KR101724755B1 - Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet - Google Patents

Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet Download PDF

Info

Publication number
KR101724755B1
KR101724755B1 KR1020117006766A KR20117006766A KR101724755B1 KR 101724755 B1 KR101724755 B1 KR 101724755B1 KR 1020117006766 A KR1020117006766 A KR 1020117006766A KR 20117006766 A KR20117006766 A KR 20117006766A KR 101724755 B1 KR101724755 B1 KR 101724755B1
Authority
KR
South Korea
Prior art keywords
delete delete
sheet
carbon particles
mixture
tetrafluoroethylene
Prior art date
Application number
KR1020117006766A
Other languages
Korean (ko)
Other versions
KR20110076893A (en
Inventor
지안윤 리우
웨이 카이
하이 양
리핑 젱
리후아 시옹
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20110076893A publication Critical patent/KR20110076893A/en
Application granted granted Critical
Publication of KR101724755B1 publication Critical patent/KR101724755B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2231Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds
    • C08J5/2237Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions involving unsaturated carbon-to-carbon bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inert Electrodes (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

탄소 입자들과 용매의 혼합물을 제공하고 이 혼합물을 전단하여 상기 탄소 입자들의 상기 용매 중의 분산액을 형성하는 단계; 상기 분산액에 비-피브릴화된 폴리(테트라플루오로에틸렌)을 첨가하여 생성 혼합물을 제공하고 이 생성 혼합물을 상기 폴리(테트라플루오로에틸렌)의 적어도 일부가 피브릴화될 때까지 전단하는 단계; 상기 생성 혼합물을 시트로 가공하는 단계; 및 상기 시트를 집전체 상으로 결합시키는 단계를 포함하는, 전극의 제조 방법이 제공된다. 상기 전극용 시트 및 상기 시트용 조성물의 제조 방법들 또한 제공된다.Providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; Adding non-fibrillated poly (tetrafluoroethylene) to said dispersion to provide a product mixture and shearing said product mixture until at least a portion of said poly (tetrafluoroethylene) is fibrillated; Processing the product mixture into a sheet; And bonding the sheet onto a current collector. Methods for producing the electrode sheet and the sheet composition are also provided.

Description

조성물, 이 조성물을 포함하는 시트 및 이 시트를 포함하는 전극의 제조 방법{METHODS FOR PREPARING COMPOSITION, SHEET COMPRISING THE COMPOSITION AND ELECTRODE COMPRISING THE SHEET}TECHNICAL FIELD [0001] The present invention relates to a composition, a sheet containing the composition, and a method of manufacturing an electrode including the sheet.

본 발명은 일반적으로 전극에 관한 것으로, 더욱 구체적으로 조성물, 상기 조성물을 포함하는 시트, 및 상기 시트를 포함하고 슈퍼커패시터(supercapacitor), 연료 전지 및 슈퍼커패시터 탈염(desalination) 장치와 같은 전기화학 장치에 사용되는 전극의 제조 방법들에 관한 것이다.Field of the Invention This invention relates generally to electrodes, and more particularly to a composition comprising a sheet comprising the composition, and an electrochemical device comprising the sheet and including a supercapacitor, a fuel cell, and a supercapacitor desalination device And a method of manufacturing an electrode to be used.

슈퍼커패시터는 (그램당 수십 내지 약 100 패럿(farad)(F/g) 정도의 활성 물질의) 단위 질량당 고용량 커패시턴스 및 높은 순간 비-출력을 갖는 에너지 저장 장치이다. 슈퍼커패시터 전기흡착 탈이온 방법은 수처리 비용을 낮추고 환경 오염을 방지하는 새로운 탈염 기술로서 최근에 제안되었다.Supercapacitors are energy storage devices with high capacitance per unit mass and high instantaneous non-output (of the order of tens to about 100 farads (F / g) of active material per gram). The supercapacitor electroadhesion deionization method has recently been proposed as a new desalination technology that reduces water treatment costs and prevents environmental pollution.

슈퍼커패시터는 두 개의 동일한 전극, 전해질, 및 상기 전극들 사이에 개재되고 상기 전해질 이온들에 투과성인 분리막을 포함한다. 슈퍼커패시터는 전극들의 구조 및 전해질의 특성에 따라 서로 다른 유형으로 분류된다. 슈퍼커패시터의 하나의 유형은 유기 전해질, 및 1000 내지 3000 ㎡/g의 큰 비표면적을 갖는 활성 탄소 전극을 가지며, 정전 구동된다.The supercapacitor includes two identical electrodes, an electrolyte, and a separator interposed between the electrodes and permeable to the electrolyte ions. Supercapacitors are classified into different types depending on the structure of the electrodes and the characteristics of the electrolytes. One type of supercapacitor has an organic electrolyte and an activated carbon electrode with a large specific surface area of 1000 to 3000 m2 / g and is electrostatically driven.

슈퍼커패시터의 활성 탄소 전극은 집전체(current collector) 상에 페이스트 시트를 침착시킴으로써 수득된다. 상기 페이스트는 활성 탄소, 용매 및 결합제의 혼합물이다. 폴리테트라플루오로에틸렌(PTFE)은 흔히 사용되는 전극 결합제이다.The activated carbon electrode of the supercapacitor is obtained by depositing a paste sheet on a current collector. The paste is a mixture of activated carbon, a solvent and a binder. Polytetrafluoroethylene (PTFE) is a commonly used electrode binder.

상기 페이스트 시트를 제조하는 경우에, PTFE, 탄소 및 용매를 고 전단 및 고온 하에 혼합하고, 고온에서 1축 캘린더링하고, 고온에서 최종 형태로 압출하고, 고온에서 건조하여 상기 용매를 제거한다. 고온, 특히 물의 끓는점에 가까운 온도는 물 손실을 급격히 일으킬 수 있다. 물이 손실됨에 따라, 상기 물질의 점도는 통제되지 않는 방식으로 상승하고, PTFE의 피브릴화(fibrillation) 속도는 급격히 상승하고, PTFE를 일관된 수준으로 피브릴화하기는 어렵다. 건조는 또한 탄소 입자들 안과 그 둘레의 매우 작은 기공으로 혼입되어 있는 물이 증기로서 제거되도록 한다. 일반적으로 상기 탄소 PTFE 물질을 재습윤시키는 데 매우 오랜 시간이 소요되고, 상기 탄소 PTFE 물질의 원래 습윤된 내부 기공들의 일부조차 다시 재습윤될 수 없다.In preparing the paste sheet, PTFE, carbon and solvent are mixed at high shear and high temperature, uniaxially calendered at high temperature, extruded to a final form at high temperature, and dried at high temperature to remove the solvent. High temperatures, especially temperatures close to the boiling point of water, can cause water loss to occur rapidly. As the water is lost, the viscosity of the material rises in an uncontrolled manner, the fibrillation rate of PTFE rises sharply, and it is difficult to fibrillate the PTFE to a consistent level. Drying also causes water to be removed as steam, which is entrained in very small pores in and around the carbon particles. In general, it takes a very long time to rewet the carbon PTFE material, and even some of the original wetted internal pores of the carbon PTFE material can not be rewet again.

