JP2001284185A - Polarizable electrode for electric double-layer capacitor, and method of manufacturing the same - Google Patents

Polarizable electrode for electric double-layer capacitor, and method of manufacturing the same

Info

Publication number
JP2001284185A
JP2001284185A JP2000098436A JP2000098436A JP2001284185A JP 2001284185 A JP2001284185 A JP 2001284185A JP 2000098436 A JP2000098436 A JP 2000098436A JP 2000098436 A JP2000098436 A JP 2000098436A JP 2001284185 A JP2001284185 A JP 2001284185A
Authority
JP
Japan
Prior art keywords
polarizable electrode
powder
activated carbon
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000098436A
Other languages
Japanese (ja)
Other versions
JP4518223B2 (en
Inventor
Takashi Noji
貴 野地
Riza Takahata
里咲 高畠
Hideki Shibuya
秀樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ccr Kk
Nippon Chemi Con Corp
CCR KK
Original Assignee
Ccr Kk
Nippon Chemi Con Corp
CCR KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ccr Kk, Nippon Chemi Con Corp, CCR KK filed Critical Ccr Kk
Priority to JP2000098436A priority Critical patent/JP4518223B2/en
Publication of JP2001284185A publication Critical patent/JP2001284185A/en
Application granted granted Critical
Publication of JP4518223B2 publication Critical patent/JP4518223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a polarizable electrode, that has a low internal resistance value per prescribed projection area of an electric double-layer capacitor, a large capacitance per a prescribed volume and superior fracture strength, and to provide method of manufacturing the same. SOLUTION: The polarizable electrode of the present invention is manufactured, through the formation of a mixed power by dry-blending of activated carbon powder, conductive auxilary power and polymer resin powder containing fluorine with a lamellar structure and then compressing and molding this mixed powder into a sheet. In this plarizable electrode manufactured using this method, activated carbon is connected, so as to be held by three-dimensional structure composed of microfilaments of the polymer resin, containing fluorine formed by fracture of lamellar structure. Therefore, a polarizable electrode having superior fracture strength can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】この発明は、電気二重層コン
デンサ用分極性電極とその製造方法に関し、特に所定投
影面積あたりの内部抵抗値が低く、かつ所定体積あたり
の容量が大きく、破壊強度に優れた分極性電極に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizable electrode for an electric double layer capacitor and a method for manufacturing the same, and more particularly to a polarizable electrode having a low internal resistance per predetermined projected area, a large capacity per predetermined volume, and excellent breaking strength. The present invention relates to a polarizable electrode.

【0002】[0002]

【従来の技術】大電力電源のロードレベリング用とし
て、あるいはハイブリッドカーなどの高出力密度の蓄電
源として、大容量でかつ内部抵抗の低い電気二重層コン
デンサを用いることが期待されている。
2. Description of the Related Art It is expected that an electric double layer capacitor having a large capacity and a low internal resistance will be used for load leveling of a large electric power supply or as a high power density storage power supply for a hybrid car or the like.

【0003】しかし従来の電気二重層コンデンサでは内
部抵抗が高く、大きな電流を取り出せないため、直列接
続によって高電圧の電気二重層コンデンサバンクを構成
し、コンバータ等を利用した周辺の回路技術によって高
出力を得ているが、コスト高を招いている。
However, since the conventional electric double layer capacitor has a high internal resistance and cannot take out a large current, a high voltage electric double layer capacitor bank is formed by series connection, and a high output is obtained by a peripheral circuit technology using a converter or the like. However, it is costly.

【0004】従来の有機系電解液を用いた電気二重層コ
ンデンサでは分極性電極の投影単位面積あたりの抵抗が
高く、電流密度は1〜20mA/cm2で用いられてお
り、それ以上の電流密度では電圧降下が大きくなり、出
力が著しく低下する。ゆえに、電極面積を広くする目的
で分極性電極の塗布厚を薄くして抵抗を下げる試みがな
されているが、この場合、電気二重層コンデンサのパッ
ケージあたりの分極性電極の充填量が減少し、電気二重
層コンデンサのパッケージあたりの容量が低下して十分
なエネルギー密度が得られなくなる。
In a conventional electric double layer capacitor using an organic electrolyte, the polarizable electrode has a high resistance per projected unit area, and a current density of 1 to 20 mA / cm 2 is used. In this case, the voltage drop becomes large, and the output remarkably decreases. Therefore, attempts have been made to reduce the resistance by reducing the coating thickness of the polarizable electrode in order to increase the electrode area, but in this case, the filling amount of the polarizable electrode per package of the electric double layer capacitor is reduced, The capacity per package of the electric double layer capacitor is reduced, and a sufficient energy density cannot be obtained.

【0005】このような従来の有機系の電解液と分極性
電極では分極性電極の投影単位面積あたりの抵抗の限界
により、必要なエネルギー密度を保持した状態で高出力
密度を得るのは困難であった。
[0005] With such conventional organic electrolytes and polarizable electrodes, it is difficult to obtain a high output density while maintaining the required energy density due to the limitation of the resistance per unit area of projection of the polarizable electrode. there were.

【0006】電気二重層コンデンサの分極性電極の製造
方法には、活性炭粉末状と導電性助剤とバインダー樹脂
を含むスラリーを集電板上に塗布、乾燥したものと活性
炭粉末、導電性助剤および含フッ素高分子樹脂の混和物
を成型した後延伸処理してシート状に成形したものがあ
る。
A method for producing a polarizable electrode of an electric double layer capacitor includes applying a slurry containing activated carbon powder, a conductive auxiliary agent, and a binder resin onto a current collector plate, drying the slurry, and using activated carbon powder, a conductive auxiliary agent. In addition, there is a product in which a mixture of a fluorine-containing polymer resin is molded, stretched, and then formed into a sheet.

【0007】塗布法による分極性電極は、活性炭粉末の
結着性が弱く脱離しやすく、また活性炭粒子間に結着材
として入り込んでいるため、粒子間の接触抵抗が大き
く、結果として電気二重層コンデンサの内部抵抗を増大
させている。さらに塗布のみでは活性炭の密度が上がら
ず単位体積あたりの容量が小さい傾向にある。
[0007] A polarizable electrode formed by a coating method has a weak binding property of activated carbon powder and is easily detached, and has a large contact resistance between activated carbon particles because it enters between activated carbon particles. The internal resistance of the capacitor is increased. Further, only by coating, the density of activated carbon does not increase and the capacity per unit volume tends to be small.

【0008】そこで、延伸処理によってシート状に成形
する方法で機械的強度を増すことで粒子の脱離を抑制
し、密度を高くすることが行われている。たとえば、特
公平7−105316号公報には、炭素微粉、含フッ素
重合体樹脂および液状潤滑剤からなる混和物をシート成
形し、さらに延伸処理する方法が示されている。
In view of this, it has been practiced to increase the mechanical strength by forming the sheet into a sheet by stretching, thereby suppressing the desorption of particles and increasing the density. For example, Japanese Patent Publication No. 7-105316 discloses a method in which an admixture composed of carbon fine powder, a fluoropolymer resin and a liquid lubricant is formed into a sheet and further subjected to a stretching treatment.

【0009】[0009]

【発明が解決しようとする課題】この特公平7−105
316号公報に記載された従来の延伸処理によってシー
ト状に成形した分極性電極では、液状潤滑剤があるた
め、混和物に十分な圧力がかからず、シート成形時に含
フッ素重合体樹脂が十分な結着性を発揮するには前記樹
脂を多量に添加しなければならない。
SUMMARY OF THE INVENTION
In the polarizable electrode formed into a sheet by the conventional stretching treatment described in Japanese Patent Publication No. 316, since the liquid lubricant is present, sufficient pressure is not applied to the admixture, and the fluoropolymer resin is not sufficiently formed during sheet formation. In order to exhibit good binding properties, the resin must be added in a large amount.

【0010】さらに炭素微粉は含フッ素重合体樹脂に含
まれてしまうため炭素微粉間の接触抵抗の増大および炭
素微粉の充填量が制限されることによる容量不足にな
り、大容量でかつ内部抵抗が低い電気二重層コンデンサ
の用途には適用が困難である。そのために、シート状に
成型した後に、さらにこのシートを延伸処理し、炭素微
粉を含フッ素重合体樹脂の微小結節に含ませる2次工程
が不可欠となっていた。
[0010] Further, the carbon fine powder is contained in the fluoropolymer resin, so that the contact resistance between the carbon fine powder increases and the capacity is insufficient due to the limitation of the filling amount of the carbon fine powder. It is difficult to apply for low electric double layer capacitor applications. For this reason, a secondary process in which the sheet is further stretched after being formed into a sheet and the carbon fine powder is included in the fine nodules of the fluoropolymer resin has been indispensable.

【0011】この発明は、電気二重層コンデンサの分極
性電極の所定投影面積あたりの内部抵抗値が低く、かつ
所定体積あたりの容量が大きく、破壊強度も強い分極性
電極およびその製造方法を提供することを目的とする。
特に、分極性電極の投影面積あたりの放電電流密度が2
0mA/cm2を超える大電流密度での出力の低下を低
減した高出力密度の電気二重層コンデンサ用分極性電極
およびその製造方法の提供を目的とする。
The present invention provides a polarizable electrode of an electric double layer capacitor having a low internal resistance per predetermined projected area, a large capacity per predetermined volume, and a high breaking strength, and a method of manufacturing the same. The purpose is to:
In particular, the discharge current density per projected area of the polarizable electrode is 2
It is an object of the present invention to provide a high-power-density polarizable electrode for an electric double-layer capacitor in which a decrease in output at a large current density exceeding 0 mA / cm 2 is reduced, and a method for manufacturing the same.

【0012】[0012]

【課題を解決するための手段】この発明は、電気二重層
コンデンサ用分極性電極の製造方法において、活性炭粉
末、導電性助剤粉末およびラメラ構造をとる含フッ素高
分子樹脂粉末を乾式混合して混合粉末を形成した後、こ
の混合粉末を圧縮してシート状に成型することを特徴と
している。
According to the present invention, there is provided a method of manufacturing a polarizable electrode for an electric double layer capacitor, comprising dry-mixing activated carbon powder, conductive auxiliary powder and fluoropolymer resin powder having a lamellar structure. After forming the mixed powder, the mixed powder is compressed and molded into a sheet.

【0013】また、活性炭粉末、導電性助剤粉末および
ラメラ構造をとる含フッ素高分子樹脂粉末を、水または
液状炭化水素のうち少なくともひとつを含む分散溶媒を
添加して湿式混合した後、分散溶媒を除去するとともに
粉砕して混合粉末を形成し、この混合粉末を圧縮してシ
ート状に成型してもよい。
[0013] Further, the activated carbon powder, the conductive auxiliary powder and the fluoropolymer resin powder having a lamellar structure are wet-mixed by adding a dispersion solvent containing at least one of water and a liquid hydrocarbon, and then dispersed. May be removed and pulverized to form a mixed powder, and the mixed powder may be compressed and formed into a sheet.

【0014】また、上記いずれの製造方法であっても、
活性炭粉末に対し、ラメラ構造をとる含フッ素高分子樹
脂が0.1〜30重量%、導電性助剤粉末が1〜20重
量%混合されることを特徴とし、ラメラ構造をとる含フ
ッ素高分子樹脂がポリテトラフルオロエチレンであるほ
か、前記混合粉末を粉砕および/または分級した2次粒
子径が、0.1〜2.0mmであることを特徴としてい
る。
Further, in any of the above manufacturing methods,
A fluoropolymer having a lamellar structure, characterized in that 0.1 to 30% by weight of a fluoropolymer resin having a lamellar structure and 1 to 20% by weight of a conductive auxiliary powder are mixed with activated carbon powder. The resin is polytetrafluoroethylene, and the mixed powder is pulverized and / or classified to have a secondary particle diameter of 0.1 to 2.0 mm.

【0015】さらに、前記混合粉末を、室温〜200℃
で圧縮し、好ましくは50℃〜100℃で加熱圧縮する
ことを特徴としている。
Further, the mixed powder is heated from room temperature to 200 ° C.
At 50 ° C. to 100 ° C.

【0016】また、この発明は、電気二重層コンデンサ
用分極性電極において、活性炭、導電性助剤およびラメ
ラ構造をとる含フッ素高分子樹脂を含み、活性炭が、ラ
メラ構造の破壊で形成される含フッ素高分子樹脂の微細
繊維からなる三次元網目構造体によって保持されるよう
に結合したことを特徴としている。
Further, the present invention provides a polarizable electrode for an electric double layer capacitor, comprising an activated carbon, a conductive auxiliary and a fluoropolymer resin having a lamellar structure, wherein the activated carbon is formed by destruction of the lamellar structure. It is characterized in that it is bonded so as to be held by a three-dimensional network structure made of fine fibers of a fluoropolymer resin.

【0017】この電気二重層コンデンサ用分極性電極に
おいては、活性炭、導電性助剤およびラメラ構造をとる
含フッ素高分子樹脂を含む分極性電極であって、36Å
以上の気孔の占める容積が水銀圧入法による測定で0.
3〜0.6cc/cc、密度が0.5〜0.8g/cc
であることを特徴としている。
The polarizable electrode for an electric double-layer capacitor is a polarizable electrode containing activated carbon, a conductive auxiliary agent and a fluoropolymer resin having a lamellar structure.
The volume occupied by the above pores is determined to be 0.
3-0.6cc / cc, density 0.5-0.8g / cc
It is characterized by being.

【0018】また、活性炭の粒子径が0.5〜200μ
mであり、あるいは導電性助剤の粒子径が0.1μm以
下、またラメラ構造の破壊で形成される含フッ素高分子
樹脂の微細繊維の径が0.3μm以下であることを特徴
としている。
The activated carbon has a particle size of 0.5 to 200 μm.
m, or the particle size of the conductive auxiliary agent is 0.1 μm or less, and the diameter of the fine fibers of the fluoropolymer resin formed by destruction of the lamellar structure is 0.3 μm or less.

【0019】さらに、この発明の電気二重層コンデンサ
用分極性電極では、含フッ素高分子樹脂が、ポリテトラ
フルオロエチレンであることを特徴とし、厚み10〜2
000μmのシート状成形物であることを特徴としてい
る。
Further, in the polarizable electrode for an electric double layer capacitor according to the present invention, the fluorine-containing polymer resin is polytetrafluoroethylene and has a thickness of 10 to 2 times.
It is characterized in that it is a sheet-shaped molded product of 000 μm.

【0020】[0020]

【発明の実施の形態】この発明の分極性電極は、活性炭
粉末、導電性助剤、およびラメラ構造をとる含フッ素高
分子樹脂からなる粉末状の乾式混合物を圧縮し、必要に
応じて加熱することでシート状に成形しており、さらに
具体的には次のように製造される。
BEST MODE FOR CARRYING OUT THE INVENTION The polarizable electrode of the present invention is obtained by compressing a powdery dry mixture comprising activated carbon powder, a conductive auxiliary agent, and a fluoropolymer resin having a lamellar structure, and heating as necessary. Thus, it is formed into a sheet shape, and more specifically, manufactured as follows.

【0021】1)粉末状混合物の調整 活性炭粉末に対して導電性助剤を1〜20重量%、好ま
しくは5〜15%、ラメラ構造をとる含フッ素高分子樹
脂粉末を0.1〜30重量%、好ましくは1〜10重量
%を混合し、回転混合機で均一に乾式混合して混合粉末
の調整を行う。また混合時に活性炭粉末に対して、水ま
たは液状炭化水素のうち少なくともひとつを含む分散溶
媒を50〜200重量%添加して湿式混合してもよく、
この場合は、均一混合した後に分散溶媒を乾燥させて取
り除き、再び粉末状に粉砕して混合粉末を得る。
1) Preparation of powdery mixture 1 to 20% by weight, preferably 5 to 15% by weight, of a conductive auxiliary agent to activated carbon powder, and 0.1 to 30% by weight of a fluoropolymer resin powder having a lamellar structure. %, Preferably 1 to 10% by weight, and dry-mixed uniformly with a rotary mixer to prepare a mixed powder. Further, at the time of mixing, 50 to 200% by weight of a dispersion solvent containing at least one of water and liquid hydrocarbons may be added to the activated carbon powder and wet-mixed,
In this case, after uniform mixing, the dispersion solvent is removed by drying, and the mixture is pulverized again to obtain a mixed powder.

【0022】2)混合粉末の分級 混合粉末は、分級し、必要に応じては粉砕し、凝集した
2次粒子の径を、0.1〜2mmの範囲とする。
2) Classification of mixed powder The mixed powder is classified, and if necessary, pulverized, and the diameter of the aggregated secondary particles is set to a range of 0.1 to 2 mm.

【0023】3)シート成形 分級した混合粉末を圧縮し、必要に応じて加熱してシー
ト状成形物にする。加熱は、室温〜200℃、好ましく
は50℃〜100℃で圧縮してシート状に成形する。少
なくとも室温を下回る温度ではシート状に成形すること
が困難になり、またこれを上回る温度で加熱しても、フ
ッ素樹脂が約260℃で熱分解してしまうため、やはり
シートが脆弱になってしまう。
3) Sheet Forming The classified mixed powder is compressed and, if necessary, heated to form a sheet-like molded product. The heating is performed at room temperature to 200 ° C., preferably at 50 ° C. to 100 ° C., to form a sheet. At least below room temperature, it is difficult to form a sheet, and even if heated above this temperature, the fluororesin will thermally decompose at about 260 ° C., which will also make the sheet brittle. .

【0024】なお、混合粉末の圧縮と必要に応じて施す
加熱工程では、プレス機を用いることができるほか、加
熱したロールを用いて行うこともできる。この場合、ロ
ールの隙間に混合粉末を連続的に供給することで連続的
にシート成形ができるようになる。また、シート状の分
極性電極の厚みは、ロールを用いる場合、直径および間
隔を調節することで、10μm〜2000μmまでの間
の任意の厚みをえることができる。さらにその後にカレ
ンダーロールなどに通すことで薄くすることもでき、任
意の厚みを得ることができるようになる。
In the compression step of the mixed powder and the heating step to be carried out as required, a pressing machine can be used or a heated roll can be used. In this case, by continuously supplying the mixed powder to the gap between the rolls, the sheet can be continuously formed. When a roll is used, the thickness of the sheet-shaped polarizable electrode can be any thickness between 10 μm and 2000 μm by adjusting the diameter and spacing. Thereafter, the film can be made thinner by passing it through a calender roll or the like, and an arbitrary thickness can be obtained.

【0025】以上のような製造方法で製造される分極性
電極では、図1の電子顕微鏡写真で示すように、ラメラ
構造の含フッ素高分子樹脂が、前記製造方法における圧
縮や必要に応じて施される加熱処理によって破壊されて
繊維化し、この繊維よりも粒径の小さい導電性助剤粒子
が、微細繊維状の含フッ素高分子樹脂に付着、凝集、接
触または連続化する。さらに、微細繊維状の含フッ素高
分子樹脂が、この繊維よりも粒子径の大きい活性炭に接
触するように相互に結合し、その結果、活性炭は、微細
繊維状の含フッ素高分子樹脂、ならびにこの微細繊維状
の含フッ素高分子樹脂に付着、凝集した導電性助剤粒子
によって接触または連続化するように相互に結合される
ため、活性炭が、ラメラ構造の破壊で形成される含フッ
素高分子樹脂の微細繊維からなる三次元網目構造体によ
って保持されるように結合することになる。
In the polarizable electrode manufactured by the above-described manufacturing method, as shown in the electron micrograph of FIG. 1, the fluoropolymer resin having a lamellar structure is compressed or applied as necessary in the manufacturing method. The conductive auxiliary particles having a smaller particle diameter than the fibers adhere, coagulate, contact or become continuous with the fine fibrous fluoropolymer resin. Further, the fine fibrous fluoropolymer resin is mutually bonded so as to come into contact with activated carbon having a larger particle diameter than the fiber, and as a result, the activated carbon becomes fine fibrous fluoropolymer resin, and Activated carbon is formed by the destruction of the lamellar structure because activated carbon is bonded to each other so as to be in contact or continuity with the conductive auxiliary particles adhered and agglomerated to the fine fibrous fluoropolymer resin. Are bonded so as to be held by the three-dimensional network structure made of fine fibers of the above.

【0026】この分極性電極の構造を図2に示した模式
図で説明する。この図2は、先に示した電子顕微鏡写真
の図1を基にこれを模式化したもので、繊維化したラメ
ラ構造の含フッ素高分子樹脂は破線3で、導電性助剤粒
子の凝集体は楕円2で、活性炭は網掛けの多角形1でそ
れぞれ表している。
The structure of the polarizable electrode will be described with reference to the schematic diagram shown in FIG. FIG. 2 is a schematic diagram based on FIG. 1 of the electron micrograph shown above. The fibrous lamellar structure fluoropolymer resin is indicated by a broken line 3 and the aggregate of conductive auxiliary particles is shown. Is an ellipse 2 and activated carbon is represented by a shaded polygon 1.

【0027】すなわち、この発明による分極性電極は、
含フッ素高分子樹脂の繊維3に、この繊維3よりも粒径
の小さい導電性助剤粒子2が付着、凝集、接触または連
続化し、さらに繊維3が、この繊維3よりも粒子径の大
きい活性炭1に接触するように相互に結合し、その結
果、活性炭1が繊維3の三次元網目構造体によって保持
されるように結合している。
That is, the polarizable electrode according to the present invention comprises:
The conductive auxiliary particles 2 having a smaller particle diameter than the fiber 3 adhere to, coagulate, contact, or become continuous with the fiber 3 of the fluoropolymer resin, and the fiber 3 is activated carbon having a larger particle diameter than the fiber 3. 1 so that the activated carbon 1 is held together by the three-dimensional network of fibers 3.

【0028】以上の構造的な特徴を持つシート状の分極
性電極は、36Å以上の気孔の占める容積が水銀圧入法
による測定で0.3〜0.6cc/cc、密度が0.5
〜0.8g/ccであり、引張強度が0.1MPa以上
である。
In the sheet-shaped polarizable electrode having the above structural characteristics, the volume occupied by pores of 36 ° or more is 0.3 to 0.6 cc / cc as measured by a mercury intrusion method, and the density is 0.5.
0.8 g / cc, and the tensile strength is 0.1 MPa or more.

【0029】活性炭粒径は、0.5〜200μm、好ま
しくは1〜100μmであり、導電性助剤粉末は粒子径
が0.1μm以下のものが好適である。
The activated carbon has a particle size of 0.5 to 200 μm, preferably 1 to 100 μm, and the conductive auxiliary powder preferably has a particle size of 0.1 μm or less.

【0030】このように、活性炭および導電性助剤を、
最小限の含フッ素高分子樹脂の量で結着し、かつ前記樹
脂の繊維による捕捉効果によってシート状の連続構造体
とすることで活性炭の充填密度密度が高くなるため、シ
ート状の分極性電極の体積あたりの容量が増加するとと
もに破壊強度が増し、さらには、最小限の含フッ素高分
子樹脂の量により粒子間空隙量が保たれるため、イオン
の移動抵抗が減少して、分極性電極の所定投影面積あた
りの内部抵抗値が低減するようになる。
Thus, the activated carbon and the conductive auxiliary are
Since the packing density of activated carbon is increased by binding with a minimum amount of the fluoropolymer resin and forming a continuous sheet-like structure by the capturing effect of the resin fibers, the sheet-like polarizable electrode As the capacity per volume increases, the breaking strength increases, and furthermore, the minimum amount of the fluoropolymer resin maintains the amount of voids between the particles, so that the ion migration resistance decreases and the polarizable electrode decreases. , The internal resistance per predetermined projected area is reduced.

【0031】[0031]

【実施例】ついで、この発明の実施例について説明す
る。 (実施例1)平均粒子径が27μmで比表面積1300
2/gの活性炭に対して、1次粒子径が0.1μm以
下のカーボンブラックを10重量%、添加した粉末混合
物に対して水とイソプロピルアルコール(IPA)9:
1の混合分散溶媒を170重量%添加し、回転混合機に
投入し混合した後、平均直径が0.15〜0.3μmの
ラメラ構造を有するポリテトラフルオロエチレン(PT
FE)を水に対して60重量%分散したディスパージョ
ンを13重量%(PTFE固形分換算で7.8重量%)
添加し、さらに回転混合機で混合した。
Next, an embodiment of the present invention will be described. (Example 1) Average particle diameter is 27 μm and specific surface area is 1300
Water and isopropyl alcohol (IPA) 9 with respect to a powder mixture containing 10% by weight of carbon black having a primary particle size of 0.1 μm or less based on m 2 / g of activated carbon.
170 wt% of the mixed dispersion solvent of No. 1 was added to a rotary mixer and mixed, and then polytetrafluoroethylene having a lamellar structure having an average diameter of 0.15 to 0.3 μm (PT
13% by weight of a dispersion in which FE) is dispersed in water at 60% by weight (7.8% by weight in terms of PTFE solid content)
Was added and mixed on a rotary mixer.

【0032】つぎに、混合物を取り出し減圧乾燥機で8
5℃に加熱して分散溶媒を取り除いた後、カッティング
ミキサーにより粉砕し、0.1〜2mmの粒径に分級し
た粉体を、あらかじめ60℃に加熱した直径120mm
の2本のロールの0.18mmに設定した隙間に連続的
に投入し加熱圧縮して連続的に厚さ0.2mmのシート
状の分極性電極を得た。
Next, the mixture was taken out and dried in a vacuum dryer.
After heating to 5 ° C. to remove the dispersing solvent, the powder pulverized by a cutting mixer and classified to a particle size of 0.1 to 2 mm was heated to 60 ° C. in advance to a diameter of 120 mm.
The two rolls were continuously charged into a gap set at 0.18 mm and heated and compressed to continuously obtain a sheet-shaped polarizable electrode having a thickness of 0.2 mm.

【0033】このシート状の分極性電極を直径20mm
の円板状に打ち抜き、厚さ50μmのセルロース繊維不
織布セパレータを挟んで対向させ素子としさらにその外
側に白金板を配置し集電板とし、さらにその外側からテ
フロン(登録商標)板で挟み込んで固定して、電気二重
層コンデンサセルとした。このセルを1モルになるよう
に、テトラエチルアンモニウム、テトラフルオロボレー
トをプロピレンカーボネートに溶解した電解液に浸漬し
て減圧含浸した。
This sheet-shaped polarizable electrode is 20 mm in diameter.
Punched out into a disc shape, opposed to each other with a 50 μm-thick cellulose fiber nonwoven fabric separator interposed therebetween, and further placed a platinum plate outside the element as a current collecting plate, and further sandwiched and fixed with a Teflon (registered trademark) plate from the outside. Thus, an electric double layer capacitor cell was obtained. This cell was immersed in an electrolytic solution in which tetraethylammonium and tetrafluoroborate were dissolved in propylene carbonate so as to be 1 mol, and impregnated under reduced pressure.

【0034】次に、このセル2.5Vで30分間定電圧
充電後、電極投影面積に対する放電電流密度20mA/
cm2、50mA/cm2で定電流放電して容量を測定し
た。また放電電流密度50mA/cm2の時の放電初期
の電圧降下から内部抵抗を算出した。
Next, after charging the cell at a constant voltage of 2.5 V for 30 minutes, the discharge current density was 20 mA /
was measured capacity by a constant current discharge at cm 2, 50mA / cm 2. The internal resistance was calculated from the voltage drop at the beginning of discharge at a discharge current density of 50 mA / cm 2 .

【0035】(実施例2) 2−1)実施例1においてロール加熱温度を80℃とし
たこと以外はすべて実施例1と同様に行った。
(Example 2) 2-1) The same operation as in Example 1 was performed except that the roll heating temperature was changed to 80 ° C.

【0036】2−2)実施例1においてロール直径を1
60mmとしロールの隙間を0.1mmにしたほかはす
べて実施例1と同様に行った。
2-2) In Example 1, the roll diameter was set to 1
The procedure was the same as in Example 1, except that the gap was 60 mm and the gap between the rolls was 0.1 mm.

【0037】2−3)実施例1においてPTFEの添加
量を固形分換算で5重量%にしたほかはすべて実施例1
と同様に行った。
2-3) Example 1 was repeated except that the amount of PTFE was changed to 5% by weight in terms of solid content in Example 1.
The same was done.

【0038】(実施例3)実施例1において平均粒子径
が8μmで比表面積2400m2/gの活性炭を用いた
ほかはすべて実施例1と同様に行った。
Example 3 The procedure of Example 1 was repeated except that activated carbon having an average particle diameter of 8 μm and a specific surface area of 2400 m 2 / g was used.

【0039】(比較例1)実施例1において回転混合機
から取り出した混合物を乾燥せずにロール成形機により
圧延し厚さ1mmのシートとした後、カレンダーロール
で加熱延伸処理して連続的に厚さ0.2mmのシート状
の分極性電極を得たほかはすべて実施例1と同様に行っ
た。
(Comparative Example 1) The mixture taken out of the rotary mixer in Example 1 was rolled by a roll forming machine without drying to form a sheet having a thickness of 1 mm, and then heated and stretched with a calender roll to continuously produce the sheet. Except that a sheet-shaped polarizable electrode having a thickness of 0.2 mm was obtained, the same procedure was performed as in Example 1.

【0040】(比較例2)実施例1においてカッティン
グミキサーにより粉砕した粉体の分級を行わなかったほ
かはすべて実施例1と同様に行った。
Comparative Example 2 The procedure of Example 1 was repeated except that the powder crushed by the cutting mixer was not classified.

【0041】(比較例3)実施例1においてPTFEの
添加量を固形分換算で40重量%にしたほかはすべて実
施例1と同様に行った。
Comparative Example 3 The procedure of Example 1 was repeated except that the amount of PTFE was changed to 40% by weight in terms of solid content.

【0042】(比較例4)実施例1において導電性助剤
に平均粒子径3μmで炭化温度1200℃以上のフェノ
ール炭化物を用いたことのほかはすべて実施例1と同様
に行った。以上の実施例および比較例のシート状分極性
電極の特性値を(表1)に示す。
Comparative Example 4 The procedure of Example 1 was repeated, except that a phenol carbide having an average particle diameter of 3 μm and a carbonization temperature of 1200 ° C. or higher was used as the conductive additive. Table 1 shows the characteristic values of the sheet-shaped polarizable electrodes of the above Examples and Comparative Examples.

【0043】[0043]

【表1】 [Table 1]

【0044】表1から明らかなように、本発明によれ
ば、最小限の含フッ素高分子樹脂の量によりシート状の
連続構造体を作成できるため、活性炭の充填量多く、前
記シート状の分極性電極の体積あたりの容量が増加する
とともに、破壊強度が増し、さらに粒子間空隙量(気孔
容積)が保たれるため、イオンの移動抵抗が減少して、
分極性電極の所定投影面積あたりの内部抵抗値が低減し
たことがわかる。
As is clear from Table 1, according to the present invention, a continuous sheet-like structure can be prepared with a minimum amount of the fluoropolymer resin, so that a large amount of the activated carbon is filled and the above-mentioned sheet-like part is formed. As the capacity per volume of the polar electrode increases, the breaking strength increases, and the interparticle void volume (pore volume) is maintained, so that the ion migration resistance decreases,
It can be seen that the internal resistance per predetermined projected area of the polarizing electrode has been reduced.

【0045】なお、比較例2では粉体の分級を行わなか
ったためロールに巻きこまれない大きさの物も含まれて
しまいシート状成形物に穴が多数あいて連続構造体とし
ての試料を取得できなかった。
In Comparative Example 2, since the powder was not classified, a material having a size that could not be wound on a roll was included, and a large number of holes were formed in the sheet-like molded product to obtain a sample as a continuous structure. Did not.

【0046】[0046]

【発明の効果】以上のように、この発明は、従来のよう
に液状の潤滑剤などを用いることなく、混合粉末をその
まま圧縮し、必要に応じて加熱処理してシート状に成型
するため、混和物に十分な圧力をかけることができるよ
うになり、シート状に成形する際に、含フッ素重合体樹
脂が十分な結着性を発揮でき、破壊強度に優れた分極性
電極を得ることができる。
As described above, according to the present invention, the mixed powder is compressed as it is without using a liquid lubricant or the like as in the prior art, and heat-treated as necessary to form a sheet. A sufficient pressure can be applied to the mixture, and when the mixture is formed into a sheet, the fluoropolymer resin can exhibit sufficient binding properties, and a polarizable electrode having excellent breaking strength can be obtained. it can.

【0047】また、活性炭粉末間の接触抵抗が減少する
ため、大容量でかつ内部抵抗が低い電気二重層コンデン
サを実現できる。
Further, since the contact resistance between the activated carbon powders is reduced, an electric double layer capacitor having a large capacity and a low internal resistance can be realized.

【0048】さらに、シート状に成型した後に、さらに
このシートを延伸処理するなどの2次工程が必要なくな
り、20mA/cm2を超える大電流密度での出力の低
下を低減した高出力密度の電気二重層コンデンサを作成
することができる。
Further, after the sheet is formed into a sheet, a secondary process such as stretching the sheet is not required, and the output of the high power density with a large current density exceeding 20 mA / cm 2 is reduced. Double layer capacitors can be made.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明による分極性電極の構造を示す電子
顕微鏡写真
FIG. 1 is an electron micrograph showing the structure of a polarizable electrode according to the present invention.

【図2】 この発明による分極性電極の構造を示す模式
FIG. 2 is a schematic view showing the structure of a polarizable electrode according to the present invention.

【符号の説明】[Explanation of symbols]

1 活性炭 2 導電性助剤 3 繊維 DESCRIPTION OF SYMBOLS 1 Activated carbon 2 Conductive auxiliary agent 3 Fiber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渋谷 秀樹 神奈川県藤沢市土棚8番地 株式会社シー シーアール藤沢センター内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Hideki Shibuya 8 Fujikurasawa, Fujisawa-shi, Kanagawa CRF Fujisawa Center Co., Ltd.

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 活性炭粉末、導電性助剤粉末およびラメ
ラ構造をとる含フッ素高分子樹脂粉末を乾式混合して混
合粉末を形成した後、この混合粉末を圧縮してシート状
に成型する電気二重層コンデンサ用分極性電極の製造方
法。
1. An electric device for forming a mixed powder by dry-mixing an activated carbon powder, a conductive auxiliary powder and a fluoropolymer resin powder having a lamellar structure, and then compressing the mixed powder to form a sheet. A method for producing a polarizable electrode for a multilayer capacitor.
【請求項2】 活性炭粉末、導電性助剤粉末およびラメ
ラ構造をとる含フッ素高分子樹脂粉末を、水または液状
炭化水素のうち少なくともひとつを含む分散溶媒を添加
して湿式混合した後、分散溶媒を除去するとともに粉砕
して混合粉末を形成し、この混合粉末を圧縮してシート
状に成型する電気二重層コンデンサ用分極性電極の製造
方法。
2. A method of adding a dispersion solvent containing at least one of water and a liquid hydrocarbon to an activated carbon powder, a conductive auxiliary powder, and a fluoropolymer resin powder having a lamellar structure, and wet-mixing the dispersion. And pulverizing the mixture to form a mixed powder, and compressing the mixed powder into a sheet to produce a polarizable electrode for an electric double layer capacitor.
【請求項3】 活性炭粉末に対し、ラメラ構造をとる含
フッ素高分子樹脂が0.1〜30重量%、導電性助剤粉
末が1〜20重量%混合される請求項1または請求項2
の製造方法。
3. The activated carbon powder is mixed with 0.1 to 30% by weight of a fluoropolymer resin having a lamellar structure and 1 to 20% by weight of a conductive auxiliary powder.
Manufacturing method.
【請求項4】 ラメラ構造をとる含フッ素高分子樹脂が
ポリテトラフルオロエチレンである請求項1または請求
項2の製造方法。
4. The method according to claim 1, wherein the fluoropolymer resin having a lamellar structure is polytetrafluoroethylene.
【請求項5】 前記混合粉末を粉砕および/または分級
した2次粒子径が、0.1〜2.0mmである請求項1
または請求項2の製造方法。
5. The secondary particle diameter obtained by pulverizing and / or classifying the mixed powder is 0.1 to 2.0 mm.
Alternatively, the method according to claim 2.
【請求項6】 前記混合粉末を、室温〜200℃で圧縮
する請求項1または請求項2の製造方法。
6. The method according to claim 1, wherein the mixed powder is compressed at room temperature to 200 ° C.
【請求項7】 前記混合粉末を、50℃〜100℃で加
熱圧縮する請求項1または請求項2の製造方法。
7. The method according to claim 1, wherein the mixed powder is heated and compressed at 50 ° C. to 100 ° C.
【請求項8】 活性炭、導電性助剤およびラメラ構造を
とる含フッ素高分子樹脂を含み、活性炭が、ラメラ構造
の破壊で形成される含フッ素高分子樹脂の微細繊維から
なる三次元網目構造体によって保持されるように結合し
た電気二重層コンデンサ用分極性電極。
8. A three-dimensional network structure comprising activated carbon, a conductive auxiliary agent and a fluoropolymer resin having a lamellar structure, wherein the activated carbon is made of fine fibers of a fluoropolymer resin formed by destruction of the lamellar structure. Polarizable electrode for electric double layer capacitor coupled to be held by a.
【請求項9】 活性炭、導電性助剤およびラメラ構造を
とる含フッ素高分子樹脂を含む分極性電極であって、3
6Å以上の気孔の占める容積が水銀圧入法による測定で
0.3〜0.6cc/cc、密度が0.5〜0.8g/
ccである請求項8の電気二重層コンデンサ用分極性電
極。
9. A polarizable electrode comprising activated carbon, a conductive auxiliary agent and a fluoropolymer resin having a lamellar structure,
The volume occupied by pores of 6 mm or more is 0.3 to 0.6 cc / cc as measured by a mercury intrusion method, and the density is 0.5 to 0.8 g /
9. The polarizable electrode for an electric double layer capacitor according to claim 8, which is cc.
【請求項10】 活性炭の粒子径が0.5〜200μm
である請求項8の電気二重層コンデンサ用分極性電極。
10. The activated carbon has a particle size of 0.5 to 200 μm.
9. The polarizable electrode for an electric double layer capacitor according to claim 8, wherein
【請求項11】 導電性助剤の粒子径が0.1μm以下
である請求項8の電気二重層コンデンサ用分極性電極。
11. The polarizable electrode for an electric double layer capacitor according to claim 8, wherein the particle size of the conductive auxiliary agent is 0.1 μm or less.
【請求項12】 ラメラ構造の破壊で形成される含フッ
素高分子樹脂の微細繊維の径が0.3μm以下である請
求項8の電気二重層コンデンサ用分極性電極。
12. The polarizable electrode for an electric double layer capacitor according to claim 8, wherein the fine fibers of the fluoropolymer resin formed by the destruction of the lamellar structure have a diameter of 0.3 μm or less.
【請求項13】 含フッ素高分子樹脂が、ポリテトラフ
ルオロエチレンである請求項8の電気二重層コンデンサ
用分極性電極。
13. The polarizable electrode for an electric double layer capacitor according to claim 8, wherein the fluoropolymer resin is polytetrafluoroethylene.
【請求項14】 活性炭、導電性助剤およびラメラ構造
をとる含フッ素高分子樹脂を含む分極性電極が、厚み1
0〜2000μmのシート状成形物である請求項8の電
気二重層コンデンサ用分極性電極。
14. A polarizable electrode comprising activated carbon, a conductive auxiliary and a fluoropolymer resin having a lamellar structure, having a thickness of 1
The polarizable electrode for an electric double layer capacitor according to claim 8, which is a sheet-like molded product having a thickness of 0 to 2000 µm.
JP2000098436A 2000-03-31 2000-03-31 Polarizable electrode for electric double layer capacitor and manufacturing method thereof Expired - Lifetime JP4518223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098436A JP4518223B2 (en) 2000-03-31 2000-03-31 Polarizable electrode for electric double layer capacitor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098436A JP4518223B2 (en) 2000-03-31 2000-03-31 Polarizable electrode for electric double layer capacitor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001284185A true JP2001284185A (en) 2001-10-12
JP4518223B2 JP4518223B2 (en) 2010-08-04

Family

ID=18612917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098436A Expired - Lifetime JP4518223B2 (en) 2000-03-31 2000-03-31 Polarizable electrode for electric double layer capacitor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4518223B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278998A (en) * 2005-03-30 2006-10-12 Nippon Chemicon Corp Manufacturing method of polarizable electrode for electric double layer capacitor
JP2009267241A (en) * 2008-04-28 2009-11-12 Tdk Corp Electrode for electric double layer capacitor, and electric double layer capacitor
CN114144548A (en) * 2019-08-30 2022-03-04 株式会社大赛璐 Method for producing fiber article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216506A (en) * 1985-03-06 1987-01-24 株式会社村田製作所 Electric double layer capacitor
JPS62196028A (en) * 1986-02-20 1987-08-29 トヨタ自動車株式会社 Wireless power transmission apparatus
JPH1027733A (en) * 1996-07-12 1998-01-27 Matsushita Electric Ind Co Ltd Electric double-layer capacitor and manufacture thereof
WO1999011706A2 (en) * 1997-09-05 1999-03-11 Chemfab Corporation Improved fluoropolymeric composition
JPH11102844A (en) * 1997-07-28 1999-04-13 Matsushita Electric Ind Co Ltd Electrical double layer capacitor and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6216506A (en) * 1985-03-06 1987-01-24 株式会社村田製作所 Electric double layer capacitor
JPS62196028A (en) * 1986-02-20 1987-08-29 トヨタ自動車株式会社 Wireless power transmission apparatus
JPH1027733A (en) * 1996-07-12 1998-01-27 Matsushita Electric Ind Co Ltd Electric double-layer capacitor and manufacture thereof
JPH11102844A (en) * 1997-07-28 1999-04-13 Matsushita Electric Ind Co Ltd Electrical double layer capacitor and manufacture thereof
WO1999011706A2 (en) * 1997-09-05 1999-03-11 Chemfab Corporation Improved fluoropolymeric composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278998A (en) * 2005-03-30 2006-10-12 Nippon Chemicon Corp Manufacturing method of polarizable electrode for electric double layer capacitor
JP2009267241A (en) * 2008-04-28 2009-11-12 Tdk Corp Electrode for electric double layer capacitor, and electric double layer capacitor
CN114144548A (en) * 2019-08-30 2022-03-04 株式会社大赛璐 Method for producing fiber article

Also Published As

Publication number Publication date
JP4518223B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
CN109074961B (en) Electrode for an energy storage device and method for producing a dry energy storage device electrode film
KR101988691B1 (en) Electrode for energy storage devices and method for making same
KR101724755B1 (en) Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet
JP2016534568A (en) EDLC electrode and manufacturing process thereof
US7160615B2 (en) Granules for formation of an electrode of an electric double layer capacitor, manufacturing method thereof, electrode sheet, polarized electrode, and electric double layer capacitor using a polarized electrode
US20020080553A1 (en) Electrically conductive, freestanding microporous sheet for use in an ultracapacitor
US20120099244A1 (en) Electrode of high-density super capacitor and method for manufacturing same
KR20190078576A (en) Conductive Flake-Strengthened, Polymer-Stabilized Electrode Composition and Method of Making Same
KR20100129307A (en) Ionic liquid-containing electrode membrane and electrode, process for producing the electrode membrane and the electrode, and electric storage device
KR20130088901A (en) Microporous membrane and manufacturing method therefor
EP2088604B1 (en) Electrode membrane, electrode and method for producing the same, and electric double layer capacitor
WO2014175756A1 (en) The carbon electrode and method of carbon electrode manufacturing
CN111312527A (en) Electrode plate, preparation method thereof and capacitor
US8124474B2 (en) Method for producing electrode for electric double layer capacitor
JP4518223B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
JP2008010613A (en) Electric double layer capacitor
KR102013173B1 (en) Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method
KR102188237B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
JP2011527838A (en) Electrode device
KR102188242B1 (en) Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method
KR101815190B1 (en) Manufacturing method of electrod for electric energy storage device and electrod for electric energy storage device by the method
CN116207383B (en) Dry functional layer for lithium battery, preparation method, composite electrode and preparation method
KR20170078760A (en) A method for making a high-density carbon material for high-density carbon electrodes
JP3070796B2 (en) Manufacturing method of polarized electrode
JPH11121295A (en) Electric double-layer capacitor, electrode, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4518223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

EXPY Cancellation because of completion of term