JP2001287913A - Method for producing vanadium sulfate solution - Google Patents

Method for producing vanadium sulfate solution

Info

Publication number
JP2001287913A
JP2001287913A JP2000099712A JP2000099712A JP2001287913A JP 2001287913 A JP2001287913 A JP 2001287913A JP 2000099712 A JP2000099712 A JP 2000099712A JP 2000099712 A JP2000099712 A JP 2000099712A JP 2001287913 A JP2001287913 A JP 2001287913A
Authority
JP
Japan
Prior art keywords
vanadium
solution
sulfate solution
orimulsion
vanadium sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000099712A
Other languages
Japanese (ja)
Inventor
Misuzu Uchiumi
美鈴 内海
Hiroaki Ono
浩昭 小野
Hajime Mizutani
肇 水谷
Yukio Makiyama
行夫 牧山
Nobuyuki Tokuda
信幸 徳田
Masayuki Furuya
昌之 古家
Yasuhei Kikuoka
泰平 菊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO KOKO CO Ltd
Kansai Electric Power Co Inc
Original Assignee
TAIYO KOKO CO Ltd
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO KOKO CO Ltd, Kansai Electric Power Co Inc filed Critical TAIYO KOKO CO Ltd
Priority to JP2000099712A priority Critical patent/JP2001287913A/en
Publication of JP2001287913A publication Critical patent/JP2001287913A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently and inexpensively producing a vanadium sulfate electrolyte for a redox battery by using a petroleum-based combustion ash such as combustion ash of Orimulsion, etc., as a raw material. SOLUTION: A vanadium-containing petroleum-based combustion ash such as combustion ash of Orimulson obtained by burning Orimulsion, etc., is oozed by using a solution obtained by adding a reducing agent to water or an acid and further a tetravalent vanadium sulfate solution is produced by a solvent extraction method using an acidic phosphorus-based extractant. The obtained tetravalent vanadium sulfate solution is reduced in an electric field to give a trivalent vanadium sulfate solution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、オリマルジョン燃
焼灰等の石油系燃焼灰を原料として、レドックスフロー
電池に用いられるバナジウム系電解液の原料となる硫酸
バナジウム溶液の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a vanadium sulfate solution as a raw material for a vanadium-based electrolyte used in a redox flow battery using petroleum-based combustion ash such as orimulsion combustion ash as a raw material.

【0002】[0002]

【従来の技術】最近、環境汚染の問題が深刻化するにつ
れ、各種エネルギーのなかで比較的クリーンな電気エネ
ルギーの利用が増大している。この電気エネルギーは、
汎用性が高く、消費時の環境汚染もないので、将来さら
に需要が増加することが考えられる。
2. Description of the Related Art Recently, as the problem of environmental pollution has become more serious, the use of relatively clean electric energy among various types of energy has increased. This electrical energy
Because of high versatility and no environmental pollution at the time of consumption, demand is expected to increase further in the future.

【0003】最近、電気エネルギーを貯蔵するための大
型二次電池としてバナジウム系のレドックスフロー電池
が注目されている。このレドックスフロー電池には電解
液として3価と4価の硫酸バナジウム溶液が用いられる
が、原料であるバナジウム鉱石が比較的高価であるた
め、上記電解液の製造価格が高くなり、大幅なコストダ
ウンは困難となっている。
Recently, a vanadium-based redox flow battery has attracted attention as a large-sized secondary battery for storing electric energy. In this redox flow battery, trivalent and tetravalent vanadium sulfate solutions are used as an electrolytic solution. However, since the raw material vanadium ore is relatively expensive, the production cost of the above electrolytic solution increases, resulting in a significant cost reduction. Has become difficult.

【0004】[0004]

【発明が解決しようとする課題】一方、バナジウムの供
給源としてオリマルジョン燃焼灰が注目されている。こ
のオリマルジョンは、南米ベネズエラのオリノコ川流域
に多量に埋蔵しているオリノコタールを水でエマルジョ
ン化したもので、新規な燃料としての使用が試みられて
いる。このオリマルジョンには硫黄、バナジウム、ニッ
ケル等が含まれており、これを燃焼させた時に発生する
電気集塵機灰(オリマルジョン灰)には硫酸アンモニウ
ムが多量に含まれ、それと共にバナジウム、ニッケル等
の有価金属も数%の割合で含まれている。このため、オ
リマルジョン灰からバナジウムを回収して電解液の原料
とすれば、電解液を低コストで製造することが可能であ
ると考えられる。
On the other hand, as a source of vanadium, orimulsion combustion ash has attracted attention. This orimulsion is obtained by emulsifying orinoco tar, which is a large reserve in the Orinoco River basin in Venezuela, South America, with water and has been attempted to be used as a new fuel. This orimulsion contains sulfur, vanadium, nickel, etc., and the electric precipitator ash (orimulsion ash) generated when this is burned contains a large amount of ammonium sulfate, along with valuable metals such as vanadium, nickel and the like. It is included at a rate of several percent. Therefore, if vanadium is recovered from the orimar ash and used as a raw material for the electrolytic solution, it is considered that the electrolytic solution can be produced at low cost.

【0005】上記オリマルジョン灰から有価金属を回収
する方法は種々研究されている。例えば、特開平8−3
25647号公報には、オリマルジョン灰を酸或いは水
に溶解した廃液に錯イオン形成剤を含む有機溶剤を加え
て、有機相と水に分離し、その各相からバナジウム、ニ
ッケル、マグネシウム等の有用金属を連続式に回収する
方法が記載されている。また、特開平11−20729
2号公報には、オリマルジョン等の燃焼灰からバナジウ
ムを回収する方法として、燃焼灰を水性スラリーとして
酸性下でバナジウムを酸化させ、しかる後アンモニアを
加えてバナジウム化合物を沈殿させ、当該バナジウムを
固形分離して回収する方法が記載されている。
Various methods have been studied for recovering valuable metals from the above-mentioned orimulsion ash. For example, JP-A-8-3
Japanese Patent No. 25647 discloses that an organic solvent containing a complex ion forming agent is added to a waste liquid obtained by dissolving orimulsion ash in acid or water to separate an organic phase and water, and a useful metal such as vanadium, nickel, or magnesium is separated from each phase. Is described in a continuous manner. Also, JP-A-11-20729
No. 2 discloses a method for recovering vanadium from combustion ash such as orimulsion, in which vanadium is oxidized under acidic conditions by using the combustion ash as an aqueous slurry, and then ammonia is added to precipitate a vanadium compound, and the vanadium is separated into solids. It describes a method of recovering by collecting.

【0006】しかしながら、オリマルジョン灰からバナ
ジウム系レドックスフロー電池用の電解液を低コストで
製造する方法については従来開発されていなかった。そ
こで、本発明は、上記オリマルジョンの燃焼灰を原料と
してレドックス電池用硫酸バナジウム電解液を効率よく
安価に製造することを課題としている。
[0006] However, a method for producing an electrolyte solution for vanadium-based redox flow batteries at low cost from orimulsion ash has not been developed so far. Therefore, an object of the present invention is to efficiently and inexpensively produce a vanadium sulfate electrolyte for a redox battery using the above-mentioned orimulsion combustion ash as a raw material.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するた
め、本発明はつぎのような製造方法を提供する。すなわ
ち、本発明にかかる硫酸バナジウム溶液の製造方法は、
オリマルジョンを燃焼させて得られるオリマルジョン燃
焼灰を水もしくは酸に還元剤を加えた溶液を用いて浸出
し、さらに酸性リン系抽出剤を用いる溶媒抽出法により
4価の硫酸バナジウム溶液を製造することを特徴として
いる。得られた4価の硫酸バナジウム溶液を電解還元す
ることにより3価の硫酸バナジウム溶液を得ることがで
きる。
In order to solve the above problems, the present invention provides the following manufacturing method. That is, the method for producing a vanadium sulfate solution according to the present invention comprises:
It is considered that the orimulsion combustion ash obtained by burning the orimulsion is leached using a solution obtained by adding a reducing agent to water or an acid, and further producing a tetravalent vanadium sulfate solution by a solvent extraction method using an acidic phosphorus-based extractant. Features. By electrolytically reducing the obtained tetravalent vanadium sulfate solution, a trivalent vanadium sulfate solution can be obtained.

【0008】[0008]

【発明の実施の形態】以下、本発明の硫酸バナジウム溶
液の製造方法について具体例をあげつつ詳細に説明す
る。本発明で使用する原料は、オリマルジョンを燃焼し
た後に残る燃焼灰すなわちオリマルジョン灰である。図
1は本発明の硫酸バナジウム溶液の製造方法を表すフロ
ーシートであり、原料であるオリマルジョン灰は、まず
水或いは酸を用いて浸出する。この浸出により、バナジ
ウム、ニッケル、マグネシウム、鉄、チタン等が浸出し
た硫安溶液が得られる。この場合、ニッケル、マグネシ
ウムの浸出を抑制するためには、スラリー濃度を30%
以上とするのが好ましい。スラリー濃度が30%以上に
なると、ニッケル、マグネシウムはアンモニウム複塩を
形成して沈殿するものと考えられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method for producing a vanadium sulfate solution of the present invention will be described below in detail with reference to specific examples. The raw material used in the present invention is combustion ash remaining after burning the orimulsion, that is, orimulsion ash. FIG. 1 is a flow sheet showing a method for producing a vanadium sulfate solution according to the present invention. Orimal ash as a raw material is first leached with water or an acid. By this leaching, an ammonium sulfate solution in which vanadium, nickel, magnesium, iron, titanium and the like are leached is obtained. In this case, in order to suppress the leaching of nickel and magnesium, the slurry concentration should be 30%.
It is preferable to make the above. When the slurry concentration is 30% or more, nickel and magnesium are considered to form ammonium double salts and precipitate.

【0009】浸出はバナジウムの沈殿を防ぐためpH3
以下で行うのが好ましい。オリマルジョン灰は多量の硫
酸アンモニウムを含むため、純水のみの溶解でpH1〜
3程度になる。この浸出時又は浸出後に還元剤を添加
し、ORP(酸化還元電位)値や色などを見ながらバナ
ジウムを4価(VO2+)に調整すればよい。この浸出液
は硫安、バナジウム、マグネシウム、ニッケル、鉄、チ
タン等を含んでいる。
The leaching is carried out at pH 3 to prevent vanadium precipitation.
It is preferable to perform the following. Orimulsion ash contains a large amount of ammonium sulfate.
It will be about 3. During or after the leaching, a reducing agent may be added, and vanadium may be adjusted to tetravalent (VO 2+ ) while observing the ORP (redox potential) value and color. The leaching solution contains ammonium sulfate, vanadium, magnesium, nickel, iron, titanium and the like.

【0010】つぎに、抽出剤と希釈液を混合した有機相
と浸出液である水相とを抽出装置に供給して抽出を行
う。この抽出は、例えばミキサーとセトラーとを組み合
わせた多段抽出装置を用いて行う。水相と有機相を接触
させると、ニッケル、マグネシウムは水相、バナジウ
ム、鉄、チタンは有機相に移る。浸出液中のバナジウム
は、陽イオンとして存在するので、抽出剤としては中性
あるいは酸性抽出剤を用いることになるが、種々実験し
た結果、4価バナジウムの抽出及びバナジウムとニッケ
ル、マグネシウムの分離には、酸性リン系抽出剤を使用
するのが適していることがわかった。したがって、本発
明では抽出剤として酸性リン系抽出剤を用いることとし
た。実際の使用に際しては、この酸性リン系抽出剤を芳
香族炭化水素系又は脂肪族炭化水素系の希釈剤で希釈し
て使用する。
Next, an organic phase obtained by mixing an extractant and a diluent and an aqueous phase as a leachate are supplied to an extraction device to perform extraction. This extraction is performed using, for example, a multi-stage extraction device combining a mixer and a settler. When the aqueous phase and the organic phase are brought into contact, nickel and magnesium are transferred to the aqueous phase, and vanadium, iron and titanium are transferred to the organic phase. Since vanadium in the leachate exists as a cation, a neutral or acidic extractant is used as the extractant.As a result of various experiments, extraction of tetravalent vanadium and separation of vanadium, nickel and magnesium It has been found that it is suitable to use an acidic phosphorus extractant. Therefore, in the present invention, an acidic phosphorus extractant is used as the extractant. In actual use, the acidic phosphorus-based extractant is diluted with an aromatic hydrocarbon-based or aliphatic hydrocarbon-based diluent before use.

【0011】上記抽出によって、硫安、マグネシウム、
ニッケルを含有する水相と、バナジウム、鉄、チタンを
含有する有機相とに分離するので、この有機相に逆抽出
液を接触させてバナジウムを回収する。逆抽出液として
は、例えば硫酸水溶液を使用する。この逆抽出を行う
と、バナジウムは水相に移動するので、この水相から4
価のバナジウムを含む水溶液すなわち4価の硫酸バナジ
ウム溶液が得られる。電解液用の高濃度硫酸バナジウム
溶液を得るためには、有機相と水相の比は10:1程度
とするのが好ましい。なお、バナジウムの析出を防ぐた
め水相中のバナジウム濃度は2.5mol/l以下とす
るのが好ましい。この硫酸バナジウム溶液に必要な濃度
調整を行い、4価硫酸バナジウム電解液とする。また、
この4価電解液を還元して3価電解液を調整することが
できる。
By the above extraction, ammonium sulfate, magnesium,
Since the aqueous phase containing nickel and the organic phase containing vanadium, iron, and titanium are separated, the organic phase is brought into contact with a back extract to recover vanadium. As the back extraction solution, for example, an aqueous solution of sulfuric acid is used. When this back-extraction is performed, vanadium moves to the aqueous phase.
An aqueous solution containing trivalent vanadium, that is, a tetravalent vanadium sulfate solution is obtained. In order to obtain a high-concentration vanadium sulfate solution for the electrolyte, the ratio of the organic phase to the aqueous phase is preferably about 10: 1. In addition, in order to prevent the precipitation of vanadium, the concentration of vanadium in the aqueous phase is preferably 2.5 mol / l or less. The necessary concentration of the vanadium sulfate solution is adjusted to obtain a tetravalent vanadium sulfate electrolyte. Also,
The trivalent electrolyte can be adjusted by reducing the tetravalent electrolyte.

【0012】一方、鉄、チタンを含む上記有機相は、洗
浄再生工程で再生処理する。この処理は、有機相中の
鉄、チタンを逆抽出して回収するが、有機相中に含まれ
る鉄、チタンの量は微量であるから、鉄、チタンを濃縮
し、この濃縮された有機相の一部ずつを再生するのが効
率的である。このための洗浄再生液としては、硫酸、塩
酸、シュウ酸等またはこれらに逆抽出助剤を添加したも
のを用いる。実験の結果では過酸化水素を添加したシュ
ウ酸がもっとも効果的であった。再生した抽出剤は抽出
工程またはバナジウム逆抽出工程で再利用することがで
きる。
On the other hand, the organic phase containing iron and titanium is subjected to a regeneration treatment in a washing regeneration step. In this treatment, iron and titanium in the organic phase are back-extracted and recovered, but since the amount of iron and titanium contained in the organic phase is very small, iron and titanium are concentrated, and the concentrated organic phase is concentrated. It is efficient to play a part of each. As the washing and regenerating solution for this purpose, sulfuric acid, hydrochloric acid, oxalic acid or the like or a solution obtained by adding a back-extraction aid thereto is used. Oxalic acid to which hydrogen peroxide was added was the most effective. The regenerated extractant can be reused in the extraction step or the vanadium back-extraction step.

【0013】[0013]

【実施例】図1の工程図にしたがい、オリマルジョン燃
焼灰を原料としてレドックスフロー電池用硫酸バナジウ
ム溶液を製造した。原料であるオリマルジョン灰の組成
は表1の通りであった。
EXAMPLE A vanadium sulfate solution for a redox flow battery was produced from an orimulsion combustion ash as a raw material according to the process diagram of FIG. The composition of the raw material, orimulsion ash, was as shown in Table 1.

【0014】[0014]

【表1】 [Table 1]

【0015】このオリマルジョン灰を水で浸出した。ス
ラリー濃度は10〜40%、pHは0.1〜2.5であ
った。このスラリーに還元剤を添加し、ORP値や色な
どを見ながらバナジウムを4価に調整した。スラリー濃
度30%、ORP=400mV、20℃、2時間撹拌で
浸出させた場合のオリマルジョン浸出液の組成を表2に
示す。
This orimulsion ash was leached with water. The slurry concentration was 10 to 40% and the pH was 0.1 to 2.5. A reducing agent was added to this slurry, and vanadium was adjusted to tetravalent while observing the ORP value, color, and the like. Table 2 shows the composition of the orimulsion leachate when the slurry was leached with a slurry concentration of 30%, ORP = 400 mV, and stirring at 20 ° C. for 2 hours.

【0016】[0016]

【表2】 [Table 2]

【0017】つぎに、上記浸出液を用いて多段抽出を行
った。図2はこの多段抽出工程のフローシートである。
抽出剤としては酸性リン系抽出剤を使用した。酸性リン
系抽出剤の具体例としては、例えばビス(2−エチルヘ
キシル)ホスフェート(大八化学工業株式会社製:商品
名DP−8R)又は2−エチルヘキシル2−エチルヘキ
シルホスホネート(大八化学工業株式会社製:商品名P
C−88A)を効果的に使用することができた。図2で
は酸性リン酸系抽出剤としてPC−88Aを使用してい
る。図3は上記2種の抽出剤によるバナジウム抽出率と
pHとの関係を調べた結果を表すグラフである。表2の
浸出液と抽出液PC−88A−IPsolvent(出
光石油株式会社製希釈剤)を用いた場合、水相と有機相
との比は1:0.7程度とするのがよかった。
Next, multi-stage extraction was performed using the above-described leachate. FIG. 2 is a flow sheet of the multi-stage extraction process.
As the extractant, an acidic phosphorus extractant was used. Specific examples of the acidic phosphorus extractant include, for example, bis (2-ethylhexyl) phosphate (trade name: DP-8R, manufactured by Daihachi Chemical Industry Co., Ltd.) or 2-ethylhexyl 2-ethylhexyl phosphonate (trade name, manufactured by Daihachi Chemical Industry Co., Ltd.) : Product name P
C-88A) could be used effectively. In FIG. 2, PC-88A is used as an acidic phosphoric acid-based extractant. FIG. 3 is a graph showing the result of examining the relationship between the vanadium extraction rate and the pH with the above two types of extractants. In the case of using the leachate shown in Table 2 and the extract PC-88A-IPsolvent (a diluent manufactured by Idemitsu Oil Co., Ltd.), the ratio of the aqueous phase to the organic phase was preferably about 1: 0.7.

【0018】抽出装置は、ミキサーとセトラーが組み合
わされた多段抽出装置であり、向流で供給して抽出を行
った。なお、図3の抽出Aでは5段、抽出Bでは10
段、抽出Cでは9段でそれぞれ抽出を行った。洗浄液と
しては硫酸(H2 SO4 )水溶液を使用した。まず、上
記浸出液を抽出Aで抽出し、微量の不純物を含む抽残液
を除去した。この抽出Aでは、pH調整用にNaOHを
添加した。つぎに、抽出Bで有機相に逆抽出液である硫
酸水溶液を接触させて硫酸バナジウム溶液を分離し、濃
度調整を行って4価硫酸バナジウム電解液とした。さら
に、この4価硫酸バナジウム溶液を電解還元して3価の
電解液を得た。
The extraction apparatus is a multi-stage extraction apparatus in which a mixer and a settler are combined, and the extraction is performed by supplying the mixture in countercurrent. In addition, extraction A of FIG.
In stage C and extraction C, extraction was performed in nine stages. An aqueous solution of sulfuric acid (H 2 SO 4 ) was used as the washing solution. First, the above leachate was extracted by extraction A, and the raffinate containing a trace amount of impurities was removed. In this extraction A, NaOH was added for pH adjustment. Next, in extraction B, an aqueous sulfuric acid solution as a back extract was brought into contact with the organic phase to separate the vanadium sulfate solution, and the concentration was adjusted to obtain a tetravalent vanadium sulfate electrolyte. Further, this tetravalent vanadium sulfate solution was electrolytically reduced to obtain a trivalent electrolytic solution.

【0019】一方、抽出Bで鉄、チタンを含む有機相は
抽出Cの洗浄再生工程で再生した。この場合、鉄、チタ
ンの含有量は微量であり、工程1サイクルごとに全量逆
抽出するのは効率が悪いので、有機相の90%は抽出A
の抽出液として循環させ、10%を抽出Cで逆抽出し
た。この時の逆抽出用洗浄再生液には、硫酸、塩酸、シ
ュウ酸等又はそれらに逆抽出助剤を添加したものを用い
るが、中では過酸化水素を添加したシュウ酸が効果的で
あった。なお、再生した抽出剤は、抽出工程或いはバナ
ジウムの逆抽出工程で再利用することが可能であった。
On the other hand, the organic phase containing iron and titanium in the extraction B was regenerated in the washing and regeneration step of the extraction C. In this case, since the contents of iron and titanium are very small and it is inefficient to back-extract the entire amount every cycle of the process, 90% of the organic phase is extracted A
And 10% was back-extracted with extraction C. The washing and regenerating solution for back extraction used at this time is sulfuric acid, hydrochloric acid, oxalic acid or the like to which a back extraction auxiliary is added, and among them, oxalic acid to which hydrogen peroxide is added was effective. . The regenerated extractant could be reused in the extraction step or the vanadium back-extraction step.

【0020】この多段抽出の条件及び濃度を表3に、ま
た、スラリー濃度、温度、撹拌時間、ORP(酸化還元
電位)等の条件とろ液の組成の関係を表4に示す。
Table 3 shows conditions and concentrations of the multistage extraction, and Table 4 shows a relationship between conditions such as slurry concentration, temperature, stirring time, ORP (oxidation-reduction potential), and composition of the filtrate.

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【表4】 [Table 4]

【0023】[0023]

【発明の効果】以上に説明した如く、本発明にかかる硫
酸バナジウム溶液の製造方法によれば、オリマルジョン
燃焼灰を原料としてレドックス電池用電解液を経済的か
つ容易に製造することが可能となった。なお、以上の説
明では原料としてオリマルジョン燃焼灰を用いる例につ
いて説明したが、バナジウムを含む他の石油系燃焼灰を
原料とすることができることは言うまでもない。
As described above, according to the method for producing a vanadium sulfate solution according to the present invention, it has become possible to economically and easily produce an electrolyte for a redox battery using orimulsion combustion ash as a raw material. . In the above description, an example using orimulsion combustion ash as a raw material has been described, but it goes without saying that other petroleum-based combustion ash including vanadium can be used as a raw material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を表すフローシートである。FIG. 1 is a flow sheet showing an embodiment of the present invention.

【図2】多段抽出工程を表すフローシートである。FIG. 2 is a flow sheet showing a multi-stage extraction process.

【図3】pH値とバナジウム抽出率との関係を表すグラ
フである。
FIG. 3 is a graph showing a relationship between a pH value and a vanadium extraction rate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 7/02 C22B 3/00 J 34/22 A (72)発明者 小野 浩昭 兵庫県赤穂市中広字東沖1603−1 太陽鉱 工株式会社赤穂研究所内 (72)発明者 水谷 肇 兵庫県赤穂市中広字東沖1603−1 太陽鉱 工株式会社赤穂研究所内 (72)発明者 牧山 行夫 兵庫県赤穂市中広字東沖1603−1 太陽鉱 工株式会社赤穂研究所内 (72)発明者 徳田 信幸 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 古家 昌之 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 (72)発明者 菊岡 泰平 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 4D004 AA36 AB03 BA05 BA06 CA34 CA37 CC04 4G048 AA07 AB02 AB08 AC08 AE01 4K001 AA28 BA14 DB03 DB07 DB31 HA00 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 7/02 C22B 3/00 J 34/22 A (72) Inventor Hiroaki Ono Nakahiroji, Ako-shi, Hyogo 1603-1 Higashioki Taiyo Mining Co., Ltd.Ako Research Laboratories (72) Inventor Hajime Mizutani 1603-1 Nakahiro Hiroki, Ako-shi, Hyogo Prefecture Taiyo Mining Co., Ltd.Ako Research Laboratories (72) Inventor Yukio Makiyama Ako Hyogo Pref. 1603-1 Higashioki, Ichinaka Hiroshi Taiyo Mining Co., Ltd.Ako Research Laboratories (72) Inventor Nobuyuki Tokuda 3-3-22 Nakanoshima, Kita-ku, Osaka-shi, Osaka Kansai Electric Power Co., Inc. (72) Inventor Masayuki Furuya Osaka Kansai Electric Power Co., Inc. 3-2-2 Nakanoshima, Kita-ku, Osaka-shi (72) Inventor Taihei Kikuoka 3-2-2 Nakanoshima, Kita-ku, Osaka-shi, Osaka Kansai Electric Power Co., Inc. 4D004 AA36 AB03 BA05 BA06 CA34 CA37 CC04 4G048 AA07 AB02 AB08 AC08 AE01 4K001 AA28 BA14 DB03 DB07 DB31 HA00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オリマルジョンを燃焼させて得られるオ
リマルジョン燃焼灰等、バナジウムを含む石油系燃焼灰
を水もしくは酸に還元剤を加えた溶液を用いて浸出し、
さらに酸性リン系抽出剤を用いる溶媒抽出法により4価
の硫酸バナジウム溶液を製造することを特徴とする硫酸
バナジウム溶液の製造方法。
1. An oil-based combustion ash containing vanadium, such as an orimulsion combustion ash obtained by burning an orimulsion, is leached using water or a solution obtained by adding a reducing agent to an acid.
A method for producing a vanadium sulfate solution, further comprising producing a tetravalent vanadium sulfate solution by a solvent extraction method using an acidic phosphorus-based extractant.
【請求項2】 得られた4価硫酸バナジウム溶液を電解
還元して3価のバナジウム溶液とする請求項1に記載の
硫酸バナジウム溶液の製造方法。
2. The method for producing a vanadium sulfate solution according to claim 1, wherein the obtained tetravalent vanadium sulfate solution is electrolytically reduced to obtain a trivalent vanadium solution.
JP2000099712A 2000-03-31 2000-03-31 Method for producing vanadium sulfate solution Pending JP2001287913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000099712A JP2001287913A (en) 2000-03-31 2000-03-31 Method for producing vanadium sulfate solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000099712A JP2001287913A (en) 2000-03-31 2000-03-31 Method for producing vanadium sulfate solution

Publications (1)

Publication Number Publication Date
JP2001287913A true JP2001287913A (en) 2001-10-16

Family

ID=18614029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000099712A Pending JP2001287913A (en) 2000-03-31 2000-03-31 Method for producing vanadium sulfate solution

Country Status (1)

Country Link
JP (1) JP2001287913A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936660A (en) * 2012-10-26 2013-02-20 武汉工程大学 Method for leaching vanadium from vanadous stone coal roasting slag
CN109306404A (en) * 2018-12-04 2019-02-05 攀钢集团攀枝花钢铁研究院有限公司 Extraction vanadium extraction method containing vanadium solution
US10422021B2 (en) 2016-06-03 2019-09-24 Showa Denko K.K. Method for producing vanadium compound, method for producing vanadium solution, and method for producing redox flow battery electrolyte
CN113998735A (en) * 2021-11-19 2022-02-01 新疆有色金属研究所 Method for producing vanadyl sulfate battery electrolyte by using vanadium-containing acid leaching solution
KR20230080685A (en) 2021-11-30 2023-06-07 롯데케미칼 주식회사 Manufacturing method for vanadium electrolyte

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468720A (en) * 1977-11-11 1979-06-02 Sumitomo Metal Mining Co Recovering of valuable metal from desurfurising waste catalyst
JPH04149965A (en) * 1990-10-15 1992-05-22 Agency Of Ind Science & Technol Manufacture of vanadium electrolyte
JPH07211346A (en) * 1994-01-14 1995-08-11 Sumitomo Electric Ind Ltd Manufacture of electrolyte for vanadium redox flow type battery and manufacture of vanadium redox flow type battery
JPH07252548A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst
JPH08325647A (en) * 1995-05-26 1996-12-10 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously extracting and separating useful metal from incineration ash
JPH11207293A (en) * 1998-01-27 1999-08-03 Taiheiyo Cement Corp Treatment of heavy oil type combustion ash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5468720A (en) * 1977-11-11 1979-06-02 Sumitomo Metal Mining Co Recovering of valuable metal from desurfurising waste catalyst
JPH04149965A (en) * 1990-10-15 1992-05-22 Agency Of Ind Science & Technol Manufacture of vanadium electrolyte
JPH07211346A (en) * 1994-01-14 1995-08-11 Sumitomo Electric Ind Ltd Manufacture of electrolyte for vanadium redox flow type battery and manufacture of vanadium redox flow type battery
JPH07252548A (en) * 1994-03-11 1995-10-03 Sumitomo Metal Mining Co Ltd Method for recovering valuable metal from waste catalyst
JPH08325647A (en) * 1995-05-26 1996-12-10 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously extracting and separating useful metal from incineration ash
JPH11207293A (en) * 1998-01-27 1999-08-03 Taiheiyo Cement Corp Treatment of heavy oil type combustion ash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102936660A (en) * 2012-10-26 2013-02-20 武汉工程大学 Method for leaching vanadium from vanadous stone coal roasting slag
US10422021B2 (en) 2016-06-03 2019-09-24 Showa Denko K.K. Method for producing vanadium compound, method for producing vanadium solution, and method for producing redox flow battery electrolyte
CN109306404A (en) * 2018-12-04 2019-02-05 攀钢集团攀枝花钢铁研究院有限公司 Extraction vanadium extraction method containing vanadium solution
CN113998735A (en) * 2021-11-19 2022-02-01 新疆有色金属研究所 Method for producing vanadyl sulfate battery electrolyte by using vanadium-containing acid leaching solution
KR20230080685A (en) 2021-11-30 2023-06-07 롯데케미칼 주식회사 Manufacturing method for vanadium electrolyte

Similar Documents

Publication Publication Date Title
US8894865B2 (en) Process for depleting calcium and/or iron from geothermal brines
Nogueira et al. New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction
JP4448937B2 (en) Palladium extractant and method for separating and recovering palladium
JP2015183292A (en) Recovery method of cobalt and nickel
KR101420501B1 (en) Method for separating metal in metal mixed solution
CN103160689B (en) Method of iron extraction and removal with solvent extraction agent
JP6352846B2 (en) Method for recovering metals from recycled lithium-ion battery materials
JP6176491B2 (en) Method for removing copper from aqueous nickel chloride solution
WO2020196046A1 (en) Method for manufacturing nickel and cobalt-containing solution from hydroxide containing nickel and cobalt
JP5004106B2 (en) Method for separating and recovering nickel and lithium
KR101021180B1 (en) Method for producing high purity cobalt surfate
CN105296753A (en) Method for separating cobalt, nickel and magnesium from nickel oxide ore pickle liquor
JP2017226568A (en) Method for producing high purity cobalt sulfate aqueous solution
JP2022094152A (en) Lithium ion battery waste processing method
JP2001287913A (en) Method for producing vanadium sulfate solution
JP2019143223A (en) Method for removing impurities from cobalt chloride solution
JP3831805B2 (en) Treatment method for petroleum combustion ash
JP2017190478A (en) Method for removing impurity from cobalt aqueous solution
CN114686704B (en) Combined smelting process of molybdenum ore and tungsten ore
EP0090119A2 (en) Selectively stripping iron ions from an organic solvent
JP4336921B2 (en) Back extraction of titanium from acidic extractants.
JP3901076B2 (en) Method for separating and recovering copper and coexisting elements
JP5539775B2 (en) Method for purifying solution containing rhodium
JPS5836677B2 (en) Method for recovering sulfuric acid and contained metals from iron sulfate solution
JP2018070927A (en) Method for recovering bismuth

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061206

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20061206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427