JP2001280139A - Intake stratification method in direct injection-type internal combustion engine and stratifying device - Google Patents

Intake stratification method in direct injection-type internal combustion engine and stratifying device

Info

Publication number
JP2001280139A
JP2001280139A JP2001015617A JP2001015617A JP2001280139A JP 2001280139 A JP2001280139 A JP 2001280139A JP 2001015617 A JP2001015617 A JP 2001015617A JP 2001015617 A JP2001015617 A JP 2001015617A JP 2001280139 A JP2001280139 A JP 2001280139A
Authority
JP
Japan
Prior art keywords
intake
combustion chamber
intake air
fuel
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001015617A
Other languages
Japanese (ja)
Other versions
JP3842047B2 (en
Inventor
Kiyomi Nakakita
清己 中北
Takayuki Touto
孝之 冬頭
Kazuhisa Inagaki
和久 稲垣
Yoshihiro Hotta
義博 堀田
Kazuhiro Akihama
一弘 秋浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2001015617A priority Critical patent/JP3842047B2/en
Publication of JP2001280139A publication Critical patent/JP2001280139A/en
Application granted granted Critical
Publication of JP3842047B2 publication Critical patent/JP3842047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a combustion state by stratifying the intake of a combustion chamber onto the inside and outside of an approximately hemispherical face or approximately flat hemispherical face in starting the fuel combustion. SOLUTION: In this direct injection-type internal combustion engine for injecting the fuel to a combustion chamber 1 from a fuel injection valve 2, the combustion chamber 1 is provided with intakes 11 and 12 of different compositions on inside and outside regions of the approximately hemispherical face or the approximately flat hemispherical face 13 around a fuel injecting position in starting the fuel combustion near a final period of a compressing stroke. A stratification pattern and a stratification degree of the combustion chamber are changed corresponding to an operating condition of the direct injection-type internal combustion engine.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料を燃焼室に噴
射する直接噴射式内燃機関において、燃焼室の吸気を成
層化する方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for stratifying intake air of a combustion chamber in a direct injection type internal combustion engine in which fuel is injected into a combustion chamber.

【0002】[0002]

【従来の技術】排気還流装置を備えた直接噴射式圧縮着
火内燃機関において、特開平11−148429号公報
に開示されているように、排気中の有害物質を低減する
ため、燃焼室の吸気を成層化する技術が提案されてい
る。
2. Description of the Related Art In a direct injection compression ignition internal combustion engine equipped with an exhaust gas recirculation system, as disclosed in Japanese Patent Application Laid-Open No. H11-148429, the intake air of a combustion chamber is reduced in order to reduce harmful substances in the exhaust gas. Stratification techniques have been proposed.

【0003】燃焼室は、同一方向のスワール流を同心状
に形成する2個の吸気ポートを設け、スワール流の上流
側の吸気ポートでは、燃焼室の中心部に小径のスワール
流を、下流側の吸気ポートでは、燃焼室の周辺部に大径
のスワール流を形成する。
[0003] The combustion chamber is provided with two intake ports for concentrically forming a swirl flow in the same direction. In the intake port on the upstream side of the swirl flow, a small-diameter swirl flow is provided at the center of the combustion chamber, A large-diameter swirl flow is formed at the periphery of the combustion chamber at the intake port.

【0004】上流側の吸気ポートを通過する吸気には還
流排気を混入し、下流側の吸気ポートを通過する吸気に
は還流排気を混入せず、燃焼室中心部の円柱状領域に
は、還流排気を混入した吸気を、燃焼室周辺部の円環状
領域には、還流排気を混入しない吸気を配置する。
[0004] The recirculated exhaust gas is mixed into the intake air passing through the upstream intake port, and the recirculated exhaust gas is not mixed into the intake air passing through the downstream intake port. The intake air mixed with the exhaust gas is disposed in the annular region around the combustion chamber, and the intake air is not mixed with the recirculated exhaust gas.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記の従来
技術においては、燃焼室に小径のスワール流と大径のス
ワール流を内外に形成するとしているが、スワール流
は、径を拡大させる遠心力があるので、小径のスワール
流は、遠心力によって外側に拡大し、燃焼室の周壁によ
って径が拡大しない大径のスワール流と衝突して混合す
ることになる。従って、燃焼室の中心部の円柱状領域と
周辺部の円環状領域に、組成の異なる吸気を配置するこ
とは困難である。
However, in the above-mentioned prior art, a small-diameter swirl flow and a large-diameter swirl flow are formed inside and outside the combustion chamber. Therefore, the small-diameter swirl flow expands outward due to the centrifugal force, and collides and mixes with the large-diameter swirl flow whose diameter does not increase due to the peripheral wall of the combustion chamber. Therefore, it is difficult to arrange intake air having different compositions in the cylindrical region at the center of the combustion chamber and the annular region at the periphery.

【0006】また、吸気行程において、燃焼室に小径と
大径のスワール流が内外に形成されたとしても、次の圧
縮行程には、ピストン頂面の周辺部上の吸気がピストン
頂面の中央部のキャビティに流入するスキッシュ流が発
生するので、燃焼室周辺部の大径のスワール流は、スキ
ッシュ流によって燃焼室中心側に運ばれ、燃焼室中心部
の小径のスワール流と衝突して混合することになる。従
って、吸気行程において形成した吸気の内外の成層状態
を圧縮行程の終期近傍まで維持することは困難である。
Even if swirl flows of small diameter and large diameter are formed inside and outside of the combustion chamber in the intake stroke, in the next compression stroke, the intake air on the peripheral portion of the piston top surface becomes the center of the piston top surface. A large swirl flow around the combustion chamber is transported to the center of the combustion chamber by the squish flow, and collides with the small swirl flow at the center of the combustion chamber because a squish flow flows into the cavity of the combustion chamber. Will do. Therefore, it is difficult to maintain the stratified state inside and outside the intake formed in the intake stroke until the end of the compression stroke.

【0007】結局、燃料が燃焼室に噴霧されて燃焼を開
始する圧縮行程の終期近傍の時点では、組成の異なる吸
気が燃焼室の中心部の円柱状領域と周辺部の円環状領域
に配置されているものとは認められない。
After all, at the time near the end of the compression stroke in which fuel is sprayed into the combustion chamber to start combustion, intake air having a different composition is arranged in the central cylindrical area and the peripheral annular area of the combustion chamber. Is not recognized.

【0008】燃焼室の吸気が燃料の燃焼開始時に所望の
状態に成層化されていなければ、燃焼室における燃料の
燃焼を所望の通りに制御することができない。
[0008] Unless the intake air of the combustion chamber is stratified to a desired state at the start of fuel combustion, the combustion of fuel in the combustion chamber cannot be controlled as desired.

【0009】[0009]

【課題を解決するための着眼と研究】1)直接噴射式圧
縮着火内燃機関において、燃焼室の吸気中に燃料噴射弁
から噴射された燃料流は、根元側部分では、その周囲の
空気を燃料流内部に巻き込むと共に、その周囲の空気を
燃料流外周に連行し、燃料流に随伴する空気流を誘起す
る。
1) In a direct-injection compression ignition internal combustion engine, the fuel flow injected from the fuel injection valve during intake of the combustion chamber uses the air around it at the base side as fuel. While entraining inside the flow, the surrounding air is entrained to the outer periphery of the fuel flow to induce an air flow accompanying the fuel flow.

【0010】また、燃焼室の吸気中に噴射された燃料流
は、高速で飛翔しながら、分裂して微粒化し、蒸気にな
り、蒸気になる先端側部分で燃焼して火炎を生ずる。な
お、燃料流は、先端側部分より根元側で燃焼して火炎を
生ずる場合もあるが、高温の火炎が大規模に発生する部
分は、燃料流の先端側部分である。
Further, the fuel flow injected into the intake air of the combustion chamber flies at a high speed, is divided and atomized, becomes steam, and burns at a tip side portion where the steam is generated to generate a flame. In some cases, the fuel flow burns on the base side from the front end portion to generate a flame, but the portion where the high-temperature flame is generated on a large scale is the front end portion of the fuel flow.

【0011】燃焼室は、燃料を噴射して燃焼している
間、燃料流の根元側に、燃料と空気を混合して混合気を
形成する混合気形成領域が形成されると共に、燃料流の
先端側に、混合気が激しく燃焼して高温の火炎が大規模
に発生する火炎発生領域が形成され、混合気形成領域と
火炎発生領域に大別される。
In the combustion chamber, a fuel-air mixture region is formed at the base of the fuel flow to mix the fuel and air to form a fuel-air mixture while the fuel is being injected and combusted. At the front end side, a flame generation region where the air-fuel mixture burns violently and a high-temperature flame is generated on a large scale is formed, and is roughly divided into an air-fuel mixture formation region and a flame generation region.

【0012】燃焼室の混合気形成領域において形成され
る混合気の組成は、燃料噴射時ないし燃焼開始時に、混
合気形成領域に存在する吸気の組成に影響される。
The composition of the air-fuel mixture formed in the air-fuel mixture formation region of the combustion chamber is affected by the composition of the intake air present in the air-fuel mixture formation region at the time of fuel injection or at the start of combustion.

【0013】また、燃焼室の混合気形成領域で形成され
た混合気は、燃料流ないし混合気流によって燃焼室の火
炎発生領域に運ばれる。燃焼室の火炎発生領域は、混合
気形成領域から火炎発生領域に運ばれた混合気と、燃焼
開始前から火炎発生領域に存在した吸気、及び、火炎発
生領域で燃料の燃焼により発生した気体が存在すること
になり、それらが混在した状態の中で燃料の燃焼が行わ
れる。燃焼室の燃料の燃焼状態は、燃焼開始時に、火炎
発生領域に存在する気体の組成に影響される。
The air-fuel mixture formed in the air-fuel mixture formation region of the combustion chamber is carried to the flame generation region of the combustion chamber by a fuel flow or an air-fuel mixture flow. The flame generation region of the combustion chamber is composed of the mixture carried from the mixture formation region to the flame generation region, the intake air existing in the flame generation region before the start of combustion, and the gas generated by burning the fuel in the flame generation region. Therefore, the fuel is burned in a state in which they exist. The combustion state of the fuel in the combustion chamber is affected by the composition of the gas present in the flame generation region at the start of combustion.

【0014】換言すると、燃料噴射時ないし燃焼開始時
に燃焼室の混合気形成領域に存在する気体に、所望の混
合気を形成するのに適した組成の気体を選択すると共
に、燃焼開始時に燃焼室の火炎発生領域に存在する気体
に、所望の燃焼状態を発生させるのに適した組成の気体
を選択すると、燃焼室の燃料の燃焼状態を所望の通りに
制御することができる。
In other words, a gas having a composition suitable for forming a desired air-fuel mixture is selected as the gas present in the air-fuel mixture forming region of the combustion chamber at the time of fuel injection or at the start of combustion. When a gas having a composition suitable for generating a desired combustion state is selected as the gas existing in the flame generation region, the combustion state of the fuel in the combustion chamber can be controlled as desired.

【0015】即ち、燃焼室の吸気を混合気形成領域と火
炎発生領域に成層化することにより、燃焼室の燃料の燃
焼状態を制御することができる。
That is, the combustion state of the fuel in the combustion chamber can be controlled by stratifying the intake air of the combustion chamber into the mixture formation region and the flame generation region.

【0016】2)燃料流の先端側部分において大規模な
高温火炎の発生が始まる火炎発生開始位置は、燃料噴射
弁の噴口から燃料流の分裂開始位置までの距離を噴霧分
裂距離とすると、燃料噴射弁噴口位置から噴霧分裂距離
の1〜1.5倍位離れた位置になる。なお、噴霧分裂距
離=15.8(燃料密度/空気密度)1/2・(燃料噴射
弁噴口径)である。
2) The flame generation start position at which the generation of a large-scale high-temperature flame at the front end portion of the fuel flow starts is defined as the distance from the injection port of the fuel injection valve to the position at which the fuel flow starts to be split. The position is about 1 to 1.5 times as long as the spray split distance from the injection valve orifice position. Note that the spray split distance = 15.8 (fuel density / air density) 1/2 · (fuel injection nozzle diameter).

【0017】また、燃料噴射弁は、ピストン頂面と対面
する燃焼室天井面の中心部に多数の噴口を配置し、噴射
方向は、多数であって放射方向であり、燃焼室の半径方
向からピストン頂面側に傾斜し、圧縮行程の終期近傍に
おいてピストン頂面中央部のキャビティの周辺部に向か
う。
Further, the fuel injection valve has a large number of injection ports arranged at the center of the ceiling surface of the combustion chamber facing the top surface of the piston. It is inclined toward the top surface of the piston, and moves toward the periphery of the cavity at the center of the top surface of the piston near the end of the compression stroke.

【0018】従って、燃焼室の火炎発生領域は、各燃料
噴射方向には燃焼室の燃料噴射弁噴口位置から噴霧分裂
距離の約1〜1.5倍以上離れた領域になり、燃焼室の
中心軸に対してほぼ対称になる。混合気形成領域は、各
燃料噴射方向には燃焼室の燃料噴射弁噴口位置から噴霧
分裂距離の約1〜1.5倍以内の領域になり、燃焼室の
中心軸に対してほぼ対称になる。
Therefore, the flame generation region of the combustion chamber is a region which is separated from the position of the fuel injection valve orifice of the combustion chamber by about 1 to 1.5 times or more of the spray split distance in each fuel injection direction. It becomes almost symmetrical about the axis. The mixture formation region is a region within about 1 to 1.5 times the spray split distance from the fuel injection valve orifice position of the combustion chamber in each fuel injection direction, and is substantially symmetric with respect to the central axis of the combustion chamber. .

【0019】これらのことから、燃料が燃焼を開始する
圧縮行程の終期近傍において、燃料が噴射される燃焼室
の天井面中心部を中心とする概略半球面ないし概略扁平
半球面の内側の領域と外側の領域に燃焼室の吸気を成層
化することができると、上記の内側の領域と外側の領域
にそれぞれ所望の組成の吸気を配置することにより、燃
料の燃焼状態を制御することができる。
From these facts, in the vicinity of the end of the compression stroke in which the fuel starts burning, the region inside the substantially hemispherical surface or the approximately flat hemispherical surface centered on the center of the ceiling surface of the combustion chamber into which the fuel is injected. When the intake air of the combustion chamber can be stratified in the outer region, the combustion state of the fuel can be controlled by arranging the intake air having a desired composition in each of the inner region and the outer region.

【0020】3)複数の吸気ポートで燃焼室に複数の同
一方向の吸気スワール流を形成し、燃料を燃焼室にその
天井面の中心部からピストン頂面中央部のキャビティの
周辺部に向けて噴射する直接噴射式圧縮着火内燃機関に
おいて、燃焼室や吸気ポートの形状、従って、吸気のス
キッシュ流やスワール流の流動特性を選択して吸気成層
化装置を構成すると、吸気を次のように成層化すること
ができる。
3) A plurality of intake swirl flows in the same direction are formed in the combustion chamber by the plurality of intake ports, and the fuel is directed from the center of the ceiling surface of the combustion chamber toward the periphery of the cavity at the center of the piston top surface. In a direct injection compression ignition internal combustion engine that injects, if the intake stratification device is configured by selecting the shape of the combustion chamber and the intake port, and hence the flow characteristics of the intake squish flow and swirl flow, the intake stratification is performed as follows. Can be

【0021】吸気行程において、図2に例示するよう
に、スワール流の下流側の吸気ポート3では、燃焼室1
の上部にその周壁に沿う第1吸気11のスワール流を、
上流側の吸気ポート4では、燃焼室1の下部にその周壁
に沿う第2吸気12のスワール流を形成する。図4と図
5に例示するように、燃焼室1において組成の異なる第
1吸気11のスワール流と第2吸気12のスワール流が
上下に配置された状態は、圧縮行程の中程まで継続され
る。
In the intake stroke, as illustrated in FIG. 2, at the intake port 3 downstream of the swirl flow, the combustion chamber 1
The swirl flow of the first intake 11 along the peripheral wall at the top of
In the intake port 4 on the upstream side, a swirl flow of the second intake 12 along the peripheral wall is formed below the combustion chamber 1. As illustrated in FIGS. 4 and 5, the state in which the swirl flow of the first intake 11 and the swirl flow of the second intake 12 having different compositions are vertically arranged in the combustion chamber 1 is continued until the middle of the compression stroke. You.

【0022】スキッシュ流が発生する圧縮行程の後半に
おいて、ピストン頂面の周辺部上のスワール流は、スキ
ッシュ流によってピストン頂面の中央部のキャビティ内
に運ばれ、径の縮小に伴うスワール方向速度の増加によ
る遠心力によって、キャビティの中心に向かわず、キャ
ビティの周壁に沿って流れ、キャビティの底面に向か
う。キャビティは、スキッシュ流の発生前には、全域に
第2吸気が存在するが、スキッシュ流が発生すると、図
6(a)(b)(c)に時間経過順に例示するように、
中央領域に第1吸気11が流入し、周辺領域と底部領域
のみに第2吸気12が存在することになる。
In the latter half of the compression stroke in which the squish flow occurs, the swirl flow on the periphery of the piston top surface is carried by the squish flow into the cavity at the center of the piston top surface, and the swirl velocity along with the reduction of the diameter. Due to the centrifugal force caused by the increase in the flow rate, the fluid flows along the peripheral wall of the cavity without going to the center of the cavity and toward the bottom surface of the cavity. In the cavity, before the squish flow occurs, the second intake air exists in the entire region. However, when the squish flow occurs, as illustrated in FIGS. 6A, 6B, and 6C in the order of lapse of time,
The first intake air 11 flows into the central region, and the second intake air 12 exists only in the peripheral region and the bottom region.

【0023】燃料が燃焼を開始する圧縮行程の終期近傍
においては、図1に例示するように、燃焼室1は、燃料
が噴射される天井面中心位置を中心とする概略扁平半球
面13内の領域には、第1吸気11が主に存在し、その
外側の領域には、第2吸気12が主に存在することにな
る。燃料の燃焼開始時に燃焼室の燃料噴射位置を中心と
する概略半球面ないし概略扁平半球面の内側の領域と外
側の領域に、組成の異なる吸気11、12が成層化され
ることになる。
In the vicinity of the end of the compression stroke in which fuel starts to burn, as shown in FIG. 1, the combustion chamber 1 has a substantially flat semispherical surface 13 centered on the center position of the ceiling surface where fuel is injected. The first intake air 11 mainly exists in the region, and the second intake air 12 mainly exists in the region outside the region. At the start of combustion of the fuel, the intakes 11 and 12 having different compositions are stratified in a region inside and outside a substantially hemispherical surface or a substantially flat hemispherical surface centered on a fuel injection position of the combustion chamber.

【0024】4)排気還流装置を備えた直接噴射式圧縮
着火内燃機関において、燃焼期間中に、燃料噴射弁から
噴射される燃料流の根元側部分の周囲に、還流排気を分
布させずに、新鮮空気を分布させると、燃料流ないし混
合気流によってその先端部に新鮮空気が運ばれ、酸素不
足状態で燃焼する燃料流先端部ないしキャビティ谷部に
酸素が供給され、酸素濃度がスート(すす)生成抑制値
以上に増加して、スートの生成が減少する。だだし、こ
の時、酸素濃度がNOx(窒素酸化物)生成値までには上
昇しないように制御する。また、理論空燃比近傍のリー
ン側領域で高温燃焼してNOxが発生する燃焼室のスキッ
シュエリアとキャビティ周辺部に、還流排気を混入した
吸気を分布させると、酸素濃度、燃焼温度が低下して、
NOxの生成が減少する。
4) In a direct injection compression ignition internal combustion engine equipped with an exhaust gas recirculation device, during the combustion period, the recirculated exhaust gas is not distributed around the root side of the fuel flow injected from the fuel injection valve. When fresh air is distributed, fresh air is transported to the front end by the fuel flow or the mixed air flow, and oxygen is supplied to the front end of the fuel flow or the cavity valley burning in a state of insufficient oxygen, so that the oxygen concentration is soot. The soot generation is reduced by increasing to the generation suppression value or more. However, at this time, control is performed so that the oxygen concentration does not increase to the NOx (nitrogen oxide) generation value. In addition, when the intake air containing the recirculated exhaust gas is distributed in the squish area of the combustion chamber and the periphery of the cavity where NOx is generated by high-temperature combustion in the lean side region near the stoichiometric air-fuel ratio, the oxygen concentration and the combustion temperature decrease. ,
NOx formation is reduced.

【0025】内燃機関の負荷が多くて燃料の噴射終了時
期が遅いとき、又は、内燃機関の回転数が高くて逆スキ
ッシュ流が強いときには、燃料は、燃焼室のキャビティ
外に流出する割合が高くなり、キャビティ外で酸素不足
状態で燃焼し、キャビティ内で酸素過剰状態で燃焼す
る。すると、キャビティ外で主にスートが発生し、キャ
ビティ内で主にNOxが発生する。
When the load on the internal combustion engine is large and the fuel injection end timing is late, or when the rotation speed of the internal combustion engine is high and the reverse squish flow is strong, the proportion of fuel flowing out of the cavity of the combustion chamber is high. In other words, it burns outside the cavity in an oxygen-deficient state, and burns inside the cavity in an oxygen-excess state. Then, soot is mainly generated outside the cavity, and NOx is mainly generated inside the cavity.

【0026】このようなときには、燃焼室の成層パター
ンを逆にし、燃料噴射位置を中心とする概略半球面ない
し概略扁平半球面の内側の領域に、還流排気が混入して
いる吸気又は還流排気濃度が濃い吸気を、その外側の領
域に、還流排気が混入していない吸気又は還流排気濃度
が薄い吸気を配置する。すると、燃焼室のキャビティ
外、スキッシュエリアでは、酸素濃度が増加し、スート
の生成が抑制されると同時にスートの酸化が促進され
て、スートが減少する。だだし、この時、酸素濃度がN
Ox生成値までには上昇しないように制御して、NOxの増
加を防ぐ。
In such a case, the stratification pattern of the combustion chamber is reversed, and the concentration of the intake or recirculated exhaust gas in which the recirculated exhaust gas is mixed in the region inside the approximate hemisphere or the approximately flat hemisphere centered on the fuel injection position. In the region outside the intake air, the intake air in which the recirculation exhaust gas is not mixed or the intake air in which the recirculation exhaust gas concentration is low is arranged. Then, in the squish area outside the cavity of the combustion chamber, the oxygen concentration increases, soot generation is suppressed, and at the same time, soot oxidation is promoted, and soot decreases. However, at this time, the oxygen concentration becomes N
Control is performed so as not to increase to the Ox generation value, thereby preventing NOx from increasing.

【0027】即ち、内燃機関の運転条件に応じて、燃焼
室1の成層パターンを変更する必要がある。燃焼室1の
成層度も変更する必要がある。
That is, it is necessary to change the stratification pattern of the combustion chamber 1 according to the operating conditions of the internal combustion engine. The stratification degree of the combustion chamber 1 also needs to be changed.

【0028】図1〜図6に例示する内燃機関において、
運転条件に応じて、スワール流の下流側の吸気ポート3
を通過する第1吸気に混入される還流排気の量と、上流
側の吸気ポート4を通過する第2吸気に混入される還流
排気の量をそれぞれ増減すると、燃焼室1の成層パター
ンは、変更される。燃焼室1の概略扁平半球面13内の
領域でその外側の領域より還流排気の濃度が低くなる正
成層パターンになる。また、燃焼室1の概略扁平半球面
13内の領域でその外側の領域より還流排気の濃度が高
くなる逆成層パターンになる。更に、燃焼室1の概略扁
平半球面13内の領域とその外側の領域で還流排気の濃
度が等しくなる均質パターンになる。
In the internal combustion engine illustrated in FIGS.
Depending on the operating conditions, the intake port 3 downstream of the swirl flow
When the amount of recirculated exhaust gas mixed into the first intake air passing through the intake port and the amount of recirculated exhaust gas mixed into the second intake air passing through the upstream intake port 4 are respectively increased or decreased, the stratification pattern of the combustion chamber 1 changes. Is done. A positive stratified pattern in which the concentration of the recirculated exhaust gas is lower in a region inside the substantially flat semi-spherical surface 13 of the combustion chamber 1 than in a region outside the flat hemisphere 13 is obtained. In addition, a reverse stratified pattern in which the concentration of the recirculated exhaust gas is higher in the region inside the substantially flat hemispherical surface 13 of the combustion chamber 1 than in the region outside the same. Furthermore, a homogeneous pattern is obtained in which the recirculation exhaust gas has the same concentration in the region inside the substantially flat hemispherical surface 13 of the combustion chamber 1 and in the region outside thereof.

【0029】また、内燃機関の運転条件に応じて、第1
吸気に混入される還流排気の量と、第2吸気に混入され
る還流排気の量をそれぞれ増減すると、燃焼室1の成層
度が変更される。概略扁平半球面13内の還流排気濃度
に対する、概略扁平半球面13外の還流排気濃度の比、
成層度が増減する。
Further, depending on the operating conditions of the internal combustion engine, the first
When the amount of the recirculated exhaust gas mixed into the intake air and the amount of the recirculated exhaust gas mixed into the second intake air are respectively increased or decreased, the stratification degree of the combustion chamber 1 is changed. The ratio of the recirculation exhaust gas concentration outside the approximately flat hemisphere 13 to the recirculation exhaust gas concentration in the approximately flat hemisphere 13;
Stratification increases or decreases.

【0030】[0030]

【課題を解決するための手段】1)燃料を燃焼室に噴射
する直接噴射式内燃機関又は燃料を燃焼室にそのピスト
ン頂面と対面する天井面の中心部からピストン頂面中央
部のキャビティの周辺部に向けて噴射する直接噴射式内
燃機関において、圧縮行程終期近傍の燃料の燃焼開始時
に、燃焼室の燃料噴射位置を中心とする概略半球面ない
し概略扁平半球面の内側の領域と外側の領域に、組成の
異なる吸気を配置することを特徴とする吸気成層化方
法。
1) A direct injection type internal combustion engine in which fuel is injected into a combustion chamber or a fuel is injected into a combustion chamber from a center of a ceiling surface facing a piston top surface to a center of a piston top surface cavity. In a direct injection type internal combustion engine that injects fuel toward the periphery, at the start of combustion of fuel near the end of the compression stroke, the inside area of the roughly semispherical or roughly flat hemisphere centering on the fuel injection position of the combustion chamber and the outside area A method for stratifying intake air, comprising arranging intake air having different compositions in a region.

【0031】2)上記の吸気成層化方法において、直接
噴射式内燃機関の運転条件に応じて、燃焼室の成層パタ
ーンを、上記の内側の領域で上記の外側の領域より吸気
の特定成分の濃度が低くなる正成層パターン、上記の内
側の領域で上記の外側の領域より吸気の特定成分の濃度
が高くなる逆成層パターン、又は、上記の内側の領域と
上記の外側の領域で吸気の特定成分の濃度が等しくなる
均質パターンに変更することを特徴とする。
2) In the above-described method for stratifying the intake air, the stratification pattern of the combustion chamber is changed from the inner region to the concentration of a specific component of intake air from the outer region according to the operating conditions of the direct injection type internal combustion engine. Lower stratified pattern, reverse stratified pattern in which the concentration of the specific component of intake is higher in the inner region than in the outer region, or specific component of intake in the inner region and the outer region Characterized in that the density is changed to a uniform pattern in which the density becomes equal.

【0032】3)上記の吸気成層化方法において、直接
噴射式内燃機関の運転条件に応じて、燃焼室の成層度、
上記の内側の領域における吸気の特定成分の濃度に対す
る、上記の外側の領域における吸気の特定成分の濃度の
比を変更することを特徴とする。
3) In the above-described method for stratifying the intake air, the degree of stratification of the combustion chamber is determined according to the operating conditions of the direct injection type internal combustion engine.
The ratio of the concentration of the specific component of the intake air in the outer region to the concentration of the specific component of the intake air in the inner region is changed.

【0033】4)複数の吸気ポートで燃焼室に複数の同
一方向の吸気スワール流を形成し、燃料を燃焼室にその
ピストン頂面と対面する天井面の中心部からピストン頂
面中央部のキャビティの周辺部に向けて噴射する直接噴
射式内燃機関において、吸気行程において、燃焼室の上
部にその周壁に沿う第1吸気のスワール流を形成し、燃
焼室の下部にその周壁に沿う第2吸気のスワール流を形
成し、圧縮行程の中程まで、燃焼室において第1吸気の
スワール流と第2吸気のスワール流が上下に配置された
状態を継続し、スキッシュ流が発生する圧縮行程の後半
に、ピストン頂面中央部のキャビティにおいて、中央領
域に第1吸気を流入させ、周辺領域と底部領域に第2吸
気を残存させ、燃料が燃焼を開始する圧縮行程の終期近
傍において、燃焼室の燃料噴射位置を中心とする概略半
球面ないし概略扁平半球面の内側の領域に第1吸気を、
外側の領域に第2吸気を主に配置する構成にしたことを
特徴とする吸気成層化装置。
4) A plurality of intake swirl flows in the same direction are formed in the combustion chamber by a plurality of intake ports, and fuel is supplied to the combustion chamber from the center of the ceiling facing the piston top surface to the center of the piston top surface. In the direct injection type internal combustion engine that injects fuel toward the peripheral portion, a swirl flow of the first intake air along the peripheral wall is formed at the upper part of the combustion chamber in the intake stroke, and the second intake air flows along the peripheral wall at the lower part of the combustion chamber. The swirl flow of the first intake air and the swirl flow of the second intake air continue in the combustion chamber up and down until the middle of the compression stroke, and the latter half of the compression stroke in which a squish flow occurs In the cavity at the center of the top surface of the piston, the first intake air flows into the central region, the second intake air remains in the peripheral region and the bottom region, and the combustion takes place in the vicinity of the end of the compression stroke in which fuel starts combustion. A first intake in the region inside the outline hemisphere to schematic flattened hemisphere around the fuel injection position,
An intake stratification device, wherein the second intake is mainly arranged in an outer region.

【0034】5)上記の吸気成層化方法又は吸気成層化
装置において、燃焼室の燃料噴射位置を中心とする概略
半球面ないし概略扁平半球面は、燃料の噴射方向には燃
焼室の燃料噴射位置から噴霧分裂距離の1〜1.5倍位
離れていることを特徴とする。
5) In the above-described intake stratification method or intake stratification device, a substantially hemispherical surface or a substantially flat hemispherical surface centered on a fuel injection position of the combustion chamber is a fuel injection position of the combustion chamber in a fuel injection direction. From about 1 to 1.5 times the spray split distance.

【0035】[0035]

【発明の効果】圧縮行程終期近傍の燃料の燃焼開始時
に、燃焼室の燃料噴射位置を中心とする概略半球面ない
し概略扁平半球面の内側の領域と外側の領域に、それぞ
れ、所望の組成の吸気を配置し、燃料の燃焼状態を制御
することができる。
At the start of the combustion of fuel near the end of the compression stroke, a desired composition is respectively added to the inner and outer regions of the substantially hemispherical surface or the approximately flat hemispherical surface centered on the fuel injection position of the combustion chamber. The intake air can be arranged to control the combustion state of the fuel.

【0036】[0036]

【発明の実施の形態】[第1例(図1〜図8参照)]本
例の吸気成層化装置を備えた直接噴射式圧縮着火内燃機
関は、図1に示すように、燃焼室1の天井面の中心部に
燃料噴射弁2の多数の噴口を配置し、燃焼室1の天井面
の一側側に2個の吸気ポート3、4と吸気弁5、6を、
他側側に2個の排気ポート7と排気弁8を設け、ピスト
ン頂面の中央部に中心軸対称形状のキャビティ9を形成
し、キャビティ9の底面中央部に山部10を設けてい
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment (see FIGS. 1 to 8)] A direct injection compression ignition internal combustion engine equipped with an intake stratification device according to the present embodiment, as shown in FIG. A large number of injection ports of the fuel injection valve 2 are arranged at the center of the ceiling surface, and two intake ports 3 and 4 and intake valves 5 and 6 are provided on one side of the ceiling surface of the combustion chamber 1.
Two exhaust ports 7 and an exhaust valve 8 are provided on the other side, a cavity 9 having a central axis symmetrical shape is formed at the center of the piston top surface, and a peak portion 10 is provided at the bottom center of the cavity 9.

【0037】燃料噴射弁2は、圧縮行程の終期近傍にお
いて、燃料を多数の噴口から放射方向にキャビティ9の
周辺部に向けて噴射する。
Near the end of the compression stroke, the fuel injection valve 2 injects fuel from a number of injection ports in a radial direction toward the periphery of the cavity 9.

【0038】2個の吸気ポート3、4は、吸気行程にお
いて、図2に示すように、燃焼室1に吸気のスワール流
11、12を同一方向に形成する。スワール流の下流側
の吸気ポート3は、図2と図3に示すように、ヘリカル
ポート形状であり、吸気がほぼ燃焼室1天井面に沿う向
きに流出し、燃焼室1の天井面側の上部にその周壁に沿
う強い第1吸気のスワール流11を形成する。上流側の
吸気ポート4は、タンジェンシャルポート形状であり、
第1吸気のスワール流11との衝突を避けるため、吸気
が斜め下向きに流出し、燃焼室1のピストン頂面側の下
部にその周壁に沿う第2吸気のスワール流12を形成す
る。
As shown in FIG. 2, the two intake ports 3 and 4 form swirl flows 11 and 12 of intake air in the same direction in the combustion chamber 1 during the intake stroke. The intake port 3 on the downstream side of the swirl flow has a helical port shape as shown in FIGS. 2 and 3, and the intake air flows out substantially along the ceiling surface of the combustion chamber 1. A strong first intake swirl flow 11 is formed along the peripheral wall at the upper part. The upstream intake port 4 has a tangential port shape,
In order to avoid a collision with the swirl flow 11 of the first intake air, the intake air flows obliquely downward and forms a swirl flow 12 of the second intake air along the peripheral wall of the lower part of the combustion chamber 1 on the top surface side of the piston.

【0039】本例の吸気成層化装置においては、吸気行
程に、図2に示すように、燃焼室1の上部と下部に、そ
れぞれ、その周壁に沿う第1吸気のスワール流11、第
2吸気のスワール流12を形成すると、吸気行程の終期
に、図4に示すように、燃焼室1に第1吸気のスワール
流11と第2吸気のスワール流12が上下に成層化され
る。吸気行程の終期には、上流側の吸気ポート4から最
後に流入した第2吸気12の最後尾部分が燃焼室1の上
部に存在するため、第1吸気11と第2吸気12の境界
面13は、ピストン頂面に平行する平面にならず、傾斜
した凹凸曲面になる。
In the intake stratification device of this embodiment, the swirl flow 11 of the first intake air and the second intake air along the peripheral wall of the upper and lower portions of the combustion chamber 1 during the intake stroke, as shown in FIG. Is formed, at the end of the intake stroke, the swirl flow 11 of the first intake air and the swirl flow 12 of the second intake air are vertically stratified in the combustion chamber 1 as shown in FIG. At the end of the intake stroke, the rear end portion of the second intake air 12 that has finally flowed in from the upstream intake port 4 exists above the combustion chamber 1, so that the boundary surface 13 between the first intake air 11 and the second intake air 12. Is not a plane parallel to the top surface of the piston, but an inclined concave and convex curved surface.

【0040】燃焼室1の組成の異なる第1吸気11と第
2吸気12は、時間の経過に従って混ざり合い、一方の
吸気にのみ含まれていた成分が他方の吸気にも含まれる
ようになり、その成分の濃度が連続して変化する状態に
なるので、その成分の濃度がほぼ中間値になる面を第1
吸気11と第2吸気12の境界面13とする。
The first intake air 11 and the second intake air 12 having different compositions in the combustion chamber 1 mix with each other with the lapse of time, so that components contained only in one intake air are also included in the other intake air. Since the concentration of the component is continuously changed, the surface where the concentration of the component becomes almost an intermediate value is defined as the first surface.
The boundary surface 13 is between the intake air 11 and the second intake air 12.

【0041】圧縮行程になると、第2吸気12の最後尾
部分が燃焼室1の下部に移動し、第1吸気11と第2吸
気12の混合が進行し、圧縮行程の中程には、図5に示
すように、第1吸気11と第2吸気12の境界面13
は、ピストン頂面に平行する平面に近づく。燃焼室1に
第1吸気スワール流11と第2吸気スワール流12が上
下に成層化された状態は、圧縮行程の中程まで継続す
る。
In the compression stroke, the last part of the second intake air 12 moves to the lower part of the combustion chamber 1, and the mixing of the first intake air 11 and the second intake air 12 progresses. As shown in FIG. 5, an interface 13 between the first intake 11 and the second intake 12
Approaches a plane parallel to the piston top surface. The state in which the first intake swirl flow 11 and the second intake swirl flow 12 are vertically stratified in the combustion chamber 1 continues to the middle of the compression stroke.

【0042】スキッシュ流が発生する圧縮行程の後半に
は、ピストン頂面の周辺部上のスワール流は、スキッシ
ュ流によってピストン頂面の中央部のキャビティ9内に
運ばれ、径の縮小に伴うスワール方向速度の増加による
遠心力によって、キャビティ9の中心に向かわず、キャ
ビティ9の周壁に沿って流れ、キャビティ9の底面に向
かう。キャビティ9内は、図6(a)(b)(c)に時
間経過順に示すように、燃焼室1下部の第2吸気12が
充満した状態から、中央領域に燃焼室1上部の第1吸気
11が流入し、周辺領域と底部領域のみに第2吸気12
が残る。
In the latter half of the compression stroke in which the squish flow occurs, the swirl flow on the periphery of the piston top surface is carried by the squish flow into the cavity 9 at the center of the piston top surface, and the swirl flow accompanying the diameter reduction is generated. Due to the centrifugal force caused by the increase in the directional speed, the fluid flows along the peripheral wall of the cavity 9 without going to the center of the cavity 9 and goes to the bottom surface of the cavity 9. As shown in FIG. 6A, FIG. 6B, and FIG. 6C, the inside of the cavity 9 is filled with the second intake 12 at the lower part of the combustion chamber 1 and then the first intake at the upper part of the combustion chamber 1 is placed in the central region. 11 and the second intake 12 only in the peripheral area and the bottom area.
Remains.

【0043】燃料が燃料噴射弁2から噴射されて燃焼を
開始する圧縮行程の終期近傍には、図1に示すように、
燃焼室1の燃料が噴射される天井面中心部を中心とする
概略扁平半球面13の内側の領域には、第1吸気11が
主に存在し、その外側の領域には、第2吸気12が主に
存在する。燃料の燃焼開始時に、燃焼室1の燃料噴射位
置を中心とする概略扁平半球面13の内側の領域と外側
の領域に吸気11、12が成層化される。
In the vicinity of the end of the compression stroke in which fuel is injected from the fuel injection valve 2 to start combustion, as shown in FIG.
The first intake air 11 mainly exists in a region inside the roughly flat hemispherical surface 13 centered on the center of the ceiling surface where fuel in the combustion chamber 1 is injected, and the second intake air 12 Exists mainly. At the start of fuel combustion, the intake air 11 and 12 are stratified in a region inside and outside a substantially flat hemispherical surface 13 centered on the fuel injection position of the combustion chamber 1.

【0044】上記の概略扁平半球面13は、燃料噴射方
向の半径を噴霧分裂距離の1〜1.5倍位にすると、燃
焼室1の混合気形成領域と火炎発生領域に吸気11、1
2が成層化される。
When the radius in the fuel injection direction is set to about 1 to 1.5 times the spray split distance, the above roughly flat hemispherical surface 13 forms the intake air 11, 1, 1
2 is stratified.

【0045】圧縮行程の終期近傍において、第1吸気1
1のスワール流が強過ぎると、図7(a)に示すよう
に、第1吸気11は、スキッシュ流によってキャビティ
9の底面に運ばれる際、キャビティ9の周壁を下る逆ト
ロイダル流になり、キャビティ9の底面に流入し、キャ
ビティ9の周壁と底面に存在した第2吸気12をキャビ
ティ9の中央部に押し退ける。
Near the end of the compression stroke, the first intake air 1
If the swirl flow 1 is too strong, as shown in FIG. 7A, when the first intake air 11 is carried to the bottom surface of the cavity 9 by the squish flow, it becomes an inverse toroidal flow down the peripheral wall of the cavity 9, and The second intake air 12 flowing into the bottom surface of the cavity 9 and present on the peripheral wall and the bottom surface of the cavity 9 is pushed away to the center of the cavity 9.

【0046】本例においては、吸気11、12のスワー
ル流とスキッシュ流が適度であるので、図7(b)に示
すように、第1吸気11は、キャビティ9の山部10と
周壁の中間部を下るトロイダル流になり、その中間部に
存在した第2吸気12をキャビティ9の周辺領域と底部
領域に押し退け、燃焼室1の燃料噴射位置を中心とする
概略扁平半球面13の内外に吸気11、12が成層化さ
れる。
In this example, since the swirl flow and the squish flow of the intakes 11 and 12 are appropriate, as shown in FIG. 7B, the first intake 11 is located between the crest 10 of the cavity 9 and the peripheral wall. A toroidal flow descends, and the second intake air 12 existing in the middle part is pushed away to the peripheral area and the bottom area of the cavity 9, and the intake air flows into and out of the approximately flat hemispherical surface 13 centering on the fuel injection position of the combustion chamber 1. 11 and 12 are stratified.

【0047】本例の吸気成層化装置は、吸気11、12
がこのように成層化されるように、吸気11、12のス
キッシュ流やスワール流の流動特性を決定する燃焼室1
や吸気ポート3、4の形状を選択している。これらの形
状によって吸気11、12の成層の度合いや境界面13
の形状寸法を制御することができる。
The intake stratification device of the present embodiment
The combustion chamber 1 that determines the flow characteristics of the squish flow and swirl flow of the intake air 11 and 12 so that is stratified in this way.
And the shapes of the intake ports 3 and 4 are selected. By these shapes, the degree of stratification of the intake air 11 and 12 and the boundary 13
Can be controlled.

【0048】上記の形状には、燃焼室1のキャビティ9
形状、ピストン頂面周辺部と天井面周辺部との間の間隔
や、天井面からの吸気弁5、6下面の凹み量が例示され
る。
In the above-mentioned shape, the cavity 9 of the combustion chamber 1 is formed.
The shape, the distance between the periphery of the piston top surface and the periphery of the ceiling surface, and the amount of depression of the lower surface of the intake valves 5 and 6 from the ceiling surface are exemplified.

【0049】模擬実験例 本例の吸気成層化装置において、燃焼室1に下流側の吸
気ポート3から流入する第1吸気11を新鮮空気100
%にし、上流側の吸気ポート4から流入する第2吸気1
2を新鮮空気50%と還流排気50%にした場合につい
て、圧縮行程の終期における燃焼室1の還流排気濃度の
分布を数値計算により求めた。
Simulated Experimental Example In the intake stratification device of this embodiment, the first intake air 11 flowing into the combustion chamber 1 from the downstream intake port 3 is supplied with fresh air 100.
%, The second intake air 1 flowing from the upstream intake port 4
2 was set to 50% of fresh air and 50% of recirculated exhaust gas, the distribution of the recirculated exhaust gas concentration in the combustion chamber 1 at the end of the compression stroke was obtained by numerical calculation.

【0050】図8はその結果を示し、同図(b)は下流
側と上流側の吸気ポート3、4の間を通る燃焼室1の中
央縦断面、同図(a)はその中央縦断面に直交する中央
縦断面における還流排気濃度(EGR率)の分布を明度
で示す。
FIG. 8 shows the result. FIG. 8 (b) is a central longitudinal section of the combustion chamber 1 passing between the downstream and upstream intake ports 3 and 4, and FIG. The distribution of the recirculated exhaust gas concentration (EGR rate) in the central longitudinal section perpendicular to the graph is shown by brightness.

【0051】これらの図から明らかなように、圧縮行程
の終期に、燃焼室1の還流排気濃度分布の等高面が燃料
噴射位置を中心とする概略扁平半球面状に現れ、燃料噴
射位置に近付くに従って還流排気濃度が薄くなり、還流
排気濃度の分布がほぼ軸対称になる。燃焼室1の吸気
は、燃料噴射位置を中心とする概略扁平半球面の内外に
吸気11、12が成層化されることを示している。
As is apparent from these figures, at the end of the compression stroke, the contour surface of the recirculated exhaust gas concentration distribution of the combustion chamber 1 appears in a substantially flat hemispherical shape centering on the fuel injection position, and at the fuel injection position. The recirculation exhaust gas concentration becomes thinner as it approaches, and the distribution of the recirculation exhaust gas concentration becomes almost axially symmetric. The intake air of the combustion chamber 1 indicates that the intake air 11 and the intake air 12 are stratified inside and outside a substantially flat hemispherical surface centered on the fuel injection position.

【0052】[第2例(図9参照)]本例の吸気成層化
装置は、第1例のそれにおいて、吸気の成層度を高める
ため、下流側と上流側の吸気ポート3、4で吸気弁5、
6の開放期間をずらす。
[Second example (see FIG. 9)] In the intake stratification device of the first example, in order to increase the degree of stratification of intake air, the intake stratification device of the first example employs intake ports 3 and 4 on the downstream and upstream sides. Valve 5,
The opening period of 6 is shifted.

【0053】燃焼室1の上部に第1吸気11を流入させ
る下流側の吸気ポート3では、図9に示すように、吸気
弁5を遅い時期に開いて遅い時期に閉じる。燃焼室1の
下部に第2吸気12を流入させる上流側の吸気ポート4
では、吸気弁6を早い時期に開いて早い時期に閉じる。
As shown in FIG. 9, at the downstream intake port 3 through which the first intake air 11 flows into the upper part of the combustion chamber 1, the intake valve 5 is opened at a later time and closed at a later time. Upstream intake port 4 for allowing second intake air 12 to flow into the lower part of combustion chamber 1
Then, the intake valve 6 is opened early and closed early.

【0054】吸気行程の前期には、上流側の吸気ポート
4の吸気弁6のみが開放し、燃焼室1の下部に配置する
第2吸気12のみが燃焼室1に流入する。吸気行程の中
期には、両者の吸気ポート3、4の吸気弁5、6が開放
して第1吸気11と第2吸気12が燃焼室1に流入す
る。吸気行程の後期には、下流側の吸気ポート3の吸気
弁5のみが開放し、燃焼室1の上部に配置する第1吸気
11のみが燃焼室1に流入する。
In the first half of the intake stroke, only the intake valve 6 of the intake port 4 on the upstream side is opened, and only the second intake 12 disposed below the combustion chamber 1 flows into the combustion chamber 1. In the middle stage of the intake stroke, the intake valves 5, 6 of both intake ports 3, 4 are opened, and the first intake 11 and the second intake 12 flow into the combustion chamber 1. In the latter half of the intake stroke, only the intake valve 5 of the downstream intake port 3 opens, and only the first intake 11 arranged above the combustion chamber 1 flows into the combustion chamber 1.

【0055】下流側と上流側の吸気ポート3、4で吸気
弁5、6の開放期間が一致する第1例の場合に比較し
て、吸気行程の終期に第1吸気11と第2吸気12が上
下に成層化される度合いが高くなり、圧縮行程の終期に
吸気11、12が燃料噴射位置を中心とする概略扁平半
球面13の内外に成層化される度合いが高くなる。
At the end of the intake stroke, the first intake port 11 and the second intake port 12 are at the end of the intake stroke, as compared with the first example in which the opening periods of the intake valves 5 and 6 at the downstream and upstream intake ports 3 and 4 match. Is more or less stratified up and down, and at the end of the compression stroke, the degree of stratification of the intake air 11 and 12 inside and outside the roughly flat hemispherical surface 13 centered on the fuel injection position is increased.

【0056】その他の点は、第1例におけるのと同様で
ある。
The other points are the same as in the first example.

【0057】[第3例(図10参照)]本例の吸気成層
化装置は、第1例のそれにおいて、吸気の成層度を高め
るため、上流側の吸気ポート4の片側のみから第2吸気
12を燃焼室1に流入させる。
[Third Example (See FIG. 10)] In the intake stratification device of the first example, in order to increase the degree of stratification of the intake air in the first example, the second intake air is applied only from one side of the intake port 4 on the upstream side. 12 flows into the combustion chamber 1.

【0058】上流側の吸気ポート4においては、吸気が
斜め下向きに流出して燃焼室1の周壁に斜めに衝突し、
燃焼室1下部の周壁に沿うスワール流になる。タンジェ
ンシャルポート形状の吸気ポート4の燃焼室1周壁側部
分を流出する吸気の方が、燃焼室1中心側部分を流出す
る吸気より、燃焼室1の周壁に衝突するまでの距離が短
く、燃焼室1の下部に流入し易い。
At the intake port 4 on the upstream side, the intake air flows obliquely downward and collides obliquely with the peripheral wall of the combustion chamber 1.
The swirl flows along the peripheral wall at the lower part of the combustion chamber 1. The intake air flowing out of the tangential port-shaped intake port 4 on the peripheral wall side of the combustion chamber 1 has a shorter distance until it collides with the peripheral wall of the combustion chamber 1 than the intake air flowing out of the central side part of the combustion chamber 1, and the combustion It easily flows into the lower part of the chamber 1.

【0059】そこで、上流側の吸気ポート4は、図10
に示すように、燃焼室1の周壁側部分と中心側部分に2
分割する仕切り壁21を設け、吸気ポート4の燃焼室1
周壁側部分に、還流排気のような特定成分の濃度を高く
した第2吸気12を流し、吸気ポート4の燃焼室1周壁
側部分から第2吸気12を燃焼室1の下部に流入させ
る。吸気ポート4の燃焼室1中心側部分には、上流側の
吸気ポート3と同様に第1吸気11を流し、吸気ポート
4の燃焼室1中心側部分から第1吸気11を燃焼室1に
流入させる。
Therefore, the intake port 4 on the upstream side is
As shown in the figure, the peripheral wall side portion and the central side portion of the combustion chamber 1
A partition wall 21 for dividing is provided, and the combustion chamber 1 of the intake port 4 is provided.
The second intake air 12 having a high concentration of a specific component such as the recirculated exhaust gas flows into the peripheral wall side portion, and the second intake air 12 flows into the lower portion of the combustion chamber 1 from the combustion chamber 1 peripheral wall side portion of the intake port 4. The first intake air 11 flows into the central portion of the combustion chamber 1 of the intake port 4 in the same manner as the intake port 3 on the upstream side, and the first intake air 11 flows into the combustion chamber 1 from the central portion of the combustion port 1 of the intake port 4. Let it.

【0060】吸気ポート4の燃焼室1周壁側部分から燃
焼室1に流入する第2吸気12は、気流が細くなって、
第1吸気11と混合し難くなる。
The second intake air 12 flowing into the combustion chamber 1 from the portion of the intake port 4 on the peripheral wall side of the combustion chamber 1 has a narrow air flow,
Mixing with the first intake air 11 becomes difficult.

【0061】上流側の吸気ポート4の全体から第2吸気
12を燃焼室1に流入させる第1例の場合に比較して、
吸気行程の終期に第1吸気11と第2吸気12が上下に
成層化される度合いが高くなり、圧縮行程の終期に吸気
11、12が燃料噴射位置を中心とする概略扁平半球面
13の内外に成層化される度合いが高くなる。
In comparison with the first example in which the second intake air 12 flows into the combustion chamber 1 from the entire intake port 4 on the upstream side,
At the end of the intake stroke, the degree of stratification of the first intake 11 and the second intake 12 in the vertical direction increases, and at the end of the compression stroke, the intakes 11 and 12 enter and exit the roughly flat hemispherical surface 13 centered on the fuel injection position. The degree of stratification increases.

【0062】その他の点は、第1例におけるのと同様で
ある。
The other points are the same as in the first example.

【0063】[第4例]本例の吸気成層化装置は、第1
例のそれにおいて、吸気の成層度を高めるため、燃焼室
1の下部又は上部に吸気が流入し易いサブポートを設け
る。
[Fourth Example] The intake stratification apparatus of the present example
In the example, in order to increase the degree of stratification of the intake air, a subport through which the intake air is easily introduced is provided at a lower portion or an upper portion of the combustion chamber 1.

【0064】第3例における、燃焼室1の下部に吸気が
流入し易い吸気ポート4の燃焼室1周壁側部分と同様な
補助吸気ポートを設け、補助吸気ポートから燃焼室1の
下部に、特定成分の濃度を高くした第2吸気12を流入
させる。
In the third example, an auxiliary intake port similar to that of the intake port 4 on the peripheral wall side of the combustion chamber 1 of the intake port 4 where the intake air easily flows into the lower part of the combustion chamber 1 is provided. The second intake air 12 having a high component concentration is caused to flow.

【0065】[第5例(図11参照)]本例の吸気成層
化装置は、第1例のそれにおいて、内燃機関の運転条件
に応じて、燃焼室1の吸気の成層パターンと成層度を変
更する。
[Fifth Example (see FIG. 11)] The intake stratification device of the present example is the same as that of the first example, except that the stratification pattern and stratification degree of the intake air in the combustion chamber 1 are determined according to the operating conditions of the internal combustion engine. change.

【0066】第1例の内燃機関において、スワール流の
下流側の吸気ポート3に接続した第1吸気通路23に、
図11に示すように、第1流量制御弁24を介して第1
排気還流通路25を接続し、また、上流側の吸気ポート
4に接続した第2吸気通路26に、第2流量制御弁27
を介して第2排気還流通路28を接続する。第1流量制
御弁24の開度と第2流量制御弁27の開度をそれぞれ
内燃機関の運転条件に応じて制御する装置29を設け
る。
In the internal combustion engine of the first example, the first intake passage 23 connected to the intake port 3 on the downstream side of the swirl flow
As shown in FIG. 11, the first flow control valve 24
A second flow control valve 27 is connected to a second intake passage 26 connected to the exhaust gas recirculation passage 25 and to the intake port 4 on the upstream side.
Is connected to the second exhaust gas recirculation passage 28 via the second exhaust gas recirculation passage. A device 29 is provided for controlling the opening of the first flow control valve 24 and the opening of the second flow control valve 27 according to the operating conditions of the internal combustion engine.

【0067】内燃機関の運転条件に応じて、第1流量制
御弁24の開度と第2流量制御弁27の開度をそれぞれ
制御すると、下流側の吸気ポート3を通過する第1吸気
に混入される還流排気の量と、上流側の吸気ポート4を
通過する第2吸気に混入される還流排気の量がそれぞれ
増減し、燃焼室1の成層パターンは、変更される。燃焼
室1の概略扁平半球面13内の領域でその外側の領域よ
り還流排気の濃度が低くなる正成層パターンになる。ま
た、燃焼室1の概略扁平半球面13内の領域でその外側
の領域より還流排気の濃度が高くなる逆成層パターンに
なる。更に、燃焼室1の概略扁平半球面13内の領域と
その外側の領域で還流排気の濃度が等しくなる均質パタ
ーンになる。
When the opening degree of the first flow control valve 24 and the opening degree of the second flow control valve 27 are controlled in accordance with the operating conditions of the internal combustion engine, the opening degree of the first flow control valve 24 is mixed with the first intake air passing through the downstream intake port 3. The amount of recirculated exhaust gas and the amount of recirculated exhaust gas mixed into the second intake air passing through the upstream intake port 4 increase and decrease, respectively, and the stratification pattern of the combustion chamber 1 is changed. A positive stratified pattern in which the concentration of the recirculated exhaust gas is lower in a region inside the substantially flat semi-spherical surface 13 of the combustion chamber 1 than in a region outside the flat hemisphere 13 is obtained. In addition, a reverse stratified pattern in which the concentration of the recirculated exhaust gas is higher in the region inside the substantially flat hemispherical surface 13 of the combustion chamber 1 than in the region outside the same. Furthermore, a homogeneous pattern is obtained in which the recirculation exhaust gas has the same concentration in the region inside the substantially flat hemispherical surface 13 of the combustion chamber 1 and in the region outside thereof.

【0068】また、内燃機関の運転条件に応じて、第1
流量制御弁24の開度と第2流量制御弁27の開度をそ
れぞれ制御すると、燃焼室1の成層度が変更される。概
略扁平半球面13内の還流排気濃度に対する、概略扁平
半球面13外の還流排気濃度の比、具体的には、概略扁
平半球面13内の燃料噴射位置の還流排気濃度に対す
る、概略扁平半球面13外のキャビティ底部周辺領域の
還流排気濃度の比、成層度が増減する。
Further, depending on the operating conditions of the internal combustion engine, the first
When the opening of the flow control valve 24 and the opening of the second flow control valve 27 are controlled, the stratification of the combustion chamber 1 is changed. The ratio of the recirculation exhaust gas concentration outside the roughly flat hemisphere 13 to the recirculation exhaust gas concentration in the roughly flat hemisphere 13, specifically, the roughly flat hemisphere with respect to the recirculation exhaust gas concentration at the fuel injection position inside the roughly flat hemisphere 13. The ratio of the recirculated exhaust gas concentration and the degree of stratification in the peripheral region around the bottom of the cavity 13 increase or decrease.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の第1例における吸気成層化
装置を備えた直接噴射式圧縮着火内燃機関の概略縦断面
図。
FIG. 1 is a schematic longitudinal sectional view of a direct injection compression ignition internal combustion engine equipped with an intake stratification device in a first example of an embodiment of the present invention.

【図2】同内燃機関における吸気行程中程の燃焼室の概
略斜視図。
FIG. 2 is a schematic perspective view of a combustion chamber in the middle of an intake stroke in the internal combustion engine.

【図3】同内燃機関における燃焼室の概略平面図。FIG. 3 is a schematic plan view of a combustion chamber in the internal combustion engine.

【図4】同内燃機関における吸気行程終期の燃焼室の概
略斜視図。
FIG. 4 is a schematic perspective view of a combustion chamber at the end of an intake stroke in the internal combustion engine.

【図5】同内燃機関における圧縮行程中程の燃焼室の概
略斜視図。
FIG. 5 is a schematic perspective view of a combustion chamber in the middle of a compression stroke in the internal combustion engine.

【図6】同内燃機関における圧縮行程終期近傍の燃焼室
の概略縦断面図で、吸気の流動状態を示す図。
FIG. 6 is a schematic longitudinal sectional view of a combustion chamber near the end of a compression stroke in the internal combustion engine, showing a flow state of intake air.

【図7】内燃機関における圧縮行程終期の燃焼室の概略
縦断面図で、吸気の流動状態を示す図。
FIG. 7 is a schematic vertical sectional view of a combustion chamber at the end of a compression stroke in an internal combustion engine, showing a flow state of intake air.

【図8】同内燃機関における模擬実験例の圧縮行程終期
の吸気成層化状態を示す図。
FIG. 8 is a view showing a stratified state of intake air at the end of a compression stroke in a simulation test example of the internal combustion engine.

【図9】実施形態の第2例における吸気成層化装置を備
えた直接噴射式圧縮着火内燃機関の吸気弁揚程図。
FIG. 9 is an intake valve lift diagram of a direct injection compression ignition internal combustion engine equipped with an intake stratification device according to a second example of the embodiment.

【図10】第3例における吸気成層化装置を備えた直接
噴射式圧縮着火内燃機関の燃焼室の概略平面図。
FIG. 10 is a schematic plan view of a combustion chamber of a direct injection compression ignition internal combustion engine equipped with an intake stratification device in a third example.

【図11】第5例における吸気成層化装置を備えた直接
噴射式圧縮着火内燃機関の吸気通路部分の概略図。
FIG. 11 is a schematic view of an intake passage portion of a direct injection compression ignition internal combustion engine equipped with an intake stratification device in a fifth example.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 燃料噴射弁 3 スワール流の下流側の吸気ポート 4 スワール流の上流側の吸気ポート 5 スワール流の下流側の吸気弁 6 スワール流の上流側の吸気弁 9 キャビティ 11 第1吸気 12 第2吸気 13 第1吸気と第2吸気の境界面、概略扁平半球面 Reference Signs List 1 combustion chamber 2 fuel injection valve 3 intake port on the downstream side of swirl flow 4 intake port on the upstream side of swirl flow 5 intake valve on the downstream side of swirl flow 6 intake valve on the upstream side of swirl flow 9 cavity 11 first intake 12 Second intake 13 Boundary surface between first intake and second intake, roughly flat hemisphere

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02B 31/02 F02B 31/02 L F02D 13/02 F02D 13/02 H 41/04 370 41/04 370 F02F 3/26 F02F 3/26 C F02M 25/07 570 F02M 25/07 570A (72)発明者 稲垣 和久 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 堀田 義博 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 秋浜 一弘 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02B 31/02 F02B 31/02 L F02D 13/02 F02D 13/02 H 41/04 370 41/04 370 F02F 3/26 F02F 3/26 C F02M 25/07 570 F02M 25/07 570A (72) Inventor Kazuhisa Inagaki 41-cho, Yokomichi, Oku-cho, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory, Inc. (72) Inventor Yoshihiro Hotta 41 Toyota Chuo R & D Co., Ltd., Aichi-cho, Nagakute-cho, Aichi-gun, Toyota-Chuo R & D Co., Ltd.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 燃料を燃焼室に噴射する直接噴射式内燃
機関において、 圧縮行程終期近傍の燃料の燃焼開始時に、燃焼室の燃料
噴射位置を中心とする概略半球面ないし概略扁平半球面
の内側の領域と外側の領域に、組成の異なる吸気を配置
することを特徴とする吸気成層化方法。
In a direct injection type internal combustion engine for injecting fuel into a combustion chamber, at the start of combustion of fuel near the end of a compression stroke, a substantially semispherical surface or a substantially flat semispherical surface centered on a fuel injection position of the combustion chamber. Characterized by arranging intake air having different compositions in a region outside and a region outside.
【請求項2】 直接噴射式内燃機関の運転条件に応じ
て、燃焼室の成層パターンを、上記の内側の領域で上記
の外側の領域より吸気の特定成分の濃度が低くなる正成
層パターン、上記の内側の領域で上記の外側の領域より
吸気の特定成分の濃度が高くなる逆成層パターン、又
は、上記の内側の領域と上記の外側の領域で吸気の特定
成分の濃度が等しくなる均質パターンに変更することを
特徴とする請求項1に記載の吸気成層化方法。
2. A stratified pattern of a combustion chamber according to operating conditions of a direct injection type internal combustion engine, wherein a concentration of a specific component of intake air is lower in the inner region than in the outer region. In a reverse stratification pattern in which the concentration of the specific component of the intake air is higher than the outer region in the inner region, or in a homogeneous pattern in which the concentration of the specific component of the intake air is equal in the inner region and the outer region. The method for stratifying intake air according to claim 1, wherein the method is changed.
【請求項3】 直接噴射式内燃機関の運転条件に応じ
て、上記の内側の領域における吸気の特定成分の濃度に
対する、上記の外側の領域における吸気の特定成分の濃
度の比を変更することを特徴とする請求項1又は2に記
載の吸気成層化方法。
3. The method according to claim 1, wherein a ratio of a concentration of the specific component of the intake air in the outer region to a concentration of the specific component of the intake air in the inner region is changed according to an operating condition of the direct injection internal combustion engine. The method for stratifying intake air according to claim 1 or 2, wherein
【請求項4】 直接噴射式内燃機関は、燃料を燃焼室に
そのピストン頂面と対面する天井面の中心部からピスト
ン頂面中央部のキャビティの周辺部に向けて噴射するこ
とを特徴とする請求項1、2又は3に記載の吸気成層化
方法。
4. A direct injection type internal combustion engine is characterized in that fuel is injected into a combustion chamber from a central portion of a ceiling surface facing a piston top surface toward a peripheral portion of a cavity at a central portion of the piston top surface. The method for stratifying intake air according to claim 1, 2 or 3.
【請求項5】 燃焼室の燃料噴射位置を中心とする概略
半球面ないし概略扁平半球面は、燃料の噴射方向には燃
焼室の燃料噴射位置から噴霧分裂距離の1〜1.5倍位
離れていることを特徴とする請求項1〜4のいずれかに
記載の吸気成層化方法。
5. A substantially hemispherical surface or a substantially flat hemispherical surface centered on a fuel injection position of the combustion chamber is separated from the fuel injection position of the combustion chamber by about 1 to 1.5 times the spray split distance in the fuel injection direction. The method for stratifying intake air according to claim 1, wherein:
【請求項6】 直接噴射式内燃機関は、圧縮着火内燃機
関であることを特徴とする請求項1〜5のいずれかに記
載の吸気成層化方法。
6. The method for stratifying intake air according to claim 1, wherein the direct injection internal combustion engine is a compression ignition internal combustion engine.
【請求項7】 複数の吸気ポートで燃焼室に複数の同一
方向の吸気スワール流を形成し、燃料を燃焼室にそのピ
ストン頂面と対面する天井面の中心部からピストン頂面
中央部のキャビティの周辺部に向けて噴射する直接噴射
式内燃機関において、 吸気行程において、燃焼室の上部にその周壁に沿う第1
吸気のスワール流を形成し、燃焼室の下部にその周壁に
沿う第2吸気のスワール流を形成し、圧縮行程の中程ま
で、燃焼室において第1吸気のスワール流と第2吸気の
スワール流が上下に配置された状態を継続し、 スキッシュ流が発生する圧縮行程の後半に、ピストン頂
面中央部のキャビティにおいて、中央領域に第1吸気を
流入させ、周辺領域と底部領域に第2吸気を残存させ、 燃料が燃焼を開始する圧縮行程の終期近傍において、燃
焼室の燃料噴射位置を中心とする概略半球面ないし概略
扁平半球面の内側の領域に第1吸気を、外側の領域に第
2吸気を主に配置する構成にしたことを特徴とする吸気
成層化装置。
7. A plurality of intake swirl flows in the combustion chamber are formed in the combustion chamber by a plurality of intake ports, and fuel is supplied to the combustion chamber from a center of a ceiling surface facing the piston top surface to a center of the piston top surface. A direct injection internal combustion engine that injects fuel toward a peripheral portion of a combustion chamber, comprising:
A swirl flow of the intake air is formed, and a swirl flow of the second intake air is formed at a lower portion of the combustion chamber along a peripheral wall thereof. The swirl flow of the first intake air and the swirl flow of the second intake air in the combustion chamber until the middle of the compression stroke. In the latter half of the compression stroke in which squish flow is generated, the first intake air flows into the central region in the cavity at the center of the piston top surface, and the second intake air flows into the peripheral region and the bottom region. In the vicinity of the end of the compression stroke in which fuel starts burning, the first intake air is supplied to an area inside a substantially hemispherical surface or a substantially flat hemispherical surface around the fuel injection position of the combustion chamber, and the first intake air is supplied to an outer region. An intake stratification device, wherein two intakes are mainly arranged.
【請求項8】 燃焼室の燃料噴射位置を中心とする概略
半球面ないし概略扁平半球面は、燃料の噴射方向には燃
焼室の燃料噴射位置から噴霧分裂距離の1〜1.5倍位
離れていることを特徴とする請求項7に記載の吸気成層
化装置。
8. A substantially hemispherical surface or a substantially flat hemispherical surface centered on a fuel injection position of the combustion chamber is separated from the fuel injection position of the combustion chamber by about 1 to 1.5 times the spray split distance in the fuel injection direction. The intake stratification device according to claim 7, wherein:
【請求項9】 直接噴射式内燃機関は、圧縮着火内燃機
関であることを特徴とする請求項7又は8に記載の吸気
成層化装置。
9. The intake stratification device according to claim 7, wherein the direct injection internal combustion engine is a compression ignition internal combustion engine.
【請求項10】 燃焼室の上部に第1吸気のスワール流
を形成する吸気ポートと、燃焼室の下部に第2吸気のス
ワール流を形成する吸気ポートとで吸気弁の開放期間を
ずらし、吸気行程の前期には、後者の吸気ポートの吸気
弁のみが開放して第2吸気のみが燃焼室に流入し、吸気
行程の中期には、両者の吸気ポートの吸気弁が開放して
第1吸気と第2吸気が燃焼室に流入し、吸気行程の後期
には、前者の吸気ポートの吸気弁のみが開放して第1吸
気のみが燃焼室に流入する構成にしたことを特徴とする
請求項7、8又は9に記載の吸気成層化装置。
10. An intake port which forms a swirl flow of a first intake air in an upper part of a combustion chamber and a suction port which forms a swirl flow of a second intake air in a lower part of a combustion chamber, in which an opening period of an intake valve is shifted. In the first half of the stroke, only the intake valve of the latter intake port opens and only the second intake flows into the combustion chamber. In the middle of the intake stroke, the intake valves of both intake ports open and the first intake And the second intake air flows into the combustion chamber, and in the latter half of the intake stroke, only the intake valve of the former intake port is opened and only the first intake air flows into the combustion chamber. 10. The intake stratification device according to 7, 8, or 9.
JP2001015617A 2000-01-25 2001-01-24 Intake stratification method in a direct injection internal combustion engine Expired - Fee Related JP3842047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015617A JP3842047B2 (en) 2000-01-25 2001-01-24 Intake stratification method in a direct injection internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-15634 2000-01-25
JP2000015634 2000-01-25
JP2001015617A JP3842047B2 (en) 2000-01-25 2001-01-24 Intake stratification method in a direct injection internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001280139A true JP2001280139A (en) 2001-10-10
JP3842047B2 JP3842047B2 (en) 2006-11-08

Family

ID=26584087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015617A Expired - Fee Related JP3842047B2 (en) 2000-01-25 2001-01-24 Intake stratification method in a direct injection internal combustion engine

Country Status (1)

Country Link
JP (1) JP3842047B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280884A (en) * 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP2014222050A (en) * 2013-05-14 2014-11-27 株式会社デンソー Intake system of internal combustion engine
KR101745005B1 (en) * 2011-10-07 2017-06-09 현대자동차주식회사 Diesel - Gasoline Complex Engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040344B1 (en) 2008-09-12 2011-06-10 서울대학교산학협력단 Combustion system for vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147023A (en) * 1992-11-12 1994-05-27 Yanmar Diesel Engine Co Ltd Reflux method and reflux structure for exhaust gas in internal combustion engine
JP2001280140A (en) * 2000-01-25 2001-10-10 Toyota Central Res & Dev Lab Inc Direct injection-type internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147023A (en) * 1992-11-12 1994-05-27 Yanmar Diesel Engine Co Ltd Reflux method and reflux structure for exhaust gas in internal combustion engine
JP2001280140A (en) * 2000-01-25 2001-10-10 Toyota Central Res & Dev Lab Inc Direct injection-type internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008280884A (en) * 2007-05-09 2008-11-20 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine
JP4715804B2 (en) * 2007-05-09 2011-07-06 トヨタ自動車株式会社 Exhaust gas recirculation device for internal combustion engine
KR101745005B1 (en) * 2011-10-07 2017-06-09 현대자동차주식회사 Diesel - Gasoline Complex Engine
JP2014222050A (en) * 2013-05-14 2014-11-27 株式会社デンソー Intake system of internal combustion engine

Also Published As

Publication number Publication date
JP3842047B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
US6799551B2 (en) Direct injection type internal combustion engine
CN104981595B (en) Piston for the cylinder of explosive motor
US6820587B1 (en) Method for controlling a combustion process in a combustion engine
JP3763491B2 (en) Combustion chamber structure of in-cylinder injection engine
JPH06200836A (en) Jump-spark ignition internal combustion engine
JPH0835429A (en) Cylinder fuel injection-type spark ignition engine
JPH06159079A (en) Intake device for engine
JP4093074B2 (en) An internal combustion engine capable of self-ignition operation in which the air-fuel mixture is compressed and self-ignited
JP3975517B2 (en) Fuel injection control device for in-cylinder direct injection spark ignition engine
JPH07102976A (en) Inter-cylinder injection type spark ignition engine
JP2001280139A (en) Intake stratification method in direct injection-type internal combustion engine and stratifying device
JP2017194004A (en) Combustion chamber structure of diesel engine
JP2001280140A (en) Direct injection-type internal combustion engine
CN106536889A (en) Combustion method
JPH10288038A (en) Direct injection type diesel engine
JP2000199440A (en) Cylinder injection type spark ignition internal combustion engine
JPH06257432A (en) Fuel supply system for internal combustion engine
JP2001317359A (en) Internal combustion engine
JP2001349219A (en) Compression ignition engine
JPS6329016A (en) Subchamber type diesel combustion chamber
JPS63129116A (en) Phase flow air charging system internal combustion engine
JPH05321795A (en) Fuel supplying device for engine
JPH1026026A (en) Spark ignition engine
JP4134735B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device
JP3800764B2 (en) Piston for in-cylinder internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060603

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060608

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees