JP2001280140A - Direct injection-type internal combustion engine - Google Patents

Direct injection-type internal combustion engine

Info

Publication number
JP2001280140A
JP2001280140A JP2001015657A JP2001015657A JP2001280140A JP 2001280140 A JP2001280140 A JP 2001280140A JP 2001015657 A JP2001015657 A JP 2001015657A JP 2001015657 A JP2001015657 A JP 2001015657A JP 2001280140 A JP2001280140 A JP 2001280140A
Authority
JP
Japan
Prior art keywords
intake
intake air
exhaust gas
combustion chamber
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001015657A
Other languages
Japanese (ja)
Inventor
Kazuhisa Inagaki
和久 稲垣
Kiyomi Nakakita
清己 中北
Yoshihiro Hotta
義博 堀田
Minaji Inayoshi
三七二 稲吉
Ichiro Sakata
一郎 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2001015657A priority Critical patent/JP2001280140A/en
Publication of JP2001280140A publication Critical patent/JP2001280140A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0621Squish flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0618Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston having in-cylinder means to influence the charge motion
    • F02B23/0624Swirl flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce both of NOx and soot. SOLUTION: In this direct injection-type internal combustion engine where the fuel is injected to a combustion chamber 1 from a central part of a ceiling face opposite to a top face of a piston toward a circumferential part of a cavity 9 of a central part of the piston top face, the combustion chamber 1 is provided with the intake free from the circulated exhaust or the intake 11 of low concentration of the circulated exhaust, and the intake containing the circulated exhaust or the intake 12 of high concentration of circulated exhaust in an inner region and an outer region of an approximately hemispherical face or an approximately flat hemispherical face 13 around a fuel injecting position in starting of the fuel combustion near a final period of the compressing stroke. The intake containing the circulated exhaust or the intake of high concentration of the circulated exhaust is located in the inner region and the intake free from the circulated exhaust or the intake of low concentration of circulated exhaust is located in the outer region in a high load or high rotation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃料を燃焼室に噴
射する直接噴射式内燃機関において、燃焼室の吸気に還
流排気を混入して排気中のNOx(窒素酸化物)やスート
(すす)などの有害物質を低減する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a direct injection type internal combustion engine in which fuel is injected into a combustion chamber, and NOx (nitrogen oxide) or soot (soot) in the exhaust gas by mixing recirculated exhaust gas into intake air of the combustion chamber. It relates to technologies for reducing harmful substances such as.

【0002】[0002]

【従来の技術】第1従来技術 排気還流装置を備えた直接噴射式内燃機関において、排
気ポートを通過する排気の一部を、吸気ポートを通過す
る吸気に混入し、燃焼室に、還流排気が混入した吸気を
流入させ、燃焼室の吸気中に還流排気を均等に分布さ
せ、燃焼室の酸素濃度、燃焼温度を低下させてNOxの発
生を低減する。
2. Description of the Related Art In a direct injection type internal combustion engine provided with an exhaust gas recirculation device, a part of exhaust gas passing through an exhaust port is mixed into intake air passing through an intake port, and the recirculated exhaust gas is introduced into a combustion chamber. The mixed intake air is caused to flow in, the recirculated exhaust gas is evenly distributed in the intake air of the combustion chamber, and the oxygen concentration and the combustion temperature of the combustion chamber are reduced to reduce the generation of NOx.

【0003】第2従来技術(特開平11−148429
号公報) 排気還流装置を備えた直接噴射式圧縮着火内燃機関にお
いて、排気中のNOxやPM(粒子状物質)を低減するた
め、燃焼室の吸気を成層化する技術が提案されている。
A second prior art (Japanese Patent Laid-Open No. 11-148429)
In a direct injection compression ignition internal combustion engine equipped with an exhaust gas recirculation device, a technique for stratifying intake air in a combustion chamber has been proposed in order to reduce NOx and PM (particulate matter) in exhaust gas.

【0004】燃焼室は、同一方向のスワール流を同心状
に形成する2個の吸気ポートを設け、スワール流の上流
側の吸気ポートでは、燃焼室の中心部に小径のスワール
流を、下流側の吸気ポートでは、燃焼室の周辺部に大径
のスワール流を形成する。
The combustion chamber is provided with two intake ports for concentrically forming a swirl flow in the same direction. In the intake port on the upstream side of the swirl flow, a small-diameter swirl flow is provided at the center of the combustion chamber, A large-diameter swirl flow is formed at the periphery of the combustion chamber at the intake port.

【0005】上流側の吸気ポートを通過する吸気には還
流排気を混入し、下流側の吸気ポートを通過する吸気に
は還流排気を混入せず、燃焼室中心部の円柱状領域に
は、還流排気を混入した吸気を、燃焼室周辺部の円環状
領域には、還流排気を混入しない吸気を配置する。
[0005] The recirculated exhaust gas is mixed into the intake air passing through the upstream intake port, and the recirculated exhaust gas is not mixed into the intake air passing through the downstream intake port. The intake air mixed with the exhaust gas is disposed in the annular region around the combustion chamber, and the intake air is not mixed with the recirculated exhaust gas.

【0006】[0006]

【発明が解決しようとする課題】第1従来技術において
は、内燃機関の中負荷又は高負荷運転時に、低負荷運転
時と同様に、排気の還流率を高めると、NOxの低減効果
が増加するが、中負荷又は高負荷運転時には、元来、燃
焼室に酸素不足の領域が局所的に存在するため、排気の
還流率を高めて多量の還流排気を均等に分布させると、
酸素不足の領域が益々酸素不足になり、スート発生の増
加とスート酸化の阻害によって、PMが増加する。NOx
とスートの両者を同時に低減することができない。
In the first prior art, when the recirculation rate of the exhaust gas is increased during the medium-load or high-load operation of the internal combustion engine, as in the low-load operation, the effect of reducing NOx increases. However, at the time of medium-load or high-load operation, since there is an oxygen-deficient region locally in the combustion chamber, if a large amount of recirculated exhaust gas is evenly distributed by increasing the exhaust gas recirculation rate,
The oxygen deficient region becomes more and more deficient in oxygen, and PM increases due to increased soot generation and inhibition of soot oxidation. NOx
And soot cannot be reduced at the same time.

【0007】第2従来技術においては、燃焼室に吸気の
小径のスワール流と大径のスワール流を内外に形成する
としているが、スワール流は、径を拡大させる遠心力が
あるので、小径のスワール流は、遠心力によって外側に
拡大し、燃焼室の周壁によって径が拡大しない大径のス
ワール流と衝突して混合することになる。
In the second prior art, a small-diameter swirl flow and a large-diameter swirl flow of intake air are formed inside and outside of the combustion chamber. However, the swirl flow has a centrifugal force that enlarges the diameter. The swirl flow expands outward due to the centrifugal force, and collides with and mixes with the large-diameter swirl flow whose diameter does not increase due to the peripheral wall of the combustion chamber.

【0008】また、吸気行程において、燃焼室に小径と
大径のスワール流が内外に形成されたとしても、次の圧
縮行程には、ピストン頂面の周辺部上の吸気がピストン
頂面の中央部のキャビティに流入するスキッシュ流が発
生するので、燃焼室周辺部の大径のスワール流は、スキ
ッシュ流によって燃焼室中心側に運ばれ、燃焼室中心部
の小径のスワール流と衝突して混合することになる。
Further, even if swirl flows of small diameter and large diameter are formed inside and outside the combustion chamber in the intake stroke, in the next compression stroke, the intake air on the periphery of the top surface of the piston becomes the center of the piston top surface. A large swirl flow around the combustion chamber is transported to the center of the combustion chamber by the squish flow, and collides with the small swirl flow at the center of the combustion chamber because a squish flow flows into the cavity of the combustion chamber. Will do.

【0009】従って、燃料が燃焼室に噴霧されて燃焼を
開始する圧縮行程の終期近傍の時点では、還流排気を混
入した吸気と、混入しない吸気が内外に成層化されてい
るものとは認められない。排気中のNOxやPMが低下す
るのか不明である。
Therefore, at a point near the end of the compression stroke in which fuel is sprayed into the combustion chamber to start combustion, it is recognized that the intake air mixed with the recirculated exhaust gas and the intake air not mixed are stratified in and out. Absent. It is unknown whether NOx and PM in the exhaust gas decrease.

【0010】[0010]

【課題を解決するための着眼と研究】1)本発明者の研
究によると、直接噴射式圧縮着火内燃機関において、燃
焼室は、図9(a)と図10(a)に例示するように、
スキッシュエリアとキャビティ周辺部に、燃料噴射弁か
ら噴射された燃料流が燃焼する高温領域が生ずる。
1) According to the research of the present inventors, in a direct injection compression ignition internal combustion engine, the combustion chamber is as shown in FIGS. 9 (a) and 10 (a). ,
In the squish area and the periphery of the cavity, there is a high temperature region where the fuel flow injected from the fuel injection valve burns.

【0011】その高温燃焼領域において、図9(b)
(c)と図10(b)(c)に例示するように、理論空
燃比近傍のリーン側領域でNOxが発生する。従って、燃
焼室のスキッシュエリアとキャビティ周辺部に、燃焼期
間中に、還流排気を分布させると、高温燃焼領域の酸素
濃度、燃焼温度が低下して、NOxの発生が減少する。
In the high-temperature combustion region, FIG.
As illustrated in (c) and FIGS. 10 (b) and (c), NOx is generated in the lean region near the stoichiometric air-fuel ratio. Therefore, if the recirculated exhaust gas is distributed in the squish area of the combustion chamber and the periphery of the cavity during the combustion period, the oxygen concentration and the combustion temperature in the high-temperature combustion area decrease, and the generation of NOx decreases.

【0012】また、高温燃焼領域において、図9(b)
(d)と図10(b)(d)に例示するように、理論空
燃比よりリッチ側の酸素不足燃焼領域、即ち、燃料噴射
弁から噴射された燃料流の先端部ないしキャビティの谷
部でスートが発生する。スートの発生を抑制するには、
酸素不足状態で燃焼する燃料流先端部に酸素を供給し、
燃料流先端部の酸素不足を解消することが有効である。
Further, in the high temperature combustion region, FIG.
As illustrated in (d) and FIGS. 10 (b) and 10 (d), in the oxygen-deficient combustion region richer than the stoichiometric air-fuel ratio, that is, at the tip of the fuel flow injected from the fuel injector or the valley of the cavity. A soot occurs. To control the occurrence of soot,
Supplying oxygen to the fuel flow front that burns in an oxygen-deficient state,
It is effective to eliminate the lack of oxygen at the fuel flow front end.

【0013】2)一方、燃焼室の吸気中に燃料噴射弁か
ら噴射された燃料流は、根元側部分では、その周囲の空
気を燃料流内部に巻き込むと共に、その周囲の空気を燃
料流外周に連行し、燃料流に随伴する空気流を誘起す
る。また、燃料流は、高速で飛翔しながら、分裂して微
粒化し、蒸気になり、蒸気になる先端側部分で燃焼して
火炎を生ずる。なお、先端側部分より根元側で燃焼して
火炎を生ずる場合もあるが、高温の火炎が大規模に発生
する部分は、燃料流の先端側部分である。
2) On the other hand, the fuel flow injected from the fuel injection valve during the intake of the combustion chamber entrains the surrounding air into the fuel flow at the root side portion, and transfers the surrounding air to the outer periphery of the fuel flow. It entrains and induces an air flow associated with the fuel flow. In addition, the fuel flow flies at a high speed, splits and atomizes, turns into steam, and burns at a leading end portion where the steam is turned into a flame. It should be noted that there is a case where a flame is generated by burning on the base side from the front end portion, but a portion where the high-temperature flame is generated on a large scale is a front end portion of the fuel flow.

【0014】燃焼室は、燃料を噴射して燃焼している
間、燃料流の根元側に、燃料と空気を混合して混合気を
形成する混合気形成領域が形成されると共に、燃料流の
先端側に、混合気が激しく燃焼して高温の火炎が大規模
に発生する火炎発生領域が形成され、混合気形成領域と
火炎発生領域に大別される。燃焼室の混合気形成領域で
形成された混合気は、燃料流ないし混合気流によって燃
焼室の火炎発生領域に運ばれる。
In the combustion chamber, a fuel / air mixture region is formed at the base of the fuel flow to mix the fuel and air to form a fuel / air mixture during fuel injection and combustion. At the front end side, a flame generation region where the air-fuel mixture burns violently and a high-temperature flame is generated on a large scale is formed, and is roughly divided into an air-fuel mixture formation region and a flame generation region. The air-fuel mixture formed in the air-fuel mixture formation region of the combustion chamber is carried to the flame generation region of the combustion chamber by the fuel flow or the air-fuel mixture flow.

【0015】従って、排気還流装置を備えた直接噴射式
圧縮着火内燃機関において、燃料噴射弁から噴射される
燃料流の根元側部分の周囲に、還流排気を分布させず
に、新鮮空気を分布させると、燃料流ないし混合気流に
よってその先端部に新鮮空気が運ばれ、酸素不足状態で
燃焼する燃料流先端部ないしキャビティ谷部に酸素が供
給され、酸素濃度がスート発生抑制値以上に増加して、
スートの発生が減少する。だだし、この時、酸素濃度が
NOx発生値までには上昇しないように制御する。また、
理論空燃比近傍のリーン側領域で高温燃焼してNOxが発
生する燃焼室のスキッシュエリアとキャビティ周辺部
に、還流排気を混入した吸気を分布させると、酸素濃
度、燃焼温度が低下して、NOxの発生が減少する。
Therefore, in a direct injection compression ignition internal combustion engine provided with an exhaust gas recirculation device, fresh air is distributed around the root side portion of the fuel flow injected from the fuel injection valve without distributing the recirculated exhaust gas. The fresh air is transported to the tip by the fuel flow or the mixture flow, and oxygen is supplied to the fuel flow tip or the cavity valley that burns in an oxygen-deficient state, so that the oxygen concentration increases to the soot generation suppression value or more. ,
The occurrence of soot is reduced. However, at this time, control is performed so that the oxygen concentration does not increase to the NOx generation value. Also,
When the intake air containing the recirculated exhaust gas is distributed around the squish area of the combustion chamber and around the cavity where NOx is generated by high-temperature combustion in the lean side region near the stoichiometric air-fuel ratio, the oxygen concentration and combustion temperature decrease, and NOx Occurrence is reduced.

【0016】結局、燃焼室には、燃焼開始時に、燃料噴
射弁から噴射される燃料流の根元側部分を含む混合気形
成領域に、還流排気を混入しない吸気を、その外側の火
炎発生領域に、還流排気を混入した吸気を配置すると、
NOxとスートの両者を低減することができる。
In the combustion chamber, at the start of combustion, the intake air, which does not mix the recirculated exhaust gas, into the air-fuel mixture formation region including the root portion of the fuel flow injected from the fuel injection valve, is introduced into the flame generation region outside the mixture. When the intake air mixed with the recirculated exhaust gas is arranged,
Both NOx and soot can be reduced.

【0017】3)燃料流の先端側部分において大規模な
高温火炎の発生が始まる火炎発生開始位置は、燃料噴射
弁の噴口から燃料流の分裂開始位置までの距離を噴霧分
裂距離とすると、燃料噴射弁噴口位置から噴霧分裂距離
の1〜1.5倍位離れた位置になる。なお、噴霧分裂距
離=15.8(燃料密度/空気密度)1/2・(燃料噴射
弁噴口径)である。
3) The flame generation start position at which the generation of a large-scale high-temperature flame at the front end portion of the fuel flow starts is defined by the distance from the injection port of the fuel injection valve to the start position of the fuel flow division. The position is about 1 to 1.5 times as long as the spray split distance from the injection valve orifice position. Note that the spray split distance = 15.8 (fuel density / air density) 1/2 · (fuel injection nozzle diameter).

【0018】また、燃料噴射弁は、ピストン頂面と対面
する燃焼室天井面の中心部に多数の噴口を配置し、それ
らの噴射方向は、放射方向であり、燃焼室の半径方向か
らピストン頂面側に傾斜し、圧縮行程の終期近傍におい
てピストン頂面中央部のキャビティの周辺部に向かう。
In the fuel injection valve, a number of injection ports are arranged at the center of the ceiling surface of the combustion chamber facing the top surface of the piston, and the injection direction thereof is a radial direction. It inclines toward the surface and heads toward the periphery of the cavity at the center of the piston top surface near the end of the compression stroke.

【0019】従って、燃焼室の上記の火炎発生領域は、
各燃料噴射方向には燃焼室の燃料噴射弁噴口位置から噴
霧分裂距離の約1〜1.5倍以上離れた領域になり、燃
焼室の中心軸に対してほぼ対称になる。混合気形成領域
は、各燃料噴射方向には燃焼室の燃料噴射弁噴口位置か
ら噴霧分裂距離の約1〜1.5倍以内の領域になり、燃
焼室の中心軸に対してほぼ対称になる。
Therefore, the above-mentioned flame generating region of the combustion chamber is:
In each fuel injection direction, the fuel injection valve is located in a region which is at least about 1 to 1.5 times the spray split distance from the position of the injection port of the fuel injection valve in the combustion chamber, and is substantially symmetric with respect to the central axis of the combustion chamber. The mixture formation region is a region within about 1 to 1.5 times the spray split distance from the fuel injection valve orifice position of the combustion chamber in each fuel injection direction, and is substantially symmetric with respect to the central axis of the combustion chamber. .

【0020】これらのことから、燃焼室の吸気は、燃料
が燃焼を開始する圧縮行程の終期近傍に、燃料が噴射さ
れる燃焼室の天井面中心部を中心とする概略半球面ない
し概略扁平半球面の内側の領域と外側の領域に、還流排
気を混入しない吸気と、混入した吸気を成層化すること
ができると、NOxとスートの両者を低減することができ
る。
From these facts, the intake air of the combustion chamber is substantially semispherical or substantially flat hemispherical around the center of the ceiling surface of the combustion chamber where fuel is injected near the end of the compression stroke where fuel starts to burn. If the intake air in which the recirculation exhaust gas is not mixed and the mixed intake air can be stratified in the inner region and the outer region of the surface, both NOx and soot can be reduced.

【0021】4)複数の吸気ポートで燃焼室に複数の同
一方向の吸気スワール流を形成し、燃料を燃焼室にその
天井面の中心部からピストン頂面中央部のキャビティの
周辺部に向けて噴射する直接噴射式圧縮着火内燃機関に
おいて、燃焼室や吸気ポートの形状、従って、吸気のス
キッシュ流やスワール流の流動特性を選択すると、吸気
を次のように成層化することができる。
4) A plurality of intake swirl flows in the same direction are formed in the combustion chamber by the plurality of intake ports, and the fuel is directed from the center of the ceiling surface of the combustion chamber toward the peripheral portion of the cavity at the center of the piston top surface. In a direct-injection compression ignition internal combustion engine that performs injection, if the shapes of the combustion chamber and the intake port, and thus the flow characteristics of the intake squish flow and swirl flow, are selected, the intake air can be stratified as follows.

【0022】吸気行程において、図2に例示するよう
に、スワール流の下流側の吸気ポート3では、燃焼室1
の上部にその周壁に沿う第1吸気11のスワール流を、
上流側の吸気ポート4では、燃焼室1の下部にその周壁
に沿う第2吸気12のスワール流を形成する。図4と図
5に例示するように、燃焼室1において組成の異なる第
1吸気11のスワール流と第2吸気12のスワール流が
上下に配置された状態は、圧縮行程の中程まで継続され
る。
In the intake stroke, as illustrated in FIG. 2, at the intake port 3 downstream of the swirl flow, the combustion chamber 1
The swirl flow of the first intake 11 along the peripheral wall at the top of
In the intake port 4 on the upstream side, a swirl flow of the second intake 12 along the peripheral wall is formed below the combustion chamber 1. As illustrated in FIGS. 4 and 5, the state in which the swirl flow of the first intake 11 and the swirl flow of the second intake 12 having different compositions are vertically arranged in the combustion chamber 1 is continued until the middle of the compression stroke. You.

【0023】スキッシュ流が発生する圧縮行程の後半に
おいて、ピストン頂面の周辺部上のスワール流は、スキ
ッシュ流によってピストン頂面の中央部のキャビティ内
に運ばれ、径の縮小に伴うスワール方向速度の増加によ
る遠心力によって、キャビティの中心に向かわず、キャ
ビティの周壁に沿って流れ、キャビティの底面に向か
う。キャビティは、スキッシュ流の発生前には、全域に
第2吸気が存在するが、スキッシュ流が発生すると、図
6(a)(b)(c)に時間経過順に例示するように、
中央領域に第1吸気11が流入し、周辺領域と底部領域
のみに第2吸気12が存在することになる。
In the latter half of the compression stroke in which the squish flow is generated, the swirl flow on the periphery of the piston top surface is carried by the squish flow into the cavity at the center of the piston top surface, and the swirl velocity due to the diameter reduction is generated. Due to the centrifugal force caused by the increase in the flow rate, the fluid flows along the peripheral wall of the cavity without going to the center of the cavity and toward the bottom surface of the cavity. In the cavity, before the squish flow occurs, the second intake air exists in the entire region. However, when the squish flow occurs, as illustrated in FIGS. 6A, 6B, and 6C in the order of lapse of time,
The first intake air 11 flows into the central region, and the second intake air 12 exists only in the peripheral region and the bottom region.

【0024】燃料が燃焼を開始する圧縮行程の終期近傍
においては、図1に例示するように、燃焼室1は、燃料
が噴射される天井面中心位置を中心とする概略扁平半球
面13内の領域には、第1吸気11が主に存在し、その
外側の領域には、第2吸気12が主に存在することにな
る。
In the vicinity of the end of the compression stroke in which fuel starts to burn, as shown in FIG. 1, the combustion chamber 1 has a substantially flat semi-spherical surface 13 centered on the center position of the ceiling surface where fuel is injected. The first intake air 11 mainly exists in the region, and the second intake air 12 mainly exists in the region outside the region.

【0025】第1吸気11には還流排気を混入せず、第
2吸気12に還流排気を混入すると、燃料の燃焼開始時
に燃焼室は、燃料噴射位置を中心とする概略半球面ない
し概略扁平半球面の内側の領域と外側の領域に、還流排
気が混入していない吸気又は還流排気濃度が薄い吸気
と、還流排気が混入している吸気又は還流排気濃度が濃
い吸気が成層化されることになる。
When the recirculated exhaust gas is not mixed into the first intake air 11 but the recirculated exhaust gas is mixed into the second intake air 12, the combustion chamber at the start of fuel combustion has a substantially hemispherical surface or a substantially flat hemispherical shape centered on the fuel injection position. In the area inside and outside the surface, the intake air in which the recirculation exhaust gas is not mixed or the intake air with a low recirculation exhaust gas concentration and the intake air in which the recirculation exhaust gas is mixed or the intake air with a high recirculation exhaust gas concentration are stratified. Become.

【0026】5)直接噴射式内燃機関の高負荷時には、
燃料は、噴射終了時期が遅くなって、燃焼室1の周辺
部、スキッシュエリアに分配される割合が高くなる。従
って、燃料流の根元側部分に巻き込まれる新鮮空気量を
増加させてスートを抑制するよりも、燃焼室1の周辺
部、スキッシュエリアに存在する新鮮空気量を増加させ
てスートを抑制する方が効果的である。
5) When the load of the direct injection type internal combustion engine is high,
The end timing of the fuel is delayed, and the ratio of the fuel distributed to the peripheral portion of the combustion chamber 1 and the squish area is increased. Therefore, it is better to suppress the soot by increasing the amount of fresh air present in the peripheral portion of the combustion chamber 1 and the squish area than to suppress the soot by increasing the amount of fresh air entrained in the base portion of the fuel flow. It is effective.

【0027】即ち、高負荷時には、低負荷時とは燃焼室
1の成層パターンを変更し、燃焼室1は、概略扁平半球
面13内の領域には、還流排気を混入した吸気が存在
し、その外側の領域には、還流排気を混入しない新鮮空
気の吸気が存在する逆成層パターンにするのが望まれ
る。
That is, when the load is high, the stratification pattern of the combustion chamber 1 is changed from that at the time of low load. In the combustion chamber 1, the intake air mixed with the recirculated exhaust gas is present in a region within the substantially flat hemisphere 13. It is desired to form a reverse stratified pattern in which a fresh air intake which does not mix the recirculated exhaust gas exists in a region outside the recirculated exhaust gas.

【0028】6)燃焼室の燃料噴射位置を中心とする概
略半球面ないし概略扁平半球面の外側の領域に、還流排
気が混入している吸気又は還流排気濃度が濃い吸気を配
置する場合、還流排気の量を一定とすると、概略半球面
ないし概略扁平半球面外の還流排気濃度が増加するに従
って、概略半球面ないし概略扁平半球面の半径が増加す
る。
6) In the case where intake air containing recirculated exhaust gas or intake air having a high recirculated exhaust gas concentration is arranged in a region outside the substantially hemispherical surface or the approximately flat hemispherical surface around the fuel injection position of the combustion chamber, Assuming that the amount of exhaust is constant, the radius of the substantially hemispherical surface or the approximately flat hemispherical surface increases as the recirculation exhaust gas concentration outside the approximately hemispherical surface or the approximately flat hemispherical surface increases.

【0029】NOxの発生領域が広くて概略半球面ないし
概略扁平半球面の内側に及ぶときには、概略半球面ない
し概略扁平半球面外の還流排気濃度を低下させて概略半
球面ないし概略扁平半球面の半径を縮小し、広い領域で
NOxを低減させる。逆に、NOxの発生領域が狭いときに
は、概略半球面ないし概略扁平半球面外の還流排気濃度
を増加させて概略半球面ないし概略扁平半球面の半径を
拡大し、濃度が濃い還流排気でNOxを低減させる。
When the NOx generation region is wide and extends inside the approximately hemispherical surface or the approximately flat hemispherical surface, the recirculation exhaust gas concentration outside the approximately hemispherical surface or the approximately flattened hemispherical surface is reduced to reduce the approximate hemispherical surface or the approximately flat hemispherical surface. Reduce the radius and reduce NOx over a wide area. Conversely, when the NOx generation region is narrow, the recirculation exhaust gas concentration outside the substantially hemispherical surface or the approximately flat hemispherical surface is increased to increase the radius of the approximately hemispherical surface or the approximately flat hemispherical surface. Reduce.

【0030】このように、NOx発生領域の広さに応じ
て、概略半球面ないし概略扁平半球面の内側又は外側の
領域における還流排気濃度を変化させると、スートとN
Oxを一層低減することができる。
As described above, when the recirculation exhaust gas concentration in the region inside or outside the substantially hemispherical surface or the approximately flat hemispherical surface is changed according to the size of the NOx generation region, the soot and the N
Ox can be further reduced.

【0031】[0031]

【課題を解決するための手段】1)燃料を燃焼室に噴射
する直接噴射式内燃機関において、燃焼室は、圧縮行程
終期近傍の燃料燃焼開始時に、燃料噴射位置を中心とす
る概略半球面ないし概略扁平半球面の内側の領域と外側
の領域に、還流排気が混入していない吸気又は還流排気
濃度の薄い吸気と、還流排気が混入している吸気又は還
流排気濃度の濃い吸気を配置する構成にしたことを特徴
とする直接噴射式内燃機関。
SUMMARY OF THE INVENTION 1) In a direct injection internal combustion engine in which fuel is injected into a combustion chamber, the combustion chamber has a substantially hemispherical surface or a center around the fuel injection position at the start of fuel combustion near the end of the compression stroke. A configuration in which intake air with no recirculation exhaust gas or intake air with low recirculation exhaust gas concentration and intake air with recirculation exhaust gas enrichment or intake air with a high recirculation exhaust gas concentration are arranged in an inner region and an outer region of the roughly flat hemisphere. A direct injection type internal combustion engine, characterized in that:

【0032】2)複数の吸気ポートで燃焼室に複数の同
一方向の吸気スワール流を形成し、燃料を燃焼室にその
ピストン頂面と対面する天井面の中心部からピストン頂
面中央部のキャビティの周辺部に向けて噴射する直接噴
射式内燃機関において、吸気行程において、還流排気が
混入していない第1吸気を燃焼室上部の周壁に沿うスワ
ール流にし、還流排気が混入している第2吸気を燃焼室
下部の周壁に沿うスワール流にし、スキッシュ流が発生
する圧縮行程の後半に、ピストン頂面中央部のキャビテ
ィにおいて、中央領域に第1吸気を流入させ、周辺領域
と底部領域に第2吸気を残存させ、燃料が燃焼を開始す
る圧縮行程の終期近傍において、燃焼室は、燃料噴射位
置を中心とする概略半球面ないし概略扁平半球面の内側
の領域に、還流排気が混入していない吸気又は還流排気
濃度の薄い吸気を、外側の領域に、還流排気が混入して
いる吸気又は還流排気濃度の濃い吸気を配置する構成に
したことを特徴とする直接噴射式内燃機関。
2) A plurality of intake swirl flows in the same direction are formed in the combustion chamber by the plurality of intake ports, and the fuel is supplied to the combustion chamber from the center of the ceiling facing the piston top surface to the center of the piston top surface. In the direct injection type internal combustion engine that injects fuel toward the peripheral portion of the engine, in the intake stroke, the first intake air into which the recirculated exhaust gas is not mixed is turned into a swirl flow along the peripheral wall above the combustion chamber, and the second intake air into which the recirculated exhaust gas is mixed. The intake air is swirled along the peripheral wall at the lower part of the combustion chamber, and in the latter half of the compression stroke in which squish flow occurs, the first intake air flows into the central region in the cavity at the center of the piston top surface, and flows into the peripheral region and the bottom region. 2 In the vicinity of the end of the compression stroke in which the intake air is left and the fuel starts burning, the combustion chamber is provided with a recirculated exhaust gas in a region inside the substantially hemispherical surface or the approximately flat hemispherical surface around the fuel injection position. Direct-injection type internal combustion, characterized in that intake air with a low concentration of recirculated exhaust gas or intake air with a low recirculation exhaust gas concentration is arranged in the outer region, and intake air with a high concentration of recirculated exhaust gas or intake air with a high recirculation exhaust gas concentration is arranged in the outer region. organ.

【0033】3)上記の直接噴射式内燃機関において、
高負荷時又は高回転時には、燃焼室は、圧縮行程終期近
傍の燃料燃焼開始時に、上記の内側の領域に、還流排気
が混入している吸気又は還流排気濃度の濃い吸気を配置
し、上記の外側の領域に、還流排気が混入していない吸
気又は還流排気濃度の薄い吸気を配置する構成にしたこ
とを特徴とする。
3) In the above direct injection type internal combustion engine,
At the time of high load or high rotation, the combustion chamber arranges, at the start of fuel combustion in the vicinity of the end of the compression stroke, intake air in which recirculation exhaust gas is mixed or intake air with high recirculation exhaust gas concentration in the inner region, In the outside region, intake air in which recirculation exhaust gas is not mixed or intake air with low recirculation exhaust gas concentration is arranged.

【0034】4)上記の直接噴射式内燃機関において、
運転条件に応じて、上記の内側の領域における還流排気
の濃度に対する、上記の外側の領域における還流排気の
濃度の比を変更する構成にしたことを特徴とする。
4) In the above direct injection type internal combustion engine,
The ratio of the concentration of the recirculated exhaust gas in the outer region to the concentration of the recirculated exhaust gas in the inner region is changed according to operating conditions.

【0035】5)上記の直接噴射式内燃機関において、
燃焼室の燃料噴射位置を中心とする概略半球面ないし概
略扁平半球面は、燃料の噴射方向には燃料噴射位置から
噴霧分裂距離の1〜1.5倍位離れていることを特徴と
する。
5) In the above direct injection type internal combustion engine,
A substantially hemispherical surface or a substantially flat hemispherical surface centered on the fuel injection position of the combustion chamber is characterized in that the fuel injection direction is apart from the fuel injection position by about 1 to 1.5 times the spray split distance.

【0036】[0036]

【発明の効果】圧縮行程終期近傍の燃料燃焼開始時に、
燃焼室は、燃料噴射位置を中心とする概略半球面ないし
概略扁平半球面の外側の領域に、還流排気が混入してい
る吸気又は還流排気濃度の濃い吸気が配置される。燃焼
室は、高温燃焼領域が生じるスキッシュエリアとキャビ
ティ周辺部に、還流排気が混入している吸気又は還流排
気濃度の濃い吸気が配置され、燃焼温度が低下して、N
Oxの発生が減少する。
As described above, at the start of fuel combustion near the end of the compression stroke,
In the combustion chamber, intake air containing recirculated exhaust gas or intake air having a high recirculated exhaust gas concentration is arranged in a region outside a substantially hemispherical surface or a substantially flat hemispherical surface with a fuel injection position as a center. In the combustion chamber, intake air containing recirculated exhaust gas or intake air having a high recirculated exhaust gas concentration is arranged in a squish area where a high-temperature combustion region is generated and around the cavity.
Ox generation is reduced.

【0037】また、同時に、燃焼室は、燃料噴射位置を
中心とする概略半球面ないし概略扁平半球面の内側の領
域に、還流排気が混入していない吸気又は還流排気濃度
の薄い吸気が配置される。燃焼室は、燃料噴射弁から噴
射される燃料流の根元側部分の周囲領域に、還流排気が
混入していない吸気又は還流排気濃度の薄い吸気が配置
され、その酸素濃度の濃い吸気が燃料流ないし混合気流
によって燃料流先端部に運ばれ、酸素不足状態で燃焼す
る燃料流先端部ないしキャビティに酸素が供給されて、
スートの発生が減少する。
At the same time, in the combustion chamber, intake air containing no recirculated exhaust gas or intake air having a low recirculated exhaust gas concentration is arranged in a region inside a substantially hemispherical surface or a substantially flat hemispherical surface centered on the fuel injection position. You. In the combustion chamber, intake air in which recirculation exhaust gas is not mixed or intake air with low recirculation exhaust gas concentration is arranged in a region around the base side portion of the fuel flow injected from the fuel injection valve. Or oxygen is supplied to the fuel flow tip or cavity that is carried to the fuel flow tip by the air-fuel mixture and burns in an oxygen-deficient state,
The occurrence of soot is reduced.

【0038】結局、NOxとスートの両者が低減する。As a result, both NOx and soot are reduced.

【0039】高負荷時又は高回転時には、上記の内側の
領域に、還流排気が混入している吸気又は還流排気濃度
の濃い吸気が配置され、上記の外側の領域に、還流排気
が混入していない吸気又は還流排気濃度の薄い吸気が配
置される。NOxとスートが一層低減する。
At the time of high load or high rotation, intake air containing recirculated exhaust gas or intake air having a high recirculated exhaust gas concentration is arranged in the above inner region, and recirculated exhaust gas is mixed in the above outer region. No intake air or intake air having a low recirculation exhaust gas concentration is arranged. NOx and soot are further reduced.

【0040】[0040]

【発明の実施の形態】[第1例(図1〜図10参照)]
本例の直接噴射式圧縮着火内燃機関は、図1に示すよう
に、燃焼室1の天井面の中心部に燃料噴射弁2の多数の
噴口を配置し、燃焼室1の天井面の一側側に2個の吸気
ポート3、4と吸気弁5、6を、他側側に2個の排気ポ
ート7と排気弁8を設け、ピストン頂面の中央部に中心
軸対称形状のキャビティ9を同心状に形成している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Example (see FIGS. 1 to 10)]
As shown in FIG. 1, the direct injection compression ignition internal combustion engine of this embodiment has a large number of injection ports of fuel injection valves 2 arranged at the center of the ceiling surface of a combustion chamber 1 and one side of the ceiling surface of the combustion chamber 1. Two intake ports 3 and 4 and intake valves 5 and 6 are provided on the side, two exhaust ports 7 and an exhaust valve 8 are provided on the other side, and a central axis symmetric cavity 9 is provided at the center of the piston top surface. It is formed concentrically.

【0041】キャビティ9は、底面中央部に山部10を
設け、山部10の周囲を谷部にしている。燃料噴射弁2
は、圧縮行程の終期近傍において、燃料を多数の噴口か
ら放射方向にキャビティ9の周辺部に向けて噴射する。
The cavity 9 is provided with a peak 10 in the center of the bottom surface, and the periphery of the peak 10 is a valley. Fuel injection valve 2
Near the end of the compression stroke, fuel is injected from a number of nozzles in a radial direction toward the periphery of the cavity 9.

【0042】2個の吸気ポート3、4は、吸気行程にお
いて、図2に示すように、燃焼室1に吸気のスワール流
11、12を同一方向に形成する。スワール流の下流側
の吸気ポート3は、図2と図3に示すように、ヘリカル
ポート形状であり、吸気がほぼ燃焼室1天井面に沿う向
きに流出し、燃焼室1の天井面側の上部にその周壁に沿
う強い第1吸気のスワール流11を形成する。上流側の
吸気ポート4は、タンゼンシャルポート形状であり、第
1吸気のスワール流11との衝突を避けるため、吸気が
斜め下向きに流出し、燃焼室1のピストン頂面側の下部
にその周壁に沿う第2吸気のスワール流12を形成す
る。
As shown in FIG. 2, the two intake ports 3 and 4 form swirl flows 11 and 12 of intake air in the same direction in the combustion chamber 1 during the intake stroke. The intake port 3 on the downstream side of the swirl flow has a helical port shape as shown in FIGS. 2 and 3, and the intake air flows out substantially along the ceiling surface of the combustion chamber 1. A strong first intake swirl flow 11 is formed along the peripheral wall at the upper part. The upstream intake port 4 has a tangential port shape, and the intake air flows obliquely downward to avoid collision with the swirl flow 11 of the first intake air. A swirl flow 12 of the second intake air is formed along the peripheral wall.

【0043】本例の内燃機関は、排気還流装置を備え、
排気ポート7を通過する排気の一部を、上流側の吸気ポ
ート4を通過する第2吸気12に混入する。下流側の吸
気ポート3を通過する第1吸気11には、還流排気を混
入しない。
The internal combustion engine of this embodiment has an exhaust gas recirculation device,
Part of the exhaust gas passing through the exhaust port 7 is mixed into the second intake air 12 passing through the upstream intake port 4. The recirculated exhaust gas is not mixed into the first intake air 11 passing through the downstream intake port 3.

【0044】本例の内燃機関においては、吸気行程に、
図2に示すように、燃焼室1の上部と下部に、それぞ
れ、その周壁に沿う第1吸気のスワール流11、第2吸
気のスワール流12を形成すると、吸気行程の終期に、
図4に示すように、燃焼室1に第1吸気のスワール流1
1と第2吸気のスワール流12が上下に成層化される。
吸気行程の終期には、上流側の吸気ポート4から最後に
流入した第2吸気12の最後尾部分が燃焼室1の上部に
存在するため、第1吸気11と第2吸気12の境界面1
3は、ピストン頂面に平行する平面にならず、傾斜した
凹凸曲面になる。
In the internal combustion engine of this embodiment, during the intake stroke,
As shown in FIG. 2, when a swirl flow 11 of the first intake air and a swirl flow 12 of the second intake air are formed along the peripheral wall of the upper and lower portions of the combustion chamber 1, respectively, at the end of the intake stroke,
As shown in FIG. 4, the swirl flow 1 of the first intake air flows into the combustion chamber 1.
The swirl flows 12 of the first and second intake air are stratified up and down.
At the end of the intake stroke, the rearmost portion of the second intake air 12 that has flowed last from the upstream intake port 4 exists above the combustion chamber 1, so that the boundary surface 1 between the first intake air 11 and the second intake air 12.
3 is not a plane parallel to the top surface of the piston, but an inclined concave and convex curved surface.

【0045】燃焼室1の第1吸気11と第2吸気12
は、時間の経過に従って混ざり合い、第2吸気12にの
み含まれていた還流排気が第1吸気11にも含まれるよ
うになり、還流排気の濃度が連続して変化する状態にな
るので、還流排気の濃度がほぼ中間値になる面を第1吸
気11と第2吸気12の境界面13とする。
The first intake 11 and the second intake 12 of the combustion chamber 1
Is mixed with the passage of time, the recirculated exhaust gas contained only in the second intake air 12 becomes contained in the first intake air 11 and the concentration of the recirculated exhaust gas changes continuously. A surface at which the concentration of exhaust gas has a substantially intermediate value is defined as a boundary surface 13 between the first intake 11 and the second intake 12.

【0046】圧縮行程になると、第2吸気12の最後尾
部分が燃焼室1の下部に移動し、第1吸気11と第2吸
気12の混合が進行し、圧縮行程の中程には、図5に示
すように、第1吸気11と第2吸気12の境界面13
は、ピストン頂面に平行する平面に近づく。燃焼室1に
第1吸気スワール流11と第2吸気スワール流12が上
下に成層化された状態は、圧縮行程の中程まで継続す
る。
In the compression stroke, the last part of the second intake air 12 moves to the lower part of the combustion chamber 1, and the mixing of the first intake air 11 and the second intake air 12 progresses. As shown in FIG. 5, an interface 13 between the first intake 11 and the second intake 12
Approaches a plane parallel to the piston top surface. The state in which the first intake swirl flow 11 and the second intake swirl flow 12 are vertically stratified in the combustion chamber 1 continues to the middle of the compression stroke.

【0047】スキッシュ流が発生する圧縮行程の後半に
は、ピストン頂面の周辺部上のスワール流は、スキッシ
ュ流によってピストン頂面の中央部のキャビティ9内に
運ばれ、径の縮小に伴うスワール方向速度の増加による
遠心力によって、キャビティ9の中心に向かわず、キャ
ビティ9の周壁に沿って流れ、キャビティ9の底面に向
かう。キャビティ9内は、図6(a)(b)(c)に時
間経過順に示すように、燃焼室1下部の第2吸気12が
充満した状態から、中央領域に燃焼室1上部の第1吸気
11が流入し、周辺領域と底部領域のみに第2吸気12
が残る。
In the latter half of the compression stroke in which a squish flow is generated, the swirl flow on the periphery of the piston top surface is carried by the squish flow into the cavity 9 at the center of the piston top surface, and the swirl is caused by the diameter reduction. Due to the centrifugal force caused by the increase in the directional speed, the fluid flows along the peripheral wall of the cavity 9 without going to the center of the cavity 9 and goes to the bottom surface of the cavity 9. As shown in FIG. 6A, FIG. 6B, and FIG. 6C, the inside of the cavity 9 is filled with the second intake 12 at the lower part of the combustion chamber 1 and then the first intake at the upper part of the combustion chamber 1 is placed in the central region. 11 and the second intake 12 only in the peripheral area and the bottom area.
Remains.

【0048】燃料が燃料噴射弁2から噴射されて燃焼を
開始する圧縮行程の終期近傍には、図1に示すように、
燃焼室1は、燃料が噴射される天井面中心部を中心とす
る概略扁平半球面13の内側の領域には第1吸気11が
主に存在し、その外側の領域には第2吸気12が主に存
在する。燃料の燃焼開始時には、燃焼室1は、概略扁平
半球面13の内側の領域に還流排気濃度の薄い吸気11
が、外側の領域に還流排気濃度の濃い吸気12が配置さ
れる。
In the vicinity of the end of the compression stroke in which fuel is injected from the fuel injection valve 2 to start combustion, as shown in FIG.
In the combustion chamber 1, the first intake air 11 mainly exists in a region inside the substantially flat hemispherical surface 13 centered on the center of the ceiling surface into which fuel is injected, and the second intake air 12 exists in a region outside the same. Mainly exists. At the start of combustion of the fuel, the combustion chamber 1 contains the intake air 11 having a low recirculated exhaust gas concentration in a region inside the roughly flat hemisphere 13.
However, the intake air 12 having a high recirculation exhaust gas concentration is arranged in the outer region.

【0049】上記の概略扁平半球面13は、燃料噴射方
向の半径を噴霧分裂距離の1〜1.5倍位にすると、燃
焼室1の混合気形成領域と火炎発生領域に吸気11、1
2が成層化される。燃料の燃焼開始時に、燃焼室1のス
キッシュエリアとキャビティ周辺部を含む火炎発生領域
は、還流排気濃度の濃い吸気12が配置されるので、燃
焼温度が低下して、NOxの発生が減少する。また、同時
に、燃焼室1の混合気形成領域は、還流排気濃度の薄い
吸気11が配置されるので、その酸素濃度の濃い吸気1
1が燃料流によって燃料流先端部に供給され、燃焼する
燃料流先端部ないしキャビティ9の酸素不足が低減され
て、スートの発生が減少する。
When the radius in the fuel injection direction is set to about 1 to 1.5 times the spray split distance, the above roughly flat hemispherical surface 13 draws the intake air 11, 1, 1 into the mixture formation region and the flame generation region of the combustion chamber 1.
2 is stratified. At the start of fuel combustion, in the flame generation region including the squish area of the combustion chamber 1 and the periphery of the cavity, the intake air 12 having a high recirculation exhaust gas concentration is arranged, so that the combustion temperature is reduced and the generation of NOx is reduced. At the same time, in the air-fuel mixture forming region of the combustion chamber 1, the intake air 11 having a low recirculation exhaust gas concentration is arranged.
1 is supplied to the fuel flow front by the fuel flow, the shortage of oxygen in the burning fuel flow front or the cavity 9 is reduced, and soot generation is reduced.

【0050】圧縮行程の終期近傍において、第1吸気1
1のスワール流が強過ぎると、図7(a)に示すよう
に、第1吸気11は、スキッシュ流によってキャビティ
9の底面に運ばれる際、キャビティ9の周壁を下る逆ト
ロイダル流になり、キャビティ9の底面に流入し、キャ
ビティ9の周壁と底面に存在した第2吸気12をキャビ
ティ9の中央部に押し退ける。
In the vicinity of the end of the compression stroke, the first intake air 1
If the swirl flow 1 is too strong, as shown in FIG. 7A, when the first intake air 11 is carried to the bottom surface of the cavity 9 by the squish flow, it becomes an inverse toroidal flow down the peripheral wall of the cavity 9, and The second intake air 12 flowing into the bottom surface of the cavity 9 and present on the peripheral wall and the bottom surface of the cavity 9 is pushed away to the center of the cavity 9.

【0051】本例の内燃機関においては、吸気11、1
2のスワール流とスキッシュ流が適度であるので、図7
(b)に示すように、第1吸気11は、キャビティ9の
山部10と周壁の中間部を下るトロイダル流になり、そ
の中間部に存在した第2吸気12をキャビティ9の周辺
領域と底部領域に押し退け、燃焼室1の燃料噴射位置を
中心とする概略扁平半球面13の内外に吸気11、12
が成層化される。
In the internal combustion engine of this embodiment, the intake air 11, 1
Since the swirl flow and the squish flow of No. 2 are appropriate, FIG.
As shown in (b), the first intake air 11 becomes a toroidal flow that goes down between the crest portion 10 of the cavity 9 and the intermediate portion of the peripheral wall, and the second intake air 12 existing in the intermediate portion is converted into the peripheral region of the cavity 9 and the bottom portion. The intake air 11 and 12 are pushed into and out of the roughly flat hemispherical surface 13 centered on the fuel injection position of the combustion chamber 1.
Is stratified.

【0052】本例の内燃機関は、吸気11、12がこの
ように成層化されるように、吸気11、12のスキッシ
ュ流やスワール流の流動特性を決定する燃焼室1や吸気
ポート3、4の形状を選択している。これらの形状によ
って吸気11、12の成層の度合いや境界面13の形状
寸法を制御することができる。
In the internal combustion engine of this embodiment, the combustion chamber 1 and the intake ports 3 and 4 which determine the flow characteristics of the squish flow and the swirl flow of the intake air 11 and 12 so that the intake air 11 and 12 are stratified in this way. Is selected. The degree of stratification of the intake air 11 and 12 and the shape and size of the boundary surface 13 can be controlled by these shapes.

【0053】上記の形状には、燃焼室1のキャビティ9
形状、ピストン頂面周辺部と天井面周辺部との間の間隔
や、天井面からの吸気弁5、6下面の凹み量が例示され
る。
The above-mentioned shape has the cavity 9 of the combustion chamber 1.
The shape, the distance between the periphery of the piston top surface and the periphery of the ceiling surface, and the amount of depression of the lower surface of the intake valves 5 and 6 from the ceiling surface are exemplified.

【0054】模擬実験例1 燃焼室に下流側の吸気ポートから流入する第1吸気は、
新鮮空気100%にし、上流側の吸気ポートから流入す
る第2吸気は、新鮮空気50%と還流排気50%にした
場合について、圧縮行程の終期における燃焼室の還流排
気濃度(EGR率)の分布を数値計算により求めた。
Simulated Experimental Example 1 The first intake air flowing into the combustion chamber from the intake port on the downstream side is:
The distribution of the recirculated exhaust gas concentration (EGR rate) of the combustion chamber at the end of the compression stroke when the fresh air is 100% and the second intake air flowing from the upstream intake port is 50% fresh air and 50% recirculated exhaust gas. Was obtained by numerical calculation.

【0055】図8(b)は下流側と上流側の吸気ポート
の間を通る燃焼室の中央縦断面、同図(a)はその中央
縦断面に直交する中央縦断面における分布を示す。
FIG. 8B shows the distribution in the central longitudinal section of the combustion chamber passing between the downstream and upstream intake ports, and FIG. 8A shows the distribution in the central longitudinal section perpendicular to the central longitudinal section.

【0056】これらの図から明らかなように、圧縮行程
の終期に、燃焼室の還流排気濃度分布の等高面が燃料噴
射位置を中心とする概略扁平半球面状に現れ、燃料噴射
位置に近付くに従って還流排気濃度が薄くなり、還流排
気濃度の分布がほぼ軸対称になる。燃焼室の吸気は、燃
料噴射位置を中心とする概略扁平半球面の内外に、還流
排気濃度の薄い吸気と濃い吸気が成層化されることを示
している。
As is clear from these figures, at the end of the compression stroke, the contour surface of the recirculated exhaust gas concentration distribution of the combustion chamber appears in a substantially flat hemispherical shape centered on the fuel injection position, and approaches the fuel injection position. Accordingly, the recirculation exhaust gas concentration becomes thinner, and the distribution of the recirculation exhaust gas concentration becomes substantially axially symmetric. This indicates that the intake air of the combustion chamber is stratified into the intake air having a low recirculation exhaust gas concentration and the intake air having a high concentration, inside and outside a substantially flat hemisphere centered on the fuel injection position.

【0057】模擬実験例2 排気を還流しない内燃機関において、機関回転数は18
00rpm、燃料噴射弁の噴口数は5個、噴口径は0.
18mm、噴射量は35mm3、噴射圧力は55MP
a、噴射期間は0°〜12.5°ATDCにした場合に
ついて、燃焼室の温度、燃料蒸気、NO(一酸化窒素)
とスートの分布を数値計算により求めた。
Simulated Experimental Example 2 In an internal combustion engine that does not recirculate exhaust gas, the engine speed was 18
00 rpm, the number of nozzles of the fuel injection valve is 5, and the diameter of the nozzle is 0.
18mm, injection amount 35mm 3 , injection pressure 55MP
a, When the injection period is set to 0 ° to 12.5 ° ATDC, the temperature of the combustion chamber, fuel vapor, NO (nitrogen monoxide)
And soot distribution were obtained by numerical calculation.

【0058】図9は10°ATDC時、図10は20°
ATDC時の分布を示し、それらの図の(a)は温度分
布、(b)は燃料蒸気分布、(c)はNO分布、(d)
はスート分布を示す。
FIG. 9 is at 10 ° ATDC, and FIG.
The distribution at the time of ATDC is shown, in which (a) is the temperature distribution, (b) is the fuel vapor distribution, (c) is the NO distribution, and (d)
Indicates a soot distribution.

【0059】燃焼室は、図9(a)と図10(a)に示
すように、スキッシュエリアとキャビティ周辺部に、燃
料噴射弁から噴射された燃料流が燃焼する高温領域が生
ずる。
As shown in FIGS. 9 (a) and 10 (a), the combustion chamber has a high temperature region in the squish area and around the cavity where the fuel flow injected from the fuel injector burns.

【0060】その高温燃焼領域において、図9(b)
(c)と図10(b)(c)に示すように、理論空燃比
近傍のリーン側領域でNOが発生する。燃焼室のスキッ
シュエリアとキャビティ周辺部を含む火炎発生領域は、
燃焼期間中に、還流排気濃度の濃い吸気を分布させる
と、燃焼温度が低下して、NOの発生が減少することが
分かる。
In the high-temperature combustion region, FIG.
As shown in (c) and FIGS. 10 (b) and 10 (c), NO is generated in a lean region near the stoichiometric air-fuel ratio. The flame generation area including the squish area of the combustion chamber and the periphery of the cavity,
It can be seen that if intake air with a high recirculation exhaust gas concentration is distributed during the combustion period, the combustion temperature decreases and the generation of NO decreases.

【0061】また、高温燃焼領域において、図9(b)
(d)と図10(b)(d)に示すように、理論空燃比
よりリッチ側の酸素不足燃焼領域、即ち、燃料噴射弁か
ら噴射された燃料流の先端部ないしキャビティの谷部で
スートが発生する。燃焼開始時に、燃料流の根元側部分
を含む混合気形成領域に還流排気濃度の薄い吸気を分布
させると、その吸気が燃料流ないし混合気流によって燃
料流先端部に運ばれ、燃料流先端部ないしキャビティ谷
部の酸素不足が低減されて、スートの発生が減少するこ
とが分かる。
In the high temperature combustion region, FIG.
As shown in FIGS. 10 (d) and 10 (b) and 10 (d), the soot is formed in the oxygen-deficient combustion region richer than the stoichiometric air-fuel ratio, that is, at the tip of the fuel flow injected from the fuel injector or the valley of the cavity. Occurs. At the start of combustion, when intake air having a low concentration of recirculated exhaust gas is distributed in the air-fuel mixture formation region including the base portion of the fuel flow, the intake air is carried to the front end of the fuel flow by the fuel flow or the air-fuel mixture, and the front end of the fuel flow or It can be seen that the lack of oxygen in the cavity valleys is reduced and soot generation is reduced.

【0062】[第2例(図11参照)]本例の内燃機関
は、第1例のそれにおいて、還流排気が混入した吸気の
成層度を高めるため、下流側と上流側の吸気ポート3、
4で吸気弁5、6の開放期間をずらす。
[Second example (see FIG. 11)] The internal combustion engine of the present example differs from that of the first example in that the stratification degree of the intake air mixed with the recirculated exhaust gas is increased so that the downstream and upstream intake ports 3,
At 4, the opening periods of the intake valves 5 and 6 are shifted.

【0063】燃焼室1の上部に第1吸気11を流入させ
る下流側の吸気ポート3では、図11に示すように、吸
気弁5を遅い時期に開いて遅い時期に閉じる。燃焼室1
の下部に第2吸気12を流入させる上流側の吸気ポート
4では、吸気弁6を早い時期に開いて早い時期に閉じ
る。
In the downstream intake port 3 through which the first intake air 11 flows into the upper part of the combustion chamber 1, as shown in FIG. 11, the intake valve 5 is opened at a later time and closed at a later time. Combustion chamber 1
In the intake port 4 on the upstream side through which the second intake air 12 flows into the lower part of the intake port, the intake valve 6 is opened early and closed early.

【0064】吸気行程の前期には、上流側の吸気ポート
4の吸気弁6のみが開放し、燃焼室1の下部に配置する
第2吸気12のみが燃焼室1に流入する。吸気行程の中
期には、両者の吸気ポート3、4の吸気弁5、6が開放
して第1吸気11と第2吸気12が燃焼室1に流入す
る。吸気行程の後期には、下流側の吸気ポート3の吸気
弁5のみが開放し、燃焼室1の上部に配置する第1吸気
11のみが燃焼室1に流入する。
In the first half of the intake stroke, only the intake valve 6 of the intake port 4 on the upstream side is opened, and only the second intake 12 disposed below the combustion chamber 1 flows into the combustion chamber 1. In the middle stage of the intake stroke, the intake valves 5, 6 of both intake ports 3, 4 are opened, and the first intake 11 and the second intake 12 flow into the combustion chamber 1. In the latter half of the intake stroke, only the intake valve 5 of the downstream intake port 3 opens, and only the first intake 11 arranged above the combustion chamber 1 flows into the combustion chamber 1.

【0065】下流側と上流側の吸気ポート3、4で吸気
弁5、6の開放期間が一致する第1例の場合に比較し
て、吸気行程の終期に第1吸気11と第2吸気12が上
下に成層化される度合いが高くなり、圧縮行程の終期に
燃料噴射位置を中心とする概略扁平半球面13の内側に
配置される吸気と、外側に配置される吸気との還流排気
濃度差が大きくなる。NOxとスートの両者を低減する効
果が高くなる。
At the end of the intake stroke, the first intake port 11 and the second intake port 12 are at the end of the intake stroke, as compared with the first example in which the opening periods of the intake valves 5 and 6 at the downstream and upstream intake ports 3 and 4 match. Is more or less stratified up and down, and at the end of the compression stroke, the recirculation exhaust gas concentration difference between the intake air located inside the approximately flat hemispherical surface 13 centered on the fuel injection position and the intake air located outside. Becomes larger. The effect of reducing both NOx and soot increases.

【0066】その他の点は、第1例におけるのと同様で
ある。
The other points are the same as in the first example.

【0067】[第3例(図12参照)]本例の内燃機関
は、第1例のそれにおいて、還流排気が混入した吸気の
成層度を高めるため、上流側の吸気ポート4の片側のみ
から第2吸気12を燃焼室1に流入させる。
[Third example (see FIG. 12)] The internal combustion engine of the present example differs from that of the first example in that the stratification of the intake air mixed with the recirculated exhaust gas is increased from only one side of the intake port 4 on the upstream side. The second intake air 12 flows into the combustion chamber 1.

【0068】上流側の吸気ポート4においては、吸気が
斜め下向きに流出して燃焼室1の周壁に斜めに衝突し、
燃焼室1下部の周壁に沿うスワール流になる。タンゼン
シャルポート形状の吸気ポート4の燃焼室1周壁側部分
を流出する吸気の方が、燃焼室1中心側部分を流出する
吸気より、燃焼室1の周壁に衝突するまでの距離が短
く、燃焼室1の下部に流入し易い。
At the upstream intake port 4, the intake air flows obliquely downward and collides obliquely with the peripheral wall of the combustion chamber 1.
The swirl flows along the peripheral wall at the lower part of the combustion chamber 1. The intake air flowing out of the tangential port-shaped intake port 4 on the peripheral wall side of the combustion chamber 1 has a shorter distance before colliding with the peripheral wall of the combustion chamber 1 than the intake air flowing out of the central part on the combustion chamber 1, It easily flows into the lower part of the combustion chamber 1.

【0069】そこで、上流側の吸気ポート4は、図12
に示すように、燃焼室1の周壁側部分と中心側部分に2
分割する仕切り壁21を設け、吸気ポート4の燃焼室1
周壁側部分に、還流排気を混入した第2吸気12を流
し、吸気ポート4の燃焼室1周壁側部分から第2吸気1
2を燃焼室1の下部に流入させる。吸気ポート4の燃焼
室1中心側部分には、上流側の吸気ポート3と同様に還
流排気を混入しない第1吸気11を流し、吸気ポート4
の燃焼室1中心側部分から第1吸気11を燃焼室1に流
入させる。
Therefore, the intake port 4 on the upstream side is
As shown in the figure, the peripheral wall side portion and the central side portion of the combustion chamber 1
A partition wall 21 for dividing is provided, and the combustion chamber 1 of the intake port 4 is provided.
The second intake air 12 containing the recirculated exhaust gas flows into the peripheral wall side portion, and the second intake air 1 flows from the peripheral wall side portion of the combustion chamber 1 of the intake port 4.
2 flows into the lower part of the combustion chamber 1. Like the upstream intake port 3, the first intake air 11, which does not mix recirculated exhaust gas, flows into the central portion of the combustion chamber 1 of the intake port 4.
The first intake air 11 flows into the combustion chamber 1 from the central portion of the combustion chamber 1.

【0070】吸気ポート4の燃焼室1周壁側部分から燃
焼室1に流入する第2吸気12は、気流が細くなって、
第1吸気11と混合し難くなる。
The second intake air 12 flowing into the combustion chamber 1 from the portion of the intake port 4 on the peripheral wall side of the combustion chamber 1 has a narrow air flow.
Mixing with the first intake air 11 becomes difficult.

【0071】上流側の吸気ポート4の全体から第2吸気
12を燃焼室1に流入させる第1例の場合に比較して、
吸気行程の終期に第1吸気11と第2吸気12が上下に
成層化される度合いが高くなり、圧縮行程の終期に燃料
噴射位置を中心とする概略扁平半球面13の内側に配置
される吸気と、外側に配置される吸気との還流排気濃度
差が大きくなる。NOxとスートの両者を低減する効果が
高くなる。
As compared with the first example in which the second intake air 12 flows into the combustion chamber 1 from the entire intake port 4 on the upstream side,
At the end of the intake stroke, the degree of stratification of the first intake air 11 and the second intake air 12 in the vertical direction increases, and at the end of the compression stroke, the intake air arranged inside the substantially flat hemispherical surface 13 centered on the fuel injection position. Then, the difference between the recirculated exhaust gas concentration and the intake air arranged outside is increased. The effect of reducing both NOx and soot increases.

【0072】その他の点は、第1例におけるのと同様で
ある。
The other points are the same as in the first example.

【0073】[第4例(図13と図14参照)]本例の
内燃機関は、第1例のそれにおいて、運転条件に応じ
て、燃焼室1の吸気の成層パターンと成層度を変更す
る。
[Fourth Example (See FIGS. 13 and 14)] The internal combustion engine of the present example differs from that of the first example in that the stratification pattern and the degree of stratification of the intake air in the combustion chamber 1 are changed according to the operating conditions. .

【0074】第1例の内燃機関において、スワール流の
下流側の吸気ポート3に接続した第1吸気通路23に、
図13に示すように、第1流量制御弁24を介して第1
排気還流通路25を接続し、また、上流側の吸気ポート
4に接続した第2吸気通路26に、第2流量制御弁27
を介して第2排気還流通路28を接続する。第1流量制
御弁24の開度と第2流量制御弁27の開度をそれぞれ
運転条件に応じて制御する装置29を設ける。
In the internal combustion engine of the first example, the first intake passage 23 connected to the intake port 3 on the downstream side of the swirl flow
As shown in FIG. 13, the first flow control valve 24
A second flow control valve 27 is connected to a second intake passage 26 connected to the exhaust gas recirculation passage 25 and to the intake port 4 on the upstream side.
Is connected to the second exhaust gas recirculation passage 28 via the second exhaust gas recirculation passage. A device 29 is provided for controlling the opening of the first flow control valve 24 and the opening of the second flow control valve 27 in accordance with operating conditions.

【0075】内燃機関の運転条件に応じて、第1流量制
御弁24の開度と第2流量制御弁27の開度をそれぞれ
制御すると、下流側の吸気ポート3を通過する第1吸気
に混入される還流排気の量と、上流側の吸気ポート4を
通過する第2吸気に混入される還流排気の量がそれぞれ
増減し、燃焼室1の成層パターンは、変更される。燃焼
室1の概略扁平半球面13内の領域でその外側の領域よ
り還流排気の濃度が低くなる正成層パターンになる。ま
た、燃焼室1の概略扁平半球面13内の領域でその外側
の領域より還流排気の濃度が高くなる逆成層パターンに
なる。更に、燃焼室1の概略扁平半球面13内の領域と
その外側の領域で還流排気の濃度が等しくなる均質パタ
ーンになる。
When the opening degree of the first flow control valve 24 and the opening degree of the second flow control valve 27 are controlled in accordance with the operating conditions of the internal combustion engine, the opening degree of the first flow control valve 24 is mixed with the first intake air passing through the downstream intake port 3. The amount of recirculated exhaust gas and the amount of recirculated exhaust gas mixed into the second intake air passing through the upstream intake port 4 increase and decrease, respectively, and the stratification pattern of the combustion chamber 1 is changed. A positive stratified pattern in which the concentration of the recirculated exhaust gas is lower in a region inside the substantially flat semi-spherical surface 13 of the combustion chamber 1 than in a region outside the flat hemisphere 13 is obtained. In addition, a reverse stratified pattern in which the concentration of the recirculated exhaust gas is higher in the region inside the substantially flat hemispherical surface 13 of the combustion chamber 1 than in the region outside the same. Furthermore, a homogeneous pattern is obtained in which the recirculation exhaust gas has the same concentration in the region inside the substantially flat hemispherical surface 13 of the combustion chamber 1 and in the region outside thereof.

【0076】正成層パターン、逆成層パターンと均質パ
ターンは、図14の作動マップ上に示すように、切り替
えられる。
The normal stratification pattern, reverse stratification pattern and homogeneous pattern are switched as shown on the operation map of FIG.

【0077】内燃機関の負荷が少なくて内燃機関の回転
数が低いときには、燃焼室1の成層パターンは、正成層
パターンにする。負荷が多くなると、又は、回転数が高
くなると、均質パターンにする。更に負荷が多くなる
と、又は、更に回転数が高くなると、逆成層パターンに
する。
When the load on the internal combustion engine is small and the rotational speed of the internal combustion engine is low, the stratification pattern of the combustion chamber 1 is a positive stratification pattern. When the load increases or the number of rotations increases, a uniform pattern is formed. When the load is further increased or the rotation speed is further increased, the reverse stratified pattern is formed.

【0078】また、内燃機関の運転条件に応じて、第1
流量制御弁24の開度と第2流量制御弁27の開度をそ
れぞれ制御すると、燃焼室1の成層度が変更される。概
略扁平半球面13内の還流排気濃度に対する、概略扁平
半球面13外の還流排気濃度の比、具体的には、概略扁
平半球面13内の燃料噴射位置の還流排気濃度に対す
る、概略扁平半球面13外のキャビティ底部周辺領域の
還流排気濃度の比、成層度が増減する。
Further, depending on the operating conditions of the internal combustion engine, the first
When the opening of the flow control valve 24 and the opening of the second flow control valve 27 are controlled, the stratification of the combustion chamber 1 is changed. The ratio of the recirculation exhaust gas concentration outside the roughly flat hemisphere 13 to the recirculation exhaust gas concentration in the roughly flat hemisphere 13, specifically, the roughly flat hemisphere with respect to the recirculation exhaust gas concentration at the fuel injection position inside the roughly flat hemisphere 13. The ratio of the recirculated exhaust gas concentration and the degree of stratification in the peripheral region around the bottom of the cavity 13 increase or decrease.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態の第1例における直接噴射式
圧縮着火内燃機関の概略縦断面図。
FIG. 1 is a schematic longitudinal sectional view of a direct injection compression ignition internal combustion engine according to a first example of an embodiment of the present invention.

【図2】同内燃機関における吸気行程中程の燃焼室の概
略斜視図。
FIG. 2 is a schematic perspective view of a combustion chamber in the middle of an intake stroke in the internal combustion engine.

【図3】同内燃機関における燃焼室の概略平面図。FIG. 3 is a schematic plan view of a combustion chamber in the internal combustion engine.

【図4】同内燃機関における吸気行程終期の燃焼室の概
略斜視図。
FIG. 4 is a schematic perspective view of a combustion chamber at the end of an intake stroke in the internal combustion engine.

【図5】同内燃機関における圧縮行程中程の燃焼室の概
略斜視図。
FIG. 5 is a schematic perspective view of a combustion chamber in the middle of a compression stroke in the internal combustion engine.

【図6】同内燃機関における圧縮行程終期近傍の燃焼室
の概略縦断面図で、吸気の流動状態を示す図。
FIG. 6 is a schematic longitudinal sectional view of a combustion chamber near the end of a compression stroke in the internal combustion engine, showing a flow state of intake air.

【図7】内燃機関における圧縮行程終期の燃焼室の概略
縦断面図で、吸気の流動状態を示す図。
FIG. 7 is a schematic vertical sectional view of a combustion chamber at the end of a compression stroke in an internal combustion engine, showing a flow state of intake air.

【図8】模擬実験例1における圧縮行程終期の吸気成層
化状態を示す図。
FIG. 8 is a diagram showing a stratified state of intake air at the end of a compression stroke in a simulation test example 1.

【図9】模擬実験例2における10°ATDC時の温
度、燃料蒸気、NOとスートの分布状態を示す図。
FIG. 9 is a diagram showing the distribution of the temperature, fuel vapor, NO and soot at 10 ° ATDC in the simulated experimental example 2.

【図10】図9と同様な図で、20°ATDC時の状態
を示す図。
FIG. 10 is a view similar to FIG. 9, showing a state at 20 ° ATDC.

【図11】実施形態の第2例における直接噴射式圧縮着
火内燃機関の吸気弁揚程図。
FIG. 11 is an intake valve lift diagram of a direct injection compression ignition internal combustion engine according to a second example of the embodiment.

【図12】第3例における直接噴射式圧縮着火内燃機関
の燃焼室の概略平面図。
FIG. 12 is a schematic plan view of a combustion chamber of a direct injection compression ignition internal combustion engine in a third example.

【図13】第4例における直接噴射式圧縮着火内燃機関
の吸気通路部分の概略図。
FIG. 13 is a schematic view of an intake passage portion of a direct injection compression ignition internal combustion engine in a fourth example.

【図14】同内燃機関における作動マップの図。FIG. 14 is a diagram of an operation map in the internal combustion engine.

【符号の説明】[Explanation of symbols]

1 燃焼室 2 燃料噴射弁 3 スワール流の下流側の吸気ポート 4 スワール流の上流側の吸気ポート 5 スワール流の下流側の吸気弁 6 スワール流の上流側の吸気弁 9 キャビティ 11 還流排気を混入しない第1吸気 12 還流排気を混入した第2吸気 13 第1吸気と第2吸気の境界面、概略扁平半球面 REFERENCE SIGNS LIST 1 combustion chamber 2 fuel injection valve 3 intake port on the downstream side of swirl flow 4 intake port on the upstream side of swirl flow 5 intake valve on the downstream side of swirl flow 6 intake valve on the upstream side of swirl flow 9 cavity 11 mixed with recirculated exhaust gas 1st intake not used 12 2nd intake mixed with recirculated exhaust 13 Boundary surface between 1st intake and 2nd intake, roughly flat hemisphere

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02B 31/02 F02B 31/02 L F02D 21/08 301 F02D 21/08 301A 41/02 355 41/02 355 F02M 25/07 570 F02M 25/07 570A 570D (72)発明者 中北 清己 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 堀田 義博 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 稲吉 三七二 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 阪田 一郎 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F02B 31/02 F02B 31/02 L F02D 21/08 301 F02D 21/08 301A 41/02 355 41/02 355 F02M 25/07 570 F02M 25/07 570A 570D (72) Inventor Kiyomi Nakakita 41-Yukumichi Yokomichi, Oji-cho, Nagakute-cho, Aichi-gun, Aichi Pref. (1) Inside the Toyota Central R & D Laboratories Co., Ltd. (72) Inventor Sanjiro Inayoshi 41-42, Nagakute-cho Ochi-Chamu Yokomichi, Aichi-gun, Aichi Pref. Inventor Ichiro Sakata 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 燃料を燃焼室に噴射する直接噴射式内燃
機関において、 燃焼室は、圧縮行程終期近傍の燃料燃焼開始時に、燃料
噴射位置を中心とする概略半球面ないし概略扁平半球面
の内側の領域と外側の領域に、還流排気が混入していな
い吸気又は還流排気濃度の薄い吸気と、還流排気が混入
している吸気又は還流排気濃度の濃い吸気を配置する構
成にしたことを特徴とする直接噴射式内燃機関。
In a direct injection type internal combustion engine that injects fuel into a combustion chamber, the combustion chamber is located inside a substantially hemispherical surface or a substantially flat hemispherical surface around a fuel injection position at the start of fuel combustion near the end of a compression stroke. And the outside region, the intake air containing no recirculated exhaust gas or the intake air having a low recirculated exhaust gas concentration and the intake air containing recirculated exhaust gas or the intake air having a high recirculated exhaust gas concentration are arranged. Direct injection internal combustion engine.
【請求項2】 複数の吸気ポートで燃焼室に複数の同一
方向の吸気スワール流を形成し、燃料を燃焼室にそのピ
ストン頂面と対面する天井面の中心部からピストン頂面
中央部のキャビティの周辺部に向けて噴射する直接噴射
式内燃機関において、 吸気行程において、還流排気が混入していない第1吸気
を燃焼室上部の周壁に沿うスワール流にし、還流排気が
混入している第2吸気を燃焼室下部の周壁に沿うスワー
ル流にし、 スキッシュ流が発生する圧縮行程の後半に、ピストン頂
面中央部のキャビティにおいて、中央領域に第1吸気を
流入させ、周辺領域と底部領域に第2吸気を残存させ、 燃料が燃焼を開始する圧縮行程の終期近傍において、燃
焼室は、燃料噴射位置を中心とする概略半球面ないし概
略扁平半球面の内側の領域に、還流排気が混入していな
い吸気又は還流排気濃度の薄い吸気を、外側の領域に、
還流排気が混入している吸気又は還流排気濃度の濃い吸
気を配置する構成にしたことを特徴とする直接噴射式内
燃機関。
2. A plurality of intake ports forming a plurality of intake swirl flows in the combustion chamber in the same direction in the combustion chamber, and supplying fuel to the combustion chamber from a center portion of a ceiling surface facing the piston top surface to a central portion of the piston top surface. In the direct injection type internal combustion engine that injects fuel toward the peripheral portion of the engine, in the intake stroke, the first intake air into which the recirculated exhaust gas is not mixed is turned into a swirl flow along the peripheral wall above the combustion chamber, and the second intake gas is mixed with the recirculated exhaust gas. In the second half of the compression stroke in which the squish flow occurs, the first intake air flows into the central region of the piston at the center of the piston top surface, and the first intake air flows into the peripheral region and the bottom region. (2) In the vicinity of the end of the compression stroke in which the intake air is left and the fuel starts burning, the combustion chamber is provided with a recirculated exhaust gas in a region inside the approximate semi-spherical surface or the approximately flat semi-spherical surface centered on the fuel injection position. , Or the intake air with a low recirculation exhaust gas concentration
A direct injection type internal combustion engine, wherein intake air containing recirculated exhaust gas or intake air having a high recirculated exhaust gas concentration is arranged.
【請求項3】 高負荷時又は高回転時には、燃焼室は、
圧縮行程終期近傍の燃料燃焼開始時に、上記の内側の領
域に、還流排気が混入している吸気又は還流排気濃度の
濃い吸気を配置し、上記の外側の領域に、還流排気が混
入していない吸気又は還流排気濃度の薄い吸気を配置す
る構成にしたことを特徴とする請求項1又は2に記載の
直接噴射式内燃機関。
3. At high load or high revolution, the combustion chamber is
At the start of fuel combustion near the end of the compression stroke, intake air containing recirculated exhaust gas or intake air having a high recirculated exhaust gas concentration is arranged in the above inner region, and no recirculated exhaust gas is mixed in the above outer region. 3. The direct injection type internal combustion engine according to claim 1, wherein intake air having a low intake or recirculation exhaust gas concentration is arranged.
【請求項4】 運転条件に応じて、上記の内側の領域に
おける還流排気の濃度に対する、上記の外側の領域にお
ける還流排気の濃度の比を変更する構成にしたことを特
徴とする請求項1、2又は3に記載の直接噴射式内燃機
関。
4. The apparatus according to claim 1, wherein a ratio of a concentration of the recirculated exhaust gas in the outer region to a concentration of the recirculated exhaust gas in the inner region is changed according to an operating condition. 4. The direct injection internal combustion engine according to 2 or 3.
【請求項5】 燃焼室の上部に第1吸気のスワール流を
形成する吸気ポートと、燃焼室の下部に第2吸気のスワ
ール流を形成する吸気ポートとで吸気弁の開放期間をず
らし、吸気行程の前部には、後者の吸気ポートの吸気弁
のみが開放して第2吸気のみが燃焼室に流入し、吸気行
程の後部には、前者の吸気ポートの吸気弁のみが開放し
て第1吸気のみが燃焼室に流入する構成にしたことを特
徴とする請求項1〜4のいずれかに記載の直接噴射式内
燃機関。
5. An intake port for forming a swirl flow of a first intake air in an upper part of a combustion chamber and a suction port for forming a swirl flow of a second intake air in a lower part of a combustion chamber, in which an opening period of an intake valve is shifted. At the front of the stroke, only the intake valve of the latter intake port is opened and only the second intake air flows into the combustion chamber. At the rear of the intake stroke, only the intake valve of the former intake port is opened and the second intake valve is opened. The direct injection type internal combustion engine according to any one of claims 1 to 4, wherein only one intake air flows into the combustion chamber.
【請求項6】 燃焼室の燃料噴射位置を中心とする概略
半球面ないし概略扁平半球面は、燃料の噴射方向には燃
料噴射位置から噴霧分裂距離の1〜1.5倍位離れてい
ることを特徴とする請求項1〜5のいずれかに記載の直
接噴射式内燃機関。
6. A substantially hemispherical surface or a substantially flat hemispherical surface centered on a fuel injection position of a combustion chamber is separated from the fuel injection position by about 1 to 1.5 times the spray split distance in the fuel injection direction. The direct injection type internal combustion engine according to any one of claims 1 to 5, characterized in that:
【請求項7】 直接噴射式内燃機関は、圧縮着火内燃機
関であることを特徴とする請求項1〜6のいずれかに記
載の直接噴射式内燃機関。
7. The direct injection type internal combustion engine according to claim 1, wherein the direct injection type internal combustion engine is a compression ignition internal combustion engine.
JP2001015657A 2000-01-25 2001-01-24 Direct injection-type internal combustion engine Withdrawn JP2001280140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001015657A JP2001280140A (en) 2000-01-25 2001-01-24 Direct injection-type internal combustion engine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-15672 2000-01-25
JP2000015672 2000-01-25
JP2001015657A JP2001280140A (en) 2000-01-25 2001-01-24 Direct injection-type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2001280140A true JP2001280140A (en) 2001-10-10

Family

ID=26584092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015657A Withdrawn JP2001280140A (en) 2000-01-25 2001-01-24 Direct injection-type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2001280140A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280139A (en) * 2000-01-25 2001-10-10 Toyota Central Res & Dev Lab Inc Intake stratification method in direct injection-type internal combustion engine and stratifying device
JP2009215960A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Internal combustion engine
JP2012082802A (en) * 2010-10-14 2012-04-26 Denso Corp Intake control device of internal combustion engine
JPWO2011059059A1 (en) * 2009-11-12 2013-04-04 株式会社豊田中央研究所 diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001280139A (en) * 2000-01-25 2001-10-10 Toyota Central Res & Dev Lab Inc Intake stratification method in direct injection-type internal combustion engine and stratifying device
JP2009215960A (en) * 2008-03-10 2009-09-24 Toyota Motor Corp Internal combustion engine
JPWO2011059059A1 (en) * 2009-11-12 2013-04-04 株式会社豊田中央研究所 diesel engine
JP2012082802A (en) * 2010-10-14 2012-04-26 Denso Corp Intake control device of internal combustion engine

Similar Documents

Publication Publication Date Title
WO2001055567A1 (en) Direct injection type internal combustion engine
JP2003510499A (en) Method for controlling the combustion process in an internal combustion engine
JPH10131756A (en) Inner-cylinder injection type engine
JPH09158736A (en) Spark igntion type combustion method and spark ignition type internal combustion engine
JP4093074B2 (en) An internal combustion engine capable of self-ignition operation in which the air-fuel mixture is compressed and self-ignited
JP4075453B2 (en) Direct-injection spark ignition internal combustion engine
JPH07102976A (en) Inter-cylinder injection type spark ignition engine
JP2001280140A (en) Direct injection-type internal combustion engine
JP2017194004A (en) Combustion chamber structure of diesel engine
CN208816234U (en) Engine
JP2003035145A (en) Compression ignition internal combustion engine
JP2001280139A (en) Intake stratification method in direct injection-type internal combustion engine and stratifying device
JP3934934B2 (en) Engine for stratified charge combustion at stoichiometric air-fuel ratio and stratified charge combustion method for the engine
JP3591141B2 (en) In-cylinder direct injection spark ignition internal combustion engine
JPH09242550A (en) Spark ignition engine of direct cylinder fuel injection type
JP2001317359A (en) Internal combustion engine
JP2004183520A (en) Premixed compression self-ignition type internal combustion engine
JP3903200B2 (en) In-cylinder injection spark ignition internal combustion engine
JPS6329016A (en) Subchamber type diesel combustion chamber
JPH05321795A (en) Fuel supplying device for engine
JPS63129116A (en) Phase flow air charging system internal combustion engine
JPH07122407B2 (en) Engine combustion chamber structure
JP3800764B2 (en) Piston for in-cylinder internal combustion engine
JP4134735B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device
JP2001349219A (en) Compression ignition engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060404

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060603