JP2001293325A - Adsorptive structure and method preparing thereof - Google Patents

Adsorptive structure and method preparing thereof

Info

Publication number
JP2001293325A
JP2001293325A JP2000114947A JP2000114947A JP2001293325A JP 2001293325 A JP2001293325 A JP 2001293325A JP 2000114947 A JP2000114947 A JP 2000114947A JP 2000114947 A JP2000114947 A JP 2000114947A JP 2001293325 A JP2001293325 A JP 2001293325A
Authority
JP
Japan
Prior art keywords
adsorptive structure
adsorptive
air
moisture
desiccant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000114947A
Other languages
Japanese (ja)
Inventor
Kensaku Maeda
健作 前田
Shoji Yamanaka
昭司 山中
Daiki Miyamoto
大樹 宮本
Taizo Kato
泰三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO CERAMICS RESEARCH KK
Ebara Corp
Osaka Prefecture
Original Assignee
KANKYO CERAMICS RESEARCH KK
Ebara Corp
Osaka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO CERAMICS RESEARCH KK, Ebara Corp, Osaka Prefecture filed Critical KANKYO CERAMICS RESEARCH KK
Priority to JP2000114947A priority Critical patent/JP2001293325A/en
Publication of JP2001293325A publication Critical patent/JP2001293325A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/108Rotary wheel comprising rotor parts shaped in sector form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adsorptive structure including a desiccant capable of regenerating at a relatively low temperature and miniaturizing thereof, a method for preparing the same and a device for dehumidification and air conditioning provided with such adsorptive structure. SOLUTION: The adsorptive structure having a composition containing a porous aluminum phosphate type molecular sieve, an inorganic fiber and a colloidal silica extrusion molded in a honeycomb shape and fired.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着性構造体、吸
着性構造体の製造方法及び吸着性構造体を備える除湿空
調装置に関し、特に比較的低温で再生のできる吸着性構
造体、吸着性構造体の製造方法及び吸着性構造体を備え
る除湿空調装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorptive structure, a method for producing the adsorptive structure, and a dehumidifying air conditioner provided with the adsorptive structure. The present invention relates to a method for manufacturing a structure and a dehumidifying air conditioner including an adsorptive structure.

【0002】[0002]

【従来の技術】従来から空調空間の除湿空調をするため
に、処理空気から水分を吸着除湿し、再生空気で水分を
脱着再生する、デシカントロータが用いられてきた。そ
のようなデシカントロータに装着する水分吸着剤、即ち
デシカント(乾燥剤)としては、シリカゲルやゼオライ
トが用いられ、それらデシカントはセラミックペーパー
に接着剤等により担持させて波状に加工したものと平板
状のものとを相互に接着してハニカム状に加工し、それ
をロータとして形成していた。
2. Description of the Related Art Conventionally, in order to perform dehumidifying air conditioning in an air-conditioned space, a desiccant rotor has been used which adsorbs and dehumidifies moisture from treated air and desorbs and regenerates moisture with regenerated air. Silica gel or zeolite is used as a moisture adsorbent to be mounted on such a desiccant rotor, that is, a desiccant (drying agent). They were bonded to each other and processed into a honeycomb shape, which was formed as a rotor.

【0003】[0003]

【発明が解決しようとする課題】以上のような従来のデ
シカントによれば、約27℃の処理空気から水分を吸着
し、再生するには80℃程度の比較的高い温度の再生空
気を必要とした。したがって低温排熱の利用が制限さ
れ、またデシカントロータの製造が煩雑で小型化も困難
であった。
According to the above-mentioned conventional desiccant, it is necessary to regenerate air at a relatively high temperature of about 80 ° C. to adsorb and regenerate moisture from the processing air at about 27 ° C. did. Therefore, the use of low-temperature exhaust heat is limited, and the production of the desiccant rotor is complicated, and it is difficult to reduce the size.

【0004】そこで本発明は、比較的低温で再生でき、
小型化が可能なデシカントを含む吸着性構造体、その製
造方法及びそのような吸着性構造体を備える除湿空調装
置を提供することを目的としている。
[0004] Therefore, the present invention can be reproduced at a relatively low temperature,
It is an object of the present invention to provide a desiccant-containing adsorptive structure that can be miniaturized, a method for producing the desiccant, and a dehumidifying air-conditioning apparatus including such an adsorptive structure.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明による吸着性構造体は、図1に
示すように、多孔質リン酸アルミニウム系モレキュラシ
ーブ、無機繊維及びコロイダルシリカを含有する組成物
をハニカム状に押し出し成形し焼成してなる。
In order to achieve the above object, an adsorptive structure according to the first aspect of the present invention comprises a porous aluminum phosphate molecular sieve, inorganic fibers and colloidal silica as shown in FIG. Is extruded into a honeycomb shape and fired.

【0006】このように構成すると、多孔質リン酸アル
ミニウム系モレキュラシーブを備えるので比較的低温で
再生ができ、無機繊維及びコロイダルシリカを含有する
ので十分な強度を有し、またハニカム状に押し出し成形
し焼成してできているので構造が単純で製造が容易、か
つ小型化に適する。
[0006] With this structure, the porous aluminum phosphate-based molecular sieve is provided, so that it can be regenerated at a relatively low temperature. Since it contains inorganic fibers and colloidal silica, it has sufficient strength and is extruded into a honeycomb shape. Since it is fired, it has a simple structure, is easy to manufacture, and is suitable for miniaturization.

【0007】また、前記目的を達成するために、請求項
2に係る発明による吸着性構造体の製造方法は、多孔質
リン酸アルミニウム系モレキュラシーブ、無機繊維及び
コロイダルシリカを含有する組成物をハニカム状に押し
出し成形し;押し出し成形した前記多孔質リン酸アルミ
ニウム系モレキュラシーブ、無機繊維及びコロイダルシ
リカを含有する組成物を400〜700℃の範囲のいず
れかの温度で少なくとも1時間焼成することを特徴とす
る。
According to another aspect of the present invention, there is provided a method for producing an adsorptive structure comprising a porous aluminum phosphate-based molecular sieve, inorganic fibers and colloidal silica. Extruding the composition containing the porous aluminum phosphate-based molecular sieve, inorganic fiber and colloidal silica, and calcining the composition at any temperature in the range of 400 to 700 ° C. for at least 1 hour. .

【0008】前記目的を達成するために、請求項3に係
る発明による除湿空調装置は、図5に示すように、請求
項1に記載の吸着性構造体を水分吸着剤として有するデ
シカントロータ103と;前記水分吸着剤で水分を吸着
し絶対湿度を低下させる処理空気を流す処理空気経路
と;前記水分吸着剤の水分を脱着し再生する再生空気を
流す再生空気経路とを備える。
According to a third aspect of the present invention, there is provided a dehumidifying air conditioner having a desiccant rotor 103 having the adsorptive structure according to the first aspect as a moisture adsorbent. A processing air path for flowing processing air for absorbing moisture with the moisture adsorbent to lower the absolute humidity; and a regeneration air path for flowing regeneration air for desorbing and regenerating the moisture of the moisture adsorbent.

【0009】このように構成すると、比較的低温で再生
ができるデシカントを備えるので、ヒートポンプの温度
リフトが小さくて済み、省エネを図ることができる。
With this configuration, since the desiccant that can be regenerated at a relatively low temperature is provided, the heat lift of the heat pump can be reduced, and energy can be saved.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。なお、各図において互い
に同一あるいは相当する部材には同一符号または類似符
号を付し、重複した説明は省略する。
Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding members are denoted by the same or similar reference numerals, and duplicate description is omitted.

【0011】図1は、本発明による吸着性構造体の形状
の一例である。本発明に用いる多孔質リン酸アルミニウ
ム系モレキュラシーブの粉末の支持材料としては、無機
繊維としてはセピオライト繊維が好ましく用いられる。
無機繊維の繊維長は約0.001〜約2mmの範囲の適
切な長さ、繊維径は約0.01〜約20μmの範囲の適
切な直径を選んで用いる。0.1mm以上の繊維長の繊
維としては、カーボンファイバー、アルミナファイバー
等が用いられる。
FIG. 1 shows an example of the shape of the adsorptive structure according to the present invention. As a support material of the powder of the porous aluminum phosphate-based molecular sieve used in the present invention, sepiolite fibers are preferably used as the inorganic fibers.
The fiber length of the inorganic fiber is selected from an appropriate length in a range of about 0.001 to about 2 mm, and the fiber diameter is selected from an appropriate diameter in a range of about 0.01 to about 20 μm. As the fiber having a fiber length of 0.1 mm or more, carbon fiber, alumina fiber, or the like is used.

【0012】またこのような組成物には無機結合剤とし
ての好ましくはコロイダルシリカを含有させ、この組成
物に適度の成形性を与えるとともに、この結合剤を介し
て多孔質リン酸アルミニウム系モレキュラシーブの粉末
と無機繊維とを成形体中に適度に分散、保持する。これ
ら各成分の含有割合は、多孔質リン酸アルミニウム系モ
レキュラシーブを30〜87重量%、無機繊維を10〜
30重量%、無機結合剤を3〜10重量%とするのが好
ましい。また、その他の成分として、ポリビニルアルコ
ール(PVA)、スルホニックメチルセルロース(SM
C)、メチルセルロース(MC)、カルボキシメチルセ
ルロース(CMC)、でんぷんなどの有機結合剤を使用
してもよい。この有機結合剤は焼成工程で分解除去され
る。
Further, such a composition preferably contains colloidal silica as an inorganic binder to give the composition an appropriate formability and to form a porous aluminum phosphate-based molecular sieve through the binder. The powder and the inorganic fibers are appropriately dispersed and held in the molded body. The content ratios of these components are as follows: 30 to 87% by weight of porous aluminum phosphate-based molecular sieve, and 10 to 10% of inorganic fiber.
It is preferable that the content is 30% by weight and the inorganic binder is 3 to 10% by weight. Further, as other components, polyvinyl alcohol (PVA), sulfonic methylcellulose (SM
Organic binders such as C), methylcellulose (MC), carboxymethylcellulose (CMC) and starch may be used. This organic binder is decomposed and removed in the firing step.

【0013】なお無機繊維としては、セピオライト繊維
の他、カーボンファイバー、ガラスファイバー、アルミ
ナ繊維、アルミナ・シリカ繊維、シリカ繊維などのセラ
ミック繊維を用いてもよい。また、コロイダルシリカの
他、アルミナゾル、エチルシリケート、シリカゾル、ジ
ルコニアゾル、水ガラスなどのゾルを用いてもよい。
As the inorganic fiber, besides sepiolite fiber, ceramic fiber such as carbon fiber, glass fiber, alumina fiber, alumina / silica fiber and silica fiber may be used. Further, in addition to colloidal silica, sols such as alumina sol, ethyl silicate, silica sol, zirconia sol, and water glass may be used.

【0014】上記の組成物を粘土状に練って、その粘土
状物を押し出し成形し、成形したものを焼成してセラミ
ック体とする。このセラミック体が、本発明の水分を吸
着する吸着性構造体である。この吸着性構造体の製造方
法の一実施の形態は以下の通りである。
The above composition is kneaded into a clay, the clay is extruded, and the molded product is fired to obtain a ceramic body. This ceramic body is the adsorptive structure for adsorbing moisture of the present invention. One embodiment of a method for producing the adsorptive structure is as follows.

【0015】前記のような各成分を有する組成物を調製
し、この組成物を所要の押し出しダイ(口金)を有する
押し出し成形機を使って、図1、図2に示すような形状
に押し出し成形する。押し出し速度は、好ましくは10
〜100cm/分程度である。このように押し出し成形
した成形物を日干し煉瓦のように乾燥してもよいが、例
えば熱風により乾燥するのが好ましい。即ちハニカム成
形後全ての貫通孔に流量が均一になるように熱風を流し
て乾燥する。乾燥後の成形物を400〜700℃の範囲
内の温度の雰囲気に少なくとも1時間保持することによ
って焼成し、本発明の吸着性構造体が製造される。この
構造体は、ハニカム構造を有し、水分を吸着する水分吸
着性構造体である。
A composition having the above-described components is prepared, and the composition is extruded into a shape as shown in FIGS. 1 and 2 by using an extruder having a required extrusion die. I do. The extrusion speed is preferably 10
About 100 cm / min. The extruded molded product may be dried like a sun-dried brick, but is preferably dried by, for example, hot air. That is, after the honeycomb forming, hot air is passed through all the through holes so as to make the flow rate uniform, and drying is performed. The dried molded article is calcined by maintaining the molded article in an atmosphere at a temperature in the range of 400 to 700 ° C. for at least one hour to produce the adsorptive structure of the present invention. This structure has a honeycomb structure and is a moisture-adsorbing structure that adsorbs moisture.

【0016】このように押し出し工程と焼成工程とから
なる製造方法は、単純な工程であり、低いコストで吸着
性構造体を製造することができる。
The manufacturing method including the extrusion step and the sintering step is a simple step and can produce an adsorptive structure at low cost.

【0017】乾燥は常温で24時間程度の自然乾燥によ
るが、マイクロ波加熱装置などにより40〜80℃程度
に加熱して乾燥してもよい。
The drying is carried out by natural drying at room temperature for about 24 hours, but it may be dried by heating to about 40 to 80 ° C. by a microwave heating device or the like.

【0018】焼成は組成物の吸着特性を損なわない40
0〜700℃の範囲内の温度、好ましくは500〜60
0℃の範囲内の温度で少なくとも1時間行う。このよう
にして得られた吸着性構造体である吸着性ハニカム状セ
ラミック体は、吸着剤の粉末である多孔質リン酸アルミ
ニウム系モレキュラシーブの粉末が無機結合剤を介して
適度に分散し、セピオライト繊維やカーボンファイバー
により補強された構造を有し、吸着剤の吸着表面積を増
大させ、その優れた水分吸着特性を十分に発揮させるも
のである。
Calcination does not impair the adsorption properties of the composition.
Temperature in the range of 0-700 ° C, preferably 500-60
Perform at least 1 hour at a temperature in the range of 0 ° C. The adsorptive honeycomb-shaped ceramic body, which is the adsorptive structure thus obtained, is obtained by dispersing the powder of the porous aluminum phosphate-based molecular sieve, which is the powder of the adsorbent, appropriately through an inorganic binder, and forming sepiolite fibers. It has a structure reinforced by carbon fibers and carbon fibers, increases the adsorption surface area of the adsorbent, and sufficiently exhibits its excellent moisture adsorption characteristics.

【0019】本発明による吸着性構造体のハニカム形状
及び大きさは、乾燥剤としての使用方法等に応じて適宜
選択することができる。ここで、ハニカム状とは、断面
が蜂の巣状(6角形の孔を有する)だけでなく、一方向
に気体を流す複数の貫通孔2を有する構造体であればよ
く、その孔の断面形状は、6角形の他、3角形、4角形
等の多角形、あるいは円形であってもよい。例えば、図
1に示すように、吸着性構造体は厚い円盤形状、あるい
は円筒形状であり、その厚さ方向に気体を流す複数の孔
(図1では孔の断面形状は4角形)が貫通している。製
造の際は、この構造体は厚さ方向に押し出される。
The honeycomb shape and size of the adsorptive structure according to the present invention can be appropriately selected according to the method of use as a desiccant and the like. Here, the honeycomb shape may be a structure having not only a honeycomb shape (having a hexagonal hole) but also a plurality of through holes 2 through which gas flows in one direction. , A polygon such as a triangle, a quadrangle, or a circle. For example, as shown in FIG. 1, the adsorptive structure has a thick disk shape or cylindrical shape, and a plurality of holes through which gas flows in the thickness direction (the cross-sectional shape of the hole in FIG. 1 is rectangular). ing. During manufacture, this structure is extruded in the thickness direction.

【0020】この構造体は、円盤の中心の軸穴3によっ
て除湿空調装置のデシカントロータとして装着され、処
理空気の除湿とデシカントの再生を繰り返す。
This structure is mounted as a desiccant rotor of a dehumidifying air conditioner through a shaft hole 3 at the center of the disk, and repeats dehumidification of the processing air and regeneration of the desiccant.

【0021】図2を参照して、吸着性構造体の別の例を
説明する。図2は、除湿空調装置のデシカントロータと
して適する吸着性構造体の例を示す斜視図である。図
中、吸着性構造体11は、中心角が約60度の断面が扇
形の6個のセグメント11a、11b、11c、11
d、11e、11fに分割されて構成されている。各セ
グメントが本発明の吸着性構造体である。6個のセグメ
ントは、中心軸13に扇の要の部分を集合して組み立て
ることにより、一つの円形断面の円盤を形成し、一つの
デシカントロータとなる。各セグメントには、軸13と
平行な方向に無数の孔(図2の例では断面が円形の孔)
12が貫通して設けられている。孔を囲んで本発明の吸
着剤の隔壁14が吸着性構造体11aを構成している。
Referring to FIG. 2, another example of the adsorptive structure will be described. FIG. 2 is a perspective view showing an example of an adsorptive structure suitable as a desiccant rotor of a dehumidifying air conditioner. In the figure, the adsorptive structure 11 has six segments 11 a, 11 b, 11 c, 11 having a central angle of about 60 degrees and a sectoral cross section.
d, 11e, and 11f. Each segment is the adsorptive structure of the present invention. The six segments form a disk having one circular cross-section by assembling the main parts of the fan on the central shaft 13 to form one desiccant rotor. Each segment has a myriad of holes in the direction parallel to the axis 13 (holes with a circular cross section in the example of FIG. 2).
12 are provided therethrough. The partition wall 14 of the adsorbent of the present invention surrounding the hole forms the adsorptive structure 11a.

【0022】この構造体は、図1の構造体と同様に円盤
の中心の軸穴13によって除湿空調装置のデシカントロ
ータとして装着される。このように、本発明の吸着性構
造体は、デシカントロータとして一体的に押し出し成形
するだけでなく、ロータを分割したセグメントとして、
あるいはロータを構成する要素として押し出し成形して
製造してもよい。例えば、図1に示されるような円柱状
体に多数の貫通孔を形成した吸着性構造体を作り、その
円柱状体を束ねて、一つのデシカントロータを構成する
ようにしてもよい。
This structure is mounted as a desiccant rotor of a dehumidifying air conditioner by a shaft hole 13 at the center of the disk, similarly to the structure of FIG. Thus, the adsorptive structure of the present invention is not only integrally extruded as a desiccant rotor, but also as a segment obtained by dividing the rotor,
Alternatively, it may be manufactured by extrusion molding as an element constituting the rotor. For example, an adsorptive structure in which a large number of through holes are formed in a columnar body as shown in FIG. 1 may be made, and the columnar bodies may be bundled to constitute one desiccant rotor.

【0023】吸着性構造体1、11に設ける孔2、12
の形状及び大きさは適宜選択することができる。図1の
例では、孔2の中心間隔を約2mm、孔部を構成する隔
壁4の厚さを約0.5mmとしているが、これに限定さ
れない。なお、分かり易くするために図1では孔2を構
造体1の外径に対して相対的に実際より大きく図示して
いる。
The holes 2, 12 provided in the adsorptive structures 1, 11
Can be appropriately selected in shape and size. In the example of FIG. 1, the center interval between the holes 2 is about 2 mm, and the thickness of the partition wall 4 forming the hole is about 0.5 mm. However, the present invention is not limited to this. In addition, in order to make it easy to understand, in FIG. 1, the hole 2 is shown larger than the actual diameter relative to the outer diameter of the structure 1.

【0024】[0024]

【実施例】以下、本発明の実施例を説明する。本発明の
多孔質リン酸アルミニウム系モレキュラシーブは、例え
ば、表1に示されるd−間隔を少なくとも含む特有のX
線粉末回折図形を有する通称AlPO 4 −5、または表
2に示されるd−間隔を少なくとも含む特有のX線粉末
回折図形を有する通称AlPO4 −8、または表3に示
されるd−間隔を少なくとも含む特有のX線粉末回折図
形を有する通称AlPO4 −11、または表4に示され
るd−間隔を少なくとも含む特有のX線粉末回折図形を
有する通称AlPO4 −16、または表5に示されるd
−間隔を少なくとも含む特有のX線粉末回折図形を有す
る通称AlPO4 −20、または表6に示されるd−間
隔を少なくとも含む特有のX線粉末回折図形を有する通
称AlPO4 −H6、または表7に示されるd−間隔を
少なくとも含む特有のX線粉末回折図形を有する通称A
lPO4 −Dである。ここで、単位はθは度、dはオン
グストローム、I/I0 は回折強度を示す。
Embodiments of the present invention will be described below. Of the present invention
Porous aluminum phosphate-based molecular sieves
For example, a specific X including at least the d-spacing shown in Table 1
AlPO with X-ray powder diffraction pattern Four-5 or table
X-ray powder containing at least the d-spacing shown in 2
AlPO with diffraction patternFour-8 or as shown in Table 3
X-ray powder diffraction diagram including at least the d-spacing
AlPO with shapeFour-11 or as shown in Table 4
X-ray powder diffraction pattern containing at least d-spacing
Known as AlPOFour-16, or d as shown in Table 5
Having a unique X-ray powder diffraction pattern including at least the spacing
AlPOFour−20 or d− as shown in Table 6.
Having a unique X-ray powder diffraction pattern including at least
Name AlPOFour-H6 or d-interval shown in Table 7
Commonly known as A having at least a unique X-ray powder diffraction pattern
lPOFour-D. Here, the unit is θ, and d is on
Gustrom and I / I0 indicate the diffraction intensity.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】[0031]

【表7】 [Table 7]

【0032】ここに成分比と成形焼成条件及び特性の具
体例を示す。
Specific examples of the component ratio, molding firing conditions and characteristics are shown below.

【0033】[0033]

【表8】 [Table 8]

【0034】このようにして製造した吸着性構造体は、
吸着表面積が大きい。また、セラミックペーパー等を用
いる場合と違って、吸着性が低い物質の含有率が低く、
構造体の単位体積当たりのデシカント含有率は、従来の
構造体が40%以下であったのに対して、本発明の構造
体では60〜80%と高い。また、例えばシリカゲルな
どでは、使用に伴ってクラックが発生し崩れてくるが、
本発明の構造体ではそのような劣化が生じない。
The adsorptive structure thus produced is
Large adsorption surface area. In addition, unlike the case of using ceramic paper, etc., the content of a substance having a low adsorptivity is low,
The desiccant content per unit volume of the structure is as high as 60 to 80% in the structure of the present invention, while the conventional structure is 40% or less. In addition, for example, with silica gel, cracks occur and collapse with use,
Such a deterioration does not occur in the structure of the present invention.

【0035】このようにして製造した吸着性構造体と、
比較例として従来のシリカゲルをデシカントとして用い
た構造体の性能、特に吸着持続時間を比較する。
The adsorptive structure produced in this way,
As a comparative example, the performance of a structure using a conventional silica gel as a desiccant, in particular, the adsorption duration is compared.

【0036】図3は、多孔質リン酸アルミニウム系モレ
キュラシーブであるAlPO4 −5を64重量部、セピ
オライト繊維を21重量部、コロイダルシリカを15重
量部を含む組成物をハニカム状に押し出し成形して50
0℃で焼成した吸着性構造体を用いた場合、図4はシリ
カゲルによる構造体を用いた場合の性能を示す図であ
る。双方ともに、厚さ方向(処理空気の流れ方向)の厚
さは20cm、測定条件は、再生空気温度60℃、再生
空気の絶対湿度15g/kgDA、処理空気温度27
℃、絶対湿度11g/kgDA、処理空気の風速1.5
m/sであった。また、縦軸は絶対湿度(g(水分)/
kg(乾燥空気))、横軸は経過時間(分)、「入口」
として示す曲線は処理空気入口の絶対湿度、「出口」と
して示す曲線は処理空気出口の絶対湿度を示す。
[0036] Figure 3, AlPO 4 -5 and 64 parts by weight of a porous aluminum phosphate-based molecular sieve, 21 parts by weight of sepiolite fibers, molded and extruded colloidal silica composition containing 15 parts by weight of a honeycomb shape 50
FIG. 4 shows the performance when the adsorptive structure fired at 0 ° C. is used and FIG. 4 shows the performance when the silica gel structure is used. In both cases, the thickness in the thickness direction (the flow direction of the processing air) was 20 cm, and the measurement conditions were a regeneration air temperature of 60 ° C., an absolute humidity of the regeneration air of 15 g / kg DA, and a processing air temperature of 27.
° C, absolute humidity 11g / kgDA, air velocity of processing air 1.5
m / s. The vertical axis indicates the absolute humidity (g (moisture) /
kg (dry air)), the horizontal axis is the elapsed time (minutes), "entrance"
The curve shown as indicates the absolute humidity of the processing air inlet, and the curve shown as “outlet” indicates the absolute humidity of the processing air outlet.

【0037】図4に示すように、シリカゲルでは、5分
も使用すると入口出口の湿度差はかなり小さくなってし
まう。一方、図3に示すように、本発明の実施例によれ
ば、45分経過後でも十分な湿度差が得られる。即ち本
発明によれば、十分に長い持続時間が得られる。
As shown in FIG. 4, when silica gel is used for 5 minutes, the difference in humidity between the inlet and the outlet becomes considerably small. On the other hand, as shown in FIG. 3, according to the embodiment of the present invention, a sufficient humidity difference can be obtained even after 45 minutes have elapsed. Thus, according to the invention, a sufficiently long duration is obtained.

【0038】次に図5のフロー図を参照して、本発明の
吸着性構造体を用いた除湿空調装置の一実施の形態を説
明する。この実施の形態の空調システムでは、ヒートポ
ンプとして、圧縮機260を用いた圧縮ヒートポンプH
Pが用いられている。この空調システムは、本発明の吸
着性構造体を含んで構成されるデシカントロータ103
により水分を吸着される処理空気Aの経路と、加熱源に
よって加熱されたのち前記水分吸着後のデシカントロー
タ103を通過してデシカント中の水分を脱着して再生
する再生空気Bの経路を有し、水分を吸着された処理空
気とデシカントロータ103のデシカント(乾燥剤)を
再生する前で、かつ加熱源により加熱される前の再生空
気との間に顕熱熱交換器104を有する空調機と、圧縮
ヒートポンプHPとを有し、前記圧縮ヒートポンプHP
の高熱源を加熱源として前記空調機の再生空気を加熱器
220で加熱してデシカントの再生を行うとともに、圧
縮ヒートポンプHPの低熱源を冷却熱源として冷却器2
10で前記空調機の処理空気の冷却を行うものである。
処理空気は送風機102で送風され、再生空気は送風機
140で送風される。
Next, an embodiment of a dehumidifying air conditioner using the adsorptive structure of the present invention will be described with reference to the flowchart of FIG. In the air conditioning system of this embodiment, a compression heat pump H using a compressor 260 is used as a heat pump.
P is used. This air conditioning system includes a desiccant rotor 103 including the adsorptive structure of the present invention.
A path of the processing air A for adsorbing the water by the heat source, and a path of the regeneration air B for desorbing and regenerating the moisture in the desiccant after passing through the desiccant rotor 103 after being heated by the heating source and adsorbing the moisture. An air conditioner having a sensible heat exchanger 104 between the treated air to which moisture has been adsorbed and the regenerated air before regenerating the desiccant (desiccant) of the desiccant rotor 103 and before being heated by the heating source. , A compression heat pump HP, the compression heat pump HP
The regeneration air of the air conditioner is heated by the heater 220 using the high heat source as a heating source to regenerate the desiccant, and the cooler 2 is used with the low heat source of the compression heat pump HP as the cooling heat source.
At 10, the processing air of the air conditioner is cooled.
The processing air is blown by the blower 102, and the regeneration air is blown by the blower 140.

【0039】そして、この空調システムでは、圧縮ヒー
トポンプHPがデシカント空調機の処理空気の冷却と再
生空気の加熱を同時に行うよう構成したことで、圧縮ヒ
ートポンプHPに外部から加えた駆動エネルギーによっ
て圧縮ヒートポンプHPが処理空気の冷却効果を発生さ
せ、さらにヒートポンプ作用で処理空気から汲み上げた
熱と圧縮ヒートポンプHPの駆動エネルギーを合計した
熱でデシカントの再生が行えるため、外部から加えた駆
動エネルギーの多重効用化を図ることができ、高い省エ
ネルギー効果が得られる。また、顕熱熱交換器104と
加熱器220との間の再生空気とデシカントロータ10
3を出た再生空気との熱交換器121が設けられ、さら
に省エネルギー効果を高めている。なお、処理空気は空
調空間101に供給される前に、加湿器105を通して
乾球温度を下げるようにしている。
In this air conditioning system, since the compression heat pump HP is configured to simultaneously cool the processing air of the desiccant air conditioner and heat the regeneration air, the compression heat pump HP is driven by driving energy externally applied to the compression heat pump HP. Generates a cooling effect of the processing air, and furthermore, the desiccant can be regenerated by the sum of the heat pumped from the processing air by the heat pump action and the driving energy of the compression heat pump HP. High energy saving effect can be obtained. In addition, the regeneration air between the sensible heat exchanger 104 and the heater 220 and the desiccant rotor 10
The heat exchanger 121 with the regenerated air exiting from No. 3 is provided to further enhance the energy saving effect. Before the processing air is supplied to the air-conditioned space 101, the dry-bulb temperature is lowered through the humidifier 105.

【0040】この装置のデシカントロータには、本発明
の吸着性構造体が用いられているので、再生温度を例え
ば60〜65℃の比較的低温にすることができ、ヒート
ポンプの温度リフトを小さくできる。なお、図5の例で
はヒートポンプは圧縮ヒートポンプとしたが、これに限
らず吸収ヒートポンプであってもよい。
Since the adsorptive structure of the present invention is used in the desiccant rotor of this apparatus, the regeneration temperature can be made relatively low, for example, 60 to 65 ° C., and the temperature lift of the heat pump can be reduced. . In the example of FIG. 5, the heat pump is a compression heat pump, but is not limited to this, and may be an absorption heat pump.

【0041】[0041]

【発明の効果】以上のように本発明によれば、吸着性構
造体は多孔質リン酸アルミニウム系モレキュラシーブを
ハニカム状に押し出し成形し焼成してなるので、比較的
低温で再生ができ、ハニカム状に押し出し成形し焼成し
てできているので、構造が単純で製造が容易、かつ小型
化に適する。また、吸着性構造体の再生が比較的低温で
できるので、COPの高い除湿空調装置を提供すること
が可能となる。
As described above, according to the present invention, since the adsorptive structure is formed by extruding a porous aluminum phosphate-based molecular sieve into a honeycomb shape and firing it, it can be regenerated at a relatively low temperature, and the adsorbable structure can be formed at a relatively low temperature. Since it is extruded and fired, it has a simple structure, is easy to manufacture, and is suitable for miniaturization. Further, since the adsorptive structure can be regenerated at a relatively low temperature, it is possible to provide a dehumidifying air conditioner having a high COP.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の吸着性構造体の一実施の形態を示す斜
視図である。
FIG. 1 is a perspective view showing one embodiment of an adsorptive structure of the present invention.

【図2】本発明の吸着性構造体の別の実施の形態を示す
斜視図である。
FIG. 2 is a perspective view showing another embodiment of the adsorptive structure of the present invention.

【図3】本発明の実施例である吸着性構造体の性能を示
す図である。
FIG. 3 is a diagram showing the performance of an adsorptive structure according to an example of the present invention.

【図4】比較例として、従来技術による吸着性構造体の
性能を示す図である。
FIG. 4 is a diagram showing the performance of a conventional adsorptive structure as a comparative example.

【図5】本発明の実施の形態である吸着性構造体を有す
るデシカントロータを用いた除湿空調装置の一例を示す
フロー図である。
FIG. 5 is a flowchart showing an example of a dehumidifying air conditioner using a desiccant rotor having an adsorptive structure according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1、11 吸着性構造体 2、12 孔 3、13 中心軸 4、14 隔壁 1,11 adsorptive structure 2,12 holes 3,13 central axis 4,14 partition

フロントページの続き (72)発明者 前田 健作 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 山中 昭司 広島県広島市南区南蟹屋1−3−35−1105 (72)発明者 宮本 大樹 奈良県奈良市西千代ヶ丘1−23−17 (72)発明者 加藤 泰三 神奈川県横浜市栄区本郷台二丁目22番13号 株式会社環境セラミックスリサーチ内 Fターム(参考) 4D052 AA08 CB01 DA03 DB01 DB04 FA06 GB18 HA01 HA09 HA21 HA24 HB02 4G066 AA22D AA50B AA63D CA43 DA03 FA22 FA34 GA01 GA06Continuation of the front page (72) Inventor Kensaku Maeda 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa Prefecture Ebara Research Institute, Ltd. (72) Inventor Shoji Yamanaka 1-3-35- Minamikaniya, Minami-ku, Hiroshima-shi, Hiroshima 1105 (72) Inventor Daiki Miyamoto 1-2-17 Nishichiyogaoka, Nara City, Nara Prefecture (72) Inventor Taizo Kato 2--22-13 Hongodai, Sakae-ku, Yokohama-shi, Kanagawa Prefecture F-term in Environmental Ceramics Research Co., Ltd. 4D052 AA08 CB01 DA03 DB01 DB04 FA06 GB18 HA01 HA09 HA21 HA24 HB02 4G066 AA22D AA50B AA63D CA43 DA03 FA22 FA34 GA01 GA06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 多孔質リン酸アルミニウム系モレキュラ
シーブ、無機繊維及びコロイダルシリカを含有する組成
物をハニカム状に押し出し成形し焼成してなる吸着性構
造体。
1. An adsorptive structure obtained by extruding a composition containing a porous aluminum phosphate-based molecular sieve, inorganic fibers and colloidal silica into a honeycomb shape and firing the composition.
【請求項2】 多孔質リン酸アルミニウム系モレキュラ
シーブ、無機繊維及びコロイダルシリカを含有する組成
物をハニカム状に押し出し成形し;押し出し成形した前
記多孔質リン酸アルミニウム系モレキュラシーブ、無機
繊維及びコロイダルシリカを含有する組成物を400〜
700℃の範囲のいずれかの温度で少なくとも1時間焼
成することを特徴とする;吸着性構造体の製造方法。
2. A composition containing a porous aluminum phosphate-based molecular sieve, inorganic fibers and colloidal silica is extruded into a honeycomb shape, comprising the extruded porous aluminum phosphate-based molecular sieve, inorganic fibers and colloidal silica. 400-
Calcination at any temperature in the range of 700 ° C. for at least 1 hour; a method for producing an adsorptive structure.
【請求項3】 請求項1に記載の吸着性構造体を水分吸
着剤として有するデシカントロータと;前記水分吸着剤
で水分を吸着し絶対湿度を低下させる処理空気を流す処
理空気経路と;前記水分吸着剤の水分を脱着し再生する
再生空気を流す再生空気経路とを備える;除湿空調装
置。
3. A desiccant rotor having the adsorptive structure according to claim 1 as a moisture adsorbent; a treatment air path through which a treatment air for adsorbing moisture with the moisture adsorbent to lower the absolute humidity is provided; A regeneration air path for flowing regeneration air for desorbing and regenerating moisture of the adsorbent; a dehumidifying air conditioner.
JP2000114947A 2000-04-17 2000-04-17 Adsorptive structure and method preparing thereof Withdrawn JP2001293325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000114947A JP2001293325A (en) 2000-04-17 2000-04-17 Adsorptive structure and method preparing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000114947A JP2001293325A (en) 2000-04-17 2000-04-17 Adsorptive structure and method preparing thereof

Publications (1)

Publication Number Publication Date
JP2001293325A true JP2001293325A (en) 2001-10-23

Family

ID=18626671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000114947A Withdrawn JP2001293325A (en) 2000-04-17 2000-04-17 Adsorptive structure and method preparing thereof

Country Status (1)

Country Link
JP (1) JP2001293325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106942A (en) * 2001-12-31 2009-05-21 Grace Gmbh & Co Kg Adsorbing material comprised of porous functional solid incorporated in a polymer matrix
CN105920982A (en) * 2016-04-06 2016-09-07 王斌 Rotating wheel of multi-pipe combined rotary dehumidifier
CN109210646A (en) * 2017-06-29 2019-01-15 有限会社科技新领域 Dehumidify humidifying rotor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106942A (en) * 2001-12-31 2009-05-21 Grace Gmbh & Co Kg Adsorbing material comprised of porous functional solid incorporated in a polymer matrix
KR101002129B1 (en) 2001-12-31 2010-12-16 그라세 게엠베하 운트 캄파니 카게 Adsorbing material comprised of porous functional solid incorporated in a polymer matrix
CN105920982A (en) * 2016-04-06 2016-09-07 王斌 Rotating wheel of multi-pipe combined rotary dehumidifier
CN105920982B (en) * 2016-04-06 2019-01-08 王斌 The runner of Multi-tube composite rotary dehumidifier
CN109210646A (en) * 2017-06-29 2019-01-15 有限会社科技新领域 Dehumidify humidifying rotor
JP2019011210A (en) * 2017-06-29 2019-01-24 株式会社テクノフロンティア Dehumidifying/humidifying rotor

Similar Documents

Publication Publication Date Title
JP3346680B2 (en) Adsorbent for moisture exchange
JP2579767B2 (en) Ultra-low concentration gas adsorption element and gas adsorption removal device
JPH0628173Y2 (en) Moisture exchange element
US20180328601A1 (en) Heat recovery adsorber as ventilation system in buildings
JP2019504271A5 (en)
JP2006240956A (en) Amorphous aluminum silicate, adsorbent having the same, dehumidifying rotor and air conditioner
US11612857B2 (en) Honeycomb matrix comprising macroporous desiccant, process and use thereof
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
JP2651964B2 (en) Adsorbable honeycomb-shaped ceramic laminate and method for producing the same
JP2000070659A (en) Dehumidifying material and dehumidifier
JP2011143358A (en) Moisture absorption filter and humidifier
KR20010107747A (en) Humidity adsorbent agent and humidity adsorbent element using thereof
JPH0710330B2 (en) Dry dehumidifier
JP2001293325A (en) Adsorptive structure and method preparing thereof
KR102565093B1 (en) Air conditioning method and apparatus
JP2001259417A (en) Adsorption material for air conditioner, moisture absorbing element and dehumidifying method
JP2004209420A (en) Dehumidification element and dehumidification apparatus
JPS63264125A (en) Dry dehumidifying component
JP2627466B2 (en) Adsorbable honeycomb-shaped ceramic body and method for producing the same
JP6894094B2 (en) Water vapor adsorbent and its manufacturing method
JP3345596B2 (en) Adsorbent for moisture exchange
JP2002361025A (en) Gas exchange apparatus
JP2000061251A (en) Dehumidifier
JP5844058B2 (en) Dehumidifier and desiccant dehumidifier equipped with the same
JP2010196993A (en) Desiccant air conditioner and method of operating the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703