JP4715804B2 - Exhaust gas recirculation device for internal combustion engine - Google Patents

Exhaust gas recirculation device for internal combustion engine Download PDF

Info

Publication number
JP4715804B2
JP4715804B2 JP2007124571A JP2007124571A JP4715804B2 JP 4715804 B2 JP4715804 B2 JP 4715804B2 JP 2007124571 A JP2007124571 A JP 2007124571A JP 2007124571 A JP2007124571 A JP 2007124571A JP 4715804 B2 JP4715804 B2 JP 4715804B2
Authority
JP
Japan
Prior art keywords
egr gas
cylinder
internal combustion
combustion engine
tangential flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007124571A
Other languages
Japanese (ja)
Other versions
JP2008280884A (en
Inventor
弘和 伊藤
康夫 佐藤
寿記 伊藤
修 堀越
倫行 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007124571A priority Critical patent/JP4715804B2/en
Publication of JP2008280884A publication Critical patent/JP2008280884A/en
Application granted granted Critical
Publication of JP4715804B2 publication Critical patent/JP4715804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Description

本発明は、内燃機関のシリンダへ空気を導く吸気装置に排気通路から取り出した排気の一部をEGRガスとして導入する内燃機関の排気還流装置に関する。   The present invention relates to an exhaust gas recirculation device for an internal combustion engine in which a part of exhaust gas taken out from an exhaust passage is introduced as EGR gas into an intake device that guides air to a cylinder of the internal combustion engine.

内燃機関の排気還流装置として、EGRガスを導く排気還流通路を内燃機関の吸気弁の近傍かつシリンダの中央側に開口させ、吸気弁の開弁時期と同期させてEGRガスを導入することにより、EGRガスをシリンダの中央部に層状に流入させるものが知られている(特許文献1)。その他、本発明に関連する先行技術文献として、特許文献2〜4が存在する。   As an exhaust gas recirculation device for an internal combustion engine, an exhaust gas recirculation passage for introducing EGR gas is opened in the vicinity of the intake valve of the internal combustion engine and at the center side of the cylinder, and EGR gas is introduced in synchronization with the opening timing of the intake valve, One in which EGR gas flows in a layered manner in the center of a cylinder is known (Patent Document 1). In addition, Patent Documents 2 to 4 exist as prior art documents related to the present invention.

特開平7−180616号公報Japanese Patent Laid-Open No. 7-180616 特開平5−248249号公報JP-A-5-248249 特開2002−106419号公報JP 2002-106419 A 特開2004−257305号公報JP 2004-257305 A

特許文献1の排気還流装置は、EGRガスをシリンダ内に均一に導入せずにシリンダの中央部に層状に導入するものであるため、シリンダ内に噴射された燃料がシリンダの中央部に偏在するEGRガスを通過することによって燃焼温度の上昇をある程度抑えることができる。しかしながら、この排気還流装置は内燃機関の運転状態に応じてEGRガスの偏在位置を変えることができないため、EGRガスの絶対量の調整だけでは燃焼温度の上昇を十分に抑えることができない可能性がある。   Since the exhaust gas recirculation device of Patent Document 1 introduces EGR gas in a layered manner into the center of the cylinder without uniformly introducing it into the cylinder, the fuel injected into the cylinder is unevenly distributed in the center of the cylinder. By passing the EGR gas, the increase in combustion temperature can be suppressed to some extent. However, since this exhaust gas recirculation device cannot change the uneven distribution position of the EGR gas in accordance with the operating state of the internal combustion engine, there is a possibility that the increase in the combustion temperature cannot be sufficiently suppressed only by adjusting the absolute amount of the EGR gas. is there.

そこで、本発明は、内燃機関の運転状態に応じてEGRガスを偏在させる位置を変えることができる内燃機関の排気還流装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust gas recirculation device for an internal combustion engine that can change the position where EGR gas is unevenly distributed in accordance with the operating state of the internal combustion engine.

本発明の内燃機関の排気還流装置は、内燃機関のシリンダへ空気を導く吸気装置に、前記内燃機関の排気通路から取り出した排気の一部をEGRガスとして導入する内燃機関の排気還流装置において、前記吸気装置は、前記シリンダへ空気を導く過程で前記シリンダの内周面の接線方向へ向かう接線流を生成する接線流生成部と、前記シリンダへ空気を導く過程で前記シリンダの中心線と交差する面内を旋回しながら前記中心線の方向へ向かう旋回流を生成する旋回流生成部とを有し、前記接線流生成部及び前記旋回流生成部のそれぞれへEGRガスを導入でき、かつ前記接線流生成部へのEGRガスの導入量及び前記旋回流生成部へのEGRガスの導入量のそれぞれを変化させることができる導入手段と、前記内燃機関の運転状態に応じて前記導入手段を操作することにより、前記接線流生成部へのEGRガスの導入量と前記旋回流生成部へのEGRガスの導入量とをそれぞれ制御する導入制御手段と、前記導入手段にて前記接線流生成部に導入されるEGRガスの前記接線流生成部の左右方向に関する配分を変化させることができる配分調整手段と、を備えることにより上述した課題を解決する(請求項1)。   An exhaust gas recirculation device for an internal combustion engine according to the present invention is an exhaust gas recirculation device for an internal combustion engine that introduces, as EGR gas, part of exhaust gas extracted from an exhaust passage of the internal combustion engine into an intake device that guides air to a cylinder of the internal combustion engine. The intake device includes a tangential flow generating section that generates a tangential flow directed in a tangential direction of an inner circumferential surface of the cylinder in a process of guiding air to the cylinder, and a center line of the cylinder in the process of guiding air to the cylinder. A swirl flow generation unit that generates a swirl flow that moves in the direction of the center line while swirling in a plane to be able to introduce EGR gas into each of the tangential flow generation unit and the swirl flow generation unit, and Introducing means capable of changing each of the amount of EGR gas introduced into the tangential flow generator and the amount of EGR gas introduced into the swirl flow generator, and depending on the operating state of the internal combustion engine By operating the introduction means, an introduction control means for controlling an introduction amount of EGR gas into the tangential flow generation section and an introduction amount of EGR gas into the swirling flow generation section, and the introduction means Distributing the EGR gas introduced into the tangential flow generation unit with respect to the horizontal direction of the tangential flow generation unit, the distribution adjustment means can be changed to solve the above-described problem.

吸気装置は空気をシリンダに導く過程で接線流と旋回流とを生成する。接線流がシリンダ内に導入されることにより、シリンダの内周面に沿う方向に流れるスワールがシリンダ内に生成される。旋回流はスワールの内側に流れて十分な空気流量を確保しつつスワールの生成を促進するように機能する。これらの流れにより、シリンダ内に位置的に不均一な流れ場が形成される。EGRガスは導入手段によって接線流生成部及び旋回流生成部のそれぞれに導入されることにより、接線流及び旋回流に乗ってシリンダ内に導入される。接線流に乗ったEGRガスはシリンダの半径方向外側に主に導かれ、旋回流に乗ったEGRガスはシリンダの中央部に主に導かれる。導入手段は内燃機関の運転状態に応じて操作されて、接線流生成部へのEGRガスの導入量及び旋回流生成部へのEGRガスの導入量がそれぞれ制御される。これにより、内燃機関の運転状態に応じてシリンダ内にEGRガスが偏在する位置を変えることができる。更に、配分調整手段により接線流生成部に導入されるEGRガスの配分をその左右方向に関して変化させることができるので、シリンダ内に偏在するEGRガスの濃度分布を変えることができる。   The intake device generates a tangential flow and a swirl flow in the process of guiding air to the cylinder. By introducing the tangential flow into the cylinder, a swirl flowing in the direction along the inner peripheral surface of the cylinder is generated in the cylinder. The swirling flow flows inside the swirl and functions to promote the generation of the swirl while ensuring a sufficient air flow rate. These flows create a non-uniform flow field in the cylinder. The EGR gas is introduced into the tangential flow generation unit and the swirl flow generation unit by the introduction means, and is introduced into the cylinder along the tangential flow and the swirl flow. The EGR gas riding on the tangential flow is mainly led to the outside in the radial direction of the cylinder, and the EGR gas riding on the swirling flow is mainly led to the center of the cylinder. The introduction means is operated in accordance with the operating state of the internal combustion engine to control the amount of EGR gas introduced into the tangential flow generator and the amount of EGR gas introduced into the swirl flow generator. Thereby, the position where the EGR gas is unevenly distributed in the cylinder can be changed according to the operating state of the internal combustion engine. Furthermore, since the distribution of the EGR gas introduced into the tangential flow generation unit can be changed in the left-right direction by the distribution adjusting means, the concentration distribution of the EGR gas unevenly distributed in the cylinder can be changed.

吸気装置は上述した接線流と旋回流とを生成できる限度で種々の態様を採用できる。例えば、接線流を生成できる接線流生成部を有した吸気ポートと旋回流を生成できる旋回流生成部を有した吸気ポートとが一つのシリンダに対して設けられることによって吸気装置が構成されてもよい。また、他の一態様として、前記吸気装置は、前記シリンダに開口し、かつ前記接線流生成部と前記旋回流生成部とが上下方向に隣接するようにして同一ポート内に設けられたスワール生成ポートを有してもよい(請求項2)。この態様の場合、一つの吸気ポートで接線流と旋回流とをそれぞれ生成することができるので、スワール生成ポートによりスワールの生成と十分な空気流量の確保とを両立できる。   The intake device can adopt various modes as long as the above-described tangential flow and swirl flow can be generated. For example, an intake device may be configured by providing an intake port having a tangential flow generation unit capable of generating a tangential flow and an intake port having a swirl flow generation unit capable of generating a swirl flow for one cylinder. Good. As another aspect, the intake device is provided with a swirl that is open in the cylinder and provided in the same port so that the tangential flow generation unit and the swirl flow generation unit are adjacent in the vertical direction. You may have a port (Claim 2). In the case of this aspect, since the tangential flow and the swirl flow can be generated by one intake port, both the generation of the swirl and the securing of a sufficient air flow rate can be achieved by the swirl generation port.

配分調整手段も種々の態様を採用できる。例えば、前記配分調整手段は、前記導入手段が前記接線流生成部へEGRガスを導入するための導入位置よりも下流側に配置され、かつ上下方向に延びて下流側の端部に位置する回転軸線回りに回転できる配分調整部材と、前記配分調整部材を回転駆動する駆動装置とを有してもよい(請求項3)。この場合には、配分調整部材の回転角度を変更することで、接線流生成部へ導かれるEGRガスの左右の配分を変えることができる。   Various modes can be adopted for the distribution adjusting means. For example, the distribution adjusting means is a rotation in which the introduction means is disposed downstream of the introduction position for introducing the EGR gas into the tangential flow generation section, and extends in the vertical direction and is located at the downstream end. You may have the distribution adjustment member which can rotate the periphery of an axis line, and the drive device which rotationally drives the said distribution adjustment member (Claim 3). In this case, by changing the rotation angle of the distribution adjusting member, the left and right distribution of the EGR gas guided to the tangential flow generation unit can be changed.

本発明の一態様においては、前記内燃機関の運転状態に応じて前記配分調整手段を操作することにより、前記接線流生成部に導入されるEGRガスの前記配分を制御する配分制御手段を更に備えてもよい(請求項4)。この場合には、シリンダ内に偏在するEGRガスの濃度分布を内燃機関の運転状態に応じて変更することが可能になるので、シリンダ内に偏在するEGRガスの状態をよりきめ細かく制御することができる。   In one aspect of the present invention, it further comprises distribution control means for controlling the distribution of the EGR gas introduced into the tangential flow generating section by operating the distribution adjusting means in accordance with the operating state of the internal combustion engine. (Claim 4). In this case, the concentration distribution of EGR gas unevenly distributed in the cylinder can be changed according to the operating state of the internal combustion engine, so that the state of EGR gas unevenly distributed in the cylinder can be controlled more finely. .

例えば、前記内燃機関は前記シリンダ内に燃料を噴射する燃料噴射弁を有し、前記導入制御手段は、前記燃料噴射弁にて噴射された燃料の燃焼が行われる領域にEGRガスが偏在するように、前記接線流生成部へのEGRガスの導入量と前記旋回流生成部へのEGRガスの導入量とをそれぞれ制御し、前記配分制御手段は、前記シリンダ内の温度が低いほど前記シリンダの前記内周面に近い側に導かれるEGRガスが少なくなるように、前記接線流生成部に導入されたEGRガスの前記配分を制御してもよい(請求項5)。   For example, the internal combustion engine has a fuel injection valve that injects fuel into the cylinder, and the introduction control means is configured so that EGR gas is unevenly distributed in a region where combustion of fuel injected by the fuel injection valve is performed. In addition, the amount of EGR gas introduced into the tangential flow generator and the amount of EGR gas introduced into the swirl flow generator are respectively controlled, and the distribution control means is configured such that the lower the temperature in the cylinder, The distribution of the EGR gas introduced into the tangential flow generation unit may be controlled so that EGR gas guided to the side closer to the inner peripheral surface is reduced (Claim 5).

噴射燃料の燃焼が行われる領域は他の領域よりも高温になる。この態様によれば、そのような高温場にEGRガスを偏在させることができるので、EGRガスによる燃焼温度低減効果を効率的に得ることができる。つまり、EGRガスの導入による効果が得やすい位置にEGRガスを偏在させることができるため、シリンダ内に導入するEGRガスの総量を減らすことが可能である。これにより、大量にEGRガスを導入することによる弊害を回避することができる。噴射燃料の燃焼はその最先端部からシリンダの中央に向かって進行するため、シリンダ内の温度が低い場合には、噴射燃料の最先端部の着火性を確保しつつ急激な燃焼を抑えて未燃燃料の排出を抑えることが好ましい。この態様によれば、シリンダ内の温度が低いほどシリンダの内周面に近い側に導かれるEGRガスが減るので、噴射燃料の最先端部におけるEGRガスの濃度が低下する。これにより、燃焼が開始する噴射燃料の最先端部の着火性を確保しつつ急激な燃焼を抑制できる。これにより、シリンダ内の温度が低温のときにおける未燃燃料の排出を効果的に抑えることが可能になる。   The region where the injected fuel is burned is hotter than the other regions. According to this aspect, since EGR gas can be unevenly distributed in such a high temperature field, the combustion temperature reduction effect by EGR gas can be obtained efficiently. That is, since the EGR gas can be unevenly distributed at a position where the effect of introducing the EGR gas is easily obtained, the total amount of the EGR gas introduced into the cylinder can be reduced. Thereby, the bad effect by introduce | transducing EGR gas in large quantities can be avoided. Since the combustion of the injected fuel proceeds from the most advanced part toward the center of the cylinder, when the temperature in the cylinder is low, the ignitability of the most advanced part of the injected fuel is ensured and the rapid combustion is suppressed. It is preferable to suppress emission of fuel. According to this aspect, as the temperature in the cylinder is lower, the EGR gas guided to the side closer to the inner peripheral surface of the cylinder is reduced, so that the concentration of EGR gas in the most advanced portion of the injected fuel is reduced. Thereby, rapid combustion can be suppressed, ensuring the ignitability of the most advanced part of the injected fuel which combustion starts. This makes it possible to effectively suppress the discharge of unburned fuel when the temperature in the cylinder is low.

本発明の一態様においては、前記導入手段は、前記接線流生成部の側に開口してEGRガスを導入する第1の導入通路と、前記旋回流生成部の側に開口してEGRガスを導入する第2の導入通路と、前記第1の導入通路によるEGRガスの導入量を調整する第1の調整弁と、前記第2の導入通路によるEGRガスの導入量を調整する第2の調整弁と、を有し、前記導入量制御手段は、前記第1の調整弁及び前記第2の調整弁のそれぞれの開度を操作することにより、前記接線流生成部へのEGRガスの導入量と前記旋回流生成部へのEGRガスの導入量とをそれぞれ制御してもよい(請求項6)。この態様によれば、接線流生成部及び旋回流生成部のそれぞれの側に導入通路と調整弁とが一つずつ設けられているので、二つの調整弁の開度を操作することにより、接線流生成部へ導入されるEGRガスの量と旋回流生成部へ導入されるEGRガスの量とをそれぞれ正確に制御することができる。   In one aspect of the present invention, the introduction means opens to the side of the tangential flow generation unit and introduces EGR gas, and opens to the side of the swirl flow generation unit and supplies EGR gas. A second introduction passage to be introduced; a first adjustment valve for adjusting an introduction amount of EGR gas through the first introduction passage; and a second adjustment for adjusting an introduction amount of EGR gas through the second introduction passage. The introduction amount control means operates the respective opening degrees of the first adjustment valve and the second adjustment valve, thereby introducing the EGR gas introduction amount into the tangential flow generation unit. And the amount of EGR gas introduced into the swirling flow generating section may be controlled respectively. According to this aspect, since one introduction passage and one adjustment valve are provided on each side of the tangential flow generation unit and the swirl flow generation unit, by operating the opening of the two adjustment valves, The amount of EGR gas introduced into the flow generation unit and the amount of EGR gas introduced into the swirl flow generation unit can be accurately controlled.

なお、本発明において接線流生成部の左右方向とは、接線流生成部を横切りかつシリンダの中心線と直交する平面と平行な方向を意味する。また、上下方向とはシリンダの中心線と平行な方向を意味する。   In the present invention, the left-right direction of the tangential flow generation unit means a direction parallel to a plane that crosses the tangential flow generation unit and is orthogonal to the center line of the cylinder. The vertical direction means a direction parallel to the center line of the cylinder.

以上説明したように、本発明によれば、吸気装置にEGRガスを導入する導入手段が内燃機関の運転状態に応じて操作されて、シリンダ内に接線流を導く接線流生成部へのEGRガスの導入量及びシリンダ内に旋回流を導く旋回流生成部へのEGRガスの導入量がそれぞれ制御されるため、内燃機関の運転状態に応じてシリンダ内にEGRガスが偏在する位置を変えることができる。更に、接線流生成部に導入されたEGRガスの配分をその左右方向に関して変化させることができるので、シリンダ内に偏在するEGRガスの濃度分布を変えることができる。   As described above, according to the present invention, the introduction means for introducing the EGR gas into the intake device is operated according to the operating state of the internal combustion engine, and the EGR gas to the tangential flow generating unit that guides the tangential flow into the cylinder. The amount of EGR gas introduced into the cylinder and the amount of EGR gas introduced into the swirling flow generator that guides the swirling flow into the cylinder are controlled, so that the position where the EGR gas is unevenly distributed in the cylinder can be changed according to the operating state of the internal combustion engine. it can. Furthermore, since the distribution of the EGR gas introduced into the tangential flow generation unit can be changed in the left-right direction, the concentration distribution of EGR gas unevenly distributed in the cylinder can be changed.

図1は本発明の一形態に係る排気還流装置が適用された内燃機関の要部を示した全体図であり、図2は図1の内燃機関の一部を拡大して示した斜視図である。内燃機関1は不図示の車両に走行用動力源として搭載され、4つ(図では1つ)のシリンダ2が一列に並べられた直列4気筒のディーゼルエンジンとして構成されている。各シリンダ2はシリンダブロック3に形成されており、各シリンダ2の上部はシリンダヘッド4にて塞がれる。各シリンダ2にはピストン5が往復運動自在に設けられ、ピストン5はコンロッド7を介してクランクシャフト6に連結される。各シリンダ2の天井面には燃料噴射弁8がその先端をシリンダ2内に臨ませるようにしてシリンダ2の中央部に設けられている。燃料噴射弁8は不図示のコモンレールに接続されて所定燃圧の燃料が供給されるようになっている。   FIG. 1 is an overall view showing a main part of an internal combustion engine to which an exhaust gas recirculation apparatus according to an embodiment of the present invention is applied, and FIG. 2 is an enlarged perspective view showing a part of the internal combustion engine of FIG. is there. The internal combustion engine 1 is mounted on a vehicle (not shown) as a driving power source, and is configured as an in-line four-cylinder diesel engine in which four (one in the figure) cylinders 2 are arranged in a row. Each cylinder 2 is formed in a cylinder block 3, and the upper part of each cylinder 2 is closed by a cylinder head 4. Each cylinder 2 is provided with a piston 5 that can reciprocate. The piston 5 is connected to a crankshaft 6 via a connecting rod 7. On the ceiling surface of each cylinder 2, a fuel injection valve 8 is provided at the center of the cylinder 2 so that its tip faces the cylinder 2. The fuel injection valve 8 is connected to a common rail (not shown) and is supplied with fuel of a predetermined fuel pressure.

各シリンダ2には吸気通路10及び排気通路11がそれぞれ接続されている。吸気通路10は、シリンダ2に開口するようにしてシリンダヘッド4に形成されて一つのシリンダ2に対して二つずつ設けられた吸気ポート12、13と、各吸気ポート12、13に接続される吸気マニホールド14とを含んでいる。これらを含んだ吸気通路10は本発明に係る吸気装置に相当する。各吸気ポート12、13のシリンダ2側の開口部は吸気弁15にて開閉される。図2に示すように、吸気ポート12、13は互いに構造が異なっており、一方の吸気ポート12は本発明に係るスワール生成ポートに相当する。吸気ポート12はシリンダ2へ空気を導く過程で、シリンダ2の内周面の接線方向に向かう接線流Stを生成し、かつシリンダの中心線CLと交差する面内を旋回しながら中心線CLの方向へ向かう旋回流Srを生成できるように構成されている。一方、吸気ポート12の隣に配置された吸気ポート13は、周知のヘリカルポートとして構成され、上記と同様の旋回流Srを生成して主にシリンダ2へ導かれる空気の流量を確保する。吸気ポート13としては中心線CL方向へ空気を導くことができる周知のストレートポートとして構成してもよい。なお、以下の説明では、吸気ポート12をスワール生成ポートと表示して、吸気ポート13と区別する場合がある。   An intake passage 10 and an exhaust passage 11 are connected to each cylinder 2. The intake passage 10 is formed in the cylinder head 4 so as to open to the cylinder 2, and is connected to the intake ports 12, 13 provided for each cylinder 2, and the intake ports 12, 13. And an intake manifold 14. The intake passage 10 including these corresponds to the intake device according to the present invention. The opening on the cylinder 2 side of each intake port 12, 13 is opened and closed by an intake valve 15. As shown in FIG. 2, the intake ports 12 and 13 have different structures, and one intake port 12 corresponds to a swirl generation port according to the present invention. The intake port 12 generates a tangential flow St in the direction of tangential to the inner peripheral surface of the cylinder 2 in the process of guiding air to the cylinder 2 and swivels in a plane intersecting the center line CL of the cylinder 2. It is comprised so that the swirl | vortex flow Sr which goes to a direction can be produced | generated. On the other hand, the intake port 13 arranged next to the intake port 12 is configured as a known helical port, and generates a swirling flow Sr similar to the above to ensure the flow rate of air mainly led to the cylinder 2. The intake port 13 may be configured as a well-known straight port that can guide air toward the center line CL. In the following description, the intake port 12 may be displayed as a swirl generation port to be distinguished from the intake port 13.

図3はスワール生成ポート12の詳細を示し、シリンダ2の上方から見た平面図とa〜dの各断面図とがそれぞれ示されている。スワール生成ポート12は、シリンダ2に開口する開口部16と、吸気弁15のステム部の周りに沿って湾曲しながら開口部16に続くヘリカル部17と、ヘリカル部17の上流側(シリンダ2から離れる側)に接続された導入部18とを備えている。導入部18は図3のa−a及びb−bの各断面図に示すように、シリンダ2の上下方向に関して上側に位置する上層部18aと下側に位置する下層部18bとを有する。これら上層部18a及び下層部18bは上下方向に隣接するようにしてスワール生成ポート12内に設けられる。導入部18は上層部18aの横幅W1が下層部18bの横幅W2よりも狭く、かつヘリカル部17に近付くに従ってこれらの領域の横幅の差が徐々に拡大するように構成されている。つまり、上層部18aはヘリカル部17に近づくに従って徐々に絞り込まれるように構成されている。   FIG. 3 shows details of the swirl generation port 12, and a plan view seen from above the cylinder 2 and sectional views a to d are shown. The swirl generation port 12 includes an opening 16 that opens to the cylinder 2, a helical portion 17 that continues along the opening 16 while being curved around the stem portion of the intake valve 15, and an upstream side (from the cylinder 2) of the helical portion 17. And an introduction portion 18 connected to the remote side. The introduction portion 18 includes an upper layer portion 18a positioned on the upper side and a lower layer portion 18b positioned on the lower side in the vertical direction of the cylinder 2, as shown in the respective sectional views taken along the lines aa and bb in FIG. The upper layer portion 18a and the lower layer portion 18b are provided in the swirl generation port 12 so as to be adjacent in the vertical direction. The introduction portion 18 is configured such that the lateral width W1 of the upper layer portion 18a is narrower than the lateral width W2 of the lower layer portion 18b, and the lateral width difference between these regions gradually increases as the helical portion 17 is approached. That is, the upper layer portion 18 a is configured to be gradually narrowed as it approaches the helical portion 17.

ヘリカル部17は、図3のc−c及びd−dの各断面図に示すように、開口部16に向かって湾曲する過程でシリンダ2の上下方向に関する高さhが漸次低くなるように構成されている。スワール生成ポート12によれば、これに導かれる空気が導入部18の下層部18bを通過することで、接線流Stが形成され、空気が導入部18の上層部18a及びこれに続くヘリカル部17を通過することで、旋回流Srが形成される。これによって、図2に示すように、所用の吸気流量を確保しつつシリンダ2内にその内周面の周方向に沿うスワールFswが生成される。即ち、図示の形態の下層部18bが本発明に係る接線流生成部に相当し、上層部18a及びヘリカル部17が本発明に係る旋回流生成部に相当する。   The helical portion 17 is configured such that the height h in the vertical direction of the cylinder 2 gradually decreases in the process of bending toward the opening 16 as shown in the respective cross-sectional views of cc and dd in FIG. Has been. According to the swirl generation port 12, the air guided thereto passes through the lower layer portion 18 b of the introduction portion 18, thereby forming a tangential flow St, and the air is introduced into the upper layer portion 18 a of the introduction portion 18 and the helical portion 17 subsequent thereto. , A swirl flow Sr is formed. As a result, as shown in FIG. 2, a swirl Fsw is generated in the cylinder 2 along the circumferential direction of its inner peripheral surface while ensuring a desired intake flow rate. That is, the lower layer portion 18b in the illustrated form corresponds to the tangential flow generation portion according to the present invention, and the upper layer portion 18a and the helical portion 17 correspond to the swirl flow generation portion according to the present invention.

図1に示すように、排気通路11はシリンダ2に開口するようにしてシリンダヘッド4に形成された複数の排気ポート20と排気ポート20に接続される排気マニホールド21とを含んでいる。図示しないが、排気ポート20は一つのシリンダ2に対して二つずつ設けられる。各排気ポート20のシリンダ2側の開口部は排気弁22にて開閉される。吸気弁15及び排気弁22はその開閉タイミングがクランクシャフト6の回転と同期するようにして動弁装置23にて駆動される。吸気通路10には空気濾過用のエアフィルタ25、空気流量を検出するエアフローメータ26、ターボチャージャー27のコンプレッサ27a及びターボチャージャー27にて加圧された空気を冷却するインタークーラ28がそれぞれ設けられている。排気通路11にはターボチャージャー27のタービン27b及び排気を浄化するための排気浄化装置29がそれぞれ設けられている。ターボチャージャー27はコンプレッサ27aとタービン27bとが一体回転する周知のものである。   As shown in FIG. 1, the exhaust passage 11 includes a plurality of exhaust ports 20 formed in the cylinder head 4 so as to open to the cylinder 2 and an exhaust manifold 21 connected to the exhaust port 20. Although not shown, two exhaust ports 20 are provided for each cylinder 2. The opening on the cylinder 2 side of each exhaust port 20 is opened and closed by an exhaust valve 22. The intake valve 15 and the exhaust valve 22 are driven by the valve gear 23 such that the opening / closing timing thereof is synchronized with the rotation of the crankshaft 6. The intake passage 10 is provided with an air filter 25 for air filtration, an air flow meter 26 for detecting an air flow rate, a compressor 27 a of a turbocharger 27, and an intercooler 28 for cooling air pressurized by the turbocharger 27. Yes. The exhaust passage 11 is provided with a turbine 27b of the turbocharger 27 and an exhaust purification device 29 for purifying the exhaust. The turbocharger 27 is a known type in which a compressor 27a and a turbine 27b rotate integrally.

内燃機関1には排気の一部をEGRガスとして取り出して吸気通路10に導入する排気還流装置30が設けられている。排気還流装置30は排気通路11から取り出したEGRガスを導く排気還流通路31と、EGRガスを冷却する冷却装置32と、排気還流通路31が導くEGRガスを吸気通路10に導入するための導入装置33とを備えている。排気還流通路31の入口側は排気マニホールド21に接続されている。つまり排気還流装置30のEGRガスの取出位置31aはタービン27bの上流側に設定されている。図2に示すように、排気還流通路31の出口側は、二つの分岐通路41、42に分岐されている。分岐通路41は本発明に係る第1の導入通路に、分岐通路42は本発明に係る第2の導入通路にそれぞれ相当する。以下、これらを互いに区別するため、下側分岐通路41及び上側分岐通路42と表示する場合がある。二つの分岐通路41、42はスワール生成ポート12と吸気マニホールド14との間に介在する筒状のスペーサ43に接続される。詳しくは、下側分岐通路41はスペーサ43に形成された下側の開口部45に、上側分岐通路42はスペーサ43に形成された上側の開口部46にそれぞれ接続される。図1に示すように、吸気通路10はその一部としてスペーサ43も含むので、二つの分岐通路41、42は吸気通路10の異なる位置に開口する。図示の形態では分岐通路41、42は吸気通路10の上下の内壁にそれぞれ開口する。下側分岐通路41には調整弁51が、上側分岐通路42には調整弁52がそれぞれ設けられている。各調整弁51、52は開度を自在に変更してEGRガスの導入量を変化させることができる。調整弁51は本発明に係る第1の調整弁に、調整弁52は本発明に係る第2の調整弁にそれぞれ相当する。調整弁51は駆動装置53により、調整弁52は駆動装置54によりそれぞれ駆動される。   The internal combustion engine 1 is provided with an exhaust gas recirculation device 30 that extracts part of the exhaust gas as EGR gas and introduces it into the intake passage 10. The exhaust gas recirculation device 30 includes an exhaust gas recirculation passage 31 that guides the EGR gas extracted from the exhaust passage 11, a cooling device 32 that cools the EGR gas, and an introduction device that introduces the EGR gas guided by the exhaust gas recirculation passage 31 into the intake passage 10. 33. The inlet side of the exhaust gas recirculation passage 31 is connected to the exhaust manifold 21. That is, the EGR gas extraction position 31a of the exhaust gas recirculation device 30 is set on the upstream side of the turbine 27b. As shown in FIG. 2, the outlet side of the exhaust gas recirculation passage 31 is branched into two branch passages 41 and 42. The branch passage 41 corresponds to a first introduction passage according to the present invention, and the branch passage 42 corresponds to a second introduction passage according to the present invention. Hereinafter, in order to distinguish these from each other, they may be referred to as a lower branch passage 41 and an upper branch passage 42. The two branch passages 41 and 42 are connected to a cylindrical spacer 43 interposed between the swirl generation port 12 and the intake manifold 14. Specifically, the lower branch passage 41 is connected to a lower opening 45 formed in the spacer 43, and the upper branch passage 42 is connected to an upper opening 46 formed in the spacer 43. As shown in FIG. 1, the intake passage 10 also includes a spacer 43 as a part thereof, so that the two branch passages 41 and 42 open at different positions in the intake passage 10. In the form shown in the figure, the branch passages 41 and 42 open on the upper and lower inner walls of the intake passage 10, respectively. The lower branch passage 41 is provided with an adjustment valve 51, and the upper branch passage 42 is provided with an adjustment valve 52. Each of the regulating valves 51 and 52 can change the introduction amount of the EGR gas by freely changing the opening degree. The regulating valve 51 corresponds to the first regulating valve according to the present invention, and the regulating valve 52 corresponds to the second regulating valve according to the present invention. The regulating valve 51 is driven by the driving device 53 and the regulating valve 52 is driven by the driving device 54, respectively.

図4は図2の矢印IVの方向から見た状態を示している。この図から明らかなように、下側分岐通路41は破線で示すEGRガスをスワール生成ポート12の下側、つまり下層部18bの側に導入し、上側分岐通路42はEGRガスをスワール生成ポート12の上側、つまり上層部18aの側に導入する(図3も参照)。上述のように、スワール生成ポート12は空気をシリンダ2に導く過程で接線流Stと旋回流Srとをそれぞれ生成し、これらの流れがシリンダ2に導入される。これにより、シリンダ2内に位置的に不均一な流れ場が形成される。つまり、シリンダ2の内周面に沿ったスワールFswが形成されるとともに、シリンダ2の中心部にはスワールFswよりも流速の遅い流れが形成される。下側分岐通路41にて下層部18bの側に、上側分岐通路42にて上層部18aの側にEGRガスがそれぞれ導入されることにより、EGRガスはスワール生成ポート12が生成する接線流St及び旋回流Srのそれぞれに乗ってシリンダ2に導入される。接線流Stに乗ったEGRガスはシリンダ2のスワールFswによって半径方向外側に主に導かれる。一方、旋回流Srに乗ったEGRガスはシリンダ2の中央部に主に導かれる。つまり、シリンダ2内に層状のEGRガスを導入できる。換言すれば、シリンダ2内に、EGRガスの濃度がその半径方向に変化する濃度分布を作ることができる。その濃度分布はEGRガスの導入位置に依存して変化するので、二つの調整弁51、52の開度を操作することによりEGRガスが偏在する位置を変えることができる。本実施形態は、スワール生成ポート12が持つこのような性質を利用して、下側分岐通路41によるEGRガスの導入量と上側分岐通路42によるEGRガスの導入量とを内燃機関1の運転状態に応じてそれぞれ変化させることにより、シリンダ2内にEGRガスを偏在させる位置を変える。   FIG. 4 shows a state seen from the direction of arrow IV in FIG. As is clear from this figure, the lower branch passage 41 introduces EGR gas indicated by a broken line to the lower side of the swirl generation port 12, that is, the lower layer portion 18b side, and the upper branch passage 42 sends EGR gas to the swirl generation port 12. Is introduced to the upper side, that is, the upper layer portion 18a side (see also FIG. 3). As described above, the swirl generation port 12 generates a tangential flow St and a swirl flow Sr in the course of introducing air to the cylinder 2, and these flows are introduced into the cylinder 2. As a result, a non-uniform flow field is formed in the cylinder 2. That is, the swirl Fsw along the inner peripheral surface of the cylinder 2 is formed, and a flow having a slower flow rate than the swirl Fsw is formed at the center of the cylinder 2. The EGR gas is introduced to the lower layer 18b side in the lower branch passage 41 and to the upper layer portion 18a side in the upper branch passage 42, so that the EGR gas is tangential flow St generated by the swirl generation port 12 and Each of the swirl flows Sr is introduced into the cylinder 2. The EGR gas riding on the tangential flow St is mainly guided radially outward by the swirl Fsw of the cylinder 2. On the other hand, the EGR gas riding on the swirling flow Sr is mainly guided to the center of the cylinder 2. That is, layered EGR gas can be introduced into the cylinder 2. In other words, a concentration distribution in which the concentration of EGR gas changes in the radial direction in the cylinder 2 can be created. Since the concentration distribution changes depending on the introduction position of the EGR gas, the position where the EGR gas is unevenly distributed can be changed by operating the opening degree of the two regulating valves 51 and 52. In the present embodiment, by utilizing such properties of the swirl generation port 12, the amount of EGR gas introduced by the lower branch passage 41 and the amount of EGR gas introduced by the upper branch passage 42 are determined as the operating state of the internal combustion engine 1. The position where the EGR gas is unevenly distributed in the cylinder 2 is changed by changing each of them according to.

図5は図2の矢印Vの方向から見た状態を示している。図2、図4及び図5に示すように、排気還流装置30はスワール生成ポート12の下層部18bの左右方向に関するEGRガスの配分を調整するため、配分調整手段としての配分調整機構60を更に備えている。配分調整機構60は、空気又はEGRガスの流れ方向に延びて、その下流側の端部61aに位置する回転軸線Ax1の回りに回転できる配分調整部材としての配分調整弁61と、配分調整弁61を回転駆動するための駆動装置62(図2参照)とを備えている。回転軸線Ax1はスペーサ43の略中央に位置して上下方向に延びている。図5に示すように、配分調整弁61は下層部18bに続くスペーサ43の下部領域43aを左右に区分する。即ち、下部領域43aは配分調整弁61にて右側領域43aRと左側領域43aLとに区分される。駆動装置62は配分調整弁61を図5の位置aから位置bまでの間で駆動でき、かつそれらの間の任意の位置に保持することができる。例えば、配分調整弁61が図5の中間位置cに保持された場合は、開口部45から流入したEGRガスは右側領域43aRと左側領域43aLとに均等に配分される。また、配分調整弁61が中間位置cよりも位置a側へ偏った位置に保持された場合は、右側領域43aRの入口が左側領域43aLの入口よりも大きくなるので、EGRガスは左側領域43aLよりも右側領域43aRへ多く配分される。逆に、配分調整弁61が中間位置cよりも位置b側へ偏った位置に保持された場合は、EGRガスは右側領域43aRよりも左側領域43aLへ多く配分される。このように、配分調整弁61の位置を変更することにより、下層部18bに導かれるEGRガスの左右方向に関する配分を変化させることができる。その配分が変化すると、接線流Stに乗るEGRガスをその左右方向に関して不均一にできるので、シリンダ2内の所定の位置に偏在するEGRガスの濃度分布を変えることができる。   FIG. 5 shows a state viewed from the direction of arrow V in FIG. As shown in FIGS. 2, 4, and 5, the exhaust gas recirculation device 30 further includes a distribution adjustment mechanism 60 as a distribution adjustment unit in order to adjust the distribution of EGR gas in the horizontal direction of the lower layer portion 18 b of the swirl generation port 12. I have. The distribution adjustment mechanism 60 extends in the flow direction of air or EGR gas, and distributes as a distribution adjustment member 61 that can rotate around the rotation axis Ax1 positioned at the downstream end 61a. And a drive device 62 (see FIG. 2). The rotation axis Ax1 is positioned substantially at the center of the spacer 43 and extends in the vertical direction. As shown in FIG. 5, the distribution adjustment valve 61 divides the lower region 43a of the spacer 43 following the lower layer portion 18b into right and left. That is, the lower area 43a is divided by the distribution adjustment valve 61 into a right area 43aR and a left area 43aL. The drive device 62 can drive the distribution adjusting valve 61 from the position a to the position b in FIG. 5 and can hold it at any position between them. For example, when the distribution adjustment valve 61 is held at the intermediate position c in FIG. 5, the EGR gas that has flowed from the opening 45 is evenly distributed to the right region 43aR and the left region 43aL. Further, when the distribution adjustment valve 61 is held at a position deviated to the position a side with respect to the intermediate position c, the inlet of the right region 43aR becomes larger than the inlet of the left region 43aL, so that EGR gas is more than the left region 43aL. Are also distributed to the right region 43aR. Conversely, when the distribution adjustment valve 61 is held at a position that is biased toward the position b with respect to the intermediate position c, more EGR gas is distributed to the left region 43aL than to the right region 43aR. Thus, by changing the position of the distribution adjustment valve 61, the distribution of the EGR gas guided to the lower layer portion 18b in the left-right direction can be changed. When the distribution changes, the EGR gas that rides on the tangential flow St can be made nonuniform in the left-right direction, so that the concentration distribution of the EGR gas unevenly distributed at a predetermined position in the cylinder 2 can be changed.

図1に示すように、二つの調整弁51、52の開度制御及び配分調整弁61の位置制御は内燃機関1の運転状態を制御するエンジンコントロールユニット(ECU)70が各駆動装置53、54、62の動作を制御することによりそれぞれ実現される。ECU70は不図示のマイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺装置を備えたコンピュータであり、主として内燃機関1の燃料噴射量、燃料噴射時期、燃料噴射率等の各種運転パラメータを各種センサからの入力信号を参照して制御する。各種センサとしては、上述したエアフローメータ26の他に、内燃機関1の回転数(回転速度)に応じた信号を出力できるクランク角センサ71、機関温度を代表する物理量として用いられる冷却水温に応じた信号を出力できる水温センサ72などがある。これら以外にも、アクセル開度センサや過給圧センサなどからの信号がECU70に入力されるが図示を省略する。   As shown in FIG. 1, the opening control of the two adjusting valves 51 and 52 and the position control of the distribution adjusting valve 61 are performed by an engine control unit (ECU) 70 that controls the operating state of the internal combustion engine 1. , 62 by controlling the operations. The ECU 70 is a computer provided with a microprocessor (not shown) and peripheral devices such as RAM and ROM necessary for its operation, and various types of operation parameters such as the fuel injection amount, fuel injection timing, and fuel injection rate of the internal combustion engine 1 are mainly used. Control is performed with reference to an input signal from the sensor. As various sensors, in addition to the air flow meter 26 described above, a crank angle sensor 71 that can output a signal corresponding to the rotational speed (rotational speed) of the internal combustion engine 1, and a cooling water temperature used as a physical quantity representative of the engine temperature. There is a water temperature sensor 72 that can output a signal. In addition to these, signals from an accelerator opening sensor, a supercharging pressure sensor, and the like are input to the ECU 70, but illustration thereof is omitted.

図6は本発明に関連してECU70が実行する排気還流制御の制御ルーチンの一例を示したフローチャートである。このルーチンのプログラムはECU70のROMに保持されており、適時に読み出されて所定の演算間隔で繰り返し実行される。ECU70は、まずステップS1で内燃機関1の運転状態として例えば機関回転数Neと燃料噴射量Qを取得する。機関回転数Neはクランク角センサ61の信号に基づいて取得される。燃料噴射量Qとしては図6と並行して実行される燃料噴射制御(不図示)の演算結果が使用される。次に、ステップS2において、図2に示した調整弁51と調整弁52との開度比を設定する。この開度比は下側分岐通路41が導入するEGRガスの導入量と上側分岐通路42が導入するEGRガスの導入量との比(下側:上側)と同じ意義を持つ。開度比は機関回転数Ne及び燃料噴射量Qに応じて設定される。図7は開度比を設定するためにECU60が参照するマップの一例を示している。この図から明らかなように、調整弁51と調整弁52との開度比は、燃料噴射量Qが多いほど、スワール生成ポート12に導入されるEGRガスの導入量に対する下側分岐通路41によるEGRガスの導入量の比率が高くなるように設定されている。なお、図に示す具体的数値は一例にすぎない。また、この比率を0%として上側分岐通路42のみから、又はこの比率を100%として下側分岐通路41のみからEGRガスを導入するような開度比を設けることもできる。つまり、開度比を0:10又は10:0とする場合を図示のマップの設定値に含めることもできる。   FIG. 6 is a flowchart showing an example of a control routine of exhaust gas recirculation control executed by the ECU 70 in relation to the present invention. The program for this routine is held in the ROM of the ECU 70, read out in a timely manner, and repeatedly executed at a predetermined calculation interval. The ECU 70 first acquires, for example, the engine speed Ne and the fuel injection amount Q as the operation state of the internal combustion engine 1 in step S1. The engine speed Ne is acquired based on a signal from the crank angle sensor 61. As the fuel injection amount Q, a calculation result of fuel injection control (not shown) executed in parallel with FIG. 6 is used. Next, in step S2, the opening ratio between the regulating valve 51 and the regulating valve 52 shown in FIG. 2 is set. This opening ratio has the same significance as the ratio (lower side: upper side) between the amount of EGR gas introduced by the lower branch passage 41 and the amount of EGR gas introduced by the upper branch passage 42. The opening ratio is set according to the engine speed Ne and the fuel injection amount Q. FIG. 7 shows an example of a map that the ECU 60 refers to in order to set the opening ratio. As is clear from this figure, the opening ratio between the regulating valve 51 and the regulating valve 52 depends on the lower branch passage 41 with respect to the introduction amount of EGR gas introduced into the swirl generation port 12 as the fuel injection amount Q increases. The ratio of the amount of EGR gas introduced is set to be high. The specific numerical values shown in the figure are only examples. It is also possible to provide an opening ratio such that EGR gas is introduced only from the upper branch passage 42 with this ratio being 0% or only from the lower branch passage 41 with this ratio being 100%. That is, the case where the opening ratio is set to 0:10 or 10: 0 can be included in the set values of the illustrated map.

ここで、図7のように開度比を設定する理由について、図9〜図11を参照して説明する。図9は燃料噴射量が少ない場合のEGRガスと燃料噴霧との関係を、図11は燃料噴射量が多い場合のEGRガスと燃料噴霧との関係を、図10は燃料噴射量が図9と図11との中間程度の場合のEGRガスと燃料噴霧との関係をそれぞれ示した説明図である。これらの図に示すように、内燃機関1は燃料噴射弁8がシリンダ2の中央部から放射状に燃料を噴射する。そのように噴射された噴射燃料(燃料噴霧)Fはその先端部から燃焼が開始して高温の燃焼場を形成する。図9と図11とを比較すれば明らかなように、燃料噴霧Fの先端部の位置は燃料噴射量が多いほどシリンダ2の中心から離れた位置に、換言すれば燃料噴射量が多いほどシリンダ2の半径方向外側の位置に変化する。つまり噴射された燃料が燃焼する位置は燃料噴射量が多いほどシリンダ2の中心から離れる。   Here, the reason why the opening ratio is set as shown in FIG. 7 will be described with reference to FIGS. 9 shows the relationship between EGR gas and fuel spray when the fuel injection amount is small, FIG. 11 shows the relationship between EGR gas and fuel spray when the fuel injection amount is large, and FIG. 10 shows the fuel injection amount as shown in FIG. It is explanatory drawing which each showed the relationship between EGR gas and fuel spray in the case of the middle grade of FIG. As shown in these drawings, in the internal combustion engine 1, the fuel injection valve 8 injects fuel radially from the center of the cylinder 2. The injected fuel (fuel spray) F thus injected starts to burn from its tip and forms a high-temperature combustion field. As apparent from a comparison between FIG. 9 and FIG. 11, the position of the tip of the fuel spray F is more distant from the center of the cylinder 2 as the fuel injection amount is larger, in other words, the cylinder is more as the fuel injection amount is larger. 2 changes to a position radially outside. That is, the position where the injected fuel burns is further away from the center of the cylinder 2 as the fuel injection amount increases.

一方、下側分岐通路41によるEGRガスの導入量の比率が高いほど、それだけスワール生成ポート12の下層部18bにEGRガスが導かれる割合が増える。そのため、スワール生成ポート12が生成する接線流StにEGRガスが乗る量、換言すればEGRガスが接線流Stに随伴する量は、その比率が高いほど増加する。これにより、その比率が高いほどシリンダ2の内周面に近い位置に高濃度のEGRガスを層状に偏在させることができる。つまり、図9に示すように、燃料噴射量が少ない場合はその比率が低くなるように開度比が設定されているため、EGRガスGはシリンダ2の中央部に偏在することによって、燃料噴霧Fが燃焼する領域はEGRガスGにて効率的に冷却される。また、図11に示すように、燃料噴射量が多い場合はその比率が高くなるように開度比が設定されているため、EGRガスGはシリンダ2の内周面に近い領域に偏在することによって、燃料噴霧Fが燃焼する領域はEGRガスGにて効率的に冷却される。また、図10に示す中間の燃料噴射量においても、図11の場合よりもEGRガスGが偏在する領域がシリンダ2の中心側に変化するので、燃料噴霧Fが燃焼する領域はEGRガスGにて効率的に冷却される。従って、燃料噴射量が多いほど、下側分岐通路41によるEGRガスの導入量の比率を高めることによって、燃料噴霧の先端部の位置にEGRガスを偏在させることができるようになる。こうした考えに基づいて、EGRガスが適切な領域に(噴射された燃料が燃焼する領域に)配置されるように図7の開度比が設定されている。   On the other hand, the higher the ratio of the amount of EGR gas introduced by the lower branch passage 41, the higher the ratio of the EGR gas introduced to the lower layer portion 18b of the swirl generation port 12. For this reason, the amount of EGR gas riding on the tangential flow St generated by the swirl generation port 12, that is, the amount of EGR gas accompanying the tangential flow St increases as the ratio increases. Thereby, the higher the ratio, the higher the concentration of EGR gas can be unevenly distributed in a position closer to the inner peripheral surface of the cylinder 2. That is, as shown in FIG. 9, when the fuel injection amount is small, the opening ratio is set so that the ratio becomes low. Therefore, the EGR gas G is unevenly distributed in the center of the cylinder 2, thereby fuel spraying. The region where F burns is efficiently cooled by the EGR gas G. Also, as shown in FIG. 11, when the fuel injection amount is large, the opening ratio is set so that the ratio becomes high, so that the EGR gas G is unevenly distributed in a region near the inner peripheral surface of the cylinder 2. Thus, the region where the fuel spray F burns is efficiently cooled by the EGR gas G. Further, even in the intermediate fuel injection amount shown in FIG. 10, the region where the EGR gas G is unevenly distributed is changed to the center side of the cylinder 2 as compared with the case of FIG. 11, so the region where the fuel spray F burns is changed to the EGR gas G. And efficiently cooled. Therefore, as the fuel injection amount increases, the ratio of the amount of EGR gas introduced by the lower branch passage 41 is increased, so that the EGR gas can be unevenly distributed at the position of the tip of the fuel spray. Based on this idea, the opening ratio in FIG. 7 is set so that the EGR gas is disposed in an appropriate region (in the region where the injected fuel burns).

図6に戻り、ステップS2で開度比を設定した後に、ステップS3に進んで燃料の噴射時期が所定範囲内にあるか否かを判定する。燃料噴霧の伸長具合は燃料噴射弁8から燃料が噴射される時の雰囲気圧(筒内圧)に強く依存する。つまり圧縮上死点よりも早期に燃料が噴射された場合には燃料噴霧の伸長が過度に進んでいわゆる予混合気を形成する。このような予混合気が形成される場合の燃料噴霧とEGRガスとの関係を図12に示す。図12から明らかなように、図9〜図11に示す形態と対照的に、燃料噴霧の放射状の痕跡が消失して混合気の塊Hとして存在する。このように、噴射時期に応じて燃焼が行われる領域が変化するため、ステップS3ではその変化に合わせて開度比を補正をする必要性を判断することを目的として噴射時期を判定する。所定範囲は開度比の補正の要否を基準として設定される。噴射時期が所定範囲内の場合は補正の必要がなく、所定範囲外の場合は補正の必要がある。噴射時期が所定範囲外の場合はステップS4に進み開度比を補正する。燃料噴射時期が所定範囲内にある場合はステップS5に進む。   Returning to FIG. 6, after setting the opening ratio in step S <b> 2, the process proceeds to step S <b> 3 to determine whether or not the fuel injection timing is within a predetermined range. The extension of fuel spray strongly depends on the atmospheric pressure (in-cylinder pressure) when fuel is injected from the fuel injection valve 8. That is, when the fuel is injected earlier than the compression top dead center, the extension of the fuel spray proceeds excessively to form a so-called premixed gas. FIG. 12 shows the relationship between fuel spray and EGR gas when such a premixed gas is formed. As is clear from FIG. 12, in contrast to the forms shown in FIGS. 9 to 11, radial traces of the fuel spray disappear and exist as a mixture H. Thus, since the region where combustion is performed changes according to the injection timing, the injection timing is determined in step S3 for the purpose of determining the necessity of correcting the opening ratio in accordance with the change. The predetermined range is set based on whether or not the opening ratio needs to be corrected. When the injection timing is within the predetermined range, no correction is necessary, and when it is out of the predetermined range, correction is necessary. If the injection timing is out of the predetermined range, the process proceeds to step S4 to correct the opening ratio. If the fuel injection timing is within the predetermined range, the process proceeds to step S5.

図8は開度比の補正方法を説明する説明図である。この図に示すように、噴射時期が上死点TDCよりも遅角側の時期Aから進角側の時期Bまでの間は補正比率は1に設定される。つまり、時期Aから時期Bまでの範囲は上述した所定範囲に相当し、開度比の補正は行われないことを示している。噴射時期が時期Aよりも早い場合は、噴射時期が早いほど上述した混合気の塊が生成される傾向となる。そのため、EGRガスがシリンダ2の中央部に偏在させる方向に、つまりシリンダ2の半径方向外側へのEGRガスの偏在が緩和される方向に開度比を補正する。換言すれば、下側分岐通路41によるEGRガスの導入量の比率を減少する方向に補正する。図示の括弧内に示したように、例えばステップS2で開度比が8:2(下側:上側)に設定された場合は、最も補正される補正比率0.25の状態でその開度比は2:8まで補正される。一方、時期Bよりも遅い場合も筒内圧は下がるため噴射燃料の混合が促進し、時期Aよりも早い状況と同様となる。そのため、噴射時期が時期Bよりも遅いほど、下側分岐通路41によるEGRガスの導入量の比率を減少する方向に補正する。このように、開度比が補正されることにより、燃料噴射時期の変化に伴う燃焼形態の変化に対応させてEGRガスを導入することができる。   FIG. 8 is an explanatory diagram for explaining a method of correcting the opening ratio. As shown in this figure, the correction ratio is set to 1 during the period from the timing A on the retard side to the timing B on the advance side of the top dead center TDC. That is, the range from time A to time B corresponds to the above-described predetermined range, indicating that the opening ratio is not corrected. When the injection timing is earlier than the timing A, the earlier, the earlier the injection timing, the more the mixture mixture described above tends to be generated. Therefore, the opening ratio is corrected in the direction in which EGR gas is unevenly distributed in the center of the cylinder 2, that is, in the direction in which the uneven distribution of EGR gas to the outside in the radial direction of the cylinder 2 is mitigated. In other words, the ratio of the amount of EGR gas introduced by the lower branch passage 41 is corrected so as to decrease. As shown in the parentheses in the figure, for example, when the opening ratio is set to 8: 2 (lower side: upper side) in step S2, the opening ratio is set in a state where the correction ratio is 0.25 which is corrected most. Is corrected to 2: 8. On the other hand, when the time is later than time B, the in-cylinder pressure decreases, so that the mixing of the injected fuel is promoted, and the situation is the same as the situation earlier than time A. Therefore, as the injection timing is later than the timing B, the ratio of the amount of EGR gas introduced by the lower branch passage 41 is corrected so as to decrease. As described above, by correcting the opening ratio, it is possible to introduce the EGR gas in accordance with the change in the combustion mode accompanying the change in the fuel injection timing.

図6に戻り、ステップS5においては、上述した開度比を維持しつつ調整弁51、52のそれぞれに与える最終的な開度量を設定する。この開度量は機関回転数と燃料噴射量(負荷)に応じて算出されるEGRガス量に基づいて設定される。EGRガス量は不図示のマップを参照することにより取得し、そのEGRガス量のEGRガスが導入されるように調整弁51、52のそれぞれに与える最終的な開度量を設定する。この開度量の設定は、EGRガス量と開度比とを変数として、調整弁51の開度量及び調整弁52の開度量を与えるマップを参照することにより実現できる。   Returning to FIG. 6, in step S <b> 5, the final opening amount to be given to each of the adjustment valves 51 and 52 is set while maintaining the opening ratio described above. The opening amount is set based on the EGR gas amount calculated according to the engine speed and the fuel injection amount (load). The EGR gas amount is acquired by referring to a map (not shown), and the final opening amount to be given to each of the adjustment valves 51 and 52 is set so that the EGR gas of the EGR gas amount is introduced. The setting of the opening amount can be realized by referring to a map that gives the opening amount of the adjusting valve 51 and the opening amount of the adjusting valve 52 using the EGR gas amount and the opening ratio as variables.

次に、ステップS6ではシリンダ2内の温度を取得する。シリンダ2内の温度は冷却水温と相関して変化するため、冷却水温を水温センサ72の出力信号を参照して取得し、その冷却水温に基づいた推定によってシリンダ2内の温度を取得することができる。もっとも、シリンダ2内の温度に応じた信号を出力する温度センサを設け、その温度センサの出力信号に基づいてシリンダ2内の温度を取得することも可能である。   Next, in step S6, the temperature in the cylinder 2 is acquired. Since the temperature in the cylinder 2 changes in correlation with the cooling water temperature, the cooling water temperature can be acquired by referring to the output signal of the water temperature sensor 72, and the temperature in the cylinder 2 can be acquired by estimation based on the cooling water temperature. it can. However, it is also possible to provide a temperature sensor that outputs a signal corresponding to the temperature in the cylinder 2 and acquire the temperature in the cylinder 2 based on the output signal of the temperature sensor.

次に、ステップS7では配分調整弁61の位置(回転角度)を設定する。この形態では、その設定はステップS6で取得したシリンダ2内の温度に基づいて行われ、シリンダ2内の温度が低いほどシリンダの内周面に近い側に導かれるEGRガスが少なくなるように配分調整弁61の位置が設定される。図13は配分調整弁61の位置とEGRガスの濃度分布との関係を説明する説明図である。この図は、高負荷時におけるシリンダ2内の温度が高い場合(高温時)と低い場合(低温時)とのそれぞれについて、シリンダ2内に偏在するEGRガスGのシリンダ2の半径方向の位置r1から位置r2までの濃度分布を示している。   Next, in step S7, the position (rotation angle) of the distribution adjustment valve 61 is set. In this embodiment, the setting is performed based on the temperature in the cylinder 2 acquired in step S6, and the EGR gas guided to the side closer to the inner peripheral surface of the cylinder is reduced as the temperature in the cylinder 2 is lower. The position of the regulating valve 61 is set. FIG. 13 is an explanatory diagram for explaining the relationship between the position of the distribution adjustment valve 61 and the concentration distribution of the EGR gas. This figure shows the position r1 in the radial direction of the cylinder 2 of the EGR gas G unevenly distributed in the cylinder 2 when the temperature in the cylinder 2 at high load is high (at high temperature) and low (at low temperature). The density distribution from to r2 is shown.

この図から明らかなように、高温時時には配分調整弁61の位置が位置a側寄りに設定される(図5も参照)。これにより、高温時は低温時よりもシリンダ2の内周面に近い側に導かれるEGRガスが多くなる。その結果、EGRガスの濃度分布のピークがシリンダ2の内周面に近い側に位置する。高温時にこのような濃度分布が形成されるので、燃料噴霧Fの燃焼が開始する最先端部に高濃度のEGRガスが供給されることとなり、高温時の燃焼温度を低下させて窒素酸化物(NOx)の発生を抑えることができる。一方、低温時には、配分調整弁61の位置が位置b側寄りに設定される(図5も参照)。これにより、低温時は高温時よりもシリンダ2の内周面に近い側に導かれるEGRガスが少なくなる。その結果、EGRガスの濃度分布のピークが高温時よりもシリンダ2の中心側に後退するので、燃料噴霧Fの最先端部におけるEGRガスの濃度が低下して最先端部の過冷却を防止できる。これにより、低温時における燃料噴霧Fの最先端部の着火性を確保しつつ、燃焼開始後の急激な燃焼を抑制できる。そのため、低温時における未燃燃料の排出を抑えることが可能になる。このような配分調整弁61の位置の設定は、例えば、その位置とシリンダ2内の温度とを対応付けたマップをECU70のROMに保持しておき、ECU70がそのマップを参照することにより実現できる。なお、外気温、気圧等の環境条件によって配分調整弁61の位置の補正が必要であれば、マップから得た値に乗じる補正係数を計算し、環境条件を駆動装置62の動作量に反映させてもよい。   As is clear from this figure, the position of the distribution adjustment valve 61 is set closer to the position a when the temperature is high (see also FIG. 5). Thereby, when the temperature is high, more EGR gas is guided to the side closer to the inner peripheral surface of the cylinder 2 than when the temperature is low. As a result, the peak of the EGR gas concentration distribution is located on the side closer to the inner peripheral surface of the cylinder 2. Since such a concentration distribution is formed at a high temperature, high concentration EGR gas is supplied to the most advanced portion where the combustion of the fuel spray F starts, and the combustion temperature at the high temperature is lowered to reduce the nitrogen oxide ( NOx) can be suppressed. On the other hand, at the time of low temperature, the position of the distribution adjustment valve 61 is set closer to the position b side (see also FIG. 5). Thereby, the EGR gas guided to the side closer to the inner peripheral surface of the cylinder 2 is less at the low temperature than at the high temperature. As a result, the peak of the EGR gas concentration distribution recedes toward the center of the cylinder 2 as compared to when the temperature is high, so that the EGR gas concentration at the most distal portion of the fuel spray F is reduced and overcooling at the most distal portion can be prevented. . Thereby, rapid combustion after the start of combustion can be suppressed while ensuring the ignitability of the most advanced portion of the fuel spray F at low temperatures. Therefore, it becomes possible to suppress discharge of unburned fuel at low temperatures. Such setting of the position of the distribution adjusting valve 61 can be realized, for example, by holding a map in which the position and the temperature in the cylinder 2 are associated with each other in the ROM of the ECU 70 and referring to the map. . If correction of the position of the distribution adjustment valve 61 is necessary due to environmental conditions such as outside air temperature and atmospheric pressure, a correction coefficient for multiplying the value obtained from the map is calculated, and the environmental condition is reflected in the operation amount of the drive device 62. May be.

図6に戻り、ステップS8では、ステップS5で設定した開度量が得られるように、駆動装置53及び駆動装置54をそれぞれ操作することにより調整弁51及び調整弁52の開度をそれぞれ操作する。続くステップS9では、ステップS7で設定した位置に配分調整弁61が保持されるように駆動装置62を操作する。その後、今回のルーチンを終了する。   Returning to FIG. 6, in step S8, the opening degree of the regulating valve 51 and the regulating valve 52 is respectively manipulated by operating the driving device 53 and the driving device 54 so that the opening amount set in step S5 is obtained. In the subsequent step S9, the drive device 62 is operated so that the distribution adjustment valve 61 is held at the position set in step S7. Thereafter, the current routine is terminated.

以上の形態において、ECU70は、図6の制御ルーチンを実行することにより、本発明に係る導入制御手段及び配分制御手段として機能する。   In the above embodiment, the ECU 70 functions as an introduction control unit and a distribution control unit according to the present invention by executing the control routine of FIG.

上述した形態では、一つのポートに接線流生成部と旋回流生成部とが設けられたスワール生成ポートを吸気装置として例示したが、本発明に係る吸気装置の構成はこれに限定されない。図14は吸気装置を他の形態で実施した排気還流装置の一例を示している。図14の形態は、一つのシリンダ2に対して、空気を導く過程で接線流Stを生成するストレートポート141と、旋回流Srを生成するヘリカルポート142とを設けるとともに、これらのポートへEGRガスを導入するように、図2に示した分岐通路41をスペーサ43を介してストレートポート141に、分岐通路42をスペーサ43を介してヘリカルポート142にそれぞれ接続し、更に、ストレートポート141側のスペーサ43内に上述した配分調整機構60を設けたものである。図14の形態では、ストレートポート141が本発明に係る接線流生成部に、ヘリカルポート142が本発明に係る旋回流生成部にそれぞれ相当し、ストレートポート141とヘリカルポート142との組み合わせが本発明に係る吸気装置に相当する。以上から明らかなように、上述した形態の吸気装置を図14の形態に置き換えた場合でも、ストレートポート141へのEGRガスの導入量と、ヘリカルポート142へのEGRガスの導入量とをそれぞれ制御することにより、シリンダ2内にEGRガスを偏在させる位置を制御でき、なおかつ、配分調整機構60を操作することで、偏在するEGRガスの濃度分布を変えることができる。   In the embodiment described above, the swirl generation port in which the tangential flow generation unit and the swirl flow generation unit are provided in one port is exemplified as the intake device, but the configuration of the intake device according to the present invention is not limited to this. FIG. 14 shows an example of an exhaust gas recirculation device in which the intake device is implemented in another form. In the form of FIG. 14, a straight port 141 that generates a tangential flow St and a helical port 142 that generates a swirl flow Sr are provided for one cylinder 2 in the process of introducing air, and EGR gas is supplied to these ports. 2 is connected to the straight port 141 via the spacer 43, the branch passage 42 is connected to the helical port 142 via the spacer 43, and the spacer on the straight port 141 side is further connected. 43 is provided with the distribution adjusting mechanism 60 described above. In the form of FIG. 14, the straight port 141 corresponds to the tangential flow generation unit according to the present invention, the helical port 142 corresponds to the swirl flow generation unit according to the present invention, and the combination of the straight port 141 and the helical port 142 is the present invention. This corresponds to the intake device according to. As is apparent from the above, even when the intake device of the above-described form is replaced with the form of FIG. 14, the amount of EGR gas introduced into the straight port 141 and the amount of EGR gas introduced into the helical port 142 are controlled. Thus, the position where the EGR gas is unevenly distributed in the cylinder 2 can be controlled, and the concentration distribution of the unevenly distributed EGR gas can be changed by operating the distribution adjusting mechanism 60.

本発明に係る配分調整手段は上述した配分調整機構60に限定されない。図15に配分調整手段の他の形態を示す。この形態は、図2に示した下側分岐通路41が更に二つの分岐通路41A、41Bに分岐され、これらの通路41A、41Bがスペーサ43に形成された二つの開口部45A、45Bに接続されたものである。これらの開口部45A、45Bは左右方向に関して開口位置が互いに異なる。分岐通路41Aには調整弁51Aが、分岐通路41Bには調整弁51Bがそれぞれ接続される。調整弁51Aは駆動装置53Aにより、調整弁51Bは駆動装置53Bによりそれぞれ駆動される。これらの調整弁51A、51Bの各開度を変化させることにより、二つの開口部45A、45Bから流入するEGRガスの配分を変えることができる。二つの開口部45A、45Bは左右方向に関して互いに異なる位置に開口しているので、調整弁51A、51Bによってスワール生成ポート12の下層部18bに導入されるEGRガスの左右方向に関する配分を変化させることができる。即ち、図15に示す調整弁51A及び調整弁51Bは本発明に係る配分調整手段として機能する。各調整弁51A、51Bの開度はECU70にて操作される。その操作は配分調整機構60に対するものと同様の制御ルーチンに従って行われる。即ち、シリンダ2の内周面に近い側に導かれるEGRガスを増加させて、その濃度分布のピークを内周面側に偏らせる場合には、調整弁51Bの開度を調整弁51Aの開度よりも大きく設定する。逆にその濃度分布をシリンダ2の中央側に偏らせる場合には、調整弁51Aの開度を調整弁51Bの開度よりも大きく設定する。このようにECU70が調整弁51A、51Bの各開度を操作することにより、ECU70は本発明に係る配分制御手段として機能する。なお、各調整弁51、52の開度制御は図6の処理と同一でよく、図15の形態においてもECU70は本発明に係る導入制御手段として機能する。また、図15の形態を図14の形態の吸気装置に適用して本発明を実施することもできる。   The distribution adjustment unit according to the present invention is not limited to the distribution adjustment mechanism 60 described above. FIG. 15 shows another form of the distribution adjusting means. In this embodiment, the lower branch passage 41 shown in FIG. 2 is further branched into two branch passages 41A and 41B, and these passages 41A and 41B are connected to two openings 45A and 45B formed in the spacer 43. It is a thing. These opening portions 45A and 45B have different opening positions in the left-right direction. The adjustment valve 51A is connected to the branch passage 41A, and the adjustment valve 51B is connected to the branch passage 41B. The regulating valve 51A is driven by the driving device 53A, and the regulating valve 51B is driven by the driving device 53B. The distribution of the EGR gas flowing from the two openings 45A and 45B can be changed by changing the respective opening degrees of the regulating valves 51A and 51B. Since the two openings 45A and 45B open at different positions in the left-right direction, the distribution of the EGR gas in the left-right direction introduced into the lower layer 18b of the swirl generation port 12 by the adjusting valves 51A, 51B is changed. Can do. That is, the adjusting valve 51A and the adjusting valve 51B shown in FIG. 15 function as distribution adjusting means according to the present invention. The opening degree of each regulating valve 51A, 51B is operated by the ECU 70. The operation is performed according to a control routine similar to that for the distribution adjustment mechanism 60. That is, when the EGR gas guided to the side closer to the inner peripheral surface of the cylinder 2 is increased and the concentration distribution peak is biased toward the inner peripheral surface, the opening of the adjusting valve 51B is opened. Set larger than degree. Conversely, when the concentration distribution is biased toward the center side of the cylinder 2, the opening of the adjustment valve 51A is set larger than the opening of the adjustment valve 51B. Thus, ECU70 functions as the distribution control means which concerns on this invention, when each opening degree of adjustment valve 51A, 51B is operated. Note that the opening control of each of the regulating valves 51 and 52 may be the same as the processing of FIG. 6, and the ECU 70 functions as the introduction control means according to the present invention also in the form of FIG. Further, the present invention can also be implemented by applying the configuration shown in FIG. 15 to the intake device shown in FIG.

本発明の一形態に係る排気還流装置が適用された内燃機関の要部を示した全体図。1 is an overall view showing a main part of an internal combustion engine to which an exhaust gas recirculation apparatus according to an embodiment of the present invention is applied. 図1の内燃機関の一部を拡大して示した斜視図。The perspective view which expanded and showed a part of internal combustion engine of FIG. スワール生成ポートの詳細を示した図。The figure which showed the detail of the swirl production | generation port. 図2の矢印IVの方向から見た状態を示した図。The figure which showed the state seen from the direction of arrow IV of FIG. 図2の矢印Vの方向から見た状態を示した図。The figure which showed the state seen from the direction of the arrow V of FIG. 排気還流制御の制御ルーチンの一例を示したフローチャート。The flowchart which showed an example of the control routine of exhaust gas recirculation | reflux control. 開度比を設定するために参照されるマップの一例を示した図。The figure which showed an example of the map referred in order to set an opening ratio. 開度比の補正方法を説明する説明図。Explanatory drawing explaining the correction method of opening ratio. 燃料噴射量が少ない場合のEGRガスと燃料噴霧との関係を示した説明図。Explanatory drawing which showed the relationship between EGR gas and fuel spray when fuel injection amount is small. 燃料噴射量が中間程度の場合のEGRガスと燃料噴霧との関係を示した説明図。Explanatory drawing which showed the relationship between EGR gas and fuel spray in case a fuel injection quantity is a middle grade. 燃料噴射量が多い場合のEGRガスと燃料噴霧との関係を示した説明図。Explanatory drawing which showed the relationship between EGR gas and fuel spray when fuel injection amount is large. 予混合気が形成される場合の燃料噴霧とEGRガスとの関係を示した説明図。Explanatory drawing which showed the relationship between fuel spray and EGR gas in case premixed gas is formed. 配分調整弁の位置とEGRガスの濃度分布との関係を説明する説明図。Explanatory drawing explaining the relationship between the position of a distribution adjustment valve, and the density | concentration distribution of EGR gas. 吸気装置を他の形態で実施した排気還流装置の一例を示した図。The figure which showed an example of the exhaust gas recirculation apparatus which implemented the intake device with the other form. 配分調整手段を他の形態で実施した排気還流装置の一例を示した図。The figure which showed an example of the exhaust gas recirculation apparatus which implemented the distribution adjustment means with the other form.

符号の説明Explanation of symbols

1 内燃機関
2 シリンダ
8 燃料噴射弁
11 排気通路
12 スワール生成ポート(吸気装置)
18a 上層部(旋回流生成部)
18b 下層部(接線流生成部)
30 排気還流装置
33 導入装置(導入手段)
41 分岐通路(第1の導入通路)
42 分岐通路(第2の導入通路)
51 調整弁(第1の調整弁)
52 調整弁(第2の調整弁)
60 配分調整機構(配分調整手段)
61 配分調整部材(配分調整弁)
62 駆動装置
70 ECU(導入制御手段、配分制御手段)
141 ストレートポート(接線流生成部)
142 ヘリカルポート(旋回流生成部)
Ax1 回転軸線
CL シリンダの中心線
St 接線流
Sr 旋回流
Fsw スワール
1 Internal combustion engine 2 Cylinder 8 Fuel injection valve 11 Exhaust passage 12 Swirl generation port (intake device)
18a Upper layer (swirl flow generator)
18b Lower layer (tangential flow generator)
30 Exhaust gas recirculation device 33 Introduction device (introduction means)
41 Branch passage (first introduction passage)
42 Branch passage (second introduction passage)
51 Regulating valve (first regulating valve)
52 Regulating valve (second regulating valve)
60 Distribution adjustment mechanism (distribution adjustment means)
61 Distribution adjustment member (distribution adjustment valve)
62 Drive device 70 ECU (introduction control means, distribution control means)
141 Straight port (tangential flow generator)
142 Helical port (Swirl flow generator)
Ax1 Rotating axis CL Centerline St of cylinder St Tangent flow Sr Swirl flow Fsw Swirl

Claims (6)

内燃機関のシリンダへ空気を導く吸気装置に、前記内燃機関の排気通路から取り出した排気の一部をEGRガスとして導入する内燃機関の排気還流装置において、
前記吸気装置は、前記シリンダへ空気を導く過程で前記シリンダの内周面の接線方向へ向かう接線流を生成する接線流生成部と、前記シリンダへ空気を導く過程で前記シリンダの中心線と交差する面内を旋回しながら前記中心線の方向へ向かう旋回流を生成する旋回流生成部とを有し、
前記接線流生成部及び前記旋回流生成部のそれぞれへEGRガスを導入でき、かつ前記接線流生成部へのEGRガスの導入量及び前記旋回流生成部へのEGRガスの導入量のそれぞれを変化させることができる導入手段と、前記内燃機関の運転状態に応じて前記導入手段を操作することにより、前記接線流生成部へのEGRガスの導入量と前記旋回流生成部へのEGRガスの導入量とをそれぞれ制御する導入制御手段と、前記導入手段にて前記接線流生成部に導入されるEGRガスの前記接線流生成部の左右方向に関する配分を変化させることができる配分調整手段と、を備えることを特徴とする内燃機関の排気還流装置。
In an exhaust gas recirculation device for an internal combustion engine, a part of exhaust gas taken out from an exhaust passage of the internal combustion engine is introduced as EGR gas into an intake device that guides air to a cylinder of the internal combustion engine.
The intake device includes a tangential flow generating section that generates a tangential flow directed in a tangential direction of an inner circumferential surface of the cylinder in a process of guiding air to the cylinder, and a center line of the cylinder in the process of guiding air to the cylinder. A swirl flow generating unit that generates a swirl flow toward the direction of the center line while swirling in a plane to be
EGR gas can be introduced into each of the tangential flow generator and the swirl flow generator, and the amount of EGR gas introduced into the tangential flow generator and the amount of EGR gas introduced into the swirl flow generator can be changed. And introducing the EGR gas into the tangential flow generation unit and introducing the EGR gas into the swirl flow generation unit by operating the introduction unit according to the operating state of the internal combustion engine. Introduction control means for controlling the amount respectively, and distribution adjustment means capable of changing the distribution of the EGR gas introduced into the tangential flow generation section in the horizontal direction of the tangential flow generation section by the introduction means. An exhaust gas recirculation device for an internal combustion engine, comprising:
前記吸気装置は、前記シリンダに開口し、かつ前記接線流生成部と前記旋回流生成部とが上下方向に隣接するようにして同一ポート内に設けられたスワール生成ポートを有していることを特徴とする請求項1に記載の内燃機関の排気還流装置。   The intake device has a swirl generation port that is open in the cylinder and provided in the same port so that the tangential flow generation unit and the swirl flow generation unit are adjacent in the vertical direction. The exhaust gas recirculation device for an internal combustion engine according to claim 1, wherein the exhaust gas recirculation device is an internal combustion engine. 前記配分調整手段は、前記導入手段が前記接線流生成部へEGRガスを導入するための導入位置よりも下流側に配置され、かつ上下方向に延びて下流側の端部に位置する回転軸線回りに回転できる配分調整部材と、前記配分調整部材を回転駆動する駆動装置とを有していることを特徴とする請求項1又は2に記載の内燃機関の排気還流装置。   The distribution adjusting means is arranged around a rotation axis that is arranged on the downstream side of the introduction position for introducing the EGR gas into the tangential flow generating section and that extends in the vertical direction and is located at the downstream end. The exhaust gas recirculation apparatus for an internal combustion engine according to claim 1, further comprising: a distribution adjusting member that can rotate in a straight line; and a drive device that rotationally drives the distribution adjusting member. 前記内燃機関の運転状態に応じて前記配分調整手段を操作することにより、前記接線流生成部に導入されるEGRガスの前記配分を制御する配分制御手段を更に備えることを特徴とする請求項1又は2に記載の内燃機関の排気還流装置。   The distribution control means for controlling the distribution of the EGR gas introduced into the tangential flow generating section by operating the distribution adjusting means according to the operating state of the internal combustion engine. Or an exhaust gas recirculation device for an internal combustion engine according to 2; 前記内燃機関は前記シリンダ内に燃料を噴射する燃料噴射弁を有し、
前記導入制御手段は、前記燃料噴射弁にて噴射された燃料の燃焼が行われる領域にEGRガスが偏在するように、前記接線流生成部へのEGRガスの導入量と前記旋回流生成部へのEGRガスの導入量とをそれぞれ制御し、
前記配分制御手段は、前記シリンダ内の温度が低いほど前記シリンダの前記内周面に近い側に導かれるEGRガスが少なくなるように、前記接線流生成部に導入されたEGRガスの前記配分を制御することを特徴とする請求項4に記載の内燃機関の排気還流装置。
The internal combustion engine has a fuel injection valve for injecting fuel into the cylinder;
The introduction control means introduces the amount of EGR gas into the tangential flow generation unit and the swirl flow generation unit so that EGR gas is unevenly distributed in a region where the fuel injected by the fuel injection valve is burned. Control the amount of EGR gas introduced,
The distribution control means distributes the EGR gas introduced into the tangential flow generation unit so that the EGR gas guided to the side closer to the inner peripheral surface of the cylinder decreases as the temperature in the cylinder decreases. The exhaust gas recirculation device for an internal combustion engine according to claim 4, wherein the exhaust gas recirculation device is controlled.
前記導入手段は、前記接線流生成部の側に開口してEGRガスを導入する第1の導入通路と、前記旋回流生成部の側に開口してEGRガスを導入する第2の導入通路と、前記第1の導入通路によるEGRガスの導入量を調整する第1の調整弁と、前記第2の導入通路によるEGRガスの導入量を調整する第2の調整弁と、を有し、
前記導入制御手段は、前記第1の調整弁及び前記第2の調整弁のそれぞれの開度を操作することにより、前記接線流生成部へのEGRガスの導入量と前記旋回流生成部へのEGRガスの導入量とをそれぞれ制御することを特徴とする請求項1又は2に記載の内燃機関の排気還流装置。
The introduction means includes a first introduction passage that opens to the tangential flow generation unit and introduces EGR gas, and a second introduction passage that opens to the swirl flow generation unit and introduces EGR gas. A first regulating valve that regulates the amount of EGR gas introduced by the first introduction passage, and a second regulating valve that regulates the amount of EGR gas introduced by the second introduction passage,
The introduction control means operates the opening degree of each of the first adjustment valve and the second adjustment valve to thereby introduce the amount of EGR gas introduced into the tangential flow generation unit and the swirl flow generation unit. The exhaust gas recirculation device for an internal combustion engine according to claim 1 or 2, wherein the amount of EGR gas introduced is controlled.
JP2007124571A 2007-05-09 2007-05-09 Exhaust gas recirculation device for internal combustion engine Active JP4715804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124571A JP4715804B2 (en) 2007-05-09 2007-05-09 Exhaust gas recirculation device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124571A JP4715804B2 (en) 2007-05-09 2007-05-09 Exhaust gas recirculation device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008280884A JP2008280884A (en) 2008-11-20
JP4715804B2 true JP4715804B2 (en) 2011-07-06

Family

ID=40141920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124571A Active JP4715804B2 (en) 2007-05-09 2007-05-09 Exhaust gas recirculation device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4715804B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10253731B2 (en) 2011-03-03 2019-04-09 Ge Global Sourcing Llc Method and systems for exhaust gas control
JP5453340B2 (en) * 2011-04-18 2014-03-26 株式会社デンソー Internal combustion engine and exhaust gas recirculation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742627A (en) * 1993-07-30 1995-02-10 Mitsubishi Motors Corp Egr intake engine
JP2001280139A (en) * 2000-01-25 2001-10-10 Toyota Central Res & Dev Lab Inc Intake stratification method in direct injection-type internal combustion engine and stratifying device
JP2005127273A (en) * 2003-10-27 2005-05-19 Toyota Central Res & Dev Lab Inc Internal combustion engine
FR2877992A1 (en) * 2004-11-16 2006-05-19 Renault Sas Exhaust gas recirculation system for internal combustion engine, has rectilinear portions sized to obtain exhaust gas flows which collide partially in central zone of air intake conduit and create rotational movements of gas around zone
JP2006266159A (en) * 2005-03-23 2006-10-05 Toyota Motor Corp Exhaust recirculation gas introduction controller of engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0742627A (en) * 1993-07-30 1995-02-10 Mitsubishi Motors Corp Egr intake engine
JP2001280139A (en) * 2000-01-25 2001-10-10 Toyota Central Res & Dev Lab Inc Intake stratification method in direct injection-type internal combustion engine and stratifying device
JP2005127273A (en) * 2003-10-27 2005-05-19 Toyota Central Res & Dev Lab Inc Internal combustion engine
FR2877992A1 (en) * 2004-11-16 2006-05-19 Renault Sas Exhaust gas recirculation system for internal combustion engine, has rectilinear portions sized to obtain exhaust gas flows which collide partially in central zone of air intake conduit and create rotational movements of gas around zone
JP2006266159A (en) * 2005-03-23 2006-10-05 Toyota Motor Corp Exhaust recirculation gas introduction controller of engine

Also Published As

Publication number Publication date
JP2008280884A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
US8670918B2 (en) Method of controlling automobile-mount diesel engine and the automobile-mount diesel engine
US7426922B2 (en) Engine exhaust gas purifier
US9222449B2 (en) Spark ignition type internal combustion engine
US9951702B2 (en) Internal combustion engine having dedicated cylinder(s) for generation of both EGR and exhaust aftertreatment reformate for three-way catalyst
EP2179158B1 (en) Control apparatus and control method for internal combustion engine
JP2004263562A (en) Control method of premixed compression self-ignition type internal combustion engine
CN109931177A (en) The control device of compression ignition engine
JP2007032402A (en) Exhaust gas recirculation device for internal combustion engine
JP4552660B2 (en) Compression ignition internal combustion engine
US8560213B2 (en) Exhaust gas recirculation device of engine
JP2008196306A (en) Exhaust gas recirculation device for internal combustion engine
JP4715804B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2018184837A (en) Control device of internal combustion engine
JP2009047014A (en) Control device for diesel engine
JP6001497B2 (en) Intake device for internal combustion engine
JP2009030511A (en) Exhaust gas recirculation device for internal combustion engine
JP4924280B2 (en) Diesel engine control device.
JP2008280943A (en) Exhaust gas recirculation device for internal combustion engine
JP2008031874A (en) Exhaust emission control device for engine
JP2009270528A (en) Spark ignition type internal combustion engine
JP2020112058A (en) diesel engine
JP2010053737A (en) Control device of internal combustion engine and cooling system of internal combustion engine
JP5293874B2 (en) Intake device for internal combustion engine
JP2006009656A (en) Diesel engine
JP6179728B2 (en) Exhaust device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100112

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110314

R151 Written notification of patent or utility model registration

Ref document number: 4715804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3