이러한 조작을 실온에서 낮은 전단 속도에서 및 건조 없이 실시하는 것이 제안되었다. 그러나, 이 방법은 하나의 단계로 모든 물질들을 혼합하고(1-단계 방법), PTFE의 비-균일한 혼합 및 PTFE의 불량한 피브릴화를 유발하므로, 불량한 전극 시트를 생성한다. 더욱이, 이 방법은 통상 비교적 긴 시간이 소요된다.It has been proposed to carry out this operation at room temperature at low shear rates and without drying. However, this method produces poor electrode sheets because all the materials are mixed in one step (one-step method), resulting in non-uniform mixing of PTFE and poor fibrillation of PTFE. Moreover, this method usually takes a relatively long time.

따라서, 조성물, 상기 조성물을 포함하는 시트, 및 상기 시트를 포함하는 전극에 대한 개선된 제조 방법들이 필요하다.Thus, there is a need for improved processes for the composition, the sheet comprising the composition, and the electrode comprising the sheet.

하나의 양태에서, 탄소 입자들과 용매의 혼합물을 제공하고 이 혼합물을 전단(shearing)하여 상기 탄소 입자들의 상기 용매 중의 분산액을 형성하는 단계; 및 상기 분산액에 비-피브릴화된 폴리(테트라플루오로에틸렌)을 첨가하여 생성 혼합물을 제공하고 이 생성 혼합물을 상기 폴리(테트라플루오로에틸렌)의 적어도 일부가 피브릴화될 때까지 전단하는 단계를 포함하는 조성물의 제조 방법이 제공된다.In one embodiment, providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; And adding the non-fibrillated poly (tetrafluoroethylene) to the dispersion to provide a resulting mixture and shearing the resulting mixture until at least a portion of the poly (tetrafluoroethylene) is fibrillated ≪ / RTI > is provided.

다른 양태에서, 탄소 입자들과 용매의 혼합물을 제공하고 이 혼합물을 전단하여 상기 탄소 입자들의 상기 용매 중의 분산액을 형성하는 단계; 상기 분산액에 비-피브릴화된 폴리(테트라플루오로에틸렌)을 첨가하여 생성 혼합물을 제공하고 이 생성 혼합물을 상기 폴리(테트라플루오로에틸렌)의 적어도 일부가 피브릴화될 때까지 전단하는 단계; 및 이 생성 혼합물을 시트로 가공하는 단계를 포함하는 시트의 제조 방법이 제공된다.In another embodiment, there is provided a process for preparing a dispersion of carbon particles, comprising: providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; Adding non-fibrillated poly (tetrafluoroethylene) to said dispersion to provide a product mixture and shearing said product mixture until at least a portion of said poly (tetrafluoroethylene) is fibrillated; And a step of processing the product mixture into a sheet.

또 다른 양태에서, 탄소 입자들과 용매의 혼합물을 제공하고 이 혼합물을 전단하여 상기 탄소 입자들의 상기 용매 중의 분산액을 형성하는 단계; 상기 분산액에 비-피브릴화된 폴리(테트라플루오로에틸렌)을 첨가하여 생성 혼합물을 제공하고 이 생성 혼합물을 상기 폴리(테트라플루오로에틸렌)의 적어도 일부가 피브릴화될 때까지 전단하는 단계; 이 생성 혼합물을 시트로 가공하는 단계; 및 상기 시트를 집전체 상으로 결합시키는 단계를 포함하는 전극의 제조 방법이 제공된다.In another embodiment, there is provided a process for preparing a dispersion of carbon particles, comprising: providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; Adding non-fibrillated poly (tetrafluoroethylene) to said dispersion to provide a product mixture and shearing said product mixture until at least a portion of said poly (tetrafluoroethylene) is fibrillated; Processing the product mixture into a sheet; And bonding the sheet onto a current collector.

이하에서는 예시적 실시양태이고 유사한 요소에는 유사한 번호가 매겨진 도면을 참고한다.
도 1은 실시예 1에서 제조된 조성물의 주사 전자 현미경 사진이다.
도 2는 실시예 1에서 제조된 시트의 주사 전자 현미경 사진이다.
도 3은 비교예 1에서 제조된 조성물의 주사 전자 현미경 사진이다.
도 4는 비교예 1에서 제조된 시트의 주사 전자 현미경 사진이다.
The following is an exemplary embodiment and reference is made to the similar numbered figures for similar elements.
1 is a scanning electron micrograph of the composition prepared in Example 1. Fig.
2 is a scanning electron micrograph of the sheet produced in Example 1. Fig.
3 is a scanning electron micrograph of the composition prepared in Comparative Example 1. Fig.
4 is a scanning electron micrograph of the sheet produced in Comparative Example 1. Fig.

조성물, 상기 조성물을 포함하는 시트 및 상기 시트를 포함하는 전극의 제조 방법들이 본원에서 기술된다. 상기 전극은 슈퍼커패시터, 연료 전지 및 슈퍼커패시터 탈염과 같은 전기화학적 장치에 사용될 수 있다. A composition, a sheet comprising the composition, and methods of making the electrode comprising the sheet are described herein. The electrode may be used in an electrochemical device such as a supercapacitor, a fuel cell, and a supercapacitor desalination.

상기 조성물은 탄소 입자들과 용매의 혼합물을 제공하고 이 혼합물을 전단하여 상기 탄소 입자들의 상기 용매 중의 분산액을 형성하는 단계; 및 상기 분산액에 비-피브릴화된 폴리(테트라플루오로에틸렌)을 첨가하여 생성 혼합물을 제공하고 이 생성 혼합물을 상기 폴리(테트라플루오로에틸렌)의 적어도 일부가 피브릴화될 때까지 전단하는 단계에 의해 제조된다(2-단계 방법). 캘린더링, 인쇄 및/또는 압출 후에, 상기 생성 혼합물을 시트로 가공한다. 상기 시트를 원하는 크기 및 형태로 트리밍(trimming)하고, 이를 집전체 위에 압착시켜, 전극을 형성한다.Providing a mixture of carbon particles and a solvent and shearing the mixture to form a dispersion of the carbon particles in the solvent; And adding the non-fibrillated poly (tetrafluoroethylene) to the dispersion to provide a resulting mixture and shearing the resulting mixture until at least a portion of the poly (tetrafluoroethylene) is fibrillated (2-step method). After calendering, printing and / or extrusion, the resulting mixture is processed into a sheet. The sheet is trimmed to a desired size and shape and is pressed onto the current collector to form an electrode.

상기 생성 혼합물을 오븐에서 100℃에서 건조하고, 이를 작은 조각으로 압착(5 MPa)한다. 상기 시트를 작은 조각들로 절단한다. 이 작은 조각들을 주사 전자 현미경 특성화에 사용할 수 있다.The resulting mixture is dried in an oven at 100 < 0 > C and is compacted (5 MPa) into small pieces. The sheet is cut into small pieces. These small pieces can be used for scanning electron microscopic characterization.

상기 용매는 물, 에탄올, 또는 임의의 다른 적합한 용매일 수 있다. 상기 혼합물에 전도성 물질이 포함될 수 있으므로, 상기 조성물은 2 내지 10%(건조 중량 기준)의 폴리(테트라플루오로에틸렌); 0 내지 30%(건조 중량 기준)의 전도성 물질; 및 60 내지 98%(건조 중량 기준)의 탄소 입자들을 포함할 수 있다. 상기 전도성 물질은 강 산성 양이온 교환 수지, 강 염기성 음이온 교환 수지, 카본 블랙, 그래파이트 분말 등일 수 있다. 상기 비-피브릴화된 폴리(테트라플루오로에틸렌)은 분획으로 나뉘어(portionwise) 첨가된다. 이온 교환 수지는 용량을 예컨대 37% 증가시키고/시키거나 저항을 예컨대 21% 감소시킴으로써 전극의 성능을 현저히 개선한다는 점에 주목해야 한다. 물과, 피브릴화가능한 PTFE, 전도성 물질 및 탄소 입자들의 총량 간의 중량비는 3:2 내지 4:1일 수 있다. 용매의 양은 상기 조성물을 시트로 가공하는 방식에 영향을 준다. 사용된 용매의 양이 적으면, 상기 조성물은 시트로 캘린더링되어야 한다. 사용된 용매의 양이 많으면, 상기 생성 혼합물은 상기 집전체 상으로 직접적으로 인쇄될 수 있다.The solvent may be water, ethanol, or any other suitable solvent. As the conductive material may be included in the mixture, the composition may comprise from 2 to 10% (by dry weight) of poly (tetrafluoroethylene); 0 to 30% (by dry weight) of conductive material; And 60 to 98% (by dry weight) of carbon particles. The conductive material may be a strongly acidic cation exchange resin, a strong basic anion exchange resin, a carbon black, a graphite powder, or the like. The non-fibrillated poly (tetrafluoroethylene) is added portionwise in the fraction. It should be noted that ion exchange resins dramatically improve the performance of the electrode by, for example, increasing the capacity by 37% and / or reducing the resistance by, for example, 21%. The weight ratio between water and the total amount of fibrillatable PTFE, conductive material and carbon particles may be from 3: 2 to 4: 1. The amount of solvent affects the manner in which the composition is processed into a sheet. If the amount of solvent used is small, the composition should be calendared to a sheet. If the amount of solvent used is high, the product mixture can be printed directly onto the current collector.

상기 전단은 믹싱 암(mixing arm)의 2축 회전 및 상기 믹싱 암 내부의 배스킷(basket)을 기반으로 한 스피드믹서(예컨대, 스피드믹서(Speedmixer™) DAC(Dual Asymmetric Centrifuge) 150 FVZ, 지멘스) 유형을 사용하여 적용된다. 상기 DAC 150 FVZ의 믹싱 암은 한 방향으로 최대 3500 rpm의 속도로 회전한다. 상기 배스킷은 약 900 rpm의 속도로 반대 방향으로 회전한다. 서로 다른 방향으로 작용하는 서로 다른 원심력의 조합은 빠른 혼합 공정을 가능하게 한다. 이러한 적용에서 사용된 전단의 속도는 400 내지 3500 rpm(믹싱 암의 회전)이다.The front end is a speed mixer (e.g., Speedmixer (TM) DAC (Dual Asymmetric Centrifuge) 150 FVZ, Siemens) based on biaxial rotation of a mixing arm and a basket inside the mixing arm, Type. The mixing arm of the DAC 150 FVZ rotates at a speed of up to 3500 rpm in one direction. The bathket rotates in the opposite direction at a speed of about 900 rpm. The combination of different centrifugal forces acting in different directions enables a fast mixing process. The shear speed used in this application is 400 to 3500 rpm (rotation of the mixing arm).

점도 분석은 상기 혼합물 내 PTFE의 물성을 조사하는 데에 있어서 강력한 툴(tool)이다. 점도 분석에 따르면, PTFE는 PTFE의 피브릴화로 인해 혼합 공정 동안 점도가 증대되는데, 상기 점도는 전단 속도 및 전단 시간에 의존하므로, 따라서 상기 피브릴화 정도가 마찬가지로 증대되는 것으로 나타났다. 시간이 길어질수록 전단은 섬유를 파단시키기 때문에, 점도는 시간에 따라 감소하며, 전단 속도가 너무 높아도 그렇다. 따라서, 비교적 짧은 전단 시간은 높은 전단 속도에서 피브릴화하는 데 충분하다. 그러므로, 상기 제조 공정은 0.5 내지 10분 내에 실온에서 실시된다.The viscosity analysis is a powerful tool in investigating the physical properties of PTFE in the mixture. According to the viscosity analysis, the PTFE increases the viscosity during the mixing process due to the fibrillation of the PTFE, which viscosity is dependent on the shear rate and shear time, thus indicating that the degree of fibrillation is likewise increased. Because shear breaks the fiber as the time elapses, the viscosity decreases with time, even if the shear rate is too high. Thus, a relatively short shear time is sufficient to fibrillate at high shear rates. Therefore, the production process is carried out at room temperature within 0.5 to 10 minutes.

시트의 인장 강도는 4 mm 폭과 1 mm 두께를 갖는 덤벨-형태의 샘플을 사용하여 SANS CMT5105 전기기계적 범용 테스트 기계에 의해 시험한다.The tensile strength of the sheet is tested by a SANS CMT5105 electromechanical general purpose testing machine using a dumbbell-shaped sample having a width of 4 mm and a thickness of 1 mm.

본원에 사용된 단수 형태는 수량을 한정하는 것이 아니고, 다만 참조 항목이 적어도 하나 이상 존재함을 나타낸다. 또한, 동일한 구성요소 또는 특성에 관한 모든 범위들의 종점은 그 종점을 포함하되 독립적으로 조합될 수 있다(예컨대, "최대 약 25 중량%, 또는 더욱 구체적으로는 약 5 내지 약 20 중량%"는 상기 종점들 및 "약 5 내지 약 25 중량%" 등의 범위의 모든 중간값들을 포괄한다). 본원 명세서에 걸쳐 "하나의 실시양태", "또 다른 실시양태", "소정의 실시양태" 등과 같은 용어는 이들 실시양태와 관련하여 기술된 특정 요소(예컨대, 특징, 구조 및/또는 특성)가 그에 기술된 하나 이상의 실시양태에 포함되고, 다른 실시양태들에 존재하거나 존재하지 않을 수도 있음을 의미한다. 또한, 상기 기술된 요소들은 다양한 실시양태에서 임의의 적합한 방식으로 조합될 수 있음을 이해해야 한다. 달리 정의되지 않는 한, 본원에 사용된 기술적 및 과학적인 용어들은 본 발명이 속한 기술 분야의 숙련자가 통상적으로 이해하는 것과 동일한 의미를 가진다.The singular forms as used herein are not intended to limit the quantity, but merely indicate that at least one reference item is present. Also, endpoints of all ranges for the same component or characteristic include their endpoints, but can be combined independently (e.g., "up to about 25 weight percent, or more specifically about 5 to about 20 weight percent" Endpoints and all intermediate values in the range "about 5 to about 25% by weight"). Throughout this specification, terms such as " one embodiment ", "another embodiment "," certain embodiments ", and the like refer to elements (e.g., features, structures, and / or properties) described in connection with the embodiments Quot; is included in one or more embodiments described herein, and may or may not be present in other embodiments. It should also be appreciated that the elements described above may be combined in any suitable manner in various embodiments. Unless defined otherwise, the technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.

실시예Example

다음으로, 본 발명을 실시예 및 비교예를 참조하여 구체적으로 기술한다.Next, the present invention will be described concretely with reference to Examples and Comparative Examples.

실시예 1Example 1

활성 탄소(12 g, 유후안 액티베이티드 카본 캄파니 리미티드(Yuhuan activated carbon Co. Ltd.) 제조, 평균 입자 크기 15 미크론, 표면적 2000 ㎡/g) 및 38 g의 물을 스피드믹서에 첨가하였다. 1000 rpm 속도로 30초 동안 실온에서 혼합하였다.Activated carbon (12 g, manufactured by Yuhuan activated carbon Co. Ltd., average particle size 15 microns, surface area 2000 m2 / g) and 38 g of water were added to the speed mixer. 1000 rpm for 30 seconds at room temperature.

이어서, 혼합물에 0.6 g의 PTFE(T-60 에멀젼, 듀퐁(Dupont))를 적하하고 1000 rpm에서 30초 동안 혼합하였다. 이 혼합물에 또 다른 0.6 g의 PTFE를 적하하고 1000 rpm에서 30초 동안 혼합하였다. 이어서, 생성 혼합물을 페이스트로서 형성하였으며, 일부의 물이 상기 혼합물로부터 스며나왔다. 이 페이스트는 임의의 건조 단계 없이 캘린더링을 위해 직접적으로 사용될 수 있다.Then 0.6 g of PTFE (T-60 emulsion, Dupont) was added dropwise to the mixture and mixed for 30 seconds at 1000 rpm. Another 0.6 g of PTFE was added to the mixture and mixed at 1000 rpm for 30 seconds. The resulting mixture was then formed as a paste, and some of the water exuded from the mixture. This paste can be used directly for calendering without any drying step.

도 1은 상기 페이스트의 주사 전자 현미경(SEM) 사진이다. 이 사진으로부터, 섬유가 탄소 입자들 가까이에서 발견되었다. 이는 PTFE의 피브릴화가 혼합 도중에 발생하였음을 확인하여 주었다.1 is a scanning electron microscope (SEM) photograph of the paste. From this photo, fibers were found near the carbon particles. This confirmed that fibrillation of PTFE occurred during mixing.

롤 캘린더링을 위해, 2-롤 캘린더를 사용하였다. 캘린더 닙(nip)을 0.8 mm 폭으로 설정하고, 상기 혼합된 페이스트를 상기 닙에 통과시켜서, 얇은 시트를 형성하였다. 이 시트를 1/3로 접어서 이를 다시 상기 캘린더의 닙 속으로 삽입하였다. 이러한 과정을 매회 90°롤링 방향을 변경시켜가면서 5회 반복하였다. 최종적으로, 약 1 mm 두께의 균일한 탄소 복합체 박형 시트가 준비되었다. 도 2는 이러한 방법에 의해 제조된 탄소 시트의 SEM 사진을 나타낸다. 탄소 입자들이 PTFE 섬유로 둘러싸인 것을 매우 확실히 알 수 있다. 이들 섬유는 캘린더링 전의 페이스트의 무질서에 비해 몇몇 방향으로 신장되었다. 이렇게 배향된 섬유 신장은 상기 캘린더링 공정 때문이다. 생성 시트의 인장 강도는 0.14 MPa이다.For roll calendering, a 2-roll calender was used. The calender nip was set to 0.8 mm width, and the mixed paste was passed through the nip to form a thin sheet. This sheet was folded in 1/3 and then inserted again into the nip of the calendar. This process was repeated five times while changing the rolling direction at 90 ° each time. Finally, a uniform thin carbon composite sheet having a thickness of about 1 mm was prepared. Fig. 2 shows an SEM photograph of the carbon sheet produced by this method. It is very clear that the carbon particles are surrounded by PTFE fibers. These fibers were elongated in several directions compared to the disorder of the paste before calendering. This oriented fiber stretch is due to the calendering process. The tensile strength of the resulting sheet is 0.14 MPa.

최종적으로, 상기 시트를 전극 조립체에 사용하기 위해 4 cm × 10 cm 직사각형으로 트리밍하였다. 하나의 직사각형을 Ti 메쉬 집전체 위에 놓았다. 압착(8 MPa) 후에, 40 ㎠ 표면적을 갖는 커패시터 전극이 형성되었다. 각각 3 g의 활성 탄소 담지량을 가지고 2개의 적층된 스페이서(spacer)(1.0 mm 두께)를 갖는 두 개의 전극을 함께 조립하여 슈퍼커패시터 탈염에 사용되는 전지를 형성하였다. 이들 전극 사이에는 1560 ppm NaCl 용액이 존재한다. 전지 저항은 2.4±0.07 옴(Ohm)이었다. 전지 용량은 75.6±0.7 F/g으로서 1 mol/L NaCl 용액 중에서 스캐닝 순환 전압전류법에 의해 측정되었다.Finally, the sheet was trimmed to a 4 cm x 10 cm rectangle for use in an electrode assembly. One rectangle was placed on the Ti mesh collector. After compression (8 MPa), a capacitor electrode having a surface area of 40 cm < 2 > was formed. Two electrodes with two stacked spacers (1.0 mm thick) each having an active carbon loading of 3 g were assembled together to form a cell for use in supercapacitor desalination. There is a 1560 ppm NaCl solution between these electrodes. The cell resistance was 2.4 +/- 0.07 Ohm. The cell capacity was 75.6 ± 0.7 F / g and was measured by scanning cyclic voltammetry in 1 mol / L NaCl solution.

실시예 2Example 2

활성 탄소(6 g, 유후안 액티베이티드 카본 캄파니 리미티드 제조, 코코넛 외피 형태, 평균 입자 크기 15 미크론, 표면적 2000 ㎡/g) 및 21 g의 음이온 교환 수지(티안진 난카이 레진 팩토리(Tianjin Nankai Resin Factory), 강 염기성 음이온 교환 수지 201X7, 사용 전 약 5 ㎛로 밀링함, 수분 함량 40%) 및 20 g의 물을 스피드믹서에 첨가하였다. 1000 rpm 속도로 30초 동안 실온에서 혼합하였다.(6 g, manufactured by Yufuin Activated Carbon Co., Ltd., coconut shell type, average particle size 15 microns, surface area 2000 m2 / g) and 21 g of anion exchange resin (Tianjin Nankai Resin Factory, strong basic anion exchange resin 201X7, milled to about 5 ㎛ before use, moisture content 40%) and 20 g of water were added to the speed mixer. 1000 rpm for 30 seconds at room temperature.

혼합물에, 총 0.8 g의 PTFE(T-60 에멀젼, 듀퐁)를 첨가하였다. 이 혼합물에 매회 0.2 g의 PTFE를 적하하고 완료시까지 3500 rpm에서 20초 동안 혼합하였다. 이 페이스트를 캘린더링을 위해 롤러에 직접적으로 두었다.To the mixture, a total of 0.8 g of PTFE (T-60 emulsion, DuPont) was added. 0.2 g of PTFE was added dropwise to the mixture each time and mixed for 20 seconds at 3500 rpm until completion. This paste was placed directly on the roller for calendering.

롤 캘린더링을 위해, 2-롤 캘린더를 사용하였다. 캘린더 닙을 0.8 mm 폭으로 설정하고, 상기 혼합된 페이스트를 상기 닙에 통과시켜서, 얇은 시트를 형성하고, 이 시트를 1/3로 접어서 이를 다시 상기 캘린더의 닙 속으로 삽입하였다. 이러한 과정을 매회 90°롤링 방향을 변경시켜가면서 5회 반복하였다. 최종적으로, 약 1 mm 두께의 균일한 탄소 복합체 박형 시트가 준비되었다.For roll calendering, a 2-roll calender was used. The calender nip was set to a width of 0.8 mm and the mixed paste was passed through the nip to form a thin sheet which was folded in 1/3 and again inserted into the nip of the calender. This process was repeated five times while changing the rolling direction at 90 ° each time. Finally, a uniform thin carbon composite sheet having a thickness of about 1 mm was prepared.

최종적으로, 상기 시트를 전극 조립체에 사용하기 위해 4 cm × 10 cm 직사각형으로 트리밍하고, 이어서 이를 Ti 메쉬 집전체 위에 놓았다. 압착(8 MPa) 후에, 커패시터 전극이 형성되었다. 3 g의 활성 탄소 담지량을 가진 전극을 슈퍼커패시터 탈염에 사용되는 양극으로서 조립하였다.Finally, the sheet was trimmed with a 4 cm x 10 cm rectangle for use in an electrode assembly, which was then placed on a Ti mesh housing. After compression (8 MPa), a capacitor electrode was formed. An electrode having an active carbon loading of 3 g was assembled as a positive electrode for use in supercapacitor desalination.

실시예 3Example 3

활성 탄소(6 g, 유후안 액티베이티드 카본 캄파니 리미티드 제조, 코코넛 외피 형태, 평균 입자 크기 15 미크론, 표면적 2000 ㎡/g) 및 21 g의 양이온 교환 수지(티안진 난카이 레진 팩토리, 강 산성 양이온 교환 수지 001X7, 사용 전 약 5 ㎛로 밀링함, 수분 함량 40%) 및 20 g의 물을 스피드믹서에 첨가하였다. 1000 rpm 속도로 30초 동안 실온에서 혼합하였다.(6 g, produced by Yufuin Activated Carbon Co., Ltd., coconut shell type, average particle size 15 microns, surface area 2000 m2 / g) and 21 g of cation exchange resin Exchange resin 001X7, milled to about 5 [mu] m before use, moisture content 40%) and 20 g of water were added to the speed mixer. 1000 rpm for 30 seconds at room temperature.

혼합물에, 총 0.8 g의 PTFE(T-60 에멀젼, 듀퐁)를 첨가하였다. 매회 이 혼합물에 0.2 g의 PTFE를 적하하고 완료시까지 3500 rpm에서 20초 동안 혼합하였다. 이 페이스트를 캘린더링을 위해 롤러에 직접적으로 두었다.To the mixture, a total of 0.8 g of PTFE (T-60 emulsion, DuPont) was added. Each time 0.2 g of PTFE was added to the mixture and mixed for 20 seconds at 3500 rpm until completion. This paste was placed directly on the roller for calendering.

롤 캘린더링을 위해, 2-롤 캘린더를 사용하였다. 캘린더 닙을 0.8 mm 폭으로 설정하고, 상기 혼합된 페이스트를 상기 닙에 통과시켜서, 얇은 시트를 형성하고, 이 시트를 1/3로 접어서 이를 다시 상기 캘린더의 닙 속으로 삽입하였다. 이러한 과정을 매회 90°롤링 방향을 변경시켜가면서 5회 반복하였다. 최종적으로, 약 1 mm 두께의 균일한 탄소 복합체 박형 시트가 준비되었다.For roll calendering, a 2-roll calender was used. The calender nip was set to a width of 0.8 mm and the mixed paste was passed through the nip to form a thin sheet which was folded in 1/3 and again inserted into the nip of the calender. This process was repeated five times while changing the rolling direction at 90 ° each time. Finally, a uniform thin carbon composite sheet having a thickness of about 1 mm was prepared.

최종적으로, 상기 시트를 전극 조립체에 사용하기 위해 4 cm × 10 cm 직사각형으로 트리밍하고, 이어서 이를 Ti 메쉬 집전체 위에 놓았다. 압착(8 MPa) 후에, 커패시터 전극이 형성되었다. 3 g의 활성 탄소 담지량을 가진 전극을 슈퍼커패시터 탈염에 사용되는 음극으로서 조립하였다.Finally, the sheet was trimmed with a 4 cm x 10 cm rectangle for use in an electrode assembly, which was then placed on a Ti mesh housing. After compression (8 MPa), a capacitor electrode was formed. An electrode having an active carbon loading of 3 g was assembled as a cathode for use in supercapacitor desalination.

상기 생성된 실시예 3의 음극(40 ㎠ 표면적) 및 실시예 2의 양극(40 ㎠ 표면적)을 함께 조립하고 2개의 스페이서(두께: 1.5 mm)를 이들 전극 사이에 두었다. 1560 ppm NaCl 용액 중에서 충전 상태의 개시시에 전압을 계산하여 전지 저항을 측정하였다. 그리고, 1 mol/L NaCl 용액 중에서 스캐닝 순환 전압전류법에 의해 용량을 측정하였다. 전지 저항은 1.9±0.10 Ω이었다. 실시예 1에 비해 21%가 감소하였다. 그리고, 비용량은 103±0.5 F/g이었고, 실시예 1에 비해 37%가 증가하였다.The cathode (40 cm2 surface area) of Example 3 produced above and the anode (40 cm2 surface area) of Example 2 were assembled together and two spacers (thickness: 1.5 mm) were placed between these electrodes. The cell resistance was measured by calculating the voltage at the start of the charge state in 1560 ppm NaCl solution. Then, the capacity was measured in a 1 mol / L NaCl solution by scanning cyclic voltammetry. The cell resistance was 1.9 ± 0.10 Ω. Was reduced by 21% as compared with Example 1. The specific capacity was 103 ± 0.5 F / g, which was increased by 37% as compared with Example 1.

실시예 4Example 4

활성 탄소(12 g, 유후안 액티베이티드 카본 캄파니 리미티드 제조, 코코넛 외피 형태, 평균 입자 크기 15 미크론, 표면적 2000 ㎡/g) 및 35 g의 에탄올을 스피드믹서에 첨가하였다. 1000 rpm 속도로 30초 동안 실온에서 혼합하였다.Activated carbon (12 g, manufactured by Yufuang Activated Carbon Co., Ltd., coconut shell type, average particle size 15 microns, surface area 2000 m2 / g) and 35 g of ethanol were added to the speed mixer. 1000 rpm for 30 seconds at room temperature.

혼합물에, 1.6 g의 PTFE(T-60 에멀젼, 듀퐁)를 3회 적하하였다. 구체적으로, 혼합물에 제 1의 0.4 g PTFE를 적하하고 800 rpm으로 1분 동안 혼합하고; 이어서 혼합물에 0.6 g PTFE를 적하하고 800 rpm으로 1분 동안 혼합하고; 마지막으로 혼합물에 0.6 g PTFE를 적하하고 800 rpm으로 1분 동안 혼합하였다. 생성 페이스트를 캘린더링에 사용하였다.To the mixture, 1.6 g of PTFE (T-60 emulsion, DuPont) was added dropwise three times. Specifically, a first 0.4 g PTFE was added to the mixture and mixed at 800 rpm for 1 minute; Then 0.6 g of PTFE was added dropwise to the mixture and mixed at 800 rpm for 1 minute; Finally 0.6 g of PTFE was added to the mixture and mixed for 1 minute at 800 rpm. The resulting paste was used for calendering.

롤 캘린더링을 위해, 2-롤 캘린더를 사용하였다. 캘린더 닙을 0.8 mm 폭으로 설정하고, 상기 혼합된 페이스트를 상기 닙에 통과시켜서, 얇은 시트를 형성하고, 이 시트를 1/3로 접어서 이를 다시 상기 캘린더의 닙 속으로 삽입하였다. 이러한 과정을 매회 90°롤링 방향을 변경시켜가면서 5회 반복하였다. 최종적으로, 약 1 mm 두께의 균일한 탄소 복합체 박형 시트가 준비되었다.For roll calendering, a 2-roll calender was used. The calender nip was set to a width of 0.8 mm and the mixed paste was passed through the nip to form a thin sheet which was folded in 1/3 and again inserted into the nip of the calender. This process was repeated five times while changing the rolling direction at 90 ° each time. Finally, a uniform thin carbon composite sheet having a thickness of about 1 mm was prepared.

최종적으로, 상기 시트를 전극 조립체에 사용하기 위해 4 cm × 10 cm 직사각형으로 트리밍하고, 이어서 이를 Ti 메쉬 집전체 위에 놓았다. 압착(8 MPa) 후에, 커패시터 전극이 형성되었다. 형성된 전지를 슈퍼커패시터 탈염에 사용하였다.Finally, the sheet was trimmed with a 4 cm x 10 cm rectangle for use in an electrode assembly, which was then placed on a Ti mesh housing. After compression (8 MPa), a capacitor electrode was formed. The formed cell was used for supercapacitor desalination.

비교예 1Comparative Example 1

12 g의 활성 탄소(유후안 액티베이티드 카본 캄파니 리미티드 제조, 코코넛 외피 형태, 평균 입자 크기 15 미크론, 표면적 2000 ㎡/g), 38 g의 물 및 1.2 g의 PTFE를 칭량하였다. 모든 이들 물질을 스피드믹서에서 1000 rpm 속도로 60초 동안 실온에서 혼합하였다. 슬러리는 내부에 많은 수분으로 인해 물을 분리하지 않고 는 롤러에서 직접적으로 캘린더링하기가 쉽지 않다. 30분 정치시킨 후, 물을 침출시켜, 캘린더링에 사용할 수 있는 페이스트를 형성할 수 있다. 또는, 여과지로 여과시켜 페이스트를 형성한 후, 그 페이스트를 롤러 위에서 캘린더링을 위해 사용할 수 있다.12 g of activated carbon (manufactured by Yufu Activated Carbon Co., Ltd., coconut shell type, average particle size 15 microns, surface area 2000 m2 / g), 38 g of water and 1.2 g of PTFE were weighed. All these materials were mixed at speed of 1000 rpm in a speed mixer for 60 seconds at room temperature. The slurry is not easy to calend directly from the rollers without separating the water due to the large amount of water inside. After allowing to stand for 30 minutes, water may be leached to form a paste usable for calendering. Alternatively, after filtration through a filter paper to form a paste, the paste can be used for calendering on rollers.

도 3은 이러한 1-단계 방법에 의한 페이스트의 SEM 사진이다. 이 사진에서는, 섬유가 전혀 발견되지 않았고, 단지 일부 응집된 작은 입자들과 비교적 큰 활성 탄소 입자들만이 발견되었다. 이는 상기 1-단계 혼합 과정 동안, PTFE의 피브릴화는 불량하였음을 확인시켜준다.3 is a SEM photograph of the paste by this one-step method. In this photograph, no fibers were found, only some agglomerated small particles and relatively large activated carbon particles were found. This confirms that during the one-step mixing process, the fibrillation of the PTFE is poor.

롤 캘린더링을 위해, 2-롤 캘린더를 사용하였다. 캘린더 닙을 0.8 mm 폭으로 설정하고, 상기 혼합된 페이스트를 상기 닙에 통과시켰다. 3회 롤링 후, 상기 페이스트가 시트로 되었다. 이 시트를 1/3로 접어서 이를 다시 상기 캘린더의 닙 속으로 삽입하였다. 이러한 과정을 매회 90°롤링 방향을 변경시켜가면서 8회 반복하였다. 최종적으로, 약 1 mm 두께의 균일한 탄소 복합체 박형 시트가 준비되었다.For roll calendering, a 2-roll calender was used. The calender nip was set to a width of 0.8 mm, and the mixed paste was passed through the nip. After rolling three times, the paste became a sheet. This sheet was folded in 1/3 and then inserted again into the nip of the calendar. This process was repeated eight times while changing the rolling direction at 90 ° each time. Finally, a uniform thin carbon composite sheet having a thickness of about 1 mm was prepared.

1-단계 혼합 방법에 의해 생성된 시트의 인장 강도는 0.04 MPa이었고, 이는 실시예 1에서보다 훨씬 더 낮았다.The tensile strength of the sheet produced by the one-step mixing method was 0.04 MPa, which was much lower than in Example 1.

도 4는 상기 방법에 의해 제조된 탄소 시트의 주사 전자 현미경 사진을 나타낸다. 도 2의 사진에 비해, 단지 몇몇 섬유들만이 탄소 입자에 가까이 있었다. 이들 섬유는 상기 캘린더링 공정에서 생성되었는데, 그 이유는 캘린더링 전 SEM 사진(도 3)에 나타난 페이스트에서는 섬유가 전혀 발견되지 않았기 때문이다.4 shows a scanning electron microscope photograph of the carbon sheet produced by the above method. Compared to the photograph of FIG. 2, only a few fibers were close to the carbon particles. These fibers were produced in the calendering process because no fibers were found in the paste shown in the pre-calendering SEM photograph (Fig. 3).

본 발명을 예시적인 실시양태를 참조하여 기술하였지만, 본 발명의 범주를 벗어지나지 않고 다양한 변경이 가능하고 이들 요소들을 그 균등물로 대체할 수 있음은 당해 분야 숙련자들에 의해 이해될 수 있을 것이다. 또한, 본 발명의 본질적인 범주를 벗어나지 않고 본 발명의 개시내용에 대한 특정 상황 또는 물질을 적용하기 위해 많은 변형을 가할 수 있다. 따라서, 본 발명은 본 발명의 실시를 위해 고려된 최적의 양태로 개시된 구체적인 실시양태로 제한되지 않으며 본 발명은 첨부된 특허청구범위의 범주 안에 드는 모든 실시양태를 포함하는 것으로 의도된다.Although the present invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Accordingly, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims (29)

(a) 탄소 입자들 또는 전도성 물질을 더한 탄소 입자들과 물의 혼합물을 제공하고, 이 혼합물을 전단(shearing)하여 물 중의 상기 탄소 입자들 또는 전도성 물질을 더한 탄소 입자들의 분산액을 형성하는 단계;
(b) 상기 분산액에 비-피브릴화된(non-fibrillated) 폴리(테트라플루오로에틸렌)을 첨가하여, 2 내지 10%(건조 중량 기준)의 폴리(테트라플루오로에틸렌); 0 내지 30%(건조 중량 기준)의 전도성 물질; 및 60 내지 98%(건조 중량 기준)의 탄소 입자들을 포함하는 생성 혼합물을 제공하되, 상기 생성 혼합물 중에서 물과 상기 폴리(테트라플루오로에틸렌), 상기 전도성 물질 및 상기 탄소 입자들의 총량 간의 중량비가 3:2 내지 4:1 범위이고, 이 생성 혼합물을 상기 폴리(테트라플루오로에틸렌)의 적어도 일부가 피브릴화될 때까지 전단하여 생성 혼합물이 페이스트를 형성하는, 단계; 이어서 바로
(c) 상기 페이스트 형상의 생성 혼합물을 시트로 가공하는 단계; 및
(d) 상기 시트를 집전체에 부착하는 단계
를 포함하는, 전극 형성 방법.
(a) providing a mixture of carbon particles and water plus carbon particles or water, and shearing the mixture to form a dispersion of the carbon particles or conductive particles in water;
(b) adding 2 to 10% (by dry weight) of poly (tetrafluoroethylene) to the dispersion by adding non-fibrillated poly (tetrafluoroethylene); 0 to 30% (by dry weight) of conductive material; And 60 to 98% (by dry weight) of carbon particles, wherein the weight ratio between water and the total amount of poly (tetrafluoroethylene), the conductive material and the carbon particles in the resulting mixture is 3 : 2 to 4: 1, and the resulting mixture is sheared until at least a portion of the poly (tetrafluoroethylene) is fibrillated, so that the resulting mixture forms a paste; Then
(c) processing the paste-like product mixture into a sheet; And
(d) attaching the sheet to the current collector
Wherein the electrode forming step comprises the steps of:
제 1 항에 있어서,
상기 단계 (c)에서 생성 혼합물이 캘린더링(calendering)에 의해 시트로 가공되는, 방법.
The method according to claim 1,
Wherein in step (c) the product mixture is processed into a sheet by calendering.
제 1 항 또는 제 2 항에 있어서,
상기 단계 (a) 및 (b)가 각각 실온에서 실시되는, 방법.
3. The method according to claim 1 or 2,
Wherein steps (a) and (b) are carried out at room temperature, respectively.
제 1 항 또는 제 2 항에 있어서,
상기 단계 (a) 및 (b)가 각각 총괄적으로 30초 내지 10분 내에 실시되는, 방법.
3. The method according to claim 1 or 2,
Wherein said steps (a) and (b) are each carried out within a total of 30 seconds to 10 minutes.
제 1 항 또는 제 2 항에 있어서,
상기 단계 (a) 및 (b) 각각에서 상기 전단의 속도가 400 내지 3500 rpm인, 방법.
3. The method according to claim 1 or 2,
Wherein the shear speed in each of steps (a) and (b) is 400 to 3500 rpm.
제 1 항에 있어서,
상기 전도성 물질이 강 산성 양이온 교환 수지를 포함하는, 방법.
The method according to claim 1,
Wherein the conductive material comprises a strongly acidic cation exchange resin.
제 1 항에 있어서,
상기 전도성 물질이 강 염기성 음이온 교환 수지를 포함하는, 방법.
The method according to claim 1,
Wherein the conductive material comprises a strong basic anion exchange resin.
제 1 항에 있어서,
상기 전도성 물질이 카본 블랙 또는 그래파이트 분말을 포함하는, 방법.
The method according to claim 1,
Wherein the conductive material comprises carbon black or graphite powder.
삭제delete 제 1 항에 있어서,
상기 비-피브릴화된 폴리(테트라플루오로에틸렌)이 분획으로 나뉘어(portionwise) 첨가되는, 방법.
The method according to claim 1,
Wherein the non-fibrillated poly (tetrafluoroethylene) is added in portions into the fraction.
제 1 항에 있어서,
상기 탄소 입자들이 활성 탄소 입자를 포함하는, 방법.
The method according to claim 1,
Wherein the carbon particles comprise activated carbon particles.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020117006766A 2008-09-26 2009-08-10 Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet KR101724755B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2008101617889A CN101685710B (en) 2008-09-26 2008-09-26 Methods for preparing composition and sheet containing composition as well as electrode containing sheet
CN200810161788.9 2008-09-26
PCT/IB2009/006723 WO2010035092A1 (en) 2008-09-26 2009-08-10 Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020167013162A Division KR20160062765A (en) 2008-09-26 2009-08-10 Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet

Publications (2)

Publication Number Publication Date
KR20110076893A KR20110076893A (en) 2011-07-06
KR101724755B1 true KR101724755B1 (en) 2017-04-07

Family

ID=41338515

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020117006766A KR101724755B1 (en) 2008-09-26 2009-08-10 Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet
KR1020167013162A KR20160062765A (en) 2008-09-26 2009-08-10 Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020167013162A KR20160062765A (en) 2008-09-26 2009-08-10 Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet

Country Status (9)

Country Link
US (1) US8904626B2 (en)
EP (1) EP2342265B1 (en)
JP (1) JP6106362B2 (en)
KR (2) KR101724755B1 (en)
CN (1) CN101685710B (en)
BR (1) BRPI0913755B8 (en)
CA (1) CA2738409C (en)
SG (1) SG2013071303A (en)
WO (1) WO2010035092A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112013002443T5 (en) * 2012-05-11 2015-02-26 Nippon Valqua Industries, Ltd. Electrode sheet for an electric double layer capacitor and manufacturing method therefor
CN103508522A (en) * 2013-09-30 2014-01-15 天津大学 Ion exchange resin modified carbon electrode as well as preparation method and application of ion exchange resin modified carbon electrode
WO2015138333A1 (en) 2014-03-10 2015-09-17 Maxwell Technologies, Inc. Methods and apparatuses for polymer fibrillization under electric field
CN105304347A (en) * 2015-09-24 2016-02-03 山东润昇电源科技有限公司 Flexible super-capacitor electrode and manufacturing method thereof
WO2018076098A1 (en) 2016-10-28 2018-05-03 Adven Industries, Inc. Conductive-flake strengthened, polymer stabilized electrode composition and method of preparing
CN108735528A (en) * 2017-04-20 2018-11-02 东莞市东阳光电容器有限公司 A kind of preparation process of the super capacitor electrode slice containing PTFE fiber
CN107268025A (en) * 2017-07-21 2017-10-20 刘秋雷 One kind electrolyzes table salt water electrode
CN109384286B (en) * 2017-08-07 2020-10-27 常州博碳环保科技有限公司 Method for preparing continuous large-area efficient self-supporting desalination membrane electrode
KR101963964B1 (en) 2017-08-29 2019-03-29 두산중공업 주식회사 Method for manufacturing capacitive deionization electrode, and capacitive deionization electrode manufactured by the same
GB201715387D0 (en) 2017-09-22 2017-11-08 Cambridge Entpr Ltd Treatment of polymer particles
US11611115B2 (en) 2017-12-29 2023-03-21 Form Energy, Inc. Long life sealed alkaline secondary batteries
CN108550779B (en) * 2018-03-05 2020-09-18 湖北大学 Method for manufacturing aqueous lithium ion battery electrode with high stability
EP3830888A4 (en) 2018-07-27 2022-06-08 Form Energy, Inc. Negative electrodes for electrochemical cells
CN109524625A (en) * 2018-10-25 2019-03-26 超威电源有限公司 A kind of cathode mixing paste method
CN109575330B (en) * 2018-11-13 2020-07-14 清华大学 Piezoresistive electrode film with electrochemical energy storage effect and preparation method thereof
KR102151994B1 (en) * 2019-03-21 2020-09-04 두산중공업 주식회사 Method for manufacturing capacitive deionization electrode
CN110559988A (en) * 2019-04-26 2019-12-13 福建工程学院 preparation method of activated carbon with strong adsorption
WO2024064312A1 (en) * 2022-09-22 2024-03-28 ZAF Energy Systems, Incorporated Electrode manufacturing

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129470A (en) * 1974-10-17 1978-12-12 Homsy Charles A Method of preparing a porous implantable material from polytetrafluoroethylene and carbon fibers
US4153661A (en) * 1977-08-25 1979-05-08 Minnesota Mining And Manufacturing Company Method of making polytetrafluoroethylene composite sheet
US4379772A (en) * 1980-10-31 1983-04-12 Diamond Shamrock Corporation Method for forming an electrode active layer or sheet
JPH0694525B2 (en) 1986-03-25 1994-11-24 旭硝子株式会社 Tetrafluoroethylene polymer composition
JPH0778214B2 (en) * 1988-04-07 1995-08-23 帝人株式会社 Polymer electrochromic material
JPH07252365A (en) 1994-03-15 1995-10-03 Nok Corp Production of fluororesin molding material
US6127474A (en) 1997-08-27 2000-10-03 Andelman; Marc D. Strengthened conductive polymer stabilized electrode composition and method of preparing
US6136412A (en) * 1997-10-10 2000-10-24 3M Innovative Properties Company Microtextured catalyst transfer substrate
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
FR2773267B1 (en) 1997-12-30 2001-05-04 Alsthom Cge Alkatel NON-AQUEOUS ELECTROLYTE SUPERCAPACITOR AND ACTIVE CARBON ELECTRODE
EP0933791B1 (en) * 1998-01-30 2006-08-09 Asahi Glass Company Ltd. Electrode for an electric double layer capacitor and process for producing it
JP2001006699A (en) 1999-06-24 2001-01-12 Fuji Electric Co Ltd Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof
JP3434738B2 (en) 1999-06-30 2003-08-11 長一 古屋 Method for producing gas diffusion electrode material
CN1162929C (en) 1999-06-30 2004-08-18 古屋长一 Method for manufacturing gaseous diffusion electrode material
CN1254875C (en) * 1999-08-27 2006-05-03 松下电器产业株式会社 Polymer electrolyte type fuel cell
EP1294034A4 (en) * 2000-06-22 2007-12-05 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell, method for manufacturing electrode thereof, and manufacturing apparatus
JP4320506B2 (en) * 2000-09-25 2009-08-26 旭硝子株式会社 Polytetrafluoroethylene composition, method for producing the same, and granulated product
US6850502B1 (en) 2000-10-30 2005-02-01 Radiant Networks, Plc Join process method for admitting a node to a wireless mesh network
JP4997678B2 (en) * 2001-09-27 2012-08-08 栗田工業株式会社 Electrodeionization equipment
JP3561780B2 (en) * 2002-01-29 2004-09-02 潤二 伊藤 Electrode mixture for polarizable electrode, method for producing the same, and polarizable electrode using the electrode mixture
JP4000915B2 (en) 2002-05-30 2007-10-31 ダイキン工業株式会社 Polytetrafluoroethylene powder, electrode material, electrode and fuel cell
US20040086774A1 (en) 2002-11-05 2004-05-06 Munoz Beth C. Gas diffusion electrodes
US7175783B2 (en) 2003-08-19 2007-02-13 Patrick Michael Curran Carbon electrode for use in aqueous electrochemical devices and method of preparation
EP1512417B1 (en) * 2003-09-02 2013-06-19 Nippon Shokubai Co., Ltd. Particulate water-absorbent resin composition
EP1687360A1 (en) 2003-11-20 2006-08-09 Bayerische Julius-Maximilians-Universität Würzburg Polymer bonded functional materials
WO2005073732A2 (en) * 2004-01-23 2005-08-11 Amgen Inc. Lc/ms method of analyzing high molecular weight proteins
FR2867600B1 (en) 2004-03-09 2006-06-23 Arkema METHOD OF MANUFACTURING ELECTRODE, ELECTRODE OBTAINED AND SUPERCONDENSOR COMPRISING SAME
JP2006314388A (en) 2005-05-10 2006-11-24 Sumitomo Electric Ind Ltd Cooking container
WO2007007530A1 (en) 2005-07-13 2007-01-18 Asahi Glass Company, Limited Interleaving paper for glass
KR101314019B1 (en) * 2005-12-20 2013-10-01 가부시키가이샤 도쿠야마 Electrolyte membrane-electrode membrane assembly for solid polymer fuel cell, process for producing the electroyte membrane-electrode membrane assembly, and fuel cell comprising the electroyte membrane-electrode membrane assembly
JP2007258611A (en) 2006-03-24 2007-10-04 Asahi Glass Co Ltd Manufacturing method of electrode for electric double layer capacitor, and manufacturing method of electric double layer capacitor using the electrode
KR101140089B1 (en) * 2007-04-09 2012-04-30 닛산 지도우샤 가부시키가이샤 Positive electrode active material sintered body for battery
KR101031017B1 (en) * 2009-03-02 2011-04-25 삼성전기주식회사 Supercapacitor electrode using ion-exchanger
US9469554B2 (en) * 2009-07-29 2016-10-18 General Electric Company Bipolar electrode and supercapacitor desalination device, and methods of manufacture

Also Published As

Publication number Publication date
KR20160062765A (en) 2016-06-02
CN101685710B (en) 2012-07-04
US20110175252A1 (en) 2011-07-21
BRPI0913755B1 (en) 2019-03-26
BRPI0913755A2 (en) 2015-10-20
KR20110076893A (en) 2011-07-06
WO2010035092A1 (en) 2010-04-01
EP2342265B1 (en) 2020-01-22
CN101685710A (en) 2010-03-31
BRPI0913755B8 (en) 2019-05-07
EP2342265A1 (en) 2011-07-13
CA2738409A1 (en) 2010-04-01
CA2738409C (en) 2016-01-19
JP2012503699A (en) 2012-02-09
JP6106362B2 (en) 2017-03-29
SG2013071303A (en) 2015-04-29
US8904626B2 (en) 2014-12-09

Similar Documents

Publication Publication Date Title
KR101724755B1 (en) Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet
KR102479910B1 (en) Conductive flake-reinforced, polymer-stabilized electrode composition and manufacturing method thereof
CN109074961B (en) Electrode for an energy storage device and method for producing a dry energy storage device electrode film
US7160615B2 (en) Granules for formation of an electrode of an electric double layer capacitor, manufacturing method thereof, electrode sheet, polarized electrode, and electric double layer capacitor using a polarized electrode
US6905798B2 (en) Separator for electrochemical device and method for producing the same
KR101988691B1 (en) Electrode for energy storage devices and method for making same
US7147674B1 (en) Pretreated porous electrode and method for manufacturing same
JP2004186273A (en) Electrode sheet for electric double layer capacitor, its manufacturing method, polarizable electrode, and electric double layer capacitor using the same
KR101576316B1 (en) Method for manufacturing electrodes for electric double layer devices based on mixture of fibrous polymeric material and carbon material
JP2010238808A (en) Separator electrode integrated element for capacitor and capacitor made thereby
JP5848630B2 (en) Capacitor separator and capacitor using the same
JP2011187515A (en) Separator for electrochemical element, and the electrochemical element using the same
JP2004186275A (en) Electrode sheet for electric double layer capacitor, its manufacturing method, polarizable electrode, and electric double layer capacitor using the same
TWI467597B (en) Methods for preparing composition, sheet comprising the composition and electrode comprising the sheet
JP4518223B2 (en) Polarizable electrode for electric double layer capacitor and manufacturing method thereof
JP2017535080A (en) Method for producing high density carbon material suitable for high density carbon electrode application
JP2007317844A (en) Separator for electrochemical element
JP2005268401A (en) Separator for capacitor

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
A302 Request for accelerated examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
A107 Divisional application of patent
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101002903; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20160518

Effective date: 20161215

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant