sandwiched between both electrodes, and emits light at a low voltage with high luminance. Is Kodak
First shown by CW Tang et al. (Appl. Phys. L
ett. 51 (12) 21, pp. 913, 1987).

【0003】図5は有機電界発光素子の代表的な構造を
示す断面図である。ガラス基板1に形成された透明な陽
極2上に正孔輸送層3、有機発光層4、陰極5が積層さ
れ、駆動源6による駆動で生じた発光は陽極およびガラ
ス基板を介して外部に取り出される。本発光素子は、陽
極をプラス極性とした場合(順バイアス方向)に電流が
流れて発光し、陰極をプラス極性とした場合(逆バイア
ス方向)にはほとんど電流が流れないという整流性を有
するのが一般的である。
FIG. 5 is a sectional view showing a typical structure of an organic electroluminescent device. A hole transport layer 3, an organic light emitting layer 4, and a cathode 5 are laminated on a transparent anode 2 formed on a glass substrate 1, and light emission generated by driving by a driving source 6 is extracted outside through the anode and the glass substrate. It is. This light-emitting element has a rectifying property in which current flows when the anode has a positive polarity (forward bias direction) and emits light, and almost no current flows when the cathode has a positive polarity (reverse bias direction). Is common.

【0004】このような有機電界発光素子は薄型、低電
圧駆動下での高輝度発光や有機蛍光材料を選択すること
による多色発光が可能であり、表示装置やディスプレイ
などに応用する検討が盛んである。
[0004] Such an organic electroluminescent device is thin, can emit high-brightness light under low-voltage driving, and can emit multicolor light by selecting an organic fluorescent material, and its application to display devices and displays is actively studied. It is.

【0005】図4は、有機電界発光素子を利用した従来
の単純マトリクス型表示装置を示す等価回路の一例であ
る。m×n個の有機電界発光素子10(EL)がn本の信
号線11とm本の走査線12の電気的交点に配置されて
いる。信号線11と走査線12は、それぞれ信号線スイ
ッチ13(DSW)および走査線スイッチ14(SSW)を介
して駆動源15、逆バイアス電圧源16あるいは基準電
位(アース)に接続されている。信号線11は発光素子
の陽極に、走査線12は陰極に対応している。
FIG. 4 is an example of an equivalent circuit showing a conventional simple matrix type display device using an organic electroluminescent element. m × n organic electroluminescent elements 10 (EL) are arranged at electrical intersections of n signal lines 11 and m scanning lines 12. The signal line 11 and the scanning line 12 are connected to a driving source 15, a reverse bias voltage source 16 or a reference potential (earth) via a signal line switch 13 (DSW) and a scanning line switch 14 (SSW), respectively. The signal line 11 corresponds to the anode of the light emitting element, and the scanning line 12 corresponds to the cathode.

【0006】このような表示装置では、線順次駆動によ
り各発光素子を所望のパターンに発光させることができ
る。たとえば、図4において発光素子ELi,j(1≦i≦
m、1≦j≦n)を発光させる場合には、走査線SSWiの
みを低電位(アース)に接続し、その他の走査線をすべ
て高電位(逆バイアスVs)に接続する。このとき、DS
Wjから走査線と同期して信号電流を入力する。信号電流
は、走査線の逆バイアスのため発光素子ELi,jのみを順
方向に流れて発光する。選択した走査線上にある複数の
素子を発光させる場合には、複数の信号線から同時に信
号電流を与える。他の走査線についてもこの動作を高速
に繰り返せば、任意の組み合わせの発光素子を発光させ
て画像表示することができる。なお、走査線の切り換わ
るタイミングは、フレームレートと表示装置や走査線の
数などで決定される。
In such a display device, each light-emitting element can emit light in a desired pattern by line-sequential driving. For example, in FIG. 4, the light emitting elements ELi, j (1 ≦ i ≦
(m, 1 ≦ j ≦ n), only the scanning line SSWi is connected to a low potential (earth), and all other scanning lines are connected to a high potential (reverse bias Vs). At this time, DS
A signal current is input from Wj in synchronization with the scanning line. The signal current flows only through the light emitting element ELi, j in the forward direction due to the reverse bias of the scanning line, and emits light. To emit light from a plurality of elements on the selected scanning line, signal currents are supplied from a plurality of signal lines simultaneously. If this operation is repeated at high speed for other scanning lines, an image can be displayed by causing any combination of light emitting elements to emit light. Note that the timing at which the scanning lines are switched is determined by the frame rate, the display device, the number of scanning lines, and the like.

【0007】電流制御型表示装置における階調表現は、
素子に与える信号電流の大きさ、または信号を与える時
間を変調させることによって行い、いくつかの方法が考
えられている。パルス幅変調方式(PWM)では、図6
に示すように画素を選択した所定の走査期間のうち、信
号電流は一定で、そのパルス幅の時間割合をいくらにす
るかによって階調制御をおこなうものである。一方、パ
ルス振幅変調(PAM)では、図7に示すように走査期
間に与える電流の大きさによって階調制御をおこなう。
その他、1フレームを2のべき乗に応じた時間幅のサブ
フィールドに分割しそのサブフィールドの組み合わせに
より階調制御をおこなうサブフィールド表示法や、印加
電圧が一定でフレーム表示の有無によって階調制御をお
こなうフレーム抜き取り法などがある。
The gradation expression in the current control type display device is as follows.
It is performed by modulating the magnitude of the signal current applied to the element or the time during which the signal is applied, and several methods have been considered. In the pulse width modulation method (PWM), FIG.
As shown in (1), during a predetermined scanning period in which a pixel is selected, a signal current is constant, and gradation control is performed depending on the time ratio of the pulse width. On the other hand, in pulse amplitude modulation (PAM), as shown in FIG. 7, gradation control is performed according to the magnitude of a current applied during a scanning period.
In addition, a sub-field display method in which one frame is divided into sub-fields having a time width corresponding to a power of 2 and gradation control is performed by a combination of the sub-fields, and gradation control is performed based on the presence or absence of frame display with a constant applied voltage. There is a frame extraction method to be performed.

【0008】電流制御型の表示装置では、通常、発光さ
せたい素子に定電流を流すことによって駆動をおこな
う。しかし、定電流で駆動をおこなう場合、素子に流れ
込む信号電流の遅延現象が大きな問題になっている。信
号電流の遅延現象は配線などの抵抗成分のほか、図8に
示すように電極や発光素子、配線等に寄生する容量成分
によって生じる。ここで、キャパシタンス21は信号線
と基板との間等に存在する浮遊容量、キャパシタンス2
2は素子に存在する浮遊容量である。発光素子は信号電
流が順方向に流れて発光するものであるが、これらの浮
遊容量の存在のため駆動回路から出力された信号は、瞬
時に発光素子に流れることはない。浮遊容量への充電が
はじめに行われ、所定の電位に到達した後に電流が供給
される。したがって、その駆動波形には、図9のように
信号パルスが立ち上がるまでの充電時間が存在する。
In a current control type display device, driving is usually performed by passing a constant current through an element to emit light. However, when driving with a constant current, the delay phenomenon of the signal current flowing into the element has become a serious problem. The delay phenomenon of the signal current is caused not only by the resistance component of the wiring and the like but also by the capacitance component parasitic on the electrode, the light emitting element, the wiring and the like as shown in FIG. Here, the capacitance 21 is the stray capacitance existing between the signal line and the substrate, etc., and the capacitance 2
2 is a stray capacitance existing in the element. The light-emitting element emits light when a signal current flows in the forward direction, but a signal output from the drive circuit does not flow to the light-emitting element instantaneously due to the presence of these stray capacitances. Charging of the stray capacitance is performed first, and a current is supplied after reaching a predetermined potential. Therefore, the drive waveform has a charging time until the signal pulse rises as shown in FIG.

【0009】浮遊容量が小さい理想的な有機電界発光装
置であれば問題にはならないが、現実的にはこの充電時
間は無視できない。ディスプレイ用途では、大型化が進
み配線が長く画素数が増大するにつれて浮遊容量や配線
抵抗が大きくなる。それに伴って充電時間も長くなり、
実効的なデューティー比が小さくなる。
This is not a problem if it is an ideal organic electroluminescent device having a small stray capacitance, but in reality, this charging time cannot be ignored. In display applications, stray capacitance and wiring resistance increase as the size increases and the length of wiring increases and the number of pixels increases. Along with that, the charging time becomes longer,
The effective duty ratio decreases.

【0010】浮遊容量の電荷の充電を高速にできる方法
としては、特開平9−232074号公報で示される駆
動方式がある。これは、次の走査線への切り換わり時
に、すべての走査線を一旦同じ電位からなるリセット電
位に接続し、走査線の逆バイアス電圧によって充電を加
速させる方法である。
As a method for accelerating the charging of the electric charge of the floating capacitance, there is a driving method disclosed in Japanese Patent Application Laid-Open No. 9-232074. This is a method in which, when switching to the next scanning line, all the scanning lines are once connected to a reset potential having the same potential, and charging is accelerated by a reverse bias voltage of the scanning line.

【0011】また、特開平11−45071号公報で示
されるような駆動方式も考えられている。これらは、走
査線の走査が開始して一定期間、一定の電位(電流)を
出力する第1の駆動源に接続して浮遊容量をプリチャー
ジする。その後、第2の定電流源に接続し信号入力を行
うというものである。
A driving system as disclosed in JP-A-11-45071 has also been considered. These are connected to a first drive source that outputs a constant potential (current) for a certain period after scanning of a scanning line starts, and precharges a stray capacitance. After that, it is connected to the second constant current source to input a signal.

【0012】[0012]

【発明が解決しようとする課題】しかし、従来法でパル
ス振幅変調あるいはパルス振幅変調とパルス幅変調との
組み合わせなどによる階調表示を行う場合には、プリチ
ャージ量が一定のために浮遊容量の充電が過剰になる場
合や不十分になる場合が生じる。浮遊容量の充電が不十
分であれば、同じ輝度を得るためにはより多くの信号電
流を流さなければならない。プリチャージの電荷量が大
きすぎると、低輝度の階調を鮮明に出力することが難し
くなり、画像の表示特性が悪化してしまうという問題が
生じていた。
However, when gradation display is performed by pulse amplitude modulation or a combination of pulse amplitude modulation and pulse width modulation in the conventional method, the precharge amount is constant, so that the floating capacitance is reduced. In some cases, charging becomes excessive or insufficient. If the stray capacitance is insufficiently charged, more signal current must be passed to obtain the same luminance. If the charge amount of the precharge is too large, it becomes difficult to output a low-luminance gradation clearly, and there has been a problem that image display characteristics are deteriorated.

【0013】本発明はかかる問題を解決し、電流制御型
表示装置において、電極や発光素子、配線等に生じる浮
遊容量の影響を抑え、階調表現の再現性と輝度を向上さ
せることが可能な駆動方法を提供することが目的であ
る。
The present invention solves such a problem, and in a current control type display device, it is possible to suppress the influence of stray capacitance generated on electrodes, light emitting elements, wirings, etc., and to improve the reproducibility of gradation expression and luminance. It is an object to provide a driving method.

【0014】[0014]

【課題を解決するための手段】すなわち本発明は、マト
リクス状に発光素子を配置した電流制御型表示装置の駆
動方法であって、信号電流の供給に先立ってプリチャー
ジを行い、そのプリチャージ量が階調に応じて異なるこ
とを特徴とする電流制御型表示装置の駆動方法である。
That is, the present invention relates to a method of driving a current control type display device in which light-emitting elements are arranged in a matrix, wherein a precharge is performed prior to the supply of a signal current, and the precharge amount is controlled. Are different depending on the gray scale.

【0015】[0015]

【発明の実施の形態】本発明における電流制御型表示装
置の一例を図1に示す。図4と同様にm×n個の有機電
界発光素子10(EL)がn本の信号線11とm本の走査
線12の電気的交点に配置されている。信号線11は、
信号線スイッチ13(DSW)を介して駆動源15
(D)、17(C)あるいは基準電位に接続されてお
り、走査線12は、走査線スイッチ14(SSW)を介し
て定電圧源16あるいは基準電位に接続されている。信
号線の2つの駆動源は、それぞれプリチャージを行う第
1の駆動源17(C)と信号電流を入力する第2の駆動
源15(D)である。第2の駆動源15(D)には、通
常、定電流源を用いる。
FIG. 1 shows an example of a current control type display device according to the present invention. As in FIG. 4, m × n organic electroluminescent elements 10 (EL) are arranged at electrical intersections of n signal lines 11 and m scanning lines 12. The signal line 11 is
Drive source 15 via signal line switch 13 (DSW)
(D), 17 (C) or the reference potential, and the scanning line 12 is connected to the constant voltage source 16 or the reference potential via the scanning line switch 14 (SSW). The two driving sources for the signal line are a first driving source 17 (C) for performing precharge and a second driving source 15 (D) for inputting a signal current. Usually, a constant current source is used as the second drive source 15 (D).

【0016】本駆動方式による線順次駆動でELi,jを発
光させてパターン表示を行う動作を図1〜3を用いて説
明する。はじめに、信号線スイッチ13(DSW)および
走査線スイッチ14(SSW)はいずれも基準電位(アー
ス)に接続しているものとする(図1)。次に、DSWjを
走査して発光対象であるELi,jを発光させることを考え
る。
The operation of pattern display by emitting ELi, j by line-sequential driving according to the present driving method will be described with reference to FIGS. First, it is assumed that both the signal line switch 13 (DSW) and the scanning line switch 14 (SSW) are connected to a reference potential (earth) (FIG. 1). Next, consider scanning DSWj to emit light from ELi, j, which is the emission target.

【0017】まず、発光素子ELi,jの走査線を基準電位
に接続し、それ以外の走査線を逆バイアス電圧Vsに接
続する(図2)。それと同時に、信号線スイッチ13
(DSW)を切り換えて信号線をプリチャージするための
駆動源17(C)に接続する。このとき、この信号線上
の浮遊容量には、逆バイアスによる電荷の他、駆動源1
7(Cj)からの電荷がプリチャージされる。ここでいう
浮遊容量とは、パネル上の信号線や陽極と陰極に挟まれ
た全発光素子に寄生するものだけでなく駆動回路や信号
線の接合部などに存在する容量成分もすべて含む。パル
ス幅変調の場合には、信号電流が一定のために階調によ
らず一定のプリチャージ量でよい。ところが、パルス振
幅変調あるいはパルス振幅変調とパルス幅変調の組み合
わせで駆動を行う場合には、階調によって信号電流が異
なり、プリチャージに必要な電荷量がその信号電流に対
してほぼ比例して変化する。
First, the scanning lines of the light emitting elements ELi, j are connected to the reference potential, and the other scanning lines are connected to the reverse bias voltage Vs (FIG. 2). At the same time, the signal line switch 13
(DSW) to connect to the drive source 17 (C) for precharging the signal line. At this time, in addition to the electric charge due to the reverse bias, the driving source 1
7 (Cj) is precharged. The term “floating capacitance” used herein includes not only those parasitic on the signal lines on the panel and all the light emitting elements sandwiched between the anode and the cathode, but also all the capacitance components existing in the driving circuit and the junction of the signal lines. In the case of pulse width modulation, since the signal current is constant, a constant precharge amount may be used regardless of the gradation. However, when driving by pulse amplitude modulation or a combination of pulse amplitude modulation and pulse width modulation, the signal current differs depending on the gray level, and the amount of charge required for precharge changes almost in proportion to the signal current. I do.

【0018】したがって、駆動源17(Cj)の電圧また
は電流または時間は、各階調に対して適切な電荷量をプ
リチャージするため、プリチャージ直後に駆動源15
(Dj)で出力される信号電流の大きさに応じて比例する
ように変化させる。電荷を瞬時に充電するためには、プ
リチャージの駆動源17(C)で発光させる信号電圧に
等しい電圧出力、もしくは信号電流よりも大きい電流出
力を発生させることが好ましい。たとえば、パルス振幅
変調で16階調(0.01mA, 0.02mA, ..., 0.16mA)を表
現する場合には、プリチャージ電流もそれに応じて16
階調(0.1mA, 0.2mA, ..., 1.6mA)設けるようにする。
所定の電荷が充電された後、走査線はそのままの状態で
信号線スイッチ13(DSW)を駆動源15(D)に切り
換え、階調に応じた信号電流を入力する(図3)。以上
の動作を繰り返すことで、どのような階調にも明るく鮮
明なパターン表示を行わせることができる。
Therefore, the voltage, current or time of the driving source 17 (Cj) is set immediately after the precharging in order to precharge an appropriate charge amount for each gradation.
(Dj) is changed in proportion to the magnitude of the signal current output. In order to charge the electric charge instantaneously, it is preferable to generate a voltage output equal to the signal voltage to emit light by the precharge driving source 17 (C) or a current output larger than the signal current. For example, when expressing 16 gradations (0.01 mA, 0.02 mA,..., 0.16 mA) by pulse amplitude modulation, the precharge current is also increased by 16 correspondingly.
Provide gradation (0.1mA, 0.2mA, ..., 1.6mA).
After the predetermined charge is charged, the signal line switch 13 (DSW) is switched to the driving source 15 (D) while the scanning line is kept as it is, and a signal current corresponding to the gradation is input (FIG. 3). By repeating the above operation, a bright and clear pattern display can be performed at any gradation.

【0019】図10は、プリチャージを階調ごとに設定
した本発明の駆動波形の例であり、図11はプリチャー
ジを一定に設定した従来の駆動波形の例である。これら
の図では、駆動源17(C)として定電流源を用いた場
合の駆動電流波形と、実際に発光素子にかかる電圧波形
を合わせて示している。プリチャージを適切に設定した
場合には(図10)、いずれの階調に対しても立ち上が
りがはやく、発光効率の大きいパルス波形が得られる。
一方、プリチャージが一定の場合には(図11)、信号
電流の大きさによってプリチャージ量が過剰になる場合
や不十分になる場合が生じる。とくに、多階調の微妙な
表現やカラーの色表現を表示する場合には本発明の効果
は大きい。
FIG. 10 shows an example of a drive waveform of the present invention in which precharge is set for each gradation, and FIG. 11 shows an example of a conventional drive waveform in which precharge is set to be constant. In these drawings, a driving current waveform when a constant current source is used as the driving source 17 (C) and a voltage waveform actually applied to the light emitting element are shown together. When the precharge is set appropriately (FIG. 10), a pulse waveform with a rapid rise and high luminous efficiency is obtained for any gradation.
On the other hand, when the precharge is constant (FIG. 11), the precharge amount may become excessive or insufficient depending on the magnitude of the signal current. In particular, the effect of the present invention is great when displaying subtle expressions of multiple gradations and color expressions of colors.

【0020】充電時間については特に限定されないが、
実効デューティー比を低下させないという観点からはプ
リチャージ期間は短い方が望ましい。プリチャージ期間
は、プリチャージ電流の大きさと、配線抵抗や発光素子
のオン抵抗、浮遊容量などの時定数によって決定され
る。駆動源17(C)として電流源を用いた場合には、
プリチャージ量はその電流の大きさと時間に比例する。
The charging time is not particularly limited,
From the viewpoint of not reducing the effective duty ratio, it is desirable that the precharge period is short. The precharge period is determined by the magnitude of the precharge current and a time constant such as wiring resistance, on-resistance of the light emitting element, and stray capacitance. When a current source is used as the driving source 17 (C),
The amount of precharge is proportional to the magnitude of the current and time.

【0021】本発明の図1〜3に例示した駆動方式にお
いては、駆動源17(C)として電圧源や電流源の利用
が可能であるが、充電手段について限定されるものでは
ない。また、一時的に過大な電流や電圧がパネルに印加
されるのを防ぐため、電圧リミッタや電流リミッタを設
けてもよい。
In the driving method illustrated in FIGS. 1 to 3 of the present invention, a voltage source or a current source can be used as the driving source 17 (C), but the charging means is not limited. Further, a voltage limiter or a current limiter may be provided in order to temporarily prevent an excessive current or voltage from being applied to the panel.

【0022】なお、上記の例では有機電界発光素子を用
いた単純マトリクス型の表示装置を対象として説明を行
った。本発明の電流型表示装置の駆動方法は上記例のみ
ならず、電力供給によって表示機能を持つ装置一般に適
用できるものであるが、さらには有機電界発光装置に好
ましく適用できる。有機電界発光装置を用いた場合にお
いては、発光素子や電極の構成を限定するものではな
い。また、電流型表示装置が、モノクロ表示装置であっ
てもカラー表示装置であってもよい。カラー表示におい
ては、赤、青及び緑の発光素子についてプリチャージ量
が異なっていてもよい。
In the above example, a description has been given of a simple matrix type display device using an organic electroluminescent element. The method of driving the current-type display device of the present invention can be applied not only to the above-described example but also to general devices having a display function by supplying power, and further preferably to an organic electroluminescent device. When an organic electroluminescent device is used, the configuration of the light emitting element or the electrode is not limited. Further, the current type display device may be a monochrome display device or a color display device. In the color display, the precharge amounts may be different for the red, blue and green light emitting elements.

【0023】[0023]

【実施例】以下、実施例を挙げて本発明を説明するが、
本発明はこれらの例によって限定されるものではない。
Hereinafter, the present invention will be described with reference to examples.
The present invention is not limited by these examples.

【0024】実施例1 図12に有機電界発光装置の構造例の概略を示す。作製
の手順は以下の通りである。
Embodiment 1 FIG. 12 schematically shows a structural example of an organic electroluminescent device. The manufacturing procedure is as follows.

【0025】ITO透明電極膜のついたガラス基板31
を120×100mmの大きさに切断した。通常のフォ
トリソグラフィー法によってITOを長さ90mm、ピ
ッチ300μm(ITO幅270μm)×272本にパ
ターン加工して、ストライプ状第一電極32(陽極)を
得た。
Glass substrate 31 with ITO transparent electrode film
Was cut into a size of 120 × 100 mm. ITO was patterned by a normal photolithography method to have a length of 90 mm and a pitch of 300 μm (ITO width 270 μm) × 272 to obtain a striped first electrode 32 (anode).

【0026】この基板を洗浄し、UV−オゾン処理を施
してから真空蒸着機に固定して、装置内の真空度が2×
10-4Pa以下になるまで排気した。基板を回転させな
がら、銅フタロシアニンを15nm、ビス(m−メチル
フェニルカルバゾール)を60nm順に蒸着して正孔輸
送層33を形成した。さらに、8−ヒドロキシキノリン
−アルミニウム錯体(Alq3)を60nm蒸着して有
機発光層34を形成し、この有機層をリチウム蒸気にさ
らしてドーピング(膜厚換算量0.5nm)した。次
に、磁性体からなるシャドーマスクを基板前方に、磁石
を基板後方に置いてこれらを固定し、Alを240nm
の厚さに蒸着して、長さ100mm、ピッチ300μm
(Al幅250μm)×200本のストライプ状第二電
極35(陰極)を形成した。
This substrate is washed, subjected to UV-ozone treatment, and then fixed to a vacuum evaporation machine, and the degree of vacuum in the apparatus is set to 2 ×
Evacuation was performed until the pressure became 10 −4 Pa or less. While rotating the substrate, copper phthalocyanine was deposited to a thickness of 15 nm and bis (m-methylphenylcarbazole) was deposited to a thickness of 60 nm to form a hole transport layer 33. Further, an 8-hydroxyquinoline-aluminum complex (Alq3) was deposited to a thickness of 60 nm to form an organic light-emitting layer 34, and this organic layer was exposed to lithium vapor and doped (0.5 nm in terms of thickness). Next, a shadow mask made of a magnetic material is placed in front of the substrate, and a magnet is placed behind the substrate to fix them.
100mm length, 300μm pitch
(Al width 250 μm) × 200 stripe-shaped second electrodes 35 (cathodes) were formed.

【0027】互いに直交するストライプ状第一電極32
とストライプ状第二電極35によって有機層33および
34が挟まれており、両電極の交点に有機電界発光素子
(1画素)が形成された典型的な単純マトリクス型表示
装置である。画素の大きさは270μm×250μmで
あり、画素数は272×200個である。なお、有機電
界発光素子の発光開始電圧は直流駆動において約5Vで
あった。
First stripe-shaped electrodes 32 orthogonal to each other
This is a typical simple matrix type display device in which organic layers 33 and 34 are sandwiched between a first electrode and an organic electroluminescent element (one pixel) at the intersection of both electrodes. The size of the pixel is 270 μm × 250 μm, and the number of pixels is 272 × 200. The light emission starting voltage of the organic electroluminescent device was about 5 V in DC driving.

【0028】上記表示装置の第一電極を信号線11、第
二電極を走査線12として、図1〜3に示した表示装置
にてパターン表示を行った。駆動源15(D)は定電流
源であり、また、プリチャージ用駆動源17(C)に
は、駆動源15(D)の信号電流の大きさに比例して出
力を変更できる定電流源を用いた。なお、同図では制御
信号発生部分などは示さず省略している。線順次駆動条
件は、フレーム周波数60Hz(インターレース)、デ
ューティー比1/200で行った。1走査線の割り当て
時間166.5μsのうち、プリチャージの時間幅を2
0μs、最後の10μsをリセット時間とした。また、
プリチャージ電流の大きさは、それぞれ信号電流の10
倍を目安に微調整した。実際にパルス振幅変調によって
16階調のパターン表示をさせたところ、いずれの階調
に対しても明るく良好な表示特性が得られた。輝度は
0.1mAの信号出力で70cd/m2であった。
Pattern display was performed on the display device shown in FIGS. 1 to 3 by using the first electrode of the display device as the signal line 11 and the second electrode as the scanning line 12. The drive source 15 (D) is a constant current source, and the precharge drive source 17 (C) includes a constant current source whose output can be changed in proportion to the magnitude of the signal current of the drive source 15 (D). Was used. It should be noted that a control signal generation portion and the like are not shown in FIG. Line-sequential driving conditions were a frame frequency of 60 Hz (interlace) and a duty ratio of 1/200. Of the 166.5 μs allocation time for one scanning line, the precharge time width is set to 2
0 μs and the last 10 μs were set as the reset time. Also,
The magnitude of the precharge current is 10
Fine adjustment was made with reference to double. When pattern display of 16 gradations was actually performed by pulse amplitude modulation, bright and good display characteristics were obtained for all gradations. The luminance was 70 cd / m 2 at a signal output of 0.1 mA.

【0029】実施例2 64階調のパターン表示したこと以外は実施例1と同様
にして表示装置を駆動した。階調数が増加しても適切な
プリチャージの効果によって階調の線形性を保つことが
でき、良好な表示特性が得られた。
Example 2 A display device was driven in the same manner as in Example 1 except that a 64-gradation pattern was displayed. Even if the number of gradations increases, the linearity of the gradation can be maintained by an appropriate precharge effect, and good display characteristics can be obtained.

【0030】実施例3 256階調のパターン表示したこと以外は実施例1と同
様にして表示装置を駆動した。256階調のような微妙
な階調表現が要求される場合においても、適切なプリチ
ャージの効果によって色再現性を保つことができるた
め、より良好な表示特性が得られた。
Example 3 A display device was driven in the same manner as in Example 1 except that a 256 gradation pattern was displayed. Even when a delicate gradation expression such as 256 gradations is required, color reproducibility can be maintained by an appropriate precharge effect, so that better display characteristics were obtained.

【0031】実施例4 プリチャージの駆動電源17(C)として電圧源を接続
したこと以外は実施例3と同様にして表示装置を駆動し
た。プリチャージの電圧値は、それぞれの階調に応じた
発光電圧と等しくなるように設定した。256階調のパ
ターン表示を行い、実施例3と同様、いずれの階調に対
しても明るく良好な表示特性が得られた。
Example 4 A display device was driven in the same manner as in Example 3 except that a voltage source was connected as the driving power supply 17 (C) for precharge. The precharge voltage value was set to be equal to the light emission voltage corresponding to each gradation. A pattern display of 256 gradations was performed, and bright and favorable display characteristics were obtained for all gradations, similarly to the third embodiment.

【0032】実施例5 パルス振幅変調とパルス幅変調との組み合わせで256
階調のパターン表示をおこなった。パルス振幅で16階
調、パルス幅でその間の16階調を表現することにより
256階調を実現した。プリチャージ電流の大きさは、
パルス振幅変調による16階調に対してそれぞれ信号電
流の10倍を目安に微調整し、パルス幅に対しては一定
とした。それ以外は実施例1と同様にして表示装置を駆
動した。この場合においても、各階調に対して適切なプ
リチャージの効果によって色再現性を保つことができ、
良好な表示特性が得られた。
Embodiment 5 256 combinations of pulse amplitude modulation and pulse width modulation
A gradation pattern was displayed. By expressing 16 gradations with a pulse amplitude and 16 gradations between them with a pulse width, 256 gradations were realized. The magnitude of the precharge current is
For 16 gradations by the pulse amplitude modulation, fine adjustment was made with reference to 10 times the signal current, and the pulse width was fixed. Otherwise, the display device was driven in the same manner as in Example 1. Even in this case, the color reproducibility can be maintained by the effect of an appropriate precharge for each gradation,
Good display characteristics were obtained.

【0033】実施例6 ITO透明電極膜のついたガラス基板を120×100
mmの大きさに切断した。通常のフォトリソグラフィー
法によってITOを長さ90mm、幅80μmのストラ
イプ形状にパターニングした。このストライプ状第一電
極は100μmピッチで816(3×272)本配置さ
れている。
Example 6 A glass substrate provided with an ITO transparent electrode film was made 120 × 100
It was cut to the size of mm. ITO was patterned into a stripe shape having a length of 90 mm and a width of 80 μm by ordinary photolithography. The 816 (3 × 272) stripe-shaped first electrodes are arranged at a pitch of 100 μm.

【0034】次にポジ型フォトレジスト(東京応化工業
(株)製、OFPR-800)をスピンコート法により第一電極
を形成した基板上に厚さ3μmになるように塗布した。
この塗布膜にフォトマスクを介してパターン露光し、現
像してフォトレジストのパターニングを行い、現像後に
160℃でキュアした。このパターニングに用いたフォ
トマスクには、幅65μm、長さ235μmの絶縁層開
口部が、幅方向には100μmピッチで816個、長さ
方向には300μmピッチで200個配置されている。
Next, a positive photoresist (OFPR-800, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied to the substrate on which the first electrode was formed so as to have a thickness of 3 μm by spin coating.
The coating film was exposed to a pattern through a photomask, developed, and patterned to form a photoresist. After development, the coating was cured at 160 ° C. In the photomask used for this patterning, 816 openings of an insulating layer having a width of 65 μm and a length of 235 μm are arranged at a pitch of 100 μm in the width direction and 200 at a pitch of 300 μm in the length direction.

【0035】次に、真空蒸着機に固定して装置内の真空
度が2×10-4Pa以下になるまで排気した。基板を回
転させながら、銅フタロシアニンを15nm、ビス(N
−エチルカルバゾール)を60nm順に蒸着して正孔輸
送層を形成した。
Next, the apparatus was fixed to a vacuum evaporation machine and evacuated until the degree of vacuum in the apparatus became 2 × 10 −4 Pa or less. While rotating the substrate, 15 nm of copper phthalocyanine and bis (N
-Ethylcarbazole) was deposited in the order of 60 nm to form a hole transport layer.

【0036】発光パターニング用として、マスク部分と
補強線とが同一平面内に形成されたシャドーマスクを用
いた。シャドーマスクの外形は120×84mm、マス
ク部分の厚さは25μmであり、長さ64mm、幅10
0μmのストライプ状開口部がピッチ300μmで27
2本配置されている。各ストライプ状開口部には、開口
部と直交する幅20μm、厚さ25μmの補強線が1.
8mm間隔に形成されている。シャドーマスクは外形が
等しい幅4mmのステンレス鋼製フレームに固定されて
いる。
For light emission patterning, a shadow mask having a mask portion and a reinforcing line formed in the same plane was used. The outer shape of the shadow mask is 120 × 84 mm, the thickness of the mask portion is 25 μm, the length is 64 mm, and the width is 10 mm.
27 μm stripe-shaped openings with a pitch of 300 μm
Two are arranged. In each stripe-shaped opening, a reinforcing line having a width of 20 μm and a thickness of 25 μm orthogonal to the opening is provided.
It is formed at intervals of 8 mm. The shadow mask is fixed to a stainless steel frame having the same outer shape and a width of 4 mm.

【0037】発光層用シャドーマスクを基板前方に配置
して両者を密着させ、基板後方にはフェライト系板磁石
を配置した。この際、ストライプ状第一電極がシャドー
マスクのストライプ状開口部の中心に位置し、補強線が
絶縁層上に位置し、かつ補強線と絶縁層が接触するよう
に配置される。この状態で0.3重量%の1,3,5,7,
8−ペンタメチル4,4−ジフロロ−4−ボラ−3a,4
a−ジアザ−s−インダセン−(PM546)をドーピ
ングしたAlq3を21nm蒸着し、G発光層をパター
ニングした。
A light-emitting layer shadow mask was arranged in front of the substrate so that both adhered to each other, and a ferrite plate magnet was arranged behind the substrate. At this time, the stripe-shaped first electrode is located at the center of the stripe-shaped opening of the shadow mask, the reinforcing line is located on the insulating layer, and the reinforcing line and the insulating layer are arranged to be in contact with each other. In this state, 0.3% by weight of 1,3,5,7,
8-Pentamethyl 4,4-difluoro-4-bora-3a, 4
Alq3 doped with a-diaza-s-indacene- (PM546) was deposited to a thickness of 21 nm, and the G light emitting layer was patterned.

【0038】次に、シャドーマスクを1ピッチ分ずらし
た位置の第一電極パターンに位置合わせして、1重量%
の4−(ジシアノメチレン)−2−メチル−6−(ジュ
ロリジルスチリル)ピラン(DCJT)をドーピングし
たAlq3を15nm蒸着して、R発光層をパターニン
グした。
Next, the shadow mask is aligned with the first electrode pattern at a position shifted by one pitch, and
Alq3 doped with 4- (dicyanomethylene) -2-methyl-6- (julolidylstyryl) pyran (DCJT) was deposited to a thickness of 15 nm to pattern the R light emitting layer.

【0039】さらにシャドーマスクを一ピッチ分ずらし
た位置の第一電極パターンに位置合わせして、4,4'−
ビス(2,2'−ジフェニルビニル)ジフェニル(DPV
Bi)を20nm蒸着して、B発光層をパターニングし
た。R、G、Bそれぞれの発光層は、ストライプ状第一
電極の3本ごとに配置され、第一電極のB露出部分を完
全に覆っている。
Further, the shadow mask is aligned with the first electrode pattern at a position shifted by one pitch, and
Bis (2,2'-diphenylvinyl) diphenyl (DPV
Bi) was deposited to a thickness of 20 nm to pattern the B light-emitting layer. The R, G, and B light emitting layers are disposed for every three stripe-shaped first electrodes, and completely cover the B-exposed portions of the first electrode.

【0040】次に、DPVBiを35nm、Alq3を
10nm基板前面に蒸着した。この後、薄膜層をリチウ
ム蒸気にさらしてドーピング(膜厚換算量0.5nm)
した。
Next, 35 nm of DPVBi and 10 nm of Alq3 were deposited on the front surface of the substrate. Thereafter, the thin film layer is exposed to lithium vapor for doping (0.5 nm in equivalent film thickness).
did.

【0041】第二電極は、抵抗線加熱方式による真空蒸
着法によって形成した。なお、蒸着時の真空度が3×1
-4Pa以下であり、蒸着中は2つの蒸着源に対して基
板を回転させた。発光層のパターニングと同様に、第二
電極用シャドーマスクを基板前方に配置して両者を密着
させ、基板後方には磁石を配置した。この際、絶縁層が
マスク部分の位置と一致するように両者を配置する。こ
の状態でアルミニウムを240nmの厚さに蒸着して、
長さ100mm、ピッチ300μm(Al幅250μ
m)×200本のストライプ状第二電極をパターニング
した。
The second electrode was formed by a vacuum evaporation method using a resistance wire heating method. The degree of vacuum at the time of vapor deposition was 3 × 1
0 -4 and a Pa or less, during the deposition is rotated substrate for the two deposition sources. Similarly to the patterning of the light-emitting layer, a shadow mask for the second electrode was arranged in front of the substrate so that both were brought into close contact with each other, and a magnet was arranged behind the substrate. At this time, both are arranged so that the insulating layer coincides with the position of the mask portion. In this state, aluminum is deposited to a thickness of 240 nm,
Length 100mm, pitch 300μm (Al width 250μ
m) × 200 striped second electrodes were patterned.

【0042】このようにして幅80μm、ピッチ100
μm、本数816本のITOストライプ状第一電極上
に、パターニングされたR発光層、G発光層、B発光層
を含む薄膜層が形成され、第一電極と直交するように幅
250μm、ピッチ300μmのストライプ状第二電極
が200本配置された単純マトリクス型カラー有機電界
発光装置を作製した。R、G、Bの3つの発光領域が1
画素を形成するので、本有機電界発光装置は、300μ
mピッチで272×200画素を有する。1つの発光領
域は絶縁層の開口部により規制されるので、幅65μ
m、長さ235μmである。
Thus, a width of 80 μm and a pitch of 100
A patterned thin film layer including an R light emitting layer, a G light emitting layer, and a B light emitting layer is formed on a 816 ITO stripe-shaped first electrode having a width of 250 μm and a pitch of 300 μm so as to be orthogonal to the first electrode. A simple matrix type color organic electroluminescent device in which 200 stripe-shaped second electrodes were arranged was manufactured. R, G, and B light emitting areas are 1
Since the pixels are formed, the present organic electroluminescent device has a
It has 272 × 200 pixels at m pitches. Since one light emitting region is regulated by the opening of the insulating layer, a width of 65 μm is required.
m and length 235 μm.

【0043】本有機電界発光装置を蒸着機から取り出
し、露点−70℃以下のアルゴン雰囲気下に移した。こ
の低温雰囲気下にて、基板と封止用ガラス板とを硬化性
エポキシ樹脂を用いて貼り合わせることで封止した。
The organic electroluminescent device was taken out of the evaporator and transferred to an argon atmosphere having a dew point of −70 ° C. or less. Under this low-temperature atmosphere, the substrate and the glass plate for sealing were bonded together by using a curable epoxy resin.

【0044】この有機電界発光装置の駆動にあたって
は、フルカラー256階調のパターン表示したこと以外
は実施例1と同様に行った。フルカラー画像256階調
の精細な階調表現が要求される場合においても、適切な
プリチャージの効果によって色再現性を保つことができ
るため、良好な表示特性が得られた。
The organic electroluminescent device was driven in the same manner as in Example 1 except that a full-color 256 gradation pattern was displayed. Even when a fine gradation expression of 256 gradations of a full-color image is required, color reproducibility can be maintained by an appropriate precharge effect, so that good display characteristics were obtained.

【0045】比較例1 プリチャージ期間を設けずに表示装置の駆動を行った。
それ以外は実施例1と同様にした。駆動パルス波形が十
分に立ち上がらず、画像表示させることはできなかっ
た。
Comparative Example 1 A display device was driven without providing a precharge period.
Otherwise, the procedure was the same as in Example 1. The driving pulse waveform did not rise sufficiently, and an image could not be displayed.

【0046】比較例2 プリチャージの電流値をどの階調に対しても一定に設定
したこと以外は実施例1と同様に表示装置を駆動させ
た。プリチャージ電流は、信号電流の最大値と等しくし
た。その結果、画像表示は可能であったが輝度は0.1
mAで5cd/m2と暗く、階調も不自然で良い表示特
性を得ることはできなかった。
Comparative Example 2 A display device was driven in the same manner as in Example 1 except that the precharge current value was set to be constant for any gradation. The precharge current was set equal to the maximum value of the signal current. As a result, image display was possible, but the luminance was 0.1.
It was dark at 5 cd / m 2 at mA, and the gradation was unnatural, and good display characteristics could not be obtained.

【0047】[0047]

【発明の効果】本発明の電流制御型表示装置の駆動方式
では、走査線の切り替え時に、いずれの階調表現に対し
ても適切に浮遊容量のプリチャージを行うことができ
る。それによって、各発光素子を発光させるために供給
される電圧(電流)を最適に制御することが可能とな
り、輝度が向上し、特にフルカラーディスプレイなどに
おいて階調や色表示が鮮明な画像表示が可能になる。
According to the driving method of the current control type display device of the present invention, the precharge of the floating capacitance can be appropriately performed for any gradation expression when the scanning line is switched. This makes it possible to optimally control the voltage (current) supplied to cause each light emitting element to emit light, thereby improving the brightness and enabling clear gradation and color display, especially in a full color display. become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における電流制御型表示装置の動作例を
示す等価回路。
FIG. 1 is an equivalent circuit showing an operation example of a current control type display device according to the present invention.

【図2】本発明における電流制御型表示装置の動作例を
示す等価回路。
FIG. 2 is an equivalent circuit showing an operation example of the current control type display device according to the present invention.

【図3】本発明における電流制御型表示装置の動作例を
示す等価回路。
FIG. 3 is an equivalent circuit showing an operation example of the current control type display device according to the present invention.

【図4】従来の単純マトリクス型表示装置の一例を示す
等価回路。
FIG. 4 is an equivalent circuit showing an example of a conventional simple matrix type display device.

【図5】有機電界発光素子の構造例を示す断面図。FIG. 5 is a cross-sectional view illustrating a structural example of an organic electroluminescent element.

【図6】パルス幅変調方式の駆動波形を示す図。FIG. 6 is a diagram showing a driving waveform of a pulse width modulation method.

【図7】パルス振幅変調方式の駆動波形を示す図。FIG. 7 is a diagram showing a driving waveform of a pulse amplitude modulation method.

【図8】発光素子と配線に寄生した浮遊容量を示す電気
的等価回路。
FIG. 8 is an electrical equivalent circuit showing a stray capacitance parasitic on a light emitting element and a wiring.

【図9】浮遊容量の充電時間を示す図。FIG. 9 is a diagram showing a charging time of a floating capacitance.

【図10】プリチャージを階調毎に設定した本発明の駆
動波形。
FIG. 10 is a driving waveform of the present invention in which precharge is set for each gradation.

【図11】プリチャージの電荷量を一定に設定した場合
の従来の駆動波形。
FIG. 11 shows a conventional driving waveform when the amount of charge of precharge is set to be constant.

【図12】有機電界発光装置の構造を示す図。FIG. 12 illustrates a structure of an organic electroluminescent device.

【符号の説明】[Explanation of symbols]

1、31 ガラス基板 2、32 陽極 3、33 正孔輸送層 4、34 有機発光層 5、35 陰極 6、15、17 駆動源 10 有機電界発光素子 11 信号線 12 走査線 13 信号線スイッチ 14 走査線スイッチ 16 逆バイアス電圧源 21、22 キャパシタンス(浮遊容量) DESCRIPTION OF SYMBOLS 1, 31 Glass substrate 2, 32 Anode 3, 33 Hole transport layer 4, 34 Organic light emitting layer 5, 35 Cathode 6, 15, 17 Drive source 10 Organic electroluminescent element 11 Signal line 12 Scanning line 13 Signal line switch 14 Scan Line switch 16 Reverse bias voltage source 21, 22 Capacitance (floating capacitance)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】マトリクス状に発光素子を配置した電流制
御型表示装置の駆動方法であって、信号電流の供給に先
立ってプリチャージを行い、そのプリチャージ量が階調
に応じて異なることを特徴とする電流制御型表示装置の
駆動方法。
1. A method of driving a current control type display device in which light emitting elements are arranged in a matrix, wherein precharge is performed prior to supply of a signal current, and the amount of precharge differs according to gradation. A method for driving a current control type display device.
【請求項2】電流制御型表示装置が信号線と走査線との
電気的交点に発光素子が接続された単純マトリクス型で
あることを特徴とする請求項1記載の電流制御型表示装
置の駆動方法。
2. The drive of the current control type display device according to claim 1, wherein the current control type display device is a simple matrix type in which light emitting elements are connected to electrical intersections of signal lines and scanning lines. Method.
【請求項3】プリチャージの電圧または電流の大きさが
各階調を与える信号電流の大きさに応じて異なることを
特徴とする請求項1記載の電流制御型表示装置の駆動方
法。
3. The method according to claim 1, wherein the magnitude of the voltage or current of the precharge differs according to the magnitude of the signal current for giving each gradation.
【請求項4】プリチャージの時間幅が各階調を与える信
号電流の大きさに応じて異なることを特徴とする請求項
1記載の電流制御型表示装置の駆動方法。
4. The method according to claim 1, wherein the time width of the precharge differs according to the magnitude of the signal current for giving each gradation.
【請求項5】プリチャージの電圧または電流の大きさ、
および/または時間が信号電流の大きさに比例すること
を特徴とする請求項1記載の電流制御型表示装置の駆動
方法。
5. The precharge voltage or current magnitude,
2. The method according to claim 1, wherein the time and / or time is proportional to the magnitude of the signal current.
【請求項6】電流制御型表示装置が有機電界発光装置で
あることを特徴とする請求項1〜5のいずれか記載の電
流制御型表示装置の駆動方法。
6. The method according to claim 1, wherein the current control type display device is an organic electroluminescent device.
JP2000111642A 2000-04-13 2000-04-13 Driving method for current controlled type display device Pending JP2001296837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111642A JP2001296837A (en) 2000-04-13 2000-04-13 Driving method for current controlled type display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111642A JP2001296837A (en) 2000-04-13 2000-04-13 Driving method for current controlled type display device

Publications (1)

Publication Number Publication Date
JP2001296837A true JP2001296837A (en) 2001-10-26

Family

ID=18623941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111642A Pending JP2001296837A (en) 2000-04-13 2000-04-13 Driving method for current controlled type display device

Country Status (1)

Country Link
JP (1) JP2001296837A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328651A (en) * 2001-04-27 2002-11-15 Pioneer Electronic Corp Method and device for driving light emission panel
JP2003043997A (en) * 2001-07-06 2003-02-14 Lg Electronics Inc Driving circuit for current drive type display and its driving method
JP2003066908A (en) * 2001-08-28 2003-03-05 Matsushita Electric Ind Co Ltd Active matrix type display device and driving method therefor
JP2003114645A (en) * 2001-08-02 2003-04-18 Seiko Epson Corp Driving of data line used to control unit circuit
JP2003195806A (en) * 2001-12-06 2003-07-09 Pioneer Electronic Corp Light emitting circuit of organic electroluminescence element and display device
WO2003091980A1 (en) 2002-04-24 2003-11-06 Seiko Epson Corporation Electronic device, electronic apparatus, and method for driving electronic device
JP2004151693A (en) * 2002-10-07 2004-05-27 Rohm Co Ltd Organic el driving circuit and organic el display device using the same
WO2004051615A1 (en) 2002-11-29 2004-06-17 Semiconductor Energy Laboratory Co., Ltd. Current drive circuit and display using same
JP2004294752A (en) * 2003-03-27 2004-10-21 Toshiba Matsushita Display Technology Co Ltd El display device
JP2004318153A (en) * 2003-04-15 2004-11-11 Samsung Oled Co Ltd Method and device for driving electroluminescence display panel
WO2004107303A1 (en) * 2003-05-28 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Current supply circuit and display device having the current supply circuit
JPWO2003023752A1 (en) * 2001-09-07 2004-12-24 松下電器産業株式会社 EL display device, EL display device driving circuit, and image display device
JP2004361915A (en) * 2003-05-31 2004-12-24 Hynix Semiconductor Inc Driving method for driving organic electroluminescence display panel
JP2005018038A (en) * 2003-06-06 2005-01-20 Rohm Co Ltd Organic el driving circuit and organic el display device using same
JP2005099745A (en) * 2003-08-15 2005-04-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2005122205A (en) * 2001-08-02 2005-05-12 Seiko Epson Corp Drive of data line used for control of unit circuit
WO2005057543A1 (en) * 2003-12-12 2005-06-23 Rohm Co., Ltd. Organic el drive circuit and organic el display device
JP2005189497A (en) * 2003-12-25 2005-07-14 Toshiba Matsushita Display Technology Co Ltd Method for driving current output type semiconductor circuit
JP2005300990A (en) * 2004-04-13 2005-10-27 Fuji Electric Holdings Co Ltd Circuit and method for driving data line
JP2005346076A (en) * 2004-06-01 2005-12-15 Lg Electron Inc Organic electroluminescence display device and its driving method
WO2006013667A1 (en) * 2004-08-05 2006-02-09 Kabushiki Kaisha Toyota Jidoshokki Liquid crystal display device
JP2006506680A (en) * 2002-11-15 2006-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device provided with pre-charging device
EP1630777A2 (en) 2004-08-30 2006-03-01 LG Electronics Inc. Passive matrix organic electro-luminescence display device and pre-charge method thereof
JP2006071858A (en) * 2004-09-01 2006-03-16 Rohm Co Ltd Driving method for light emitting element and matrix type display apparatus
JP2006153905A (en) * 2004-11-25 2006-06-15 Tohoku Pioneer Corp Driving device and method of light emitting display panel
JP2006154302A (en) * 2003-12-02 2006-06-15 Toshiba Matsushita Display Technology Co Ltd Driving method of self-luminous type display unit, display control device of self-luminous type display unit, current output type drive circuit of self-luminous type display unit
JP2006163404A (en) * 2004-12-06 2006-06-22 Stmicroelectronics Sa Automatic adaptation of precharge voltage of electroluminescence display
US7079092B2 (en) * 2003-04-25 2006-07-18 Barco Nv Organic light-emitting diode (OLED) pre-charge circuit for use in a common anode large-screen display
JP2007034269A (en) * 2005-07-22 2007-02-08 Lg Electron Inc Light emitting element and driving method thereof
JP2007079545A (en) * 2005-09-15 2007-03-29 Lg Electron Inc Organic electroluminescent element and driving method thereof
JP2007079531A (en) * 2005-09-12 2007-03-29 Lg Electron Inc Light emitting element and driving method thereof
US7277073B2 (en) 2002-07-09 2007-10-02 Casio Computer Co., Ltd. Driving device, display apparatus using the same, and driving method therefor
JP2007279658A (en) * 2006-04-07 2007-10-25 Himax Optoelectronics Corp Method for driving display
JP2007304122A (en) * 2006-05-08 2007-11-22 Fuji Electric Holdings Co Ltd Organic el display device
KR100884789B1 (en) 2003-04-04 2009-02-23 삼성모바일디스플레이주식회사 Method and apparatus for driving electro-luminescence display panel wherein preliminary charging is individually performed
KR100884790B1 (en) 2003-04-11 2009-02-23 삼성모바일디스플레이주식회사 Method of driving electro-luminescence display panel for improving fade-out and fade-in operations
JP2009093202A (en) * 2001-08-29 2009-04-30 Nec Corp Semiconductor device for driving current load device, and current load device provided therewith
JP2010049237A (en) * 2008-08-19 2010-03-04 Magnachip Semiconductor Ltd Column data driving circuit, display device having the same, method of driving the same
KR100988430B1 (en) 2004-08-23 2010-10-19 사천홍시현시기건유한공사 The precharge current of an organic light emitting diode stabilizing apparatus according to driving frequency
CN101471030B (en) * 2002-11-29 2011-01-12 株式会社半导体能源研究所 Display
JP2011091825A (en) * 2003-02-28 2011-05-06 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving the same
US8085226B2 (en) 2003-08-15 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2012244078A (en) * 2011-05-24 2012-12-10 Nippon Seiki Co Ltd Organic el illumination device and driving method for the same
JP2013047847A (en) * 2003-07-11 2013-03-07 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2015094814A (en) * 2013-11-11 2015-05-18 パイオニア株式会社 Light-emitting device
CN113409721A (en) * 2021-04-21 2021-09-17 福州大学 Electric field driving modulation device for light-emitting device

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328651A (en) * 2001-04-27 2002-11-15 Pioneer Electronic Corp Method and device for driving light emission panel
JP4610780B2 (en) * 2001-04-27 2011-01-12 パイオニア株式会社 Driving method and driving device for light emitting panel
JP2003043997A (en) * 2001-07-06 2003-02-14 Lg Electronics Inc Driving circuit for current drive type display and its driving method
JP2003114645A (en) * 2001-08-02 2003-04-18 Seiko Epson Corp Driving of data line used to control unit circuit
JP2005122205A (en) * 2001-08-02 2005-05-12 Seiko Epson Corp Drive of data line used for control of unit circuit
US7466311B2 (en) 2001-08-02 2008-12-16 Seiko Epson Corporation Driving of data lines used in unit circuit control
JP2003066908A (en) * 2001-08-28 2003-03-05 Matsushita Electric Ind Co Ltd Active matrix type display device and driving method therefor
JP2009093202A (en) * 2001-08-29 2009-04-30 Nec Corp Semiconductor device for driving current load device, and current load device provided therewith
US7528812B2 (en) 2001-09-07 2009-05-05 Panasonic Corporation EL display apparatus, driving circuit of EL display apparatus, and image display apparatus
JPWO2003023752A1 (en) * 2001-09-07 2004-12-24 松下電器産業株式会社 EL display device, EL display device driving circuit, and image display device
JP2003195806A (en) * 2001-12-06 2003-07-09 Pioneer Electronic Corp Light emitting circuit of organic electroluminescence element and display device
US7310092B2 (en) 2002-04-24 2007-12-18 Seiko Epson Corporation Electronic apparatus, electronic system, and driving method for electronic apparatus
US8194011B2 (en) 2002-04-24 2012-06-05 Seiko Epson Corporation Electronic apparatus, electronic system, and driving method for electronic apparatus
CN100345177C (en) * 2002-04-24 2007-10-24 精工爱普生株式会社 Electronic device, electronic apparatus, and method for driving electronic device
WO2003091980A1 (en) 2002-04-24 2003-11-06 Seiko Epson Corporation Electronic device, electronic apparatus, and method for driving electronic device
US7277073B2 (en) 2002-07-09 2007-10-02 Casio Computer Co., Ltd. Driving device, display apparatus using the same, and driving method therefor
JP2004151693A (en) * 2002-10-07 2004-05-27 Rohm Co Ltd Organic el driving circuit and organic el display device using the same
JP2006506680A (en) * 2002-11-15 2006-02-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Display device provided with pre-charging device
EP1566793A4 (en) * 2002-11-29 2009-08-12 Semiconductor Energy Lab Current drive circuit and display using same
EP1566793A1 (en) * 2002-11-29 2005-08-24 Semiconductor Energy Laboratory Co., Ltd. Current drive circuit and display using same
CN101471030B (en) * 2002-11-29 2011-01-12 株式会社半导体能源研究所 Display
US8605064B2 (en) 2002-11-29 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Current driving circuit and display device using the current driving circuit
KR101037727B1 (en) 2002-11-29 2011-05-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Current drive circuit and display using same
US8395607B2 (en) 2002-11-29 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Current driving circuit and display device using the current driving circuit
WO2004051615A1 (en) 2002-11-29 2004-06-17 Semiconductor Energy Laboratory Co., Ltd. Current drive circuit and display using same
US8035626B2 (en) 2002-11-29 2011-10-11 Semiconductor Energy Laboratory Co., Ltd. Current driving circuit and display device using the current driving circuit
US9640106B2 (en) 2003-02-28 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8836616B2 (en) 2003-02-28 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP2011091825A (en) * 2003-02-28 2011-05-06 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving the same
JP2004294752A (en) * 2003-03-27 2004-10-21 Toshiba Matsushita Display Technology Co Ltd El display device
KR100884789B1 (en) 2003-04-04 2009-02-23 삼성모바일디스플레이주식회사 Method and apparatus for driving electro-luminescence display panel wherein preliminary charging is individually performed
KR100884790B1 (en) 2003-04-11 2009-02-23 삼성모바일디스플레이주식회사 Method of driving electro-luminescence display panel for improving fade-out and fade-in operations
KR100903099B1 (en) 2003-04-15 2009-06-16 삼성모바일디스플레이주식회사 Method of driving Electro-Luminescence display panel wherein booting is efficiently performed, and apparatus thereof
JP2004318153A (en) * 2003-04-15 2004-11-11 Samsung Oled Co Ltd Method and device for driving electroluminescence display panel
US7079092B2 (en) * 2003-04-25 2006-07-18 Barco Nv Organic light-emitting diode (OLED) pre-charge circuit for use in a common anode large-screen display
US7369125B2 (en) 2003-05-28 2008-05-06 Mitsubishi Denki Kabushiki Kaisha Current supply circuit and display device having the current supply circuit
WO2004107303A1 (en) * 2003-05-28 2004-12-09 Mitsubishi Denki Kabushiki Kaisha Current supply circuit and display device having the current supply circuit
JP2004361915A (en) * 2003-05-31 2004-12-24 Hynix Semiconductor Inc Driving method for driving organic electroluminescence display panel
JP4690665B2 (en) * 2003-06-06 2011-06-01 ローム株式会社 Organic EL drive circuit and organic EL display device using the same
JP2005018038A (en) * 2003-06-06 2005-01-20 Rohm Co Ltd Organic el driving circuit and organic el display device using same
JP2013047847A (en) * 2003-07-11 2013-03-07 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2015064608A (en) * 2003-07-11 2015-04-09 株式会社半導体エネルギー研究所 Semiconductor device
JP4624032B2 (en) * 2003-08-15 2011-02-02 株式会社半導体エネルギー研究所 Semiconductor device and driving method thereof
US8085226B2 (en) 2003-08-15 2011-12-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8432350B2 (en) 2003-08-15 2013-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2005099745A (en) * 2003-08-15 2005-04-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2006154302A (en) * 2003-12-02 2006-06-15 Toshiba Matsushita Display Technology Co Ltd Driving method of self-luminous type display unit, display control device of self-luminous type display unit, current output type drive circuit of self-luminous type display unit
US7471050B2 (en) 2003-12-12 2008-12-30 Rohm Co., Ltd. Organic EL drive circuit and organic EL display device
WO2005057543A1 (en) * 2003-12-12 2005-06-23 Rohm Co., Ltd. Organic el drive circuit and organic el display device
JP2005189497A (en) * 2003-12-25 2005-07-14 Toshiba Matsushita Display Technology Co Ltd Method for driving current output type semiconductor circuit
JP2005300990A (en) * 2004-04-13 2005-10-27 Fuji Electric Holdings Co Ltd Circuit and method for driving data line
JP2005346076A (en) * 2004-06-01 2005-12-15 Lg Electron Inc Organic electroluminescence display device and its driving method
KR100851273B1 (en) * 2004-08-05 2008-08-08 가부시키가이샤 도요다 지도숏키 Liquid crystal display device
WO2006013667A1 (en) * 2004-08-05 2006-02-09 Kabushiki Kaisha Toyota Jidoshokki Liquid crystal display device
KR100988430B1 (en) 2004-08-23 2010-10-19 사천홍시현시기건유한공사 The precharge current of an organic light emitting diode stabilizing apparatus according to driving frequency
JP2006072362A (en) * 2004-08-30 2006-03-16 Lg Electron Inc Organic electro-luminescence display device and driving method thereof
US7667697B2 (en) 2004-08-30 2010-02-23 Lg Electronics Inc. Organic electro-luminescence display device and method of driving the same
EP1630777A2 (en) 2004-08-30 2006-03-01 LG Electronics Inc. Passive matrix organic electro-luminescence display device and pre-charge method thereof
JP2006071858A (en) * 2004-09-01 2006-03-16 Rohm Co Ltd Driving method for light emitting element and matrix type display apparatus
JP2006153905A (en) * 2004-11-25 2006-06-15 Tohoku Pioneer Corp Driving device and method of light emitting display panel
JP2006163404A (en) * 2004-12-06 2006-06-22 Stmicroelectronics Sa Automatic adaptation of precharge voltage of electroluminescence display
JP2007034269A (en) * 2005-07-22 2007-02-08 Lg Electron Inc Light emitting element and driving method thereof
JP4517202B2 (en) * 2005-07-22 2010-08-04 エルジー エレクトロニクス インコーポレイティド Light emitting device and driving method thereof
US7742022B2 (en) 2005-07-22 2010-06-22 Lg Electronics Inc. Organic electro-luminescence display device and driving method thereof
JP2007079531A (en) * 2005-09-12 2007-03-29 Lg Electron Inc Light emitting element and driving method thereof
JP2007079545A (en) * 2005-09-15 2007-03-29 Lg Electron Inc Organic electroluminescent element and driving method thereof
JP2007279658A (en) * 2006-04-07 2007-10-25 Himax Optoelectronics Corp Method for driving display
JP2007304122A (en) * 2006-05-08 2007-11-22 Fuji Electric Holdings Co Ltd Organic el display device
JP2010049237A (en) * 2008-08-19 2010-03-04 Magnachip Semiconductor Ltd Column data driving circuit, display device having the same, method of driving the same
JP2012244078A (en) * 2011-05-24 2012-12-10 Nippon Seiki Co Ltd Organic el illumination device and driving method for the same
JP2015094814A (en) * 2013-11-11 2015-05-18 パイオニア株式会社 Light-emitting device
CN113409721A (en) * 2021-04-21 2021-09-17 福州大学 Electric field driving modulation device for light-emitting device
CN113409721B (en) * 2021-04-21 2022-08-12 福州大学 Electric field driving modulation device for light-emitting device

Similar Documents

Publication Publication Date Title
JP2001296837A (en) Driving method for current controlled type display device
JPH11231834A (en) Luminescent display device and its driving method
EP0843504A2 (en) Organic electroluminescent device driving method, organic electroluminescent apparatus and display device
JPH08506686A (en) Flat panel display with diode structure
JPH03295138A (en) Display device
JPH06301355A (en) Driving method for organic thin-film el element
JP2001109399A (en) Color display device
KR19990078271A (en) Electro luminescence display device driving circuit
JPH0728414A (en) Electronic luminescence display system
JPH11161219A (en) Light emission device driving circuit
KR100618574B1 (en) Drive circuit organic electro luminescent display
KR20040062065A (en) active matrix organic electroluminescence display device
JPH08273560A (en) Display device and method for driving same
JPH09102395A (en) Optical element
KR100731028B1 (en) Electro luminescent display panel
JP2003036047A (en) Method for driving display device
KR100469975B1 (en) Apparatus for driving metal-insulator-metal field emission display using constant-current circuit
US6746884B2 (en) Method of manufacturing field-emission electron emitters and method of manufacturing substrates having a matrix electron emitter array formed thereon
JP2003295813A (en) Electric field emission type display device
JPS5859542A (en) Fluorescent display device
JPH0115876B2 (en)
JP2000173445A (en) Electron emission device and its driving method
KR100353951B1 (en) Field Emission Display and Method of Driving the same
JP2002123216A (en) Driving method for light emission display device
KR100625466B1 (en) Field Emission Display