JP2001289825A - Thickness measuring device of tube by isolated vortex flowing method - Google Patents

Thickness measuring device of tube by isolated vortex flowing method

Info

Publication number
JP2001289825A
JP2001289825A JP2000104692A JP2000104692A JP2001289825A JP 2001289825 A JP2001289825 A JP 2001289825A JP 2000104692 A JP2000104692 A JP 2000104692A JP 2000104692 A JP2000104692 A JP 2000104692A JP 2001289825 A JP2001289825 A JP 2001289825A
Authority
JP
Japan
Prior art keywords
receiving
thickness
coil
coils
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000104692A
Other languages
Japanese (ja)
Other versions
JP4118488B2 (en
Inventor
Tadayuki Sogi
忠幸 曽木
Hideo Takahashi
英夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2000104692A priority Critical patent/JP4118488B2/en
Publication of JP2001289825A publication Critical patent/JP2001289825A/en
Application granted granted Critical
Publication of JP4118488B2 publication Critical patent/JP4118488B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To delicately measure a thickness or a thickness decreasing rate in an overall periphery of a tube by using many receiving coils and to suppress an increase in a cost. SOLUTION: A plurality of the receiving coils 14 are loaded in an RFEC method measuring probe 11, and divided into two rows. An RFEC method device 10 alternatively switches the coils 14 of the two rows in receiving circuits 21, 22 by a changeover switch 31. A distribution measuring circuit 20 obtains a distribution of the thickness decreasing rate of the overall periphery of the a steel tube pipe 15 based on analytical data obtained from a signal processor 32. Since the coils 14 are switched by the switch 31, a number of the receiving circuits 21, 22 can be reduced even when the number of the coils 14 is increased and a delicate measurement is conducted. Thus, the increase in the cost can be suppressed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、離隔渦流法を用い
て金属管の肉厚を測定し、探傷や腐食状況の診断を行う
離隔渦流法による管の肉厚測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the wall thickness of a metal tube by the separated eddy current method, which measures the thickness of a metal tube by the separated eddy current method and diagnoses flaws and corrosion.

【0002】[0002]

【従来の技術】従来から、図9に示すように、液化天然
ガス(以下、「LPG」と略称する)を貯蔵するLNG
タンク1などでは、地盤2に基礎部分として複数の基礎
用鋼管杭3が使用されている。LNGタンク1の周囲に
は、基礎用鋼管杭3に電気防食を行うための防食用鋼管
杭4が埋められている。ただし、基礎部分の基礎用鋼管
杭3にあまり腐食が進んでいないと考えられるときに
は、防食用鋼管杭4は通電されずに埋められたままの状
態である。防食用鋼管杭4を使用して基礎用鋼管杭3の
電気防食を行うと、電気料金等の費用が増加するので、
基礎用鋼管杭3の腐食が進むまでは、防食用鋼管杭4を
用いる電気防食は行わないでおくからである。
2. Description of the Related Art Conventionally, as shown in FIG. 9, LNG for storing liquefied natural gas (hereinafter abbreviated as "LPG") is known.
In the tank 1 and the like, a plurality of foundation steel pipe piles 3 are used as a foundation in the ground 2. Around the LNG tank 1, a steel pipe pile 4 for anticorrosion for burying the steel pipe pile 3 for foundation for electric protection is embedded. However, when it is considered that the steel pipe pile for foundation 3 of the foundation part is not corroded so much, the steel pipe pile for anticorrosion 4 is left buried without being energized. If the corrosion protection of the steel pipe pile 3 for foundation is performed using the steel pipe pile 4 for corrosion protection, the cost such as the electricity rate increases.
Until the corrosion of the foundation steel pipe pile 3 progresses, the electric corrosion protection using the anticorrosion steel pipe pile 4 is not performed.

【0003】近年、基礎部分の基礎用鋼管杭3の腐食の
程度を調べて、電気防食の必要性等を判断することがで
きないかというニーズが発生している。ただし、基礎用
鋼管杭3の上方にはLNGタンク1が存在し、基礎用鋼
管杭3内に測定プローブ等を挿入することは不可能であ
る。そこで、基礎用鋼管杭3の周囲に埋められている防
食用鋼管杭4について腐食の程度を調べることで、用鋼
管杭3の腐食の程度もある程度推定することができると
期待される。
[0003] In recent years, there has been a need for checking the degree of corrosion of the steel pipe pile 3 for foundation at the foundation to determine the necessity of cathodic protection or the like. However, the LNG tank 1 exists above the steel pipe pile 3 for foundation, and it is impossible to insert a measurement probe or the like into the steel pipe pile 3 for foundation. Therefore, by examining the degree of corrosion of the anticorrosion steel pipe pile 4 buried around the foundation steel pipe pile 3, it is expected that the degree of corrosion of the steel pipe pile 3 can be estimated to some extent.

【0004】基礎用鋼管杭3や防食用鋼管杭4などの鋼
管、特に地中に埋設されている鋼管の腐食診断には、離
隔渦流法、すなわちリモートフィールド渦流法(以下、
「RFEC法」と略称する)が用いられている。RFE
C法は、内部から、鋼管の厚さの相対的変化を比較的容
易に、かつ高速に求めることができ、位置による厚さの
変化から、腐食減肉の程度を判断することができる。R
FEC法で鋼管の腐食状況を診断する場合は、厚さの相
対的な減少量としての減肉率を求め、予め設定される基
準値と比較する。基準値よりも減肉率が大きくなってい
ると診断されれば、たとえばより強力な防食対策を施す
ことが必要と判断する。
[0004] For corrosion diagnosis of steel pipes such as the steel pipe pile 3 for foundation and the steel pipe pile 4 for corrosion protection, particularly the steel pipe buried underground, the separated eddy current method, that is, the remote field eddy current method (hereinafter, referred to as the remote field eddy method).
"RFEC method" is used. RFE
According to the method C, the relative change in the thickness of the steel pipe can be determined relatively easily and at high speed from the inside, and the degree of corrosion thinning can be determined from the change in thickness depending on the position. R
When diagnosing the corrosion state of a steel pipe by the FEC method, a thinning rate as a relative decrease in thickness is obtained and compared with a preset reference value. If it is determined that the thinning rate is greater than the reference value, it is determined that, for example, stronger anticorrosion measures need to be taken.

【0005】図10は、各種300A鋼管の実測減肉率
と、RFEC法で測定した減肉部の信号から求められた
リサージュ平面位相角との関係を示す。なお、リサージ
ュ平面位相角とは、図11に示すように、受信コイルに
おける起電力の信号振幅をAとし、起電力の位相をΦと
したとき、X軸をAcosΦ、Y軸をAsinΦとして
描かれるリサージュ波形とX軸との間でなす角度をθを
いう。図12は、図11に示すような位相角と減肉率と
の関係を求めるための試験用管5の一例を(a)に、該
試験用管5についてRFEC法で測定したときに得られ
る情報を(b)にそれぞれ示す。
FIG. 10 shows the relationship between the measured wall thinning rate of various 300A steel pipes and the Lissajous plane phase angle obtained from the signal of the wall thinned portion measured by the RFEC method. As shown in FIG. 11, the Lissajous plane phase angle is represented as AcosΦ on the X axis and AsinΦ on the Y axis when the signal amplitude of the electromotive force in the receiving coil is A and the phase of the electromotive force is Φ. The angle between the Lissajous waveform and the X axis is referred to as θ. FIG. 12A shows an example of the test tube 5 for obtaining the relationship between the phase angle and the wall thinning rate as shown in FIG. 11 when the test tube 5 is measured by the RFEC method. The information is shown in (b).

【0006】[0006]

【発明が解決しようとする課題】RFEC法による鋼管
などの腐食診断では、複数の受信コイルを用いて、管の
全周にわたる減肉率を測定することが考えられる。ただ
し、RFEC法に使用されている受信コイルは、減肉率
を検知することができる範囲がその受信コイル幅程度し
かない。このため、鋼管杭などの全周の減肉率を測定す
るには、受信コイル管の隙間を空けずに、受信コイルを
周状に並べる必要がある。しかし、鋼管杭には、腐食や
杭と杭とを接続するためのリングが内周側に溶接されて
いたりしているので、その段差を乗越えることができる
ように、受信コイルは管の中心軸に向う径方向に、ばね
などを用いて可動構造とすることが考えられている。可
動構造とするには、受信コイル管に隙間が必要であり、
隙間があると隙間の部分の減肉率データを採取すること
ができなくなってしまう。このため、受信コイルは管軸
方向に複数列用意し、受信コイルを千鳥配列にするなど
の工夫で、各列の受信コイルの隙間を、互いに補って減
肉率を測定することができるようにしている。
In the corrosion diagnosis of a steel pipe or the like by the RFEC method, it is conceivable to measure the wall thinning rate over the entire circumference of the pipe using a plurality of receiving coils. However, the receiving coil used in the RFEC method has a range in which the thinning rate can be detected is only about the width of the receiving coil. Therefore, in order to measure the wall thinning rate of the entire circumference of a steel pipe pile or the like, it is necessary to arrange the receiving coils circumferentially without leaving a gap between the receiving coil pipes. However, since the steel pipe pile has a ring that is welded to the inner peripheral side for corrosion and the connection between the pile and the pile, the receiving coil is positioned at the center of the pipe so that the step can be overcome. A movable structure using a spring or the like in the radial direction toward the axis has been considered. In order to have a movable structure, a gap is required in the receiving coil tube,
If there is a gap, it becomes impossible to collect the thinning rate data of the gap. For this reason, the receiving coils are prepared in a plurality of rows in the tube axis direction, and the arrangement of the receiving coils is arranged in a staggered manner. ing.

【0007】ところが、受信コイルの大きさは一般的に
小さく、全周の減肉率を測定するには、数多くの受信コ
イルが必要であり、受信コイルの数だけ、受信回路等を
用意する必要がある。受信回路等は、受信コイルに比べ
れば高価であるので、多くの受信コイルを用いて間の全
周にわたる肉厚や減肉率などを測定しようとすると、高
価な受信回路等も多く必要となり、限られたコストの中
では、充分な回路数を確保することは困難である。
However, the size of the receiving coil is generally small, and a large number of receiving coils are required to measure the wall thinning rate of the entire circumference. Therefore, it is necessary to prepare as many receiving circuits as the number of receiving coils. There is. Since the receiving circuit and the like are more expensive than the receiving coil, if an attempt is made to measure the wall thickness or the wall thinning rate over the entire circumference using many receiving coils, many expensive receiving circuits and the like are required, Within a limited cost, it is difficult to secure a sufficient number of circuits.

【0008】本発明の目的は、離隔渦流法を用いる管の
全周にわたる肉厚や減肉率の測定を、多くの受信コイル
を用いてきめ細かく行うことができ、しかもコスト上昇
を抑えることができる離隔渦流法による管の肉厚測定装
置を提供することである。
SUMMARY OF THE INVENTION It is an object of the present invention to measure the wall thickness and the wall thinning rate over the entire circumference of a pipe using the separated eddy current method by using a large number of receiving coils, and to suppress an increase in cost. An object of the present invention is to provide an apparatus for measuring a wall thickness of a pipe by a separated vortex flow method.

【0009】[0009]

【課題を解決するための手段】本発明は、中心軸が金属
管の軸線に一致するように配置される励磁コイルから発
生する磁束の変化に対応する信号を、励磁コイルから該
中心軸方向に間隔をあけて配置される受信コイルで受信
し、受信される信号に基づいて電磁的に該金属管の肉厚
を測定する離隔渦流法による管の肉厚測定装置におい
て、受信コイルは、励磁コイルの中心軸方向に間隔をあ
けて配置される複数列に、それぞれ予め定める複数個が
属するように配置され、各列では該複数個の受信コイル
が金属管の内周に沿って、等間隔で配置され、隣接する
列間では、受信コイルの位置が励磁コイルの中心軸まわ
りの同一角度の位置に重ならないように、該中心軸まわ
りに角度をずらして配置され、該中心軸まわりを複数範
囲数の角度範囲に分割して、各角度範囲にそれぞれ属す
る異なる列の受信コイルからの信号を切換えるように設
けられる該複数範囲数の切換スイッチと、各切換スイッ
チ毎に設けられ、切換スイッチによって切換えられる受
信コイルからの信号を解析処理して、金属管の肉厚測定
を行う該複数範囲数の信号処理回路と、該複数範囲数の
信号処理回路からの肉厚測定結果に基づいて、該金属管
の周方向の肉厚分布を求める分布測定回路とを含むこと
を特徴とする離隔渦流法による管の肉厚測定装置であ
る。
According to the present invention, a signal corresponding to a change in magnetic flux generated from an excitation coil arranged so that a central axis thereof coincides with an axis of a metal tube is transmitted from the excitation coil to the central axis. In a tube thickness measuring apparatus based on a vortex separation method in which the thickness of the metal tube is electromagnetically measured based on a signal received by a receiving coil arranged at an interval, the receiving coil is an exciting coil. Are arranged so that a plurality of predetermined coils belong to a plurality of rows arranged at intervals in the direction of the central axis, and in each row, the plurality of receiving coils are arranged at equal intervals along the inner circumference of the metal tube. It is arranged, between adjacent rows, so that the position of the receiving coil is arranged so as not to overlap the position of the same angle around the center axis of the exciting coil, and is shifted at an angle around the center axis. Minutes to a range of numbers A plurality of ranges of changeover switches provided to switch signals from different columns of reception coils belonging to the respective angle ranges; and a signal from the reception coil provided for each changeover switch and switched by the changeover switch. The plurality of ranges of signal processing circuits for analyzing the thickness of the metal tube and measuring the thickness of the metal tube in the circumferential direction based on the thickness measurement results from the plurality of ranges of signal processing circuits. And a distribution measuring circuit for obtaining a thickness distribution.

【0010】本発明に従えば、励磁コイルは中心軸が金
属管の軸線に一致するように配置され、磁束を発生して
離隔渦流法による該金属管の肉厚測定を行う。該中心軸
方向に間隔をあけて、複数の受信コイルが配置され、各
受信コイルは励磁コイルが発生した磁束に基づく信号を
受信する。受信信号には該金属管の肉厚の影響が電磁的
に反映されるので、受信信号を解析して、受信コイルの
存在する部分での肉厚を測定することができる。受信コ
イルは、励磁コイルの中心軸方向に間隔をあけて配置さ
れる複数列に、それぞれ予め定める複数個が属するよう
に配置され、各列では該複数個の受信コイルが金属管の
内周に沿って等間隔で配置され、隣接する列間では、受
信コイルの位置が励磁コイルの中心軸まわりの同一角度
の位置に重ならないように、該中心軸まわりに角度をず
らして配置されるので、全体として多くの受信コイルを
該金属管の内周に沿って配置し、きめ細かく測定を行う
ことができる。異なる列に属して中心軸に対する角度が
予め定める範囲内にある受信コイルを切換スイッチで切
換えて、信号処理回路での信号解析や肉厚測定を行うの
で、信号処理回路の数を受信コイルの数よりも少なくし
て、コスト上昇を抑えることができる。
According to the present invention, the excitation coil is arranged so that the central axis thereof coincides with the axis of the metal tube, and generates a magnetic flux to measure the thickness of the metal tube by the separated vortex method. A plurality of receiving coils are arranged at intervals in the direction of the central axis, and each receiving coil receives a signal based on the magnetic flux generated by the exciting coil. Since the influence of the thickness of the metal tube is electromagnetically reflected on the reception signal, the reception signal can be analyzed to measure the thickness at the portion where the reception coil exists. The receiving coils are arranged so that a plurality of predetermined coils belong to a plurality of rows arranged at intervals in the center axis direction of the exciting coil, and in each row, the plurality of receiving coils are arranged on the inner periphery of the metal tube. Are arranged at equal intervals along, and between adjacent rows, so that the position of the receiving coil does not overlap the position of the same angle around the center axis of the exciting coil, since it is arranged at an angle shifted around the center axis, As a whole, many receiving coils are arranged along the inner periphery of the metal tube, so that the measurement can be performed finely. By switching the receiving coils belonging to different rows and having an angle with respect to the central axis within a predetermined range with a changeover switch, signal analysis and thickness measurement are performed by a signal processing circuit, so the number of signal processing circuits is determined by the number of receiving coils. And the cost increase can be suppressed.

【0011】また本発明は、前記励磁コイルおよび前記
受信コイルを金属管内で軸線方向に移動しながら、各受
信コイルで信号を受信し、前記切換スイッチを、異なる
列の受信コイルからの信号が該金属管の軸線に対して同
一の位置となるようなタイミングで切換える制御回路を
さらに含むことを特徴とする。
Further, according to the present invention, a signal is received by each of the receiving coils while moving the exciting coil and the receiving coil in the metal tube in the axial direction, and the signals from the receiving coils in different columns are received by the changeover switch. It is characterized by further including a control circuit for switching at a timing so as to be at the same position with respect to the axis of the metal tube.

【0012】本発明に従えば、複数列に分割して、重心
軸まわりの角度もずらしている受信コイルからの信号
を、金属管の軸線に対して同一の位置となるように切換
スイッチで切換えるので、金属管の軸線に対して同一位
置で、全周についての測定を行い、肉厚や減肉率分布な
どを精度良く求めることができる。
According to the present invention, the signals from the receiving coils which are divided into a plurality of rows and whose angles around the center of gravity axis are shifted are switched by the changeover switch so as to be at the same position with respect to the axis of the metal tube. Therefore, it is possible to measure the entire circumference at the same position with respect to the axis of the metal pipe, and to accurately obtain the thickness, the wall thickness reduction distribution, and the like.

【0013】[0013]

【発明の実施の形態】図1は、本発明の実施の一形態で
ある離隔渦流法による管の肉厚測定装置としてのRFE
C法装置10の概略的な構成を示す。図1(a)に示す
RFEC法測定プローブ11は、励磁コイル12、中心
軸13、および複数の受信コイル14を備え、鋼管杭1
5内を、その軸線に中心軸13を一致させて、該軸線方
向に移動しながら、鋼管杭15の肉厚測定を行う。鋼管
杭15は、たとえば内径が約300mmで300Aと呼
ばれる場合について示す。励磁コイル12と受信コイル
14とは、鋼管杭15の外径の2倍以上の距離を空けて
配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an RFE as an apparatus for measuring the wall thickness of a pipe by a separated eddy current method according to an embodiment of the present invention.
1 shows a schematic configuration of a C method apparatus 10. An RFEC measurement probe 11 shown in FIG. 1A includes an excitation coil 12, a central shaft 13, and a plurality of reception coils 14, and a steel pipe pile 1
The thickness of the steel pipe pile 15 is measured while moving the inside of the steel pipe 5 in the axial direction with the central axis 13 coincident with the axis thereof. The steel pipe pile 15 has a case where the inside diameter is about 300 mm and is called 300A, for example. The exciting coil 12 and the receiving coil 14 are arranged at a distance of at least twice the outer diameter of the steel pipe pile 15.

【0014】受信コイル14は、たとえば12個ずつを
一組として、2列に配置される。2つの列は、中心軸1
3に沿って、間隔△Lを空けて配置される。△Lは、た
とえば7.8cmである。図1(b)は、各列での受信
コイルの配置位置を示す。受信コイル14は全体で24
個あるので、全周について、S1〜S24の位置を等間
隔、すなわち360°÷24=15°の角度でとり、さ
らに奇数番目の位置を励磁コイル12寄りの第1列に割
当て、偶数番目の位置を励磁コイル12から離れている
第2列に割当てる。すなわち、第1列と第2列とに配置
される受信コイル14は、千鳥配列をなしている。
The receiving coils 14 are arranged in two rows, for example, in groups of twelve. The two columns are center axis 1
3 and are spaced apart by an interval ΔL. ΔL is, for example, 7.8 cm. FIG. 1B shows an arrangement position of the receiving coils in each column. The receiving coil 14 has a total of 24
Therefore, the positions of S1 to S24 are set at equal intervals, that is, at an angle of 360 ° ÷ 24 = 15 °, and odd-numbered positions are assigned to the first row closer to the exciting coil 12, and even-numbered positions are set. The position is assigned to a second row remote from the excitation coil 12. That is, the receiving coils 14 arranged in the first row and the second row are in a staggered arrangement.

【0015】図1(c)は、RFEC法装置10の概略
的な電気的構成を示す。分布測定回路20は、12個の
受信回路21,22,…からの解析データに基づいて、
鋼管杭15についての全周にわたる減肉分布などを作成
する。一つの受信回路21は、図1(b)に示す第1列
および第2列にそれぞれ属する受信コイルを一つずつ、
たとえばS1とS2のように組合せ、切換スイッチ31
で切換可能なように構成する。切換スイッチ31で切換
えられた信号は、信号処理回路32に入力される。信号
処理回路32には、受信コイル14からの微小なアナロ
グ信号を増幅するロックインアンプ、アナログ信号をデ
ジタル信号に変換するA/D変換器、デジタル信号処理
で、図10のようなリサージュ平面位相角と減肉率との
関係に従って、鋼管杭15の減肉率を測定する演算回路
等が含まれる。
FIG. 1C shows a schematic electrical configuration of the RFEC method apparatus 10. The distribution measuring circuit 20 is based on the analysis data from the twelve receiving circuits 21, 22,.
The wall thickness distribution and the like over the entire circumference of the steel pipe pile 15 are created. One receiving circuit 21 includes one receiving coil belonging to each of the first column and the second column shown in FIG.
For example, a combination such as S1 and S2,
Is configured to be switchable. The signal switched by the changeover switch 31 is input to the signal processing circuit 32. The signal processing circuit 32 includes a lock-in amplifier that amplifies a minute analog signal from the receiving coil 14, an A / D converter that converts the analog signal into a digital signal, and a Lissajous plane phase as shown in FIG. An arithmetic circuit and the like for measuring the thinning rate of the steel pipe pile 15 according to the relationship between the angle and the thinning rate are included.

【0016】RFEC法測定プローブ11は、鋼管杭1
5内を、たとえば毎分1mの速度で移動しながら肉厚測
定を行う。第1列と第2列の受信コイル14からの信号
は、切換スイッチ31で交互に切換えて信号処理回路3
2に入力される。nを自然数として、4.68/n
(秒)毎に切換スイッチ31を切換えるようにすれば、
測定ピッチは、7.8/n(cm)となる。この測定ピ
ッチは、前述の第1列と第2列との間隔△Lの1/nで
ある。したがって、n=1とすれば、受信コイル14の
第1列と第2列とを鋼管杭15の軸線に関し、該間隔△
Lのピッチで同一の位置で測定を行うことができる。n
を2以上にすれば、より細かなピッチで測定を行うこと
ができる。
The RFEC measuring probe 11 is a steel pipe pile 1
The thickness is measured while moving in the inside 5 at a speed of, for example, 1 m per minute. The signals from the receiving coils 14 in the first row and the second row are alternately switched by a changeover switch 31 so that the signal processing circuit 3
2 is input. 4.68 / n where n is a natural number
If the changeover switch 31 is switched every (second),
The measurement pitch is 7.8 / n (cm). This measurement pitch is 1 / n of the distance ΔL between the first and second rows. Therefore, if n = 1, the first row and the second row of the receiving coils 14 are arranged with respect to the axis of the steel
The measurement can be performed at the same position at the pitch of L. n
Is set to 2 or more, measurement can be performed at a finer pitch.

【0017】図2、図3、図4および図5は、図1
(a)に示すRFEC法測定プローブ11の一例を示
す。図2は、右側面側から見た構成を、中心線より上側
については主として断面視して示す。図3は、正面視し
た状態を示す。図4および図5は、図2の切断面線IV
−IVおよび切断面線V−Vから見た構成をそれぞれ示
す。
FIG. 2, FIG. 3, FIG. 4 and FIG.
An example of the RFEC measurement probe 11 shown in FIG. FIG. 2 shows the configuration viewed from the right side, mainly in a cross-sectional view above the center line. FIG. 3 shows a state viewed from the front. FIGS. 4 and 5 show the section line IV in FIG.
-IV and the structure seen from the cutting surface line VV are shown, respectively.

【0018】図4に示すように、RFEC法測定プロー
ブ11の中心軸13を鋼管杭15の軸線に一致するよう
に保持して、鋼管杭15内を移動可能なようにするた
め、複数の保持車輪35が設けられている。また、図2
に示すように、鋼管杭15の肉厚を超音波を用いて測定
することが可能な水浸法超音波探触子36も備えられて
いる。受信コイル14や水浸法超音波探触子36への信
号等の電気的接続は、ケーブル37を介して行われる。
水浸法超音波探触子36による肉厚測定も併用すれば、
鋼管杭15の全周に沿っての肉厚測定精度を向上させる
ことができる。図5に示すように、各受信コイル14
は、ばね装置38によって、径方向の外方に付勢されて
いる。これによって、鋼管杭15の内周面に段差などが
生じていても、段差などからの押圧力がばね装置38に
よる付勢よりも大きくなれば、受信コイル14が径方向
の内方に引っ込み、段差などが過ぎれば、元に戻すこと
ができる。
As shown in FIG. 4, the center axis 13 of the RFEC measurement probe 11 is held so as to coincide with the axis of the steel pipe pile 15 so that a plurality of holdings can be made. Wheels 35 are provided. FIG.
As shown in FIG. 3, a water immersion ultrasonic probe 36 capable of measuring the wall thickness of the steel pipe pile 15 using ultrasonic waves is also provided. Electrical connection of signals and the like to the receiving coil 14 and the water immersion ultrasonic probe 36 is performed via a cable 37.
If the wall thickness measurement by the water immersion ultrasonic probe 36 is also used,
The wall thickness measurement accuracy along the entire circumference of the steel pipe pile 15 can be improved. As shown in FIG.
Is urged radially outward by a spring device 38. Thereby, even if a step or the like is generated on the inner peripheral surface of the steel pipe pile 15, if the pressing force from the step or the like becomes larger than the biasing force of the spring device 38, the receiving coil 14 is retracted inward in the radial direction, Once the step is over, it can be restored.

【0019】図6は、図1のRFEC法装置10を使用
する鋼管杭15の減肉率測定状態を示す。RFEC法測
定プローブ11には、励磁コイル12と受信コイル14
とともに、水浸法超音波探触子36が組み込まれてい
る。ケーブル37は検査装置40に接続され、水浸法超
音波探蝕子36からの信号は超音波厚み計41に入力さ
れる。超音波厚み計41はCRTモニタ42を備え、エ
コー信号を表示する。エコー信号波形が良好なときは、
超音波による高精度の肉厚測定が可能であり、その測定
位置でRFEC法のデータを校正すれば、RFEC法に
よるデータの精度も高めることができる。
FIG. 6 shows a measurement state of the wall thinning rate of the steel pipe pile 15 using the RFEC apparatus 10 of FIG. The RFEC measurement probe 11 includes an excitation coil 12 and a reception coil 14.
At the same time, a water immersion ultrasonic probe 36 is incorporated. The cable 37 is connected to the inspection device 40, and a signal from the water immersion ultrasonic probe 36 is input to the ultrasonic thickness meter 41. The ultrasonic thickness gauge 41 includes a CRT monitor 42 and displays an echo signal. When the echo signal waveform is good,
High-precision wall thickness measurement by ultrasonic waves is possible, and if the RFEC data is calibrated at the measurement position, the accuracy of the RFEC data can be increased.

【0020】検査装置40内には、図1(c)に示す受
信回路21,22,…のうちの切換スイッチ31や信号
処理回路32、および発振回路30が含まれ、分布測定
回路20は、信号処理用パソコン43によって実現され
る。分布測定回路20としての処理結果は、ディスプレ
イモニタ44に表示される。検査装置40、超音波厚み
計41、信号処理用パソコン43およびディスプレイモ
ニタ44などは、計器収納ラック45に収納されて、一
体化されている。
The inspection apparatus 40 includes a changeover switch 31, a signal processing circuit 32, and an oscillation circuit 30 of the receiving circuits 21, 22,... Shown in FIG. This is realized by the signal processing personal computer 43. The processing result as the distribution measuring circuit 20 is displayed on the display monitor 44. The inspection device 40, the ultrasonic thickness gauge 41, the signal processing personal computer 43, the display monitor 44, and the like are housed in an instrument housing rack 45 and are integrated.

【0021】RFEC法測定プローブ11は、走行装置
46によって、ケーブル37で吊下げられる長さを変化
させ、地中に埋込まれている鋼管杭15中を軸線方向に
往復移動することができる。図5に示すように、受信コ
イル14はばね機構38で径方向に変位可能であるの
で、鋼管杭15の内部に、鋼管継目47などで段差が生
じていても、乗越えて移動することができる。
The RFEC measurement probe 11 can be reciprocated in the axial direction in the steel pipe pile 15 embedded in the ground by changing the length suspended by the cable 37 by the traveling device 46. As shown in FIG. 5, the receiving coil 14 can be displaced in the radial direction by the spring mechanism 38, so that even if a step occurs at the steel pipe joint 47 or the like inside the steel pipe pile 15, the receiving coil 14 can move over. .

【0022】図7は、図6のディスプレイモニタ44に
表示する全周にわたる減肉評価の例を示す。24個の受
信コイルは、図1(b)に示すS1,S2,S3のよう
に隣接する3個ずつで1つのチャンネルを形成し、合計
8つのチャンネルとして減肉率の評価を行う。各チャン
ネルでは、3つの受信コイル14からの信号を個別に解
析するのではなく、総合して解析するので、全周にわた
る解析を迅速に行うことができる。
FIG. 7 shows an example of the evaluation of thinning over the entire circumference displayed on the display monitor 44 of FIG. The 24 receiving coils form one channel by three adjacent coils as shown in S1, S2, and S3 shown in FIG. 1B, and the thinning rate is evaluated as a total of eight channels. In each channel, the signals from the three receiving coils 14 are not analyzed individually but are analyzed in a comprehensive manner, so that the analysis over the entire circumference can be performed quickly.

【0023】図8は、本発明の実施の他形態である離隔
渦流法による管の肉厚測定装置としてのRFEC法装置
50の概略的な構成を示す。本実施形態で図1の実施形
態に対応する部分には同一の参照符を付し、重複する説
明を省略する。図8(a)に示すRFEC法測定プロー
ブ51では、受信コイル14は、たとえば8個ずつを一
組として、3列に配置される。図8(b)は、各列での
受信コイルの配置位置を示す。受信コイル14は全体で
24個あるので、全周について、S1〜S24の位置を
等間隔でとり、さらに励磁コイル12寄りの第1列か
ら、励磁コイル12から離れる第2列、さらに励磁コイ
ル12から離れる第3列に、順次位置を割当てる。すな
わち、第1列、第2列および第3列に配置される受信コ
イル14は、一定角度である360°÷24=15°ず
つ位置がずれている。
FIG. 8 shows a schematic configuration of an RFEC method apparatus 50 as an apparatus for measuring the wall thickness of a pipe by the separated eddy current method according to another embodiment of the present invention. In the present embodiment, portions corresponding to the embodiment of FIG. 1 are denoted by the same reference numerals, and redundant description will be omitted. In the RFEC method measurement probe 51 shown in FIG. 8A, the reception coils 14 are arranged in three rows, for example, eight pairs each. FIG. 8B shows the arrangement positions of the receiving coils in each column. Since there are 24 receiving coils 14 in total, the positions of S1 to S24 are set at equal intervals over the entire circumference, and the first row near the exciting coil 12 is further moved to the second row away from the exciting coil 12, and the exciting coil 12 Are sequentially assigned to the third column away from. That is, the positions of the receiving coils 14 arranged in the first row, the second row, and the third row are shifted by a fixed angle of 360 ° ÷ 24 = 15 °.

【0024】図8(c)は、RFEC法装置50の概略
的な電気的構成を示す。8個の受信回路51,52,…
は、それぞれ3つの受信コイル14からの信号を切換え
て処理する。分布測定回路60は、8個の受信回路5
1,52,…からの解析データに基づいて、鋼管杭15
についての全周にわたる減肉分布などを作成する。一つ
の受信回路51は、図8(b)に示す第1列、第2列お
よび第3列にそれぞれ属する受信コイル14を一つず
つ、たとえばS1とS2とS3とのように組合せ、切換
スイッチ61で切換可能なように構成する。切換スイッ
チ61で切換えられた信号は、信号処理回路32に入力
される。分布測定回路60は、図1の実施形態と同様
に、図6の信号処理用パソコン43などで実現すること
ができる。本実施形態では、受信回路51,52,…の
数を図1の実施形態よりも減らすことができる。また、
図7に示すようないチャンネルの全周表示を行う場合、
各受信回路51,52,…単位でデータ処理を行えばよ
いので、処理の簡略化が可能である。
FIG. 8C shows a schematic electrical configuration of the RFEC apparatus 50. The eight receiving circuits 51, 52,...
Process the signals by switching the signals from the three receiving coils 14 respectively. The distribution measuring circuit 60 includes eight receiving circuits 5
Based on the analysis data from 1, 52,.
Create a distribution of wall thinning over the entire circumference of. One receiving circuit 51 combines the receiving coils 14 belonging to the first, second, and third columns shown in FIG. 8B one by one, for example, S1, S2, and S3, and sets a changeover switch. It is configured to be switchable at 61. The signal switched by the changeover switch 61 is input to the signal processing circuit 32. The distribution measuring circuit 60 can be realized by the signal processing personal computer 43 shown in FIG. 6, as in the embodiment shown in FIG. In the present embodiment, the number of receiving circuits 51, 52,... Can be reduced as compared with the embodiment of FIG. Also,
When displaying the entire circumference of a channel not shown in FIG. 7,
Since data processing may be performed for each of the receiving circuits 51, 52,..., The processing can be simplified.

【0025】以上説明した各実施形態では、受信コイル
14を24個用いているけれども、その数は必要に応じ
て変えることができる。同一の精度で測定するために
は、口径が大きくなれば数を多くし、小さくなれば少な
くするようにすればよい。また本発明は、鋼管杭15の
減肉測定ばかりではなく、探傷にも適用することができ
る。また鉛直方向に埋込まれている鋼管杭15ばかりで
はなく、水平な地中埋設管などの減肉測定や探傷にも適
用することができる。
In each of the embodiments described above, 24 receiving coils 14 are used, but the number can be changed as necessary. In order to measure with the same accuracy, the number should be increased as the diameter increases and decreased as the diameter decreases. Further, the present invention can be applied not only to the measurement of the thinning of the steel pipe pile 15 but also to the flaw detection. The present invention can be applied not only to the steel pipe pile 15 embedded in the vertical direction but also to the measurement of wall thickness reduction and flaw detection of a horizontal underground pipe.

【0026】[0026]

【発明の効果】以上のように本発明によれば、離隔渦流
法で金属管の肉厚を測定するための受信コイルは、励磁
コイルの中心軸方向に間隔をあけて配置される複数列
に、それぞれ予め定める複数個が属するように、各列で
は該複数個の受信コイルが金属管の内周に沿って等間隔
で配置され、隣接する列間では受信コイルの位置が励磁
コイルの中心軸まわりの同一角度の位置に重ならないよ
うに角度をずらして配置されるので、全体として多くの
受信コイルを金属管の内周に沿って配置し、きめ細かく
測定を行うことができる。受信コイルを切換スイッチで
切換えて、信号処理回路での信号解析や肉厚測定を行う
ので、信号処理回路の数を受信コイルの数よりも少なく
して、コスト上昇を抑えることができる。
As described above, according to the present invention, the receiving coils for measuring the thickness of the metal tube by the separated eddy current method are arranged in a plurality of rows arranged at intervals in the center axis direction of the exciting coil. In each row, the plurality of receiving coils are arranged at equal intervals along the inner circumference of the metal tube so that a plurality of predetermined coils belong to each other, and between adjacent rows, the position of the receiving coil is determined by the center axis of the exciting coil. Since the receiving coils are arranged at different angles so that they do not overlap at the same angular position, a large number of receiving coils can be arranged along the inner circumference of the metal tube as a whole, and measurement can be performed finely. Since the reception coil is switched by the changeover switch and the signal analysis and the thickness measurement are performed in the signal processing circuit, the number of the signal processing circuits can be made smaller than the number of the reception coils, thereby suppressing an increase in cost.

【0027】また本発明によれば、励磁コイルおよび受
信コイルを金属管内で軸線方向に移動しながら、複数列
に分割して、重心軸まわりの角度もずらしている受信コ
イルからの信号を、金属管の軸線に対して同一の位置と
なるように切換スイッチで切換えるので、金属管の軸線
に対して同一位置で全周についての測定を行い、肉厚や
減肉率分布などを精度良く求めることができる。
Further, according to the present invention, the excitation coil and the reception coil are divided into a plurality of rows while moving in the metal tube in the axial direction, and the signal from the reception coil whose angle around the center of gravity axis is shifted is also transmitted to the metal pipe. Since it is switched by the changeover switch so that it is at the same position with respect to the axis of the pipe, it is necessary to measure the entire circumference at the same position with respect to the axis of the metal pipe, and to accurately obtain the wall thickness and wall loss rate distribution etc. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態のRFEC法装置10に
ついて、RFEC法測定プローブ11の概略的な示す断
面図、および電気的構成を示すブロック図である。
FIG. 1 is a schematic cross-sectional view showing an RFEC method measurement probe 11 and a block diagram showing an electrical configuration of an RFEC method apparatus 10 according to an embodiment of the present invention.

【図2】図1のRFEC法測定プローブ11の側面断面
図である。
FIG. 2 is a side sectional view of the RFEC measurement probe 11 of FIG.

【図3】図2のRFEC法測定プローブ11の正面図で
ある。
FIG. 3 is a front view of the RFEC measurement probe 11 of FIG. 2;

【図4】図2の切断面線IV−IVから見た断面図であ
る。
FIG. 4 is a cross-sectional view taken along the line IV-IV of FIG. 2;

【図5】図2の切断面線V−Vから見た断面図である。FIG. 5 is a cross-sectional view taken along the line VV of FIG. 2;

【図6】図1のRFEC法装置10を用いて鋼管杭15
の減肉測定を行う構成を示すブロック図である。
FIG. 6 shows a steel pipe pile 15 using the RFEC method apparatus 10 of FIG.
FIG. 3 is a block diagram showing a configuration for performing a thinning measurement.

【図7】図6のディスプレイモニタ44に表示される鋼
管杭15の全周にわたる減肉評価結果の一例を示す図で
ある。
FIG. 7 is a diagram showing an example of a wall-thinning evaluation result over the entire circumference of the steel pipe pile 15 displayed on the display monitor 44 of FIG. 6;

【図8】本発明の実施の他の形態のRFEC法装置50
について、RFEC法測定プローブ51の概略的な示す
断面図、および電気的構成を示すブロック図である。
FIG. 8 is an RFEC method apparatus 50 according to another embodiment of the present invention.
FIG. 1 is a schematic cross-sectional view of an RFEC measurement probe 51 and a block diagram showing an electrical configuration.

【図9】LNGタンク1の基礎部分を示す簡略化した断
面図である。
FIG. 9 is a simplified sectional view showing a basic portion of the LNG tank 1.

【図10】RFEC法によって求められる位相角と減肉
率との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the phase angle obtained by the RFEC method and the wall thinning rate.

【図11】RFEC法でのリサージュ平面位相角の定義
を示す図である。
FIG. 11 is a diagram showing a definition of a Lissajous plane phase angle in the RFEC method.

【図12】減肉量を変化させた試験用管5の形状を示す
断面図、およびその試験用管5についてRFEC法によ
って得られる情報を示すグラフである。
FIG. 12 is a cross-sectional view showing the shape of the test tube 5 in which the wall thickness has been changed, and a graph showing information obtained by the RFEC method for the test tube 5;

【符号の説明】[Explanation of symbols]

10,50 RFEC法装置 11,51 RFEC法測定プローブ 12 励磁コイル 13 中心軸 14 受信コイル 15 鋼管杭 20,60 分布測定回路 21,22,51,52 受信回路 30 発振回路 31,61 切換スイッチ 32 信号処理回路 10,50 RFEC method apparatus 11,51 RFEC method measurement probe 12 excitation coil 13 center axis 14 reception coil 15 steel pipe pile 20,60 distribution measurement circuit 21,22,51,52 reception circuit 30 oscillation circuit 31,61 changeover switch 32 signal Processing circuit

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F063 AA16 AA50 BA30 BB05 BC02 CA40 DA01 DB04 DD07 GA08 GA33 GA38 JA01 LA09 LA11 MA05 NA02 PA10 ZA01 2G053 AA12 AB21 BA12 BA26 BC02 BC14 CA03 CB19 CB29 DA01 DB04 DB05 DB27  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F063 AA16 AA50 BA30 BB05 BC02 CA40 DA01 DB04 DD07 GA08 GA33 GA38 JA01 LA09 LA11 MA05 NA02 PA10 ZA01 2G053 AA12 AB21 BA12 BA26 BC02 BC14 CA03 CB19 CB29 DA01 DB04 DB05 DB27

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 中心軸が金属管の軸線に一致するように
配置される励磁コイルから発生する磁束の変化に対応す
る信号を、励磁コイルから該中心軸方向に間隔をあけて
配置される受信コイルで受信し、受信される信号に基づ
いて電磁的に該金属管の肉厚を測定する離隔渦流法によ
る管の肉厚測定装置において、 受信コイルは、 励磁コイルの中心軸方向に間隔をあけて配置される複数
列に、それぞれ予め定める複数個が属するように配置さ
れ、 各列では該複数個の受信コイルが金属管の内周に沿っ
て、等間隔で配置され、 隣接する列間では、受信コイルの位置が励磁コイルの中
心軸まわりの同一角度の位置に重ならないように、該中
心軸まわりに角度をずらして配置され、 該中心軸まわりを複数範囲数の角度範囲に分割して、各
角度範囲にそれぞれ属する異なる列の受信コイルからの
信号を切換えるように設けられる該複数範囲数の切換ス
イッチと、 各切換スイッチ毎に設けられ、切換スイッチによって切
換えられる受信コイルからの信号を解析処理して、金属
管の肉厚測定を行う該複数範囲数の信号処理回路と、 該複数範囲数の信号処理回路からの肉厚測定結果に基づ
いて、該金属管の周方向の肉厚分布を求める分布測定回
路とを含むことを特徴とする離隔渦流法による管の肉厚
測定装置。
1. A signal corresponding to a change in magnetic flux generated from an exciting coil arranged so that a central axis thereof coincides with an axis of a metal tube. A signal arranged at a distance from the exciting coil in the direction of the central axis. In a tube thickness measuring device based on a separated eddy current method in which a thickness of the metal tube is electromagnetically measured based on a signal received by a coil and received, the receiving coils are spaced apart in a central axis direction of the exciting coil. The plurality of receiving coils are arranged at equal intervals along the inner circumference of the metal tube in each row, and the plurality of receiving coils are arranged at equal intervals in each row. The position of the receiving coil is arranged at an angle around the central axis so as not to overlap the position of the same angle around the central axis of the exciting coil, and is divided into a plurality of angular ranges around the central axis. For each angle range A plurality of range switches provided to switch signals from the receiving coils of different columns to which the switches belong, and a signal from the receiving coil, which is provided for each switch and is switched by the switch, is analyzed and processed. A plurality of signal processing circuits for measuring the thickness of the metal pipe; and a distribution measurement for obtaining a circumferential wall thickness distribution of the metal pipe based on the thickness measurement results from the plurality of signal processing circuits. An apparatus for measuring a wall thickness of a pipe by a separated vortex flow method, comprising: a circuit;
【請求項2】 前記励磁コイルおよび前記受信コイルを
金属管内で軸線方向に移動しながら、各受信コイルで信
号を受信し、前記切換スイッチを、異なる列の受信コイ
ルからの信号が該金属管の軸線に対して同一の位置とな
るようなタイミングで切換える制御回路をさらに含むこ
とを特徴とする請求項1記載の離隔渦流法による管の肉
厚測定装置。
2. A signal is received by each of the receiving coils while moving the exciting coil and the receiving coil in the metal tube in the axial direction. 2. The apparatus according to claim 1, further comprising a control circuit for switching at the same position with respect to the axis.
JP2000104692A 2000-04-06 2000-04-06 Tube thickness measuring device by the separated vortex method. Expired - Fee Related JP4118488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000104692A JP4118488B2 (en) 2000-04-06 2000-04-06 Tube thickness measuring device by the separated vortex method.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000104692A JP4118488B2 (en) 2000-04-06 2000-04-06 Tube thickness measuring device by the separated vortex method.

Publications (2)

Publication Number Publication Date
JP2001289825A true JP2001289825A (en) 2001-10-19
JP4118488B2 JP4118488B2 (en) 2008-07-16

Family

ID=18618191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000104692A Expired - Fee Related JP4118488B2 (en) 2000-04-06 2000-04-06 Tube thickness measuring device by the separated vortex method.

Country Status (1)

Country Link
JP (1) JP4118488B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517218A (en) * 2003-12-30 2007-06-28 ラム リサーチ コーポレーション Method and apparatus for measuring film thickness with a coupled eddy current sensor
JP2010127665A (en) * 2008-11-26 2010-06-10 Japan Atomic Energy Agency Eddy current flaw detection system
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
CN104280453A (en) * 2014-10-10 2015-01-14 苏州混凝土水泥制品研究院有限公司 System applied to detection of broken PCCP (Prestressed Concrete Cylinder Pipe) steel wires
CN104297337A (en) * 2014-10-10 2015-01-21 苏州混凝土水泥制品研究院有限公司 Broken wire detection method of PCCP (Prestressed Concrete Cylinder Pipe) steel wire
CN104359970A (en) * 2014-10-10 2015-02-18 苏州混凝土水泥制品研究院有限公司 PCCP (prestressed concrete cylinder pipe) steel wire breaking detection main unit
WO2015111558A1 (en) * 2014-01-22 2015-07-30 横河電機株式会社 Thinning detection device
US20160320282A1 (en) * 2015-04-28 2016-11-03 Delta Subsea Llc Systems, apparatuses, and methods for measuring submerged surfaces
CN116399942A (en) * 2023-06-07 2023-07-07 西南石油大学 Online detection method for full circumferential defects of differential vortex coiled tubing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007517218A (en) * 2003-12-30 2007-06-28 ラム リサーチ コーポレーション Method and apparatus for measuring film thickness with a coupled eddy current sensor
JP2010127665A (en) * 2008-11-26 2010-06-10 Japan Atomic Energy Agency Eddy current flaw detection system
JP2011149858A (en) * 2010-01-22 2011-08-04 Toyo Asano Foundation Co Ltd Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile
WO2015111558A1 (en) * 2014-01-22 2015-07-30 横河電機株式会社 Thinning detection device
JP2015137930A (en) * 2014-01-22 2015-07-30 横河電機株式会社 Wastage detector
CN104280453A (en) * 2014-10-10 2015-01-14 苏州混凝土水泥制品研究院有限公司 System applied to detection of broken PCCP (Prestressed Concrete Cylinder Pipe) steel wires
CN104359970A (en) * 2014-10-10 2015-02-18 苏州混凝土水泥制品研究院有限公司 PCCP (prestressed concrete cylinder pipe) steel wire breaking detection main unit
CN104297337A (en) * 2014-10-10 2015-01-21 苏州混凝土水泥制品研究院有限公司 Broken wire detection method of PCCP (Prestressed Concrete Cylinder Pipe) steel wire
US20160320282A1 (en) * 2015-04-28 2016-11-03 Delta Subsea Llc Systems, apparatuses, and methods for measuring submerged surfaces
US9874507B2 (en) * 2015-04-28 2018-01-23 Delta Subsea, Llc Systems, apparatuses, and methods for measuring submerged surfaces
US10641693B2 (en) 2015-04-28 2020-05-05 Delta Subsea, Llc Systems, apparatuses, and methods for measuring submerged surfaces
US11221301B2 (en) 2015-04-28 2022-01-11 Delta Subsea, Llc Systems, apparatuses, and methods for measuring submerged surfaces
CN116399942A (en) * 2023-06-07 2023-07-07 西南石油大学 Online detection method for full circumferential defects of differential vortex coiled tubing
CN116399942B (en) * 2023-06-07 2023-08-29 西南石油大学 Online detection method for full circumferential defects of differential vortex coiled tubing

Also Published As

Publication number Publication date
JP4118488B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
CA2729223C (en) Integrated multi-sensor non-destructive testing
EP1153289B1 (en) Eddy current testing with compact configuration
JPH06160357A (en) Differential transmission-reception type eddy-current probe including bracelet-shaped tube composed of multiple coil unit
US20090031813A1 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
KR101729039B1 (en) Pipeline Inspection Tool with Double Spiral EMAT Sensor Array
JP2009517694A (en) Pulsed eddy current pipeline inspection system and method
JP4021321B2 (en) Stress measurement of ferromagnetic materials
JP4118488B2 (en) Tube thickness measuring device by the separated vortex method.
JP2008032575A (en) Eddy current measuring probe and flaw detection device using it
EP1311843B1 (en) Detecting an anomaly in an object of electrically conductive material
KR101966168B1 (en) Eddy Current Inspection Apparatus for Nondestructive Test
JPS5817353A (en) Multifrequency eddy current flaw detection method and apparatus by multiple coil system
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP5127574B2 (en) Inspection method using guide waves
JP5893538B2 (en) Nondestructive inspection method and apparatus using guide wave
JP6994282B1 (en) Wall thickness measurement method
AU2015200693A1 (en) Integrated multi-sensor non-destructive testing
JP4118487B2 (en) Steel pipe corrosion diagnosis method
EP1877767A2 (en) Near fieldtm and combination near fieldtm - remote field electromagnetic testing (et) probes for inspecting ferromagnetic pipes and tubes such as those used in heat exchangers
JP5143111B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guide wave
JP2004251839A (en) Pipe inner surface flaw inspection device
KR20190018285A (en) A portable encoder apparatus for decelerating a device and indicating flaws
WO2009093070A1 (en) Eddy current inspection system and method of eddy current flaw detection
JP2008026162A (en) Inspection method for inspecting deterioration state of embedded pipe
JP7455056B2 (en) Eddy current flaw detection system and eddy current flaw detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees