JP5116247B2 - Rubber composition for tread and tire using the same - Google Patents

Rubber composition for tread and tire using the same Download PDF

Info

Publication number
JP5116247B2
JP5116247B2 JP2006090808A JP2006090808A JP5116247B2 JP 5116247 B2 JP5116247 B2 JP 5116247B2 JP 2006090808 A JP2006090808 A JP 2006090808A JP 2006090808 A JP2006090808 A JP 2006090808A JP 5116247 B2 JP5116247 B2 JP 5116247B2
Authority
JP
Japan
Prior art keywords
resin
softening point
temperature
softening
rubber composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006090808A
Other languages
Japanese (ja)
Other versions
JP2007262292A (en
Inventor
英司 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006090808A priority Critical patent/JP5116247B2/en
Publication of JP2007262292A publication Critical patent/JP2007262292A/en
Application granted granted Critical
Publication of JP5116247B2 publication Critical patent/JP5116247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Description

本発明は、トレッド用ゴム組成物及びこれを用いたタイヤに関し、さらに詳しくは、優れたグリップ性能を発揮するタイヤトレッド用ゴム組成物及びタイヤに関するものである。   The present invention relates to a rubber composition for a tread and a tire using the same, and more particularly to a rubber composition for a tire tread and a tire that exhibit excellent grip performance.

近年、自動車の性能向上、道路の舗装化、及び高速道路網の発達に伴い、高運動性能を備えた空気入りタイヤの要求が強まっている。この特性が高い程、より高速で正確かつ安全に走行することが可能となる。とりわけ、加速性能やブレーキ性能に代表されるグリップ性能は重要な要求特性である。   In recent years, with the improvement of automobile performance, road paving, and the development of expressway networks, there is an increasing demand for pneumatic tires with high movement performance. The higher this characteristic, the faster and more accurately and safely it is possible to travel. In particular, grip performance represented by acceleration performance and brake performance is an important required characteristic.

従来、タイヤに高いグリップ性能を付与するために、スチレン含有率の高いスチレン−ブタジエン共重合体ゴム(SBR)を含むゴム組成物をトレッドに用いて、ポリマー間のヒステリシスロスをグリップに活かす方法が採られていた。しかしながら、スチレン含有率の高いSBRはガラス転移温度が高いため、該SBRを含むゴム組成物をタイヤのトレッドに用いると、走行時のタイヤ温度の近傍でタイヤの諸物性の温度依存性が大きくなり、温度変化に対するタイヤの性能変化が大きくなるという問題があった。   Conventionally, in order to impart high grip performance to a tire, there is a method in which a rubber composition containing a styrene-butadiene copolymer rubber (SBR) having a high styrene content is used for a tread, and hysteresis loss between polymers is utilized in the grip. It was taken. However, since SBR with a high styrene content has a high glass transition temperature, when a rubber composition containing the SBR is used for a tire tread, the temperature dependence of various physical properties of the tire increases in the vicinity of the tire temperature during running. There has been a problem that the performance change of the tire with respect to the temperature change becomes large.

更に、樹脂を高充填したゴム組成物をトレッドに適用し、該樹脂のアドヒージョン効果をグリップに活かす方法、カーボンブラックを高充填したゴム組成物をトレッドに適用し、ゴム組成物のヒステリシスをグリップに活かす方法、粒子径の小さなカーボンブラックを配合したゴム組成物をトレッドに適用する方法等も採られてきた。   Furthermore, a rubber composition highly filled with resin is applied to the tread, and the adhesion effect of the resin is applied to the grip. A rubber composition highly filled with carbon black is applied to the tread, and the hysteresis of the rubber composition is applied to the grip. A method of making use of it, a method of applying a rubber composition containing carbon black having a small particle diameter to a tread, and the like have been adopted.

また、ゴム組成物中にカーボンブラックや軟化剤を高充填させる方法もあるが、粒径の小さなカーボンブラックを配合すると、ゴム組成物中でのカーボンブラックの分散性が低下するため、該ゴム組成物をタイヤのトレッドに用いた場合、タイヤの耐摩耗性が低下してしまい、要求レベルの高グリップ特性を得にくいという不都合があった。   In addition, there is a method in which carbon black and a softening agent are highly filled in the rubber composition. However, when carbon black having a small particle size is blended, the dispersibility of carbon black in the rubber composition is lowered. When an object is used for a tread of a tire, the wear resistance of the tire is lowered, and it is difficult to obtain a required level of high grip characteristics.

更に、トレッドゴム組成物にテルペン系樹脂を一定量配合することによりグリップ性に優れた性能が得られるトレッドゴム組成物を得ようとする方法(特許文献1参照)もある。しかしながら、これらの方法が知られていてもなお、樹脂を配合によりグリップ性能を向上させることに対する需要は依然として高い。   Furthermore, there is also a method (see Patent Document 1) for obtaining a tread rubber composition in which a performance excellent in grip properties is obtained by blending a certain amount of a terpene resin into the tread rubber composition. However, even though these methods are known, the demand for improving the grip performance by blending the resin is still high.

ところで、異なった軟化点を有する少なくとも3種の樹脂を含むゴムトレッドを有する空気入りタイヤにより、けん引力の高いトレッドを有するタイヤが提供されることが報告されている。すなわち、タイヤを静止状態から車の駆動速度まで走らせるにつれてトレッドの温度が上昇するが、軟化点が異なる複数の樹脂を配合し、各樹脂の軟化点特性を利用して広い温度領域においてけん引力が増加することが報告されている(特許文献2参照)。   By the way, it has been reported that a pneumatic tire having a rubber tread containing at least three kinds of resins having different softening points provides a tire having a tread having a high traction force. In other words, the tread temperature rises as the tire runs from the stationary state to the driving speed of the car, but a plurality of resins with different softening points are blended, and the traction force in a wide temperature range using the softening point characteristics of each resin Has been reported to increase (see Patent Document 2).

特開2004−18760号公報JP 2004-18760 A 特開2001−81243号公報JP 2001-81243 A

そこで本発明の課題は、上記従来技術の問題を解決し、タイヤのトレッドに用いた場合に優れたグリップ性能を発揮でき、特に低温領域及び高温領域のいずれにおいても、走行開始時とクルージング中のいずれにおいても、優れたグリップ性能を発揮できるトレッド用ゴム組成物を提供することにある。また、本発明の他の目的は、かかるトレッド用ゴム組成物を用い、グリップ性能に優れた空気入りタイヤを提供することにある。   Therefore, the problem of the present invention is to solve the above-mentioned problems of the prior art and to exhibit excellent grip performance when used in a tire tread, particularly at the start of running and during cruising in both the low temperature region and the high temperature region. In any case, it is to provide a rubber composition for a tread that can exhibit excellent grip performance. Another object of the present invention is to provide a pneumatic tire using such a tread rubber composition and having excellent grip performance.

本発明は、上記課題を達成するために、軟化点温度が異なる複数の樹脂を配合することにより広い温度領域に渡って優れたグリップ性能を有するトレッド用ゴム組成物を提供するものである。   In order to achieve the above object, the present invention provides a rubber composition for a tread having an excellent grip performance over a wide temperature range by blending a plurality of resins having different softening point temperatures.

つまり本発明は、ゴム成分に少なくとも2種類類以上の樹脂を配合してなるトレッド用
ゴム組成物であって、
該ゴム組成物における各樹脂の配合量の合計は、該ゴム成分100重量部に対して30〜90重量部であり、
該ゴム組成物に配合される該樹脂は、軟化点が120〜180℃の範囲内にある少なくとも1種類の高温軟化樹脂、および軟化点が80℃以上120℃未満である少なくとも1種類の低温軟化樹脂であって、
前記低温軟化樹脂はテルペンフェノール樹脂、ロジン変性石油樹脂、ジシクロペンタジエン樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、及びアルキルフェノールホルムアルデヒド樹脂からなる群から選択された少なくとも1種類であり、
前記高温軟化樹脂はテルペンフェノール樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、アルキルフェノールホルムアルデヒド樹脂、及びブチルフェノールアセチレン樹脂からなる群から選択された少なくとも1種類であり、
下記の式;
〔式1 〕
配合指数= Σ(各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度)/
Σ(各樹脂の配合重量部×該樹脂の軟化点温度)×100
で表される配合指数が40〜95%であることを特徴とするトレッド用ゴム組成物を提供するものである。
That is, the present invention is a rubber composition for a tread formed by blending at least two kinds of resins with a rubber component,
The total amount of each resin in the rubber composition is 30 to 90 parts by weight with respect to 100 parts by weight of the rubber component,
The resin blended in the rubber composition includes at least one high-temperature softening resin having a softening point in the range of 120 to 180 ° C, and at least one low-temperature softening having a softening point of 80 ° C or higher and lower than 120 ° C. A resin ,
The low temperature softening resin is selected from the group consisting of terpene phenol resin, rosin modified petroleum resin, dicyclopentadiene resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, and alkylphenol formaldehyde resin. At least one,
The high temperature softening resin is at least one selected from the group consisting of terpene phenol resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, alkylphenol formaldehyde resin, and butylphenol acetylene resin,
The following formula:
[Formula 1]
Compounding index = Σ (mixing part by weight of each high-temperature softening resin × softening point temperature of the high-temperature softening resin) /
Σ (weight part of each resin x softening point temperature of the resin) x 100
The rubber composition for a tread characterized by having a compounding index represented by the formula of 40 to 95% is provided.

本発明によれば、ゴム組成物に、軟化点が120〜180℃の範囲内にある特定の樹脂と、軟化点が80℃以上120℃未満である特定の樹脂を、一定の数式に従った重量部で配合することで、低温領域及び高温領域のいずれにおいても、走行開始時とクルージング中のいずれにおいても、タイヤに優れたグリップ性能を発現させることが可能なトレッド用ゴム組成物を提供することができる。また、該トレッド用ゴム組成物を用いた、幅広い温度領域で優れたグリップ性能を有する空気入りタイヤを提供することができる。 According to the present invention, a specific resin having a softening point in a range of 120 to 180 ° C. and a specific resin having a softening point of 80 ° C. or higher and lower than 120 ° C. are determined according to a certain mathematical formula. Provided is a rubber composition for a tread capable of exhibiting excellent grip performance in a tire both in a low temperature region and in a high temperature region, both at the start of running and during cruising, by blending in parts by weight. be able to. Moreover, the pneumatic tire which has the outstanding grip performance in the wide temperature range using this rubber composition for treads can be provided.

以下に本発明を詳細に説明する。本発明者らはゴム組成物に軟化点温度が異なる複数の樹脂を配合した際の、ゴム組成物に対して配合された樹脂の合計量と、樹脂の軟化点温度と樹脂を配合重量部がグリップ性能に及ぼす影響を検討した。その結果、複数の樹脂をゴムに配合する際に、軟化点が120〜180℃の範囲内にある特定の樹脂と軟化点が80℃以上120℃未満である特定の樹脂を、適切な配合比率(重量部)で配合することにより、グリップ性が優れたトレッドゴム組成物が得られることを見出して、本願発明に至った。 The present invention is described in detail below. When the present inventors compounded a plurality of resins having different softening point temperatures into the rubber composition, the total amount of the resin blended with respect to the rubber composition, the softening point temperature of the resin and the blending part by weight of the resin The effect on grip performance was investigated. Consequently, in formulating a plurality of resin in the rubber, a softening point of particular resin specific resin with a softening point of less than 80 ° C. or higher 120 ° C. which is within the range of 120 to 180 ° C., a suitable mixing ratio It was found that a tread rubber composition having excellent grip properties can be obtained by blending in (parts by weight), and the present invention has been achieved.

よって本発明は、ゴム成分に少なくとも2種類以上の樹脂を配合してなるトレッド用ゴム組成物であって、
該ゴム組成物における各樹脂の配合量の合計は、該ゴム成分100重量部に対して30〜90重量部であり、
該ゴム組成物に配合される該樹脂は、軟化点が120〜180℃の範囲内にある少なくとも1種類の高温軟化樹脂、および軟化点が80℃以上120℃未満である少なくとも1種類の低温軟化樹脂であって、
前記低温軟化樹脂はテルペンフェノール樹脂、ロジン変性石油樹脂、ジシクロペンタジエン樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、及びアルキルフェノールホルムアルデヒド樹脂からなる群から選択された少なくとも1種類であり、
前記高温軟化樹脂はテルペンフェノール樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、アルキルフェノールホルムアルデヒド樹脂、及びブチルフェノールアセチレン樹脂からなる群から選択された少なくとも1種類であり、
下記の式;
〔式2〕
配合指数= Σ(各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度)/
Σ(各樹脂の配合重量部×該樹脂の軟化点温度)×100
で表される配合指数が40〜95%であることを特徴とするトレッド用ゴム組成物を提供するものである。
Therefore, the present invention is a rubber composition for tread formed by blending at least two kinds of resins with a rubber component,
The total amount of each resin in the rubber composition is 30 to 90 parts by weight with respect to 100 parts by weight of the rubber component,
The resin blended in the rubber composition includes at least one high-temperature softening resin having a softening point in the range of 120 to 180 ° C, and at least one low-temperature softening having a softening point of 80 ° C or higher and lower than 120 ° C. A resin ,
The low temperature softening resin is selected from the group consisting of terpene phenol resin, rosin modified petroleum resin, dicyclopentadiene resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, and alkylphenol formaldehyde resin. At least one,
The high temperature softening resin is at least one selected from the group consisting of terpene phenol resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, alkylphenol formaldehyde resin, and butylphenol acetylene resin,
The following formula:
[Formula 2]
Compounding index = Σ (mixing part by weight of each high-temperature softening resin × softening point temperature of the high-temperature softening resin) /
Σ (weight part of each resin x softening point temperature of the resin) x 100
The rubber composition for a tread characterized by having a compounding index represented by the formula of 40 to 95% is provided.

本願明細書において高温軟化樹脂とは、軟化点が120〜180℃の範囲内にある樹脂を意味するものである。本発明において使用できる高温軟化樹脂として、テルペンフェノール樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、アルキルフェノールホルムアルデヒド樹脂、及びブチルフェノールアセチレン樹脂を挙げることができる。また使用する高温軟化樹脂は1種類であっても2種類以上であってもよい。 In the present specification, the high-temperature softening resin means a resin having a softening point in the range of 120 to 180 ° C. Examples of the high-temperature softening resin that can be used in the present invention include terpene phenol resins, aliphatic hydrocarbon resins, alicyclic hydrocarbon resins, aromatic hydrocarbon resins, alkylphenol formaldehyde resins, and butylphenol acetylene resins . Or high temperature softening resin used was may be two or more types be one kind.

本願明細書において低温軟化樹脂とは軟化点が80℃以上120℃未満である樹脂を意味するものである。本発明において使用できる低温軟化樹脂として、テルペンフェノール樹脂、ロジン変性石油樹脂、ジシクロペンタジエン樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、及びアルキルフェノールホルムアルデヒド樹脂を挙げることができる。また使用する低温軟化樹脂は1種類であっても2種類以上であってもよい。 In the present specification, the low-temperature softening resin means a resin having a softening point of 80 ° C. or higher and lower than 120 ° C. Examples of low-temperature softening resins that can be used in the present invention include terpene phenol resins, rosin-modified petroleum resins, dicyclopentadiene resins, aliphatic hydrocarbon resins, alicyclic hydrocarbon resins, aromatic hydrocarbon resins, and alkylphenol formaldehyde resins. it is possible. Or low-temperature softening resin used was may be two or more types be one kind.

なお樹脂の具体例としては、ロジン変性石油樹脂としては大社松製油のハイロジンS(軟化点105℃);芳香族炭化水素樹脂C9樹脂としては新日本石油化学のネオポリマーL90(軟化点95℃)、ネオポリマー120(軟化点120℃)、ネオポリマーE130(軟化点125℃)、ネオポリマー140(軟化点144℃)、ネオポリマー170S(軟化点160℃)、日石ネオレジンD-145(軟化点150℃);脂肪族炭化水素樹脂C5樹脂としてはトーネックスのESCOREZ1102(軟化点100℃)、三井化学のハイレッツT500X(軟化点100℃);アルキルフェノールホルムアルデヒド樹脂としてはスケネクタディのR7521P(軟化点90℃)、SP1068(軟化点90℃)、R7510PJ(軟化点100℃)、SMD31144(軟化点127℃)、R7572P(軟化点128℃)、R7578P(軟化点130℃)、日立化成のヒタノール1502P(軟化点94℃);ブチルフェノールアセチレン樹脂としてはBASFのKORESIN(軟化点143℃);ストラクトールのTS30(軟化点30℃)、TS50(軟化点50℃)、40MSF(軟化点102℃)、TH20(軟化点105℃)、TH110(軟化点105℃);変性フェノールホルムアルデヒド樹脂としては住友ベークライトのPR-51587(軟化点87℃)、PR-50235(軟化点121℃);ジシクロペンタジエン樹脂としてはトーネックスのECR-260(軟化点100℃)、ECR-213(軟化点102℃);脂環族系炭化水素樹脂としては日本ゼオンのクイントン1500(軟化点100℃)、クイントン1700(軟化点100℃)、クイントン1525L(軟化点125℃);テルペンフェノール樹脂としてはヤスハラケミカルのYSポリスターT80(軟化点80℃)、YS90L(軟化点90℃)、YSポリスターT115(軟化点115℃)、YSポリスターU115(軟化点115℃)、マイティエースG125(軟化点125℃)、YSポリスターN125(軟化点125℃)、マイティエースK125(軟化点125℃)、YSポリスターT145(軟化点145℃)、YSポリスターS145(軟化点145℃)、マイティエースG150(軟化点150℃)などを挙げることができる。   Specific examples of the resin include rosin-modified petroleum resin, Hyosin S from Taishamatsu Oil (softening point 105 ° C); and aromatic hydrocarbon resin C9 resin, Nippon Petrochemical's neopolymer L90 (softening point 95 ° C). , Neopolymer 120 (softening point 120 ° C), Neopolymer E130 (softening point 125 ° C), Neopolymer 140 (softening point 144 ° C), Neopolymer 170S (softening point 160 ° C), Nisseki Neoresin D-145 (softening point) 150 ° C); Tonex ESCOREZ1102 (softening point 100 ° C) for aliphatic hydrocarbon resin C5 resin, Hilettsu T500X (softening point 100 ° C) from Mitsui Chemicals; Schenectady R7521P (softening point 90 ° C) for alkylphenol formaldehyde resin, SP1068 (softening point 90 ° C), R7510PJ (softening point 100 ° C), SMD31144 (softening point 127 ° C), R7572P (softening point 128 ° C), R7578P (softening point 130 ° C), Hitachi Chemical's Hitanol 1502P (softening point 94 ° C) ); Butylphenol As acetylene resins, BASF's KORESIN (softening point 143 ° C); Stractol TS30 (softening point 30 ° C), TS50 (softening point 50 ° C), 40MSF (softening point 102 ° C), TH20 (softening point 105 ° C), TH110 (Softening point 105 ° C); Sumitomo Bakelite PR-51587 (softening point 87 ° C), PR-50235 (softening point 121 ° C) as modified phenol formaldehyde resins; Tonex ECR-260 (softening point) as dicyclopentadiene resins 100 ° C), ECR-213 (softening point 102 ° C); As alicyclic hydrocarbon resins, Nippon Zeon's Quinton 1500 (softening point 100 ° C), Quinton 1700 (softening point 100 ° C), Quinton 1525L (softening point 125) Terpene phenol resin: YS Polystar T80 (softening point 80 ° C), YS90L (softening point 90 ° C), YS Polystar T115 (softening point 115 ° C), YS Polystar U115 (softening point 115 ° C), Mighty Ace G125 (softening point 125 ° C), YS poly Star N125 (softening point 125 ° C), Mighty Ace K125 (softening point 125 ° C), YS Polystar T145 (softening point 145 ° C), YS Polystar S145 (softening point 145 ° C), Mighty Ace G150 (softening point 150 ° C), etc. Can be mentioned.

本願明細書において配合指数とは、各高温軟化樹脂の配合重量部と該高温軟化樹脂の軟化点温度を掛け算した値(上記数式において“各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度”で表す)の各々の値を全て足し算した総和(上記数式において”Σ(各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度)”で表す)の値を、低温軟化樹脂と高温軟化樹脂の両者を含めた各樹脂の配合重量部と該樹脂の軟化点温度を掛け算した値(上記数式において“各樹脂の配合重量部×該樹脂の軟化点温度”で表す)の各々の値を全て足し算した総和(上記数式において”Σ(各樹脂の配合重量部×該樹脂の軟化点温度)”で表す)の値で割り算したパーセンテージで示したものである。   In the present specification, the compounding index is a value obtained by multiplying the blending weight part of each high-temperature softening resin by the softening point temperature of the high-temperature softening resin (in the above formula, “the blending weight part of each high-temperature softening resin × softening of the high-temperature softening resin”). The sum of all values (represented by “point temperature”) (in the above formula, the value of “Σ (mixed weight part of each high-temperature softening resin × softening point temperature of the high-temperature softening resin)”) is the low-temperature softening. A value obtained by multiplying the blending weight part of each resin including both the resin and the high-temperature softening resin by the softening point temperature of the resin (expressed as “the blending weight part of each resin × the softening point temperature of the resin” in the above formula). The sum is obtained by adding up all the values (in the above formula, it is expressed as a percentage divided by the value of “Σ (mixed part by weight of each resin × softening point temperature of the resin)”).

なお本願明細書において重量部とは、ゴム組成物中に含まれるゴム成分の重量を100とした場合の、該組成物における各成分の重量部を意味するものである。   In the present specification, parts by weight mean parts by weight of each component in the composition when the weight of the rubber component contained in the rubber composition is 100.

本技術分野において、タイヤ用のゴム組成物に種々の樹脂を配合することが行なわれているが、配合する樹脂の軟化点は得られたゴム組成物の物性に影響する。即ち、軟化点の高い樹脂を配合すると、タイヤの温度が樹脂の軟化点前後になった時にヒステリシスロスが高くなり、これにより、トレッドに生じたエネルギーは熱に転換されてグリップカが生じやすくなる。この効果は樹脂の軟化点の温度が高いほど顕著で、120〜180℃、より好ましくは120〜150℃で効果が高い。   In this technical field, various resins are blended with a rubber composition for tires, and the softening point of the blended resin affects the physical properties of the obtained rubber composition. That is, when a resin having a high softening point is blended, the hysteresis loss increases when the temperature of the tire reaches around the softening point of the resin, whereby the energy generated in the tread is easily converted to heat, and grip grip is easily generated. This effect becomes more remarkable as the temperature of the softening point of the resin is higher, and the effect is higher at 120 to 180 ° C., more preferably 120 to 150 ° C.

またこの効果は軟化点が高温である樹脂の配合量が多いほど顕著であるが、軟化点が高温の樹脂のみを配合すると低温での硬度が高くなり、走行初期や環境温度が低い時のグリップ力が低下するので好ましくない。よって環境温度が低い場合においても高い場合においても、更に走行初期においてもクルージング時においても優れたグリップ力を達成するには、軟化点温度が120〜180℃の高温軟化樹脂と、軟化点温度が80℃以上120℃未満の低温軟化樹脂を適切な配合比率で配合する必要がある。 In addition, this effect becomes more noticeable as the amount of the resin having a high softening point increases. However, if only a resin having a high softening point is added, the hardness at low temperature increases, and the grip at the initial stage of driving or when the environmental temperature is low. This is not preferable because the power is reduced. Therefore, in order to achieve an excellent gripping force even when the environmental temperature is low or high, and at the beginning of driving and also during cruising, a high-temperature softening resin with a softening point temperature of 120 to 180 ° C. and a softening point temperature of It is necessary to mix a low-temperature softening resin having a temperature of 80 ° C. or higher and lower than 120 ° C. at an appropriate mixing ratio.

よって本発明者らは鋭意検討を行い、軟化点温度が120〜180℃の特定の樹脂の配合重量部が多くても、軟化点が80℃以上120℃未満の特定の樹脂を同時に配合することにより低温での硬化が抑制されることを見出し、本発明をするに至った。本発明の構成を採用することにより、低温でのグリップ力を犠牲にすることなく、全ての温度においてグリップ性を改善することができる。 Accordingly, the present inventors have conducted extensive studies, even softening point temperature often blended parts by weight of the specific resin of 120 to 180 ° C., the softening point at the same time blending a specific resin of less than 80 ° C. or higher 120 ° C. Thus, it was found that curing at a low temperature was suppressed, and the present invention was reached. By adopting the configuration of the present invention, the grip performance can be improved at all temperatures without sacrificing the grip force at a low temperature.

本発明者らは種々の検討を詳細に行なった結果、ゴム組成物に樹脂を配合した際にグリップ力へ及ぼされる効果は、“樹脂の配合重量部×該樹脂の軟化点温度”で示され、配合されるすべての樹脂から求めた“各樹脂の配合重量部×該樹脂の軟化点温度”の合計値に対する、軟化点が120℃以上の樹脂から求めた”各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度”の合計値の割合のパーセンテージ(配合指数)が、少なくとも40%以上となるように、各樹脂の軟化点温度と配合重量部を選択すると、グリップ力が向上することを見出した。   As a result of conducting various studies in detail, the present inventors have shown that the effect exerted on the gripping force when a resin is blended with a rubber composition is “weight of resin blended portion × softening point temperature of the resin”. , “Weight of each high-temperature softened resin obtained from a resin having a softening point of 120 ° C. or higher with respect to the total value of“ weight of each resin blended x softening point temperature of the resin ”obtained from all blended resins” × When the softening point temperature and blending weight part of each resin are selected so that the percentage of the total value of the softening point temperature of the high-temperature softening resin (blending index) is at least 40% or more, the gripping power is improved. I found out.

また本発明者らは、配合されるすべての樹脂から求めた“各樹脂の配合重量部×該樹脂の軟化点温度”の合計値に対する、軟化点が120℃以上の各樹脂から求めた“各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度”の合計値の割合のパーセンテージ(配合指数)が、多くとも95%以下となるように、配合する各樹脂の軟化点温度および各樹脂の配合重量部を選択すると、低温での硬化が抑制されることを見出した。なお配合指数が95%より大きいと、低温での硬度が高くなり、走行初期や環境温度が低い時のグリップ力が低下し、好ましくないことがある。   In addition, the present inventors have determined from each resin having a softening point of 120 ° C. or higher with respect to the total value of “the blended weight part of each resin × the softening point temperature of the resin” obtained from all the resins to be blended. The blending weight part of the high-temperature softening resin x the softening point temperature of the high-temperature softening resin "The percentage of the total value (blending index) is 95% or less at most. It has been found that when the blending part by weight of the resin is selected, curing at a low temperature is suppressed. If the blending index is greater than 95%, the hardness at low temperatures increases, and the grip strength at the initial stage of running or when the environmental temperature is low may be unfavorable.

更にゴム組成物に配合される樹脂の総量も、ゴム組成物の物性に影響する。樹脂の配合量の合計(高温軟化樹脂の重量部と低温軟化樹脂の重量部の合計)が30重量部未満だと、ヒステリシスロスが高くなる成分量が少ないために、グリップが向上する幅が小さい。一方樹脂の配合量の合計が90重量部より多くなると低温での硬度が高くなり、走行初期や環境温度が低い時のグリップ力が低下し、好ましくないことがある。よって本発明で配合する樹脂の合計量は30〜90重量部の範囲内であることが好ましい。   Furthermore, the total amount of resin blended in the rubber composition also affects the physical properties of the rubber composition. If the total amount of resin blended (total parts by weight of high-temperature softening resin and parts by weight of low-temperature softening resin) is less than 30 parts by weight, the amount of component that increases hysteresis loss is small, so the width to improve the grip is small. . On the other hand, if the total amount of the resin is more than 90 parts by weight, the hardness at low temperature is increased, and the grip strength at the beginning of running or when the environmental temperature is low may be unfavorable. Therefore, the total amount of the resin blended in the present invention is preferably in the range of 30 to 90 parts by weight.

本発明のトレッド用ゴム組成物には、ゴム成分と樹脂の他に、充填剤や可塑剤、更にはゴム工業界で通常使用される配合剤、例えば、オイル類、老化防止剤、加硫剤、加硫助剤、加硫促進剤、スコーチ防止剤等を、本発明の目的を害しない範囲内で適宜選択して配合することができる。これら配合剤としては、市販品を好適に使用することができる。なお、上記ゴム組成物は、ゴム成分と樹脂に加えて、必要に応じて適宜選択した各種配合剤とを配合して、混練り、熱入れ、押出等することにより製造することができる。   The rubber composition for a tread of the present invention includes, in addition to a rubber component and a resin, a filler, a plasticizer, and a compounding agent usually used in the rubber industry, such as oils, anti-aging agents, and vulcanizing agents. Vulcanization aids, vulcanization accelerators, scorch inhibitors, and the like can be appropriately selected and blended within a range that does not impair the object of the present invention. As these compounding agents, commercially available products can be suitably used. The rubber composition can be produced by blending a rubber component and a resin and various compounding agents appropriately selected as necessary, kneading, heating, extruding, and the like.

本発明の空気入りタイヤは、上述のトレッド用ゴム組成物をトレッドゴムとして用いたことを特徴とする。また、該空気入りタイヤは、高速走行重視型の高速競技車用タイヤとして特に好適である。本発明の空気入りタイヤは、上記ゴム組成物をトレッドゴムとして用いているため、広い温度範囲においてグリップ性能が特に優れている。なお、本発明の空気入りタイヤは、上述のゴム組成物をトレッドに用いる以外特に制限は無く、常法に従って製造することができる。また、該空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。   The pneumatic tire of the present invention is characterized by using the above-described tread rubber composition as a tread rubber. Further, the pneumatic tire is particularly suitable as a tire for a high-speed competition car that emphasizes high-speed running. Since the pneumatic tire of the present invention uses the rubber composition as a tread rubber, the grip performance is particularly excellent in a wide temperature range. The pneumatic tire of the present invention is not particularly limited except that the above rubber composition is used for the tread, and can be produced according to a conventional method. Further, as the gas filled in the pneumatic tire, an inert gas such as nitrogen, argon, helium, or the like can be used in addition to normal or air whose oxygen partial pressure is adjusted.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

トレッドゴム層に下記の表1に示す配合処方を適用して、各実施例および比較例の競技用タイヤ(タイヤサイズ:215/40R18)を試作した。   By applying the formulation shown in Table 1 below to the tread rubber layer, a racing tire (tire size: 215 / 40R18) of each example and comparative example was prototyped.

〔表1〕
SBR1 100
油展プロセスオイル 37.5
カーボン2 90
ステアリン酸 1
老化防止剤6C 1
WAX 1
亜鉛華 2.5
促進剤DPG 0.3
促進剤DM 2.0
促進剤CZ 1.5
硫黄 1.8
1 日本合成ゴム社製 #0120(37.5%油展)
2 東海カーボン(株)製、シースト7H
[Table 1]
SBR * 1 100
Oil exhibition process oil 37.5
Carbon * 2 90
Stearic acid 1
Anti-aging agent 6C 1
WAX 1
Zinc flower 2.5
Accelerator DPG 0.3
Accelerator DM 2.0
Accelerator CZ 1.5
Sulfur 1.8
* 1 # 0120 (37.5% oil exhibition) made by Nippon Synthetic Rubber
* 2 Toast Carbon Co., Ltd., Seast 7H

得られた各供試タイヤを競技用事車両に装着し、テストコースを走行させ、1周目の駆動性、制動性・バンドル応答性、操舵時のコントロール性をテストドライバーが3段階(バツ印、丸印、二重丸印)に総合価して走行初期のグリップ評価(暖まり性)とした。さらに5周目の評価をクルージング時のグリップ評価とし、3段階に総合評価した。   Each test tire obtained is attached to a competition event vehicle, run on the test course, and the test driver has three stages of driving performance, braking performance / bundle response, and controllability during steering (cross mark, Grip evaluation (warming property) at the initial stage of travel was calculated by comprehensively considering the circle and double circles. In addition, the evaluation on the fifth lap was used as a grip evaluation during cruising, and was comprehensively evaluated in three stages.

この結果を、各トレッドゴムのプロセスオイル量、樹脂量(重量部)、各樹脂の軟化点と配合重量部から計算される配合指数(Σ(各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度)/Σ(各樹脂の配合重量部×該樹脂の軟化点温度)×100)、50℃における動的貯蔵弾性率(E´)、100℃におけるtanδの値と共に下記の表2、3、4中に示す。表2、3、4において、軟化点144℃の樹脂としては新日本石油化学のネオポリマー140を、軟化点100℃の樹脂としては三井化学のハイレッツT500Xを、軟化点80℃の樹脂としてはヤスハラケミカルYSポリスタT80を、それぞれ使用した。   This result is calculated from the amount of process oil of each tread rubber, the amount of resin (parts by weight), the compounding index calculated from the softening point and the parts by weight of each resin (Σ (parts by weight of each high-temperature softening resin × the high-temperature softening resin) Softening point temperature) / Σ (weight of each resin blended part × softening point temperature of the resin) × 100), dynamic storage elastic modulus (E ′) at 50 ° C., and tan δ at 100 ° C. Shown in 3,4. In Tables 2, 3 and 4, Shin-Nippon Petrochemical's Neopolymer 140 is used as the resin with a softening point of 144 ° C, Mitsui Chemicals Highlets T500X as the resin with a softening point of 100 ° C, and Yasuhara Chemical as the resin with a softening point of 80 ° C. YS polysta T80 was used respectively.

なお、各トレッドゴム層のtanδ(100℃)およびE´(50℃)は、各トレッドゴム層から幅5mm、長さ20mmにて切り出した試料を、東洋精機(株)製スペクトロメータを使用して、動的歪4%、初期静的歪6%、周波数52Hzの条件下で測定した値である。   The tan δ (100 ° C) and E '(50 ° C) of each tread rubber layer were obtained by using a spectrometer manufactured by Toyo Seiki Co., Ltd. with a sample cut out from each tread rubber layer at a width of 5 mm and a length of 20 mm. The values were measured under the conditions of 4% dynamic strain, 6% initial static strain, and a frequency of 52 Hz.

Figure 0005116247
Figure 0005116247

Figure 0005116247
Figure 0005116247

Figure 0005116247
Figure 0005116247

比較例1に示すように、従来技術である軟化点温度が低い樹脂のみを配合すると、E´(50℃)は低くなってソフト配合となり、走行初期グリップは良いが、tanδ(100℃)も低くなり、クルージング時のグリップは不足している。軟化点が144℃の樹脂(高温軟化樹脂)のみを配合した比較例3では高めのtanδ(100℃)を維持しておりクルージング時のグリップは良好だが、E´(50℃)は高くなり、走行初期グリップは低い。軟化点の低い樹脂をわずかに配合した比較例2も、tanδ(100℃)は高めを維持できておりクルージング時のグリップは良好だが、E´(50℃)は低下傾向ではあるが低下の程度が小さく、走行初期グリップは低い。   As shown in Comparative Example 1, when only a resin having a low softening point temperature, which is a conventional technique, is blended, E ′ (50 ° C.) is lowered to become a soft blend, and the initial running grip is good, but tan δ (100 ° C.) is also good. The grip is low and the grip is not enough when cruising. In Comparative Example 3 in which only a resin having a softening point of 144 ° C. (high temperature softening resin) was blended, a high tan δ (100 ° C.) was maintained and the grip during cruising was good, but E ′ (50 ° C.) was high, The initial grip is low. In Comparative Example 2 with a slight blend of a resin with a low softening point, tan δ (100 ° C) is maintained high, and the grip during cruising is good, but E '(50 ° C) is decreasing but the degree of decrease Is small and the initial grip is low.

一方、本発明に係る各樹脂の軟化点と配合重量部から計算される配合指数、すなわちΣ(各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度)/Σ(各樹脂の配合重量部×該樹脂の軟化点温度)×100%の値が、40〜95%となるように、各樹脂の軟化点と配合重量部が選択されることを特徴とするタイヤを用いた実施例1から11は、初期グリップまたはクルージング時のグリップを犠牲にすることなく、クルージング時のグリップまたは初期グリップが改良された。   On the other hand, a blending index calculated from the softening point and blending weight part of each resin according to the present invention, that is, Σ (mixing weight part of each high temperature softening resin × softening point temperature of the high temperature softening resin) / Σ (blending of each resin) Example using tire characterized in that softening point and blending weight part of each resin are selected so that a value of weight part × softening point temperature of resin) × 100% is 40 to 95%. 1 to 11 improved the cruising grip or initial grip without sacrificing the initial grip or cruising grip.

実施例7から11に示したように、120℃以下の軟化点の樹脂として、80℃の樹脂のみならず、100℃の樹脂においても、軟化点と配合重量部から計算される配合指数、すなわちΣ(各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度)/Σ(各樹脂の配合重量部×該樹脂の軟化点温度)×100%の値が、40〜95%となるように各樹脂の軟化点と配合重量部を選択すれば、初期グリップまたはクルージング時のグリップを犠牲にすることなく、クルージング時のグリップまたは初期グリップが改良された。   As shown in Examples 7 to 11, as a resin having a softening point of 120 ° C. or lower, not only a resin at 80 ° C. but also a resin at 100 ° C., a compounding index calculated from the softening point and the blending weight part, that is, The value of Σ (mixed weight part of each high-temperature softened resin × softening point temperature of the high-temperature softened resin) / Σ (mixed weight part of each resin × softening point temperature of the resin) × 100% is 40 to 95%. Thus, by selecting the softening point and blending weight part of each resin, the grip or initial grip during cruising was improved without sacrificing the initial grip or grip during cruising.

また実施例1に示したように、配合された各樹脂の合計重量部が30重量部でも、グリップの改良に効果があった。更に実施例7に示したように、配合された各樹脂の合計重量部が90部でも、やはりグリップの改良に効果があった。よって本発明において樹脂の配合量の合計は30〜90重量部の範囲内であることが好適である。   Further, as shown in Example 1, even when the total weight part of each blended resin was 30 parts by weight, there was an effect in improving the grip. Further, as shown in Example 7, even when the total weight part of each blended resin was 90 parts, it was still effective in improving the grip. Therefore, in the present invention, the total amount of the resins is preferably in the range of 30 to 90 parts by weight.

本発明によれば、ゴム組成物に、軟化点が120〜180℃の範囲内にある特定の樹脂と、軟化点が80℃以上120℃未満である特定の樹脂を、一定の数式に従った重量部で配合することで、低温領域及び高温領域のいずれにおいても、走行開始時とクルージング中のいずれにおいても、タイヤに優れたグリップ性能を発現させることが可能なトレッド用ゴム組成物を提供することができる。該トレッド用ゴム組成物を用いた、幅広い温度領域で優れたグリップ性能を有する空気入りタイヤは、特に高速走行に使用されるタイヤとして有用である。
According to the present invention, a specific resin having a softening point in a range of 120 to 180 ° C. and a specific resin having a softening point of 80 ° C. or higher and lower than 120 ° C. are determined according to a certain mathematical formula. Provided is a rubber composition for a tread capable of exhibiting excellent grip performance in a tire both in a low temperature region and in a high temperature region, both at the start of running and during cruising, by blending in parts by weight. be able to. A pneumatic tire using the tread rubber composition and having excellent grip performance in a wide temperature range is particularly useful as a tire used for high-speed running.

Claims (3)

ゴム成分に少なくとも2種類以上の樹脂を配合してなるトレッド用ゴム組成物であって、
該ゴム組成物における各樹脂の配合量の合計は、該ゴム成分100重量部に対して30〜90重量部であり、
該ゴム組成物に配合される該樹脂は、軟化点が120〜180℃の範囲内にある少なくとも1種類の高温軟化樹脂、および軟化点が80℃以上120℃未満である少なくとも1種類の低温軟化樹脂であって、
前記低温軟化樹脂はテルペンフェノール樹脂、ロジン変性石油樹脂、ジシクロペンタジエン樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、及びアルキルフェノールホルムアルデヒド樹脂からなる群から選択された少なくとも1種類であり、
前記高温軟化樹脂はテルペンフェノール樹脂、脂肪族炭化水素樹脂、脂環族系炭化水素樹脂、芳香族炭化水素樹脂、アルキルフェノールホルムアルデヒド樹脂、及びブチルフェノールアセチレン樹脂からなる群から選択された少なくとも1種類であり、
下記の式;
〔式1〕
配合指数= Σ(各高温軟化樹脂の配合重量部×該高温軟化樹脂の軟化点温度)/
Σ(各樹脂の配合重量部×該樹脂の軟化点温度)×100
で表される配合指数が40〜95%であることを特徴とするトレッド用ゴム組成物。
A rubber composition for a tread comprising at least two kinds of resins blended with a rubber component,
The total amount of each resin in the rubber composition is 30 to 90 parts by weight with respect to 100 parts by weight of the rubber component,
The resin blended in the rubber composition includes at least one high-temperature softening resin having a softening point in the range of 120 to 180 ° C, and at least one low-temperature softening having a softening point of 80 ° C or higher and lower than 120 ° C. A resin ,
The low temperature softening resin is selected from the group consisting of terpene phenol resin, rosin modified petroleum resin, dicyclopentadiene resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, and alkylphenol formaldehyde resin. At least one,
The high temperature softening resin is at least one selected from the group consisting of terpene phenol resin, aliphatic hydrocarbon resin, alicyclic hydrocarbon resin, aromatic hydrocarbon resin, alkylphenol formaldehyde resin, and butylphenol acetylene resin,
The following formula:
[Formula 1]
Compounding index = Σ (mixing part by weight of each high-temperature softening resin × softening point temperature of the high-temperature softening resin) /
Σ (weight part of each resin x softening point temperature of the resin) x 100
A rubber composition for a tread, wherein the compounding index represented by the formula is 40 to 95%.
前記低温軟化樹脂の軟化点が80〜100℃の範囲内にあることを特徴とする請求項1記載のトレッド用ゴム組成物。   The rubber composition for a tread according to claim 1, wherein a softening point of the low-temperature softening resin is in a range of 80 to 100 ° C. 請求項1または2に記載されたトレッド用ゴム組成物をトレッドゴムとして用いた空気入りタイヤ。 A pneumatic tire using the tread rubber composition according to claim 1 as a tread rubber.
JP2006090808A 2006-03-29 2006-03-29 Rubber composition for tread and tire using the same Expired - Fee Related JP5116247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006090808A JP5116247B2 (en) 2006-03-29 2006-03-29 Rubber composition for tread and tire using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006090808A JP5116247B2 (en) 2006-03-29 2006-03-29 Rubber composition for tread and tire using the same

Publications (2)

Publication Number Publication Date
JP2007262292A JP2007262292A (en) 2007-10-11
JP5116247B2 true JP5116247B2 (en) 2013-01-09

Family

ID=38635580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006090808A Expired - Fee Related JP5116247B2 (en) 2006-03-29 2006-03-29 Rubber composition for tread and tire using the same

Country Status (1)

Country Link
JP (1) JP5116247B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5334234B2 (en) * 2007-02-27 2013-11-06 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
CN101990558B (en) 2008-04-07 2015-07-08 株式会社普利司通 Rubber composition for tire and tire
JP5305297B2 (en) * 2009-11-05 2013-10-02 北川工業株式会社 Damping resin composition
KR101302393B1 (en) 2010-11-24 2013-09-02 한국타이어월드와이드 주식회사 Rubber composition for tire tread and tire tread
FR2968006B1 (en) 2010-11-26 2012-12-21 Michelin Soc Tech TIRE TREAD TIRE
JP5559234B2 (en) * 2011-08-09 2014-07-23 住友ゴム工業株式会社 Rubber composition for tire and pneumatic tire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130995B2 (en) * 1992-02-05 2001-01-31 株式会社ブリヂストン Tread rubber composition
JP4343310B2 (en) * 1999-03-11 2009-10-14 株式会社ブリヂストン Rubber composition and pneumatic tire using the same
US6221953B1 (en) * 1999-08-10 2001-04-24 The Goodyear Tire & Rubber Company Tire with tread which contains spatially-defined resins

Also Published As

Publication number Publication date
JP2007262292A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
EP2270088B1 (en) Rubber composition for tire and tire
JP3415217B2 (en) Pneumatic tires for heavy vehicles
US4748168A (en) Rubber compositions for tire treads
KR101979504B1 (en) Tire with rubber tread containing a combination of styrene/butadiene elastomers and traction resins and pre-hydrophobated precipitated silica reinforcement
JPS6248739A (en) High-grip tread rubber composition suitable for high-speed traveling
JP5116247B2 (en) Rubber composition for tread and tire using the same
WO2015076049A1 (en) Pneumatic tire
JP2007056137A (en) Rubber composition for tread
JP2007321046A (en) Rubber composition and pneumatic tire
JP4402530B2 (en) Rubber composition and tire using the same
JP3996777B2 (en) Tread rubber for tires
KR100894452B1 (en) Rubber composition for tire tread
JP2006151244A (en) Pneumatic tire
JP4088290B2 (en) Rubber composition for tire tread and tire comprising the same
JPS62143945A (en) Rubber composition for tire tread
JP5094128B2 (en) Rubber composition for tire tread and pneumatic tire using the same
JPS62143947A (en) Rubber composition for tire tread
JP2004002584A (en) Tire rubber composition
JP2001081239A (en) Tread rubber composition for high-performance tire and its manufacture
JP2005325308A (en) Rubber composition
JP2012162620A (en) Rubber composition for tread and pneumatic tire
JP2002020542A (en) Rubber composition and pneumatic tire using the composition
JP2005255796A (en) Tire tread rubber composition and pneumatic tire using the same
KR101007983B1 (en) Rubber composition for tire tread of passenger car
JP2002309038A (en) Studless compounded rubber composition and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Ref document number: 5116247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees