JP2001288296A - Rubber composition for tire tread - Google Patents

Rubber composition for tire tread

Info

Publication number
JP2001288296A
JP2001288296A JP2000106481A JP2000106481A JP2001288296A JP 2001288296 A JP2001288296 A JP 2001288296A JP 2000106481 A JP2000106481 A JP 2000106481A JP 2000106481 A JP2000106481 A JP 2000106481A JP 2001288296 A JP2001288296 A JP 2001288296A
Authority
JP
Japan
Prior art keywords
rubber
rubber composition
weight
sulfur
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000106481A
Other languages
Japanese (ja)
Inventor
Akira Minakoshi
亮 皆越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohtsu Tire and Rubber Co Ltd
Original Assignee
Ohtsu Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohtsu Tire and Rubber Co Ltd filed Critical Ohtsu Tire and Rubber Co Ltd
Priority to JP2000106481A priority Critical patent/JP2001288296A/en
Publication of JP2001288296A publication Critical patent/JP2001288296A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a rubber composition for tire tread which has excellent abrasion resistance and excellent heat resistance, and furthermore reduces lower ing in performance with traveling distance, particularly lowering in grip, and especially a tread rubber composition for studless tire suited in traveling on the frozen road surface and the snow road surface. SOLUTION: The rubber composition for tire tread comprises 100 pts.wt. rubber component comprising >=80 wt.% at least one kind of a natural rubber, a synthetic polyisoprene rubber and a polybutadiene rubber and 0.05-0.21 pts.wt. sulfur and, in addition, an organic peroxide in an amount so that its active oxygen content (Y) comes to not less than 8 wt.% of the compounding amount (X) of the sulfur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐摩耗性を維持しな
がら、タイヤの走行初期時のグリップ性を改善し走行距
離に伴うグリップ性の低下を軽減した高性能のタイヤ用
ゴム組成物、特に氷結路面および積雪路面の走行に適し
たスタッドレスタイヤ用ゴム組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rubber composition for a high-performance tire, in which the grip performance at the beginning of running of the tire is improved while the wear resistance is maintained, and the decrease in grip performance with the running distance is reduced. The present invention relates to a rubber composition for a studless tire suitable for running on an icy road surface and a snowy road surface.

【0002】[0002]

【従来の技術】従来、高性能タイヤのトレッドゴム組成
物において、高いグリップ性を得るためにスチレン含量
の多いスチレン−ブタジエンゴムを用いたり、微粒子の
カーボンと軟化剤を多量に配合し、硬度の低いゴム組成
物を調製することにより所定温度におけるヒステリシス
ロスを高めることが試みられている。かかるゴム組成物
ではタイヤの高速条件下で長距離走行することに伴い内
部発熱が生じグリップ性が走行距離とともに低下する傾
向にある。これは熱によってゴム組成物の反応が進みゴ
ム劣化が生ずることによる。そこでグリップ性を長期間
にわたって一定レベルに維持するにはゴム組成物の熱安
定性を高める必要があるが、かかる熱安定性は加硫ゴム
の架橋形態によって影響される。
2. Description of the Related Art Hitherto, in a tread rubber composition for a high performance tire, a styrene-butadiene rubber having a high styrene content has been used in order to obtain a high grip property, or a large amount of fine carbon and a softener have been blended to obtain a high hardness. It has been attempted to increase the hysteresis loss at a predetermined temperature by preparing a low rubber composition. In such a rubber composition, when the tire travels over a long distance under high-speed conditions, internal heat is generated, and the grip properties tend to decrease with the traveling distance. This is because the reaction of the rubber composition proceeds due to the heat, and the rubber deteriorates. In order to maintain the grip at a constant level over a long period of time, it is necessary to increase the thermal stability of the rubber composition. Such thermal stability is affected by the crosslinked form of the vulcanized rubber.

【0003】最も一般的な硫黄と加硫促進剤とから構成
される硫黄加硫系による加硫ゴム組成物は、一般にポリ
スルフィド結合を主体とするため、耐摩耗性に優れる反
面、熱安定性に劣るという問題がある。すなわちポリス
ルフィド結合の架橋形態はタイヤ走行時の内部発熱によ
り、モノスルフィドの架橋形態に変化することからグリ
ップ性の低下を招来する。
[0003] The most common vulcanized rubber composition based on a sulfur vulcanization system composed of sulfur and a vulcanization accelerator generally has a polysulfide bond as a main component, and therefore has excellent abrasion resistance but low thermal stability. There is a problem of inferiority. That is, the cross-linked form of the polysulfide bond changes to the cross-linked form of monosulfide due to internal heat generation during running of the tire, so that the grip property is lowered.

【0004】一方、硫黄加硫系のゴム組成物の熱安定性
を改良する目的で、EV加硫系が古くから知られてい
る。EV加硫系は、加硫剤である硫黄の配合量をできる
だけ少なくし、単位架橋当りの硫黄の数をできるだけ少
なくする加硫方法であるが、通常の硫黄加硫に比べて、
摩耗抵抗が小さく、疲労寿命が短く、金属等との接着性
に劣る。
On the other hand, EV vulcanization systems have long been known for the purpose of improving the thermal stability of sulfur vulcanization rubber compositions. The EV vulcanization system is a vulcanization method that minimizes the amount of sulfur as a vulcanizing agent and reduces the number of sulfur per unit crosslink as much as possible.
Low wear resistance, short fatigue life, poor adhesion to metals and the like.

【0005】一方硫黄を用いない有機過酸化物は熱に強
い炭素と炭素の結合による架橋を形成し走行距離に伴う
ゴム組成物の架橋構造の変化が少ないことからゴム物性
の劣化たとえばグリップ性の低下を軽減できる。ただし
架橋構造が強固になりゴム分子内部の自由度が拘束され
るため、加硫ゴム組成物自体の損失正接(tanδ)が
小さくなり、走行初期におけるグリップ性は低下するこ
とになる。
On the other hand, organic peroxides that do not use sulfur form cross-links due to heat-resistant carbon-carbon bonds, and the change in the cross-linking structure of the rubber composition with the running distance is small, so that the deterioration of rubber physical properties such as grip properties Reduction can be reduced. However, since the crosslinked structure is strengthened and the degree of freedom inside the rubber molecule is restricted, the loss tangent (tan δ) of the vulcanized rubber composition itself is reduced, and the grip at the beginning of running is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は硫黄加硫系に
おける優れた耐摩耗性と、有機過酸化物加硫系における
優れた熱安定性を有し、さらに走行距離に伴う性能低
下、特にグリップ性の低下を軽減したタイヤ用ゴム組成
物、特に氷結路面、積雪路面の走行に適したスタッドレ
スタイヤ用トレッドゴム組成物を提供する。
SUMMARY OF THE INVENTION The present invention has excellent abrasion resistance in a sulfur vulcanization system and excellent thermal stability in an organic peroxide vulcanization system, and further has a performance decrease with mileage. Provided is a rubber composition for a tire, which has a reduced grip property, particularly a tread rubber composition for a studless tire suitable for running on an icy road surface or a snowy road surface.

【0007】[0007]

【課題を解決するための手段】本発明は天然ゴム、合成
ポリイソプレンゴムまたはポリブタジエンゴムの少なく
とも1種を80重量%以上含むゴム成分100重量部に
対して、硫黄を0.05〜0.21重量部配合するとと
もに、有機過酸化物をその活性酸素量(Y)が、前記硫
黄の配合量(X)の8重量%以上となるように配合した
ことを特徴とするタイヤ用トレッドゴム組成物である。
According to the present invention, 0.05 to 0.21 sulfur is added to 100 parts by weight of a rubber component containing at least one of natural rubber, synthetic polyisoprene rubber and polybutadiene rubber in an amount of 80% by weight or more. A tread rubber composition for a tire, wherein the organic peroxide is compounded so that the amount of active oxygen (Y) is at least 8% by weight of the compounding amount (X) of the sulfur. It is.

【0008】そして前記活性酸素量(Y)と、前記硫黄
の配合量(X)が次の(1)式を満たすことことが好ま
しい。
It is preferable that the active oxygen content (Y) and the sulfur content (X) satisfy the following formula (1).

【0009】Y≧−85X+25 (1) さらにゴム成分100重量部に対してアロマチックオイ
ルを5〜20重量部と、軟化点が60℃以上の粘着性樹
脂を4〜15重量部配合することが好ましい。
Y ≧ −85X + 25 (1) Further, 5 to 20 parts by weight of an aromatic oil and 4 to 15 parts by weight of an adhesive resin having a softening point of 60 ° C. or more are mixed with 100 parts by weight of the rubber component. preferable.

【0010】本発明で用いられるゴム成分は天然ゴム、
合成ポリイソプレンゴムまたはポリブタジエンゴムの少
なくとも1種を80重量%以上含んでいる。たとえば上
記ゴム成分を単独で使用するほか天然ゴムとポリブタジ
エンゴムの混合、合成ポリイソプレンとポリブタジエン
の混合が使用できる。そしてその他のゴム成分として乳
化重合スチレン−ブタジエンゴム、溶液重合スチレン−
ブタジエンゴム、EPDM、ブチルゴム等タイヤに一般
に採用されているものを20重量%未満の範囲で混合す
ることができる。
The rubber component used in the present invention is natural rubber,
It contains at least one kind of synthetic polyisoprene rubber or polybutadiene rubber by 80% by weight or more. For example, a mixture of natural rubber and polybutadiene rubber, and a mixture of synthetic polyisoprene and polybutadiene can be used in addition to using the above rubber component alone. Emulsion-polymerized styrene-butadiene rubber, solution-polymerized styrene-
Those generally used for tires, such as butadiene rubber, EPDM, and butyl rubber, can be mixed in a range of less than 20% by weight.

【0011】本発明のゴム組成物には加硫剤として硫黄
加硫系と有機過酸化物による架橋系が併用される。硫黄
加硫系とは硫黄と加硫促進剤との組合せをいう。硫黄の
配合量は、ゴム成分100重量部に対して0.05〜
0.21重量部である。0.05重量部未満では硫黄に
よる加硫密度が小さくなり、硫黄架橋による優れた特性
であるゴム組成物の引張特性、耐摩耗性が十分でなく一
方、0.21重量部を超えると硫黄架橋に起因する熱安
定性が低下し、タイヤ走行距離に伴う性能の劣化を招来
する。
In the rubber composition of the present invention, a sulfur vulcanizing system and a crosslinking system with an organic peroxide are used in combination as a vulcanizing agent. The sulfur vulcanization system refers to a combination of sulfur and a vulcanization accelerator. The amount of sulfur is 0.05 to 100 parts by weight of the rubber component.
0.21 parts by weight. If the amount is less than 0.05 part by weight, the vulcanization density due to sulfur becomes small, and the tensile properties and abrasion resistance of the rubber composition, which are excellent properties due to sulfur crosslinking, are not sufficient. , The thermal stability is reduced, and the performance is deteriorated with the tire running distance.

【0012】加硫促進剤としては、一般の加硫促進剤を
用いることができ、たとえばメルカプトベンゾチアゾー
ル、ジベンゾチアジルジスルフィド、N−シクロヘキシ
ルベンゾチアジルスルフェンアミド、N−第3ブチル−
2−ベンゾチアゾリルスルフェンアミドを使用し得る。
加硫促進剤の配合量は、一般にゴム成分100重量部当
り0.1〜2.0重量部である。
As the vulcanization accelerator, general vulcanization accelerators can be used, for example, mercaptobenzothiazole, dibenzothiazyldisulfide, N-cyclohexylbenzothiazylsulfenamide, N-tert-butyl-
2-benzothiazolylsulfenamide may be used.
The compounding amount of the vulcanization accelerator is generally 0.1 to 2.0 parts by weight per 100 parts by weight of the rubber component.

【0013】本発明に用いられる有機過酸化物は通常の
ゴム加硫に使用されるもので、たとえばジクミルペルオ
キシド、2,2−ビス(第3ブチルペルオキシ)オクタ
ン、2,5−ジメチル−2,5−ジ(第3ブチルペルオ
キシ)ヘキサン、α,α′−ビス(第3ブチルペルオキ
シ)ジイソプロピルベンゼン、1,3−ビス(第3ブチ
ルペルオキシイソプロピル)ベンゼン等がある。
The organic peroxides used in the present invention are those used for ordinary rubber vulcanization, such as dicumyl peroxide, 2,2-bis (tert-butylperoxy) octane, 2,5-dimethyl-2. , 5-di (tert-butylperoxy) hexane, α, α'-bis (tert-butylperoxy) diisopropylbenzene, 1,3-bis (tert-butylperoxyisopropyl) benzene and the like.

【0014】有機過酸化物の配合量は、その活性酸素量
(Y)が前記硫黄の配合量(X)に対して8重量%以上
になるように配合される。活性酸素とは前記有機過酸化
物から生成される遊離ラジカルをいう。活性酸素量が硫
黄の配合量(X)に対して、8重量%未満では遊離ラジ
カルによるゴム分子間の架橋を十分な密度で形成するこ
とができない。
The amount of the organic peroxide is such that the amount of active oxygen (Y) is at least 8% by weight based on the amount of sulfur (X). Active oxygen refers to free radicals generated from the organic peroxide. If the amount of active oxygen is less than 8% by weight with respect to the amount of sulfur (X), crosslinking between rubber molecules by free radicals cannot be formed at a sufficient density.

【0015】ここで理論活性酸素割合(Aw)は有機過
酸化物中の活性酸素の原子量(N)と活性酸素の原子量
(16)の積を有機過酸化物の分子量(W)で除した値
で表わされる。そして配合される活性酸素量(Y)はそ
の値とジエン系ゴム100重量部に対する有機過酸化物
の配合量(P)の積として定義される。すなわち、 Aw=(16N/W) Y=Aw×P である。
The theoretical active oxygen ratio (Aw) is a value obtained by dividing the product of the atomic weight (N) of active oxygen in the organic peroxide and the atomic weight (16) of active oxygen by the molecular weight (W) of the organic peroxide. Is represented by The amount of active oxygen (Y) to be blended is defined as the product of the value and the blended amount of organic peroxide (P) with respect to 100 parts by weight of the diene rubber. That is, Aw = (16 N / W) Y = Aw × P.

【0016】次に本発明は好ましくは活性酸素量(Y)
と硫黄の配合量(X)が次の関係を満たす。
Next, the present invention preferably comprises an active oxygen content (Y).
And the blending amount (X) of sulfur satisfy the following relationship.

【0017】Y≧−85X+25 活性酸素量(Y)と硫黄の配合量(X)の関係を図1に
示す。活性酸素量(Y)が8重量%以上の場合でも、Y
<−85X+25の領域では硫黄の配合量(X)が少な
いため、硫黄による架橋形態の密度が過酸化物による架
橋形態による密度よりも小さくなるため、ゴム組成物の
物性の総合的バランスの観点からは不利となる。
Y ≧ −85X + 25 FIG. 1 shows the relationship between the amount of active oxygen (Y) and the amount of sulfur (X). Even when the amount of active oxygen (Y) is 8% by weight or more, Y
In the range of <-85X + 25, the content of sulfur (X) is small, and the density of the crosslinked form by sulfur becomes smaller than the density of the crosslinked form by peroxide. From the viewpoint of the overall balance of the physical properties of the rubber composition. Is disadvantageous.

【0018】次に本発明では温度0℃におけるゴム組成
物のショアA硬度が55度以下となるように軟化剤がゴ
ム成分100重量部に対して5〜20重量部配合され
る。ここで軟化剤は石油系軟化剤、たとえばプロセス
油、エクステンダー油、パラフィン類、流動パラフィ
ン、ワセリンまたは石油樹脂、コールタール系軟化剤、
たとえばコールタール、脂肪油系軟化剤、たとえば脂肪
酸、脂肪酸塩、脂肪油あるいはロウ類、さらには合成樹
脂軟化剤および液状ゴム等を使用することができる。
Next, in the present invention, 5 to 20 parts by weight of a softening agent is added to 100 parts by weight of the rubber component so that the Shore A hardness of the rubber composition at a temperature of 0 ° C. becomes 55 degrees or less. Here, the softener is a petroleum softener, for example, process oil, extender oil, paraffin, liquid paraffin, petrolatum or petroleum resin, coal tar softener,
For example, coal tar, fatty oil-based softeners, for example, fatty acids, fatty acid salts, fatty oils or waxes, as well as synthetic resin softeners and liquid rubbers can be used.

【0019】前記軟化剤が5重量部未満の場合、ゴム組
成物の硬度を下げることができない。一方20重量部を
超える場合、耐摩耗性、引張特性が低下し好ましくな
い。
When the amount of the softener is less than 5 parts by weight, the hardness of the rubber composition cannot be reduced. On the other hand, if it exceeds 20 parts by weight, the abrasion resistance and tensile properties are undesirably reduced.

【0020】次に本発明では前記軟化剤に軟化点が60
℃以上の粘着性樹脂を併用することが望ましい。ここで
粘着性樹脂とは粘着付与剤として用いられるもので、た
とえばクマロン・インデン樹脂、テルペン樹脂あるいは
テルペン・フェノール樹脂等のテルペン系樹脂、ロジン
誘導体、水素添加ロジン誘導体、アルキルフェノール系
樹脂、または石油樹脂が使用できる。
Next, in the present invention, the softener has a softening point of 60.
It is desirable to use an adhesive resin having a temperature of at least ℃. Here, the adhesive resin is used as a tackifier, for example, a terpene resin such as coumarone-indene resin, a terpene resin or a terpene-phenol resin, a rosin derivative, a hydrogenated rosin derivative, an alkylphenol-based resin, or a petroleum resin. Can be used.

【0021】そして軟化点が60℃以上の粘着性樹脂は
具体的に次の商品が市販されている。クマロン・インデ
ン樹脂として日鉄化学(株)のクマロン樹脂NG4(軟
化点81〜100℃)、神戸油化学工業(株)のプロセ
スレジンAC5(軟化点75℃)がある。テルペン・フ
ェノール樹脂として、日立化成工業(株)のヒタノール
1501(軟化点80〜100℃)、荒川林産(株)の
タマノル510(軟化点75〜95℃)、住友化学工業
(株)のタッキーロール101(軟化点75〜95
℃)、タッキーロール160(軟化点85〜110℃)
およびタッキーロールEP30(軟化点90〜110
℃)、住友デュレズ(株)のスミライトレジンPR19
900がある。石油系炭化水素として荒川林産(株)の
アルコンP90(軟化点90℃)、エステルガムH(軟
化点68℃)、三井石油化学(株)のペトロレジン80
(軟化点80℃)、ハイレッツG100X(軟化点10
0℃)、丸善石油(株)のマルカレッツ(軟化点約10
2℃)がある。またロジン誘導体として、三菱瓦斯化学
(株)のニカノールA70(軟化点70〜90℃)があ
る。
The following products are commercially available as the tacky resin having a softening point of 60 ° C. or higher. Examples of the coumarone-indene resin include Coumarone resin NG4 (softening point: 81 to 100 ° C.) manufactured by Nippon Steel Chemical Co., Ltd., and Process Resin AC5 (softening point: 75 ° C.) manufactured by Kobe Oil Chemical Industry Co., Ltd. As terpene phenolic resins, Hitachil Chemical Co., Ltd., Hitachil 1501 (softening point 80-100 ° C), Arakawa Forestry Co., Ltd. Tamanol 510 (softening point 75-95 ° C), Sumitomo Chemical Co., Ltd. Tucky Roll 101 (softening point 75-95
℃), tacky roll 160 (softening point 85-110 ℃)
And tacky roll EP30 (softening point 90-110)
C), Sumitomo Durez Co., Ltd. Sumilite Resin PR19
There are 900. Alcon P90 (softening point 90 ° C) and Ester Gum H (softening point 68 ° C) from Arakawa Hayashi Co., Ltd., Petroresin 80 from Mitsui Petrochemical Co., Ltd.
(Softening point 80 ° C), Heylets G100X (softening point 10
0 ° C), Maruzetsu of Maruzen Oil Co., Ltd. (softening point approx.
2 ° C). As a rosin derivative, there is Nicanol A70 (softening point: 70 to 90 ° C.) of Mitsubishi Gas Chemical Company, Ltd.

【0022】軟化点が60℃以上の粘着性樹脂を配合す
ることにより、ゴム組成物の引張強度および耐摩耗性等
の基本特性を損なうことなく柔軟性を付与し、氷結路面
および積雪路面でのグリップ性を改善することができ
る。かかる観点から粘着性樹脂の軟化点は80℃〜11
0℃の範囲がより好ましい。
By blending an adhesive resin having a softening point of 60 ° C. or higher, flexibility is imparted without impairing basic properties such as tensile strength and abrasion resistance of the rubber composition, and the rubber composition can be used on iced and snow-covered road surfaces. Grip properties can be improved. From such a viewpoint, the softening point of the adhesive resin is 80 ° C to 11 ° C.
A range of 0 ° C. is more preferred.

【0023】本発明のゴム組成物にはさらに必要に応じ
て、カーボンブラック、シリカ等の充填剤、添加剤、老
化防止剤等が適宜配合される。本発明のタイヤ用ゴム組
成物は一般のタイヤに用いることが可能であるが、特に
スタッドレスタイヤ用トレッドに好適に使用される。
The rubber composition of the present invention may further contain, if necessary, fillers such as carbon black and silica, additives, antioxidants and the like. The rubber composition for a tire of the present invention can be used for general tires, and is particularly suitably used for treads for studless tires.

【0024】[0024]

【実施例】以下、本発明を実施例に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0025】表1に示す配合組成を有するゴム組成物を
調製し、これをトレッドゴムに使用してタイヤサイズT
L195/65R15の乗用車タイヤを製造した。その
評価結果を表2に示す。なお表2の配合剤の内容は次の
とおりである。
A rubber composition having the compounding composition shown in Table 1 was prepared, and this was used for a tread rubber to obtain a tire size T.
An L195 / 65R15 passenger car tire was manufactured. Table 2 shows the evaluation results. The contents of the ingredients in Table 2 are as follows.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】注1) BRはJSR社の商品名BR15
を用いた。NR/BRの混合比は50/50である。
Note 1) BR is trade name BR15 of JSR Corporation.
Was used. The mixing ratio of NR / BR is 50/50.

【0029】注2) SBR:溶液重合スチレン−ブタ
ジエンゴムでスチレン含量が23.5重量%である。
Note 2) SBR: solution-polymerized styrene-butadiene rubber having a styrene content of 23.5% by weight.

【0030】注3) マルカレッツ(軟化点102℃)
(丸善石油化学(株)) 注4) アロマックスNo5(富士興産(株)) 注5) パーブチルP(日本油脂(株)):パーオキサ
イド含有量95%、理論活性酸素割合0.0897 加硫ゴム組成物およびタイヤの物性評価は次の方法で行
なった。
Note 3) Marcarez (softening point 102 ° C)
(Maruzen Petrochemical Co., Ltd.) Note 4) Aromax No. 5 (Fujikosan Co., Ltd.) Note 5) Perbutyl P (Nippon Oil & Fats Co., Ltd.): 95% peroxide content, 0.0897 theoretical active oxygen ratio vulcanization The physical properties of the rubber composition and the tire were evaluated by the following methods.

【0031】(1) ゴム硬度(ショアA硬度) タイヤ新品時のタイヤを温度0℃で測定したゴム硬度
を、初期ゴム硬度とし、タイヤをオーブン中で温度70
℃で7日間熱老化させた後に放冷し、温度0℃で測定し
たゴム硬度を熱劣化後のゴム硬度として評価した。そし
て老化前後のゴム硬度の差をもってゴム劣化の指標とし
た。
(1) Rubber Hardness (Shore A Hardness) The rubber hardness of a new tire measured at a temperature of 0 ° C. is defined as the initial rubber hardness.
After heat aging at 7 ° C. for 7 days, it was allowed to cool, and the rubber hardness measured at 0 ° C. was evaluated as the rubber hardness after thermal deterioration. The difference in rubber hardness before and after aging was used as an index of rubber deterioration.

【0032】測定条件はJISK6257に準拠した。 (2) 耐摩耗性 ピコ摩耗試験にて評価し、比較例1の値を100としそ
の相対値を指数表示した。値が大きいほど良好であるこ
とを示す。
The measurement conditions were based on JIS K6257. (2) Wear Resistance Evaluated by a pico abrasion test, the value of Comparative Example 1 was set to 100, and the relative value was indicated as an index. The higher the value, the better.

【0033】測定条件はJISK6264に準拠した。 (3) 氷・雪上グリップ性能 テストコースの氷結、積雪路面で急ブレーキをかけて停
止するまでの距離を測定した。比較例1の初期氷・雪上
グリップ性能の数値を100として指数表示をした。値
が大きいほどグリップ性に優れていることを示す。ここ
で新品時の数値を初期氷・雪上グリップ性能とし、一方
タイヤをオーブン中で70℃で7日間熱老化させた後の
数値を熱老化後氷・雪上グリップ性能とした。
The measurement conditions were based on JIS K6264. (3) Grip performance on ice and snow We measured the distance to the ice on the test course and the sudden braking on the snowy road surface to stop. The numerical value of the initial ice / snow grip performance of Comparative Example 1 was expressed as an index with 100 being set. The larger the value, the better the grip. Here, the value at the time of a new article was defined as the initial grip performance on ice and snow, and the value after the tire was thermally aged at 70 ° C. for 7 days in an oven was defined as the grip performance on ice and snow after thermal aging.

【0034】実施例1、2は熱老化後においても新品時
とゴム硬度の変化が少なく、一方氷・雪上グリップ性は
ほぼ一定である。さらに耐摩耗性は比較例1とほぼ同レ
ベルである。
In Examples 1 and 2, even after heat aging, the change in rubber hardness is smaller than that of a new rubber, while the grip on ice and snow is almost constant. Further, the abrasion resistance is almost the same level as Comparative Example 1.

【0035】実施例3は粘着性樹脂の配合量が少なく、
アロマチックオイルの配合量が相対的に多いためアロマ
チックオイルの移行に伴う耐熱老化性が実施例1、2よ
りも若干劣るが耐摩耗性等を総合的に評価すれば満足で
きるものである。
In Example 3, the amount of the adhesive resin was small,
Since the blending amount of the aromatic oil is relatively large, the heat aging resistance due to the migration of the aromatic oil is slightly inferior to those of Examples 1 and 2, but it can be satisfied by comprehensively evaluating the abrasion resistance and the like.

【0036】比較例2はスチレン−ブタジエンゴムの配
合量が30重量部と多いため温度0℃における初期のゴ
ム硬度が高くなり、氷・雪上グリップ性能が劣る。
In Comparative Example 2, since the amount of the styrene-butadiene rubber was as large as 30 parts by weight, the initial rubber hardness at a temperature of 0 ° C. was high, and the grip performance on ice and snow was inferior.

【0037】比較例3は硫黄の配合量が0.4重量部と
多いため、熱老化後の硬度変化が大きくなっている。
In Comparative Example 3, since the amount of sulfur was as large as 0.4 part by weight, the change in hardness after heat aging was large.

【0038】比較例4は有機過酸化物の配合量が少なす
ぎるため活性酸素量が不十分であり、ゴムの強度が低く
耐摩耗性が劣る。
In Comparative Example 4, since the amount of the organic peroxide was too small, the amount of active oxygen was insufficient, and the rubber had low strength and poor abrasion resistance.

【0039】今回開示された実施例はすべての点で例示
であって制限的なものではないと考えられるべきであ
る。本発明の範囲は上記した説明ではなくて特許請求の
範囲によって示され、特許請求の範囲と均等の意味およ
び範囲内でのすべての変更が含まれることが意図され
る。
The embodiment disclosed this time is to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

【0040】[0040]

【発明の効果】上述のごとく本発明は天然ゴム、IRあ
るいはポリブタジエンゴムを主成分とするゴムに硫黄、
有機過酸化物を所定範囲で配合するとともに、さらにア
ロマチックオイルおよび軟化点が60℃以上の粘着性樹
脂を所定量配合したので、耐摩耗性を損なうことなく耐
熱老化性に優れ、タイヤ新品時とともにタイヤ長期間走
行後においても氷・雪上グリップ性に優れたタイヤ、特
にスタッドレスタイヤが得られる。
As described above, the present invention provides a rubber containing natural rubber, IR or polybutadiene rubber as a main component,
Since the organic peroxide is compounded in a predetermined range, and the aromatic oil and the adhesive resin having a softening point of 60 ° C. or more are compounded in a predetermined amount, the tire has excellent heat aging resistance without deteriorating abrasion resistance. In addition, tires having excellent grip on ice and snow even after long running of the tires, particularly studless tires, can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 硫黄の配合量と過酸化物の活性酸素量の関係
を示す図である。
FIG. 1 is a graph showing the relationship between the amount of sulfur and the amount of active oxygen in a peroxide.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) //(C08L 7/00 (C08L 7/00 91:00) 91:00) (C08L 7/00 (C08L 7/00 101:00) 101:00) Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) // (C08L 7/00 (C08L 7/00 91:00) 91:00) (C08L 7/00 (C08L 7/00) 101: 00) 101: 00)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 天然ゴム、合成ポリイソプレンゴム、ま
たはポリブタジエンゴムの少なくとも1種を80重量%
以上含むゴム成分100重量部に対して、硫黄を0.0
5〜0.21重量部配合するとともに、有機過酸化物を
その活性酸素量(Y)が、前記硫黄の配合量(X)の8
重量%以上となるように配合したことを特徴とするタイ
ヤ用トレッドゴム組成物。
1. The method of claim 1, wherein at least one of natural rubber, synthetic polyisoprene rubber and polybutadiene rubber is 80% by weight.
With respect to 100 parts by weight of the rubber component containing the above, 0.0
5 to 0.21 parts by weight of the organic peroxide and the active oxygen content (Y) of the organic peroxide is 8% of the sulfur content (X).
A tread rubber composition for a tire, which is blended so as to be at least 10% by weight.
【請求項2】 前記活性酸素量(Y)と、前記硫黄の配
合量(X)が次の(1)式を満たすことを特徴とする請
求項1記載のタイヤ用トレッドゴム組成物。 Y≧−85X+25 (1)
2. The tread rubber composition for a tire according to claim 1, wherein the active oxygen content (Y) and the sulfur content (X) satisfy the following formula (1). Y ≧ −85X + 25 (1)
【請求項3】 ゴム成分100重量部に対してアロマチ
ックオイルを5〜20重量部と、軟化点が60℃以上の
粘着性樹脂を4〜15重量部配合したことを特徴とする
請求項1または2に記載のタイヤ用トレッドゴム組成
物。
3. The rubber composition according to claim 1, wherein 5 to 20 parts by weight of an aromatic oil and 4 to 15 parts by weight of an adhesive resin having a softening point of 60 ° C. or more are mixed with 100 parts by weight of the rubber component. Or the tread rubber composition for a tire according to 2.
JP2000106481A 2000-04-07 2000-04-07 Rubber composition for tire tread Withdrawn JP2001288296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106481A JP2001288296A (en) 2000-04-07 2000-04-07 Rubber composition for tire tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106481A JP2001288296A (en) 2000-04-07 2000-04-07 Rubber composition for tire tread

Publications (1)

Publication Number Publication Date
JP2001288296A true JP2001288296A (en) 2001-10-16

Family

ID=18619641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106481A Withdrawn JP2001288296A (en) 2000-04-07 2000-04-07 Rubber composition for tire tread

Country Status (1)

Country Link
JP (1) JP2001288296A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100033A (en) * 2008-09-26 2010-05-06 Sumitomo Rubber Ind Ltd Method of manufacturing studless tire
JP2010159375A (en) * 2009-01-09 2010-07-22 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire using the same
JP2010254740A (en) * 2009-04-21 2010-11-11 Bridgestone Corp Rubber composition and pneumatic tire using the same
KR101397472B1 (en) * 2011-12-27 2014-05-21 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
JP2014111787A (en) * 2014-02-24 2014-06-19 Bridgestone Corp Rubber composition and pneumatic tire using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010100033A (en) * 2008-09-26 2010-05-06 Sumitomo Rubber Ind Ltd Method of manufacturing studless tire
DE102009039636A1 (en) 2008-09-26 2010-05-12 Sumitomo Rubber Industries, Ltd., Kobe-shi Method for producing a studless tire
JP2010159375A (en) * 2009-01-09 2010-07-22 Sumitomo Rubber Ind Ltd Rubber composition and pneumatic tire using the same
JP2010254740A (en) * 2009-04-21 2010-11-11 Bridgestone Corp Rubber composition and pneumatic tire using the same
KR101397472B1 (en) * 2011-12-27 2014-05-21 한국타이어 주식회사 Rubber composition for tire tread and tire manufactured by using the same
JP2014111787A (en) * 2014-02-24 2014-06-19 Bridgestone Corp Rubber composition and pneumatic tire using the same

Similar Documents

Publication Publication Date Title
RU2648490C1 (en) Tire, having a protector for operation at low temperature and clutch with wet road
JP5559234B2 (en) Rubber composition for tire and pneumatic tire
JP5650690B2 (en) Rubber composition for tread and pneumatic tire
JP2017197715A (en) Tire having tread for wet traction with low temperature performance
WO2014178336A1 (en) Pneumatic tire
JP5363018B2 (en) Rubber composition and studless tire made from the rubber composition
JPH10101848A (en) Tire having tread of elastomer composition
JP2016504466A (en) Tire tread containing incompatible rubber
EP3323632B1 (en) Rubber composition and tire with tread for combination of low temperature performance and wet traction
EP3467020B1 (en) Rubber composition and tire
JP2007056137A (en) Rubber composition for tread
EP3467019A1 (en) Rubber composition, method for producing rubber composition, and tire
JP5116247B2 (en) Rubber composition for tread and tire using the same
JPH06240052A (en) Tread rubber composition
CA1290084C (en) Rubber composition for tire tread
JPWO2016111331A1 (en) Rubber composition, tread member, pneumatic tire and method for producing rubber composition
JP2001288296A (en) Rubber composition for tire tread
JP2004277506A (en) Rubber composition for tire and pneumatic tire
JP2018095703A (en) Rubber composition for tire tread, and pneumatic tire
JPS58199203A (en) Pneumatic tyre
RU2495888C2 (en) Rubber mixture
JP2707278B2 (en) Pneumatic tire
JP2005225985A (en) Chafer rubber composition and pneumatic tire using the same
JP2001240704A (en) Rubber composition for tire
JP2006241338A (en) Rubber composition for tread of heavy-load tire for ice snow road and heavy-load tire for ice snow road using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703