JP2001279308A - Method for operating blast furnace using metallic iron- based raw material - Google Patents
Method for operating blast furnace using metallic iron- based raw materialInfo
- Publication number
- JP2001279308A JP2001279308A JP2000093561A JP2000093561A JP2001279308A JP 2001279308 A JP2001279308 A JP 2001279308A JP 2000093561 A JP2000093561 A JP 2000093561A JP 2000093561 A JP2000093561 A JP 2000093561A JP 2001279308 A JP2001279308 A JP 2001279308A
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- raw material
- coke
- iron
- blast furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Iron (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高炉の操業方法に
係わり、特に、酸化鉄系原料とともに金属鉄系原料を使
用する高炉の操業方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of operating a blast furnace, and more particularly to a method of operating a blast furnace using a metal iron-based material together with an iron oxide-based material.
【0002】[0002]
【従来の技術】通常の高炉の操業においては、炉頂より
鉄系原料とコークスとを交互に装入し、それらを炉内に
層状に堆積させ、羽口より熱風および重油、微粉炭など
の補助燃料を吹き込む。羽口より吹き込まれた熱風は、
炉内のコークスや羽口より吹き込まれた補助燃料との反
応により、還元性ガス(CO、H2 )及びその反応熱を
発生させる。装入された鉄系原料は炉内を降下しなが
ら、還元性ガスや熱風の顕熱により還元、加熱して軟化
溶融帯を形成後、コークス層の間隙を伝って炉底に溜ま
り、出銑口から溶銑が排出される。2. Description of the Related Art In a normal blast furnace operation, iron-based raw materials and coke are charged alternately from the furnace top, and they are deposited in layers in the furnace. Hot air and heavy oil, pulverized coal, etc. are discharged from the tuyeres. Inject auxiliary fuel. Hot air blown from the tuyere
The reaction with coke in the furnace and the auxiliary fuel blown from the tuyere generates reducing gas (CO, H 2 ) and its reaction heat. The charged iron-based raw material is reduced and heated by the sensible heat of the reducing gas or hot air while falling in the furnace, forming a softening and melting zone. Hot metal is discharged from the mouth.
【0003】ここで、高炉炉頂より装入される上記鉄系
原料としては、通常、焼結鉱、鉄鉱石、ペレットなどの
酸化鉄を主成分とする酸化鉄系原料が用いられる。これ
ら酸化鉄は、炉内を降下しながらシャフト下部より上昇
してくる還元性ガス(CO、H2 )により徐々に還元
(間接還元)・軟化溶融され、融着帯を形成するが、さ
らにシャフト下部から羽口レベルにかけての高温領域
(1000℃以上)では、溶融した酸化鉄がコークスと
直接反応して還元される(直接還元)。Here, as the iron-based raw material charged from the top of the blast furnace, an iron oxide-based raw material containing iron oxide as a main component, such as sinter, iron ore, and pellets, is usually used. These iron oxides are gradually reduced (indirectly reduced) and softened and melted by a reducing gas (CO, H 2 ) rising from the lower part of the shaft while descending in the furnace to form a cohesive zone. In a high temperature region (above 1000 ° C.) from the lower part to the tuyere level, the molten iron oxide is directly reacted with coke and reduced (direct reduction).
【0004】通常、高炉操業において、酸化鉄系原料を
円滑に還元・溶解して安定した品質及び量の溶銑を得る
ために、炉内の間接還元効率の指標として、炉内ガスの
モル分率をもとにした次式で定義されるガス利用率が用
いられる。 ガス利用率(%)=100×(CO2 +H2 O)/(CO+CO2 +H2 +H2 O) ・・・・・ (1)Normally, in the operation of a blast furnace, in order to smoothly reduce and melt iron oxide-based raw materials to obtain hot metal of a stable quality and quantity, the mole fraction of the gas in the furnace is used as an index of the indirect reduction efficiency in the furnace. The gas utilization rate defined by the following equation based on the following equation is used. Gas utilization rate (%) = 100 × (CO 2 + H 2 O) / (CO + CO 2 + H 2 + H 2 O) (1)
【0005】上記(1)式で求められるガス利用率は、
炉内の還元性ガス(CO、H2 )が酸化鉄系原料との間
接反応により酸化性ガス(CO2 )とH2 Oに転換する
割合を示すものである。したがって、このガス利用率を
高くするということは、より多くの酸化性ガスに転換す
ることになるため、ガス利用率の増加により所定の酸化
鉄の還元に必要な還元性ガス量の低減、さらには燃料比
の低減が可能になる。The gas utilization rate obtained by the above equation (1) is:
It indicates the rate at which the reducing gas (CO, H 2 ) in the furnace is converted into the oxidizing gas (CO 2 ) and H 2 O by an indirect reaction with the iron oxide-based raw material. Therefore, increasing the gas utilization rate means that the gas is converted into a larger amount of oxidizing gas. Can reduce the fuel ratio.
【0006】従来のガス利用率を増加させる方法として
は、所定の還元性ガス(CO、H2)が接触する酸化鉄
の量を増やし反応効率を促進させることで、還元性ガス
(CO、H2 )をより多くCO2 、H2 Oへと転換させ
る方法、つまり、還元性ガス当たりに酸化性原料が持ち
込む被還元酸素量を増加させる方法が一般的である。具
体的には、高炉炉半径におけるコークス重量当たりの鉱
石重量(以下Ore/Cokeと称する)を全体的に高
くするようにコークスおよび酸化性原料を装入すること
により、高炉断面で平均的に燃料(コークスと補助燃料
の総和)あたりの酸化鉄系原料の量を増加させ、より低
い燃料比で熱バランスがとれるようにする方法である。A conventional method for increasing the gas utilization rate is to increase the amount of iron oxide in contact with a predetermined reducing gas (CO, H 2 ) to promote the reaction efficiency, thereby reducing the reducing gas (CO, H 2 ). Generally, a method of converting 2 ) into CO 2 and H 2 O more, that is, a method of increasing the amount of oxygen to be reduced brought by the oxidizing raw material per reducing gas is generally used. Specifically, by charging coke and an oxidizing raw material so as to increase the ore weight per coke weight (hereinafter referred to as Ore / Coke) in the blast furnace radius as a whole, the fuel in the blast furnace cross section is averaged. In this method, the amount of iron oxide-based raw material per (total of coke and auxiliary fuel) is increased so that heat balance can be achieved with a lower fuel ratio.
【0007】また、上記のような低燃料比の高Ore/
Coke装入操業における安定操業を行うために、特公
昭64−9373号公報等では、炉半径の中心領域に装
入するコークスの装入量を増加さることにより、Ore
/Coke下げて通気性を向上(中心流れの向上)させ
るとともに、炉半径の中間から周辺部の領域のOre/
Cokeを高めてガス利用率を向上させる高炉操業も知
られている。[0007] In addition, the high Ore /
In order to perform stable operation in the Coke charging operation, Japanese Patent Publication No. 64-9373 and the like disclose increasing the amount of coke charged into the central region of the furnace radius by increasing the amount of coke charged.
/ Coke to improve the air permeability (improve the center flow) and to reduce the Ore /
Blast furnace operations that increase Coke to improve gas utilization are also known.
【0008】また、特公昭64−9373号公報等のよ
うな炉半径中心領域のOre/Coke下げた中心流操
業において、さらに、炉半径中心領域の酸化鉄系原料の
一部をスクラップや還元鉄等の金属鉄系原料に代替し、
従来の酸化鉄の還元で生成するCO2 ガスとの反応によ
るコークス粉化の抑制及び熱負荷軽減を行い中心流れを
強化する方法が特開平6−279818号公報に開示さ
れている。Further, in the central flow operation in which the Ore / Coke is lowered in the center region of the furnace as disclosed in Japanese Patent Publication No. 64-9373, etc., a part of the iron oxide-based raw material in the center region of the furnace radius is further scrapped or reduced iron. Etc.
Japanese Patent Application Laid-Open No. 6-279818 discloses a conventional method of suppressing coke powdering by reaction with CO 2 gas generated by reduction of iron oxide and reducing the heat load to enhance the central flow.
【0009】しかしながら、このような操業方法では、
高Ore/Coke装入領域のガス利用率はOre/C
okeの増加と共にあるレベルまでは向上するが、徐々
にガス利用率の向上代は低下し、Ore/Cokeを上
げ過ぎると、シャフト上部より上の炉上部にある100
0℃未満の間接還元域において還元性ガス(CO、H
2 )で還元されない酸化鉄系原料が増加(還元遅れ)し
やすくなり、その酸化鉄系原料がシャフト上部から高炉
羽口の炉下部にある1000℃以上の高温領域(直接還
元領域)で直接コークスと反応する直接還元反応が行わ
れたり、炉床部に滴下することとなる。However, in such an operation method,
The gas utilization rate in the high Ore / Coke charging area is Ore / C
Oke increases to a certain level with increasing, but gradually
Gas utilization rate will decrease and Ore / Coke rise
Overheating, the upper 100
The reducing gas (CO, H
Two ) Increases the amount of iron oxide-based raw materials that cannot be reduced (reduction delay).
The iron oxide-based raw material is transferred from the upper part of the shaft to the blast furnace.
High temperature area of 1000 ° C or higher at the lower part of the tuyere (direct return
Direct reduction reaction that reacts directly with coke in the
Or dripping on the hearth.
【0010】直接還元反応は吸熱反応であるため、間接
還元反応に比べ、酸化鉄を還元する際の所要熱量がはる
かに大きくなるため、熱的に不利となるとともに、炉下
部における還元や熱のバランスが崩れ高炉の安定操業を
阻害する。その結果、未還元状態の酸化鉄が炉床部に滴
下し、溶銑温度低下、成分のばらつきや風圧変動が増加
し、最悪事態として炉下部の冷え込みに至る。[0010] Since the direct reduction reaction is an endothermic reaction, the amount of heat required for reducing iron oxide is much larger than that of the indirect reduction reaction, which is disadvantageous in terms of heat. The balance will be lost and the stable operation of the blast furnace will be hindered. As a result, iron oxide in an unreduced state drops on the hearth, causing a drop in hot metal temperature, variations in components, and fluctuations in wind pressure, and in the worst case, cooling down of the lower part of the furnace.
【0011】特に、低燃料比を指向した高Ore/Co
ke装入操業においては、炉半径方向の装入分布のわず
かなばらつきにより、炉半径方向で極端にOre/Co
keが高くなる領域が生じ、これに起因した局所的な還
元遅れが生じやすくなるため、これを回避するために従
来は、炉半径方向の平均的なOre/Cokeを低下さ
せ燃料比を上げた操業に戻さなければならなかった。In particular, high Ore / Co with a low fuel ratio
In the ke charging operation, the Ore / Co is extremely increased in the furnace radial direction due to a slight variation in the charging distribution in the furnace radial direction.
A region where the ke is high occurs, and a local reduction delay due to the region is likely to occur. To avoid this, conventionally, the average Ore / Coke in the furnace radial direction was reduced to increase the fuel ratio. I had to return to operation.
【0012】[0012]
【発明が解決しようとする課題】本発明は、上記の従来
技術の問題点に鑑み、低燃料比、高生産を指向した高O
re/Coke装入操業時において、装入分布のばらつ
き等により炉半径方向のガス利用率が極端に高く還元遅
れが生じやすい領域が生じた場合に、低燃料比を上げる
ことなく還元遅れによる炉下部の悪影響を回避し、安定
的かつ効率的な高炉操業方法を提供するものである。SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has been made in view of the above-mentioned problems.
During the re / Coke charging operation, if there is a region where the gas utilization rate in the furnace radial direction is extremely high and a reduction delay is likely to occur due to a variation in the charging distribution or the like, the reactor caused by the reduction delay without increasing the low fuel ratio. An object of the present invention is to provide a stable and efficient method of operating a blast furnace while avoiding adverse effects of the lower part.
【0013】[0013]
【課題を解決するための手段】本発明は、上記の従来技
術の問題点を解決するものであり、コークスと酸化鉄系
原料を装入する高炉操業方法において、高炉炉頂部の炉
半径におけるガス利用率を測定し、該ガス利用率が予め
定めた所定値よりも高い領域にある酸化鉄系原料の一部
または全部を金属鉄系原料に置換して装入することを特
徴とする高炉操業方法である。SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art. In a blast furnace operating method for charging coke and an iron oxide-based raw material, the present invention relates to a method for operating a gas at a furnace radius at the top of a blast furnace. A blast furnace operation characterized in that the utilization rate is measured, and a part or all of the iron oxide-based raw material in a region where the gas utilization rate is higher than a predetermined value is replaced with a metallic iron-based raw material and charged. Is the way.
【0014】[0014]
【発明の実施の形態】通常、高炉では、少なくとも炉頂
部において炉径方向の複数箇所で炉内ガスを採取し、そ
のガス中のCO、CO2 、H2 、H2 O等の成分を測定
後、上記(1)式で定義されるガス利用率を即座に計算
する装置が設けられている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Generally, in a blast furnace, gas in the furnace is sampled at a plurality of locations in the radial direction of the furnace at least at the top of the furnace, and components such as CO, CO 2 , H 2 , and H 2 O in the gas are measured. Thereafter, a device for immediately calculating the gas utilization rate defined by the above equation (1) is provided.
【0015】本発明者らは、低燃料比または高生産を指
向した高Ore/Coke装入操業時の炉半径方向にお
いては、ガス利用率が相対的に高い領域が、炉上部にお
ける還元能力が不足し、炉下部の炉況を悪化する傾向が
高いという知見を得た。本発明は、この知見をもとにな
されたものであり、高炉炉頂部の炉半径におけるガス利
用率を測定し、炉半径方向におけるガス利用率が所定値
よりも高い領域にある酸化鉄系原料を金属鉄系原料に置
換して装入する方法であり、これによりガス利用率が高
い領域の炉上部の還元負荷を軽減し、還元能力不足を解
消し、よって炉下部の炉況悪化を解消するものである。The present inventors have found that, in the furnace radial direction at the time of a high Ore / Coke charging operation aimed at a low fuel ratio or a high production, a region where the gas utilization rate is relatively high indicates that the reducing capacity at the upper part of the furnace is low. It was found that there was a shortage and there was a high tendency to deteriorate the furnace condition at the bottom of the furnace. The present invention has been made based on this finding, and measures the gas utilization rate at the furnace radius at the top of the blast furnace, and detects the iron oxide-based raw material in a region where the gas utilization rate in the furnace radial direction is higher than a predetermined value. Is replaced with metallic iron-based raw material, and this reduces the reduction load on the upper part of the furnace in areas where the gas utilization rate is high, eliminates the reduction capacity shortage, and thus solves the deterioration of the furnace condition at the lower part of the furnace Is what you do.
【0016】ここで、酸化鉄系原料とは、焼結鉱、鉄鉱
石、ペレットなどの酸化鉄を主成分とする鉄系原料であ
り、金属鉄系原料とは、スクラップ、還元鉄、粒鉄など
の金属鉄を主成分とする鉄系原料である。Here, the iron oxide-based raw material is an iron-based raw material containing iron oxide as a main component, such as sintered ore, iron ore, pellets, and the like, and the metallic iron-based raw material is scrap, reduced iron, granular iron, or the like. It is an iron-based raw material containing metallic iron as a main component.
【0017】本発明者らの検討によれば、高炉炉頂部で
測定するガス利用率は、羽口より吹き込む補助燃料や炉
頂から装入するコークスに含まれる炭素が酸素と燃焼・
反応して発生する還元ガス(CO、H2 )が、炉頂から
装入された鉄鉱石とどのように接触し還元反応するかに
よって決まり、ガス利用率の高い領域においては、炉上
部の間接還元能力が不足し還元されない酸化鉄が増加す
るために、炉下部でのその酸化鉄の直接還元反応の割合
(直接還元率)が増加する傾向があることがわかった。
この場合、直接還元反応は吸熱反応であるため、ガス利
用率が所定値以上になると、炉内熱バランスが悪化する
とともに特に炉下部の温度低下及び通気性低下等に伴う
炉況悪化が顕著になることが判った。According to the study of the present inventors, the gas utilization rate measured at the top of the blast furnace furnace is such that the carbon contained in the auxiliary fuel blown from the tuyere and the coke charged from the furnace top is oxygen and combustion.
It depends on how the reducing gas (CO, H 2 ) generated by the reaction comes in contact with the iron ore charged from the furnace top and undergoes a reducing reaction. It was found that the ratio of the direct reduction reaction of iron oxide in the lower part of the furnace (direct reduction ratio) tended to increase due to an increase in the amount of iron oxide that was not reduced due to insufficient reducing ability.
In this case, since the direct reduction reaction is an endothermic reaction, when the gas utilization rate exceeds a predetermined value, the heat balance in the furnace deteriorates, and the furnace condition particularly deteriorates due to a decrease in temperature in the lower part of the furnace and a decrease in air permeability. It turned out to be.
【0018】図1は、炉内のガス利用率と直接還元率ま
たは鉄鉱石当たりの炉内余熱量との関係を示すものであ
る。ここで炉内余熱量とは、炉内の熱パランスとして、
羽口から吹き込まれる熱風の顕熱、原料や炉体等からの
抜熱・放熱、補助燃料及びコークスの還元ガス化反応、
鉄鉱石の還元反応における反応熱(発熱または吸熱)等
における炉内の入熱量と出熱量との差分をとったもので
ある。図1に示すように炉内のガス利用率の増加ととも
に直接還元反応の割合(直接還元率)が増加し、その吸
熱反応の増加に起因して炉内熱バランス(余裕熱)が低
下する。FIG. 1 shows the relationship between the gas utilization rate in the furnace and the direct reduction rate or the amount of residual heat in the furnace per iron ore. Here, the furnace residual heat amount is the heat balance in the furnace,
Sensible heat of hot air blown from tuyeres, heat removal / radiation from raw materials and furnace body, reduction gasification reaction of auxiliary fuel and coke,
The difference between the amount of heat input into the furnace and the amount of heat output in the reaction heat (exothermic or endothermic) in the reduction reaction of iron ore is calculated. As shown in FIG. 1, the rate of the direct reduction reaction (direct reduction rate) increases as the gas utilization rate in the furnace increases, and the heat balance in the furnace (surplus heat) decreases due to the increase in the endothermic reaction.
【0019】本発明では、補助燃料の吹込み量やコーク
ス装入量、鉄鉱石装入量、Ore/Coke等の条件で
決まる図1に示されるような炉内ガス利用率と直接還元
率または、炉内熱バランス(余裕熱)との関係から、高
炉炉頂部における炉内ガス利用率の炉内半径方向の測定
値が、炉下部の温度低下及び通気性低下等に伴う炉況悪
化が顕著になるガス利用率の上限値よりも高い領域に対
応する位置の酸化鉄系原料の一部または全部を金属鉄系
原料に置換して装入する。In the present invention, the in-furnace gas utilization rate and the direct reduction rate as shown in FIG. 1, which are determined by the conditions such as the injection amount of auxiliary fuel, the charging amount of coke, the charging amount of iron ore, and Ore / Coke, are shown. From the relationship with the heat balance in the furnace (excess heat), the measured value of the gas utilization rate in the furnace at the top of the blast furnace in the radial direction of the furnace indicates that the furnace condition deteriorated due to lower temperature and lower air permeability in the lower part of the furnace. Part or all of the iron oxide-based raw material at a position corresponding to a region higher than the upper limit of the gas utilization rate is replaced with a metallic iron-based raw material and charged.
【0020】炉下部の温度低下及び通気性低下等に伴う
炉況悪化が顕著になるガス利用率の上限値は、所定の高
炉操業条件で得られる図1のような炉内ガス利用率と直
接還元率または、炉内熱バランス(余裕熱)との関係図
において、例えば、余裕熱量が0となる炉内ガス利用率
を用いることで決定することができる。The upper limit of the gas utilization rate at which the deterioration of the furnace condition due to the lowering of the temperature and the permeability of the lower part of the furnace becomes remarkable is directly related to the gas utilization rate in the furnace as shown in FIG. In the relation diagram with the reduction rate or the heat balance in the furnace (surplus heat), for example, it can be determined by using the furnace gas utilization rate at which the surplus heat amount becomes zero.
【0021】これにより、その還元能力が不足している
炉上部の領域に供給される還元ガス量当たりの酸化鉄の
被還元酸素量が減少するため、その炉上部の領域におけ
る還元負荷が軽減される。この場合、酸化鉄系原料から
金属鉄系原料に置換した領域のガス利用率は低下する方
向となるが、元々還元負荷が高く還元能力不足の領域で
あるからガス利用率の低下量は小さく、また、その領域
の鉄源を維持できるために、その領域の銑鉄生成量は維
持しつつ燃料比を低減することが可能となる。As a result, the amount of oxygen to be reduced by the iron oxide per amount of the reducing gas supplied to the upper region of the furnace where the reducing capacity is insufficient is reduced, so that the reduction load in the upper region of the furnace is reduced. You. In this case, the gas utilization rate in the area where the iron oxide-based raw material is replaced with the metal iron-based raw material tends to decrease, but the reduction load of the gas utilization rate is small because the reduction load is originally high and the reduction capacity is insufficient. In addition, since the iron source in the region can be maintained, the fuel ratio can be reduced while maintaining the amount of pig iron generated in the region.
【0022】近年、高炉操業において、低燃料比を指向
してOre/Cokeを上昇したり、さらに、高生産を
指向して補助燃料(微粉炭等)を多量に使用することで
炉頂から装入するコークスを減少させる傾向にある。こ
のようなOre/Cokeが高い操業条件下において
は、わずかな装入分布のばらつきによって炉半径方向で
極端にOre/Cokeが高くなる領域が生じ、この領
域の炉上部の還元能力不足及び炉下部の炉況悪化が生じ
易くなる。このような場合、従来は、この局所的な還元
遅れに起因した炉下部の炉況悪化を回避するために、燃
料比が上がるのを承知で炉半径方向全体のOre/Co
keを低下させた高炉操業を行わざるを得なかった。In recent years, in blast furnace operation, the Ore / Coke has been increased in order to achieve a low fuel ratio, and further, a large amount of auxiliary fuel (such as pulverized coal) has been used in order to achieve high production. There is a tendency to reduce coke entering. Under such an operating condition where the Ore / Coke is high, there is a region in which the Ore / Coke becomes extremely high in the radial direction of the furnace due to a slight variation in the charging distribution. Furnace conditions are likely to deteriorate. In such a case, conventionally, in order to avoid the deterioration of the furnace condition in the lower part of the furnace due to the local reduction delay, the Ore / Co in the entire radial direction of the furnace is known, knowing that the fuel ratio increases.
Blast furnace operation with reduced ke had to be performed.
【0023】これに対して、本発明では、炉頂における
ガス利用率の測定結果に基づいて、炉半径方向における
炉上部の還元能力不足の領域を特定でき、その領域のみ
に酸化鉄系原料の一部または全量を置換して金属鉄を装
入することにより、燃料比を低下させずにその領域の還
元遅れを効果的に解消し結果的に炉下部の炉況を改善で
きる。On the other hand, according to the present invention, based on the measurement result of the gas utilization rate at the furnace top, it is possible to identify the region of the furnace upper part where the reducing capacity is insufficient in the radial direction of the furnace, and only the region has the iron oxide type raw material. By partially or entirely replacing the metal iron and charging, it is possible to effectively eliminate the reduction delay in the region without lowering the fuel ratio and consequently improve the furnace condition in the lower part of the furnace.
【0024】還元能力不足の領域を含む炉半径方向全体
にある酸化鉄系原料の所定量を金属鉄系原料に置換する
方法も考えられるが、還元能力が充分にある領域は、金
属鉄系原料に置換することでガス利用率の低下が大きく
なり還元効率が低下する。また、一般に置換する金属鉄
系原料が多くなると経済性の観点から不利であるため、
低下還元のを起因した炉下部の炉況悪化を回避するため
に、好ましくない。A method of replacing a predetermined amount of the iron oxide-based raw material in the entire radial direction of the furnace including the region with the insufficient reducing capacity with a metallic iron-based material can be considered. By replacing with, the reduction of the gas utilization rate is increased and the reduction efficiency is reduced. In addition, since it is disadvantageous from the viewpoint of economy when the amount of the metal iron-based material to be replaced is increased,
It is not preferable to avoid deterioration of the furnace condition at the lower part of the furnace due to the reduction.
【0025】本発明で、炉半径方向のガス利用率が所定
値よりも高く、還元能力が不足する領域に酸化鉄系原料
に置換して金属鉄系原料を装入する手段としては、例え
ば、ベルレス装入装置を装備している高炉においては、
金属鉄系原料は炉内に排出されるタイミングで、炉内落
下位置をガス利用率が所定値よりも所定位置となるよう
にシュート角度もしくはノッチを設定して装入すれば良
い。またベル式高炉においては、ムーバブルアーマーを
用いて同様の制御が可能である。In the present invention, as means for charging a metal iron-based raw material by replacing the iron oxide-based raw material with an iron oxide-based raw material in a region where the gas utilization rate in the furnace radial direction is higher than a predetermined value and the reducing ability is insufficient, In a blast furnace equipped with a bellless charging device,
The metal-iron-based raw material may be charged at the timing of being discharged into the furnace by setting the chute angle or the notch so that the gas utilization rate becomes a predetermined position above a predetermined value. In a bell-type blast furnace, similar control is possible using movable armor.
【0026】酸化鉄系原料と置換すべき金属系原料の量
は、アクションをとる際の操業条件により大きく異なる
が、通常操業で鉄分相当で1%を置換すると概ねガス利
用率が1ポイント程度低下する効果がある。したがって
実操業においては、それを目安にまずアクションをと
り、その結果を見て金属系原料の装入量を増減する操作
を行うことが好ましい。The amount of the metal-based material to be replaced with the iron-oxide-based material greatly varies depending on the operating conditions when the action is taken. However, when 1% is replaced by iron in normal operation, the gas utilization rate is reduced by about 1 point. Has the effect of doing Therefore, in actual operation, it is preferable to take an action based on this as a guide and then perform an operation of increasing or decreasing the charged amount of the metal-based raw material based on the result.
【0027】[0027]
【実施例】以下に本発明の実施例を説明する。表1に本
発明例及び比較例1及び2の内容積4400立方メート
ルの高炉の操業条件及びその結果を示すEmbodiments of the present invention will be described below. Table 1 shows the operating conditions and results of the blast furnace with an inner volume of 4400 cubic meters of the present invention and Comparative Examples 1 and 2.
【0028】[0028]
【表1】 [Table 1]
【0029】比較例1は、低コークス比(=512(k
g/t))、高Ore/Coke(=4.42(−))
操業を行った場合であり、この操業時には、炉頂部にお
ける炉半径方向の一部のガス利用率が61%と過度に高
くなり、その結果、炉下部の炉況が悪化(溶銑温度、溶
銑中Si成分、送風圧力がばらつき、スリップが発生)
した。In Comparative Example 1, the low coke ratio (= 512 (k)
g / t)), high Ore / Coke (= 4.42 (−))
During this operation, the gas utilization rate in the furnace top in the furnace radial direction at the furnace top became excessively high at 61%, and as a result, the furnace condition at the bottom of the furnace deteriorated (hot metal temperature, hot metal (Si component and blast pressure fluctuate, causing slip)
did.
【0030】比較例1の炉下部の炉況悪化の対策とし
て、比較例2として、従来の操業アクションである装入
原料全体のOre/Cokeを調整する原料装入方法、
および本発明例として、炉半径方向の炉内ガス利用率の
高い領域の酸化鉄系原料に置換して金属鉄原料を所定量
装入する方法を実施した。As a countermeasure against the deterioration of the furnace condition in the lower part of the furnace in Comparative Example 1, as Comparative Example 2, a raw material charging method for adjusting the Ore / Coke of the entire charged raw material, which is a conventional operation action,
In addition, as an example of the present invention, a method of charging a predetermined amount of a metallic iron raw material by substituting the iron oxide-based raw material in a region where the in-furnace gas utilization rate is high in the furnace radial direction was performed.
【0031】比較例2では、炉半径方向の平均のOre
/Cokeを比較例1の4.42から4.26(低下
量:0.16)に低下させて操業した結果、比較例1で
炉内半径方向で最大ガス利用率が61(%)であった領
域のガス利用率を55%まで低下することができた。し
かしながら、比較例2では、平均のOre/Cokeを
上昇したことに起因して燃料比が526(Kg/t)に
上昇(比較例1では512(Kg/t))した。In Comparative Example 2, the average Ore in the furnace radial direction was
As a result of operating with / Coke reduced from 4.42 of Comparative Example 1 to 4.26 (reduction amount: 0.16), the maximum gas utilization rate in the radial direction in the furnace in Comparative Example 1 was 61 (%). The gas utilization rate in the region where the gas flow was reduced could be reduced to 55%. However, in Comparative Example 2, the fuel ratio increased to 526 (Kg / t) (512 (Kg / t) in Comparative Example 1) due to the increase in the average Ore / Coke.
【0032】一方、本発明例では、比較例1の操業にお
いて、炉頂におけるガス利用率が61%に達していた炉
半径方向の中間部に対応する酸化物系原料を金属鉄系原
料に置換するために、金属鉄系原料を60〜70Kg/
tの範囲で装入した結果、その領域のガス利用率が55
%にまで低下することができた。また、この際の燃料比
は、492(kg/t)であり、比較例1の燃料比:5
12(kg/t)よりも低く維持することができた。On the other hand, in the example of the present invention, in the operation of Comparative Example 1, the oxide-based material corresponding to the intermediate portion in the furnace radial direction where the gas utilization rate at the furnace top reached 61% was replaced with the metallic iron-based material. In order to do so, the metallic iron-based raw material is 60 to 70 kg /
As a result of charging in the range of t, the gas utilization rate in that region is 55
%. The fuel ratio at this time was 492 (kg / t), and the fuel ratio of Comparative Example 1 was 5: 5.
It was possible to keep it lower than 12 (kg / t).
【0033】以上の実施例から本発明の適用により燃料
比を上げずに、炉内ガス利用率の高い領域による炉下部
の炉況悪化(溶銑温度、溶銑中Si成分、送風圧力がば
らつき、スリップが発生)を抑制することができた。From the above embodiment, the present invention is applied to increase the fuel ratio without deteriorating the furnace condition in the lower part of the furnace due to the region where the gas utilization rate in the furnace is high (the molten iron temperature, the Si content in the molten iron, the blowing pressure vary, Was generated).
【0034】[0034]
【発明の効果】本発明により、低燃料比または高生産を
指向した高Ore/Coke装入操業時の装入分布のば
らつき等に起因して発生するガス利用率の極端な上昇お
よび還元能力低下による炉下部の炉況悪化を燃料比を上
げずに効率的に回避し、安定的かつ効率的な高炉操業方
法を達成できる。As described above, according to the present invention, an extremely high gas utilization rate and a reduction in the reduction capacity generated due to a variation in the charging distribution during a high Ore / Coke charging operation for low fuel ratio or high production. Thus, it is possible to efficiently avoid the deterioration of the furnace condition at the lower part of the furnace without increasing the fuel ratio, thereby achieving a stable and efficient blast furnace operating method.
【図1】図1は、炉内ガス利用率と直接還元率または、
炉内熱バランス(余裕熱)との関係を示す図である。FIG. 1 is a graph showing the gas utilization rate in a furnace and the direct reduction rate, or
It is a figure which shows the relationship with the heat balance in a furnace (surplus heat).
Claims (1)
操業方法において、高炉炉頂部の炉半径におけるガス利
用率を測定し、該ガス利用率が予め定めた所定値よりも
高い領域にある酸化鉄系原料の一部または全部を金属鉄
系原料に置換して装入することを特徴とする高炉操業方
法。In a blast furnace operating method in which coke and an iron oxide-based raw material are charged, a gas utilization rate at a furnace radius of a blast furnace top is measured, and the gas utilization rate is in a region higher than a predetermined value. A method for operating a blast furnace, wherein a part or all of an iron oxide-based material is replaced with a metal-iron-based material and charged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000093561A JP4585075B2 (en) | 2000-03-30 | 2000-03-30 | Blast furnace operation method using metallic iron-based raw materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000093561A JP4585075B2 (en) | 2000-03-30 | 2000-03-30 | Blast furnace operation method using metallic iron-based raw materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001279308A true JP2001279308A (en) | 2001-10-10 |
JP4585075B2 JP4585075B2 (en) | 2010-11-24 |
Family
ID=18608728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000093561A Expired - Lifetime JP4585075B2 (en) | 2000-03-30 | 2000-03-30 | Blast furnace operation method using metallic iron-based raw materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4585075B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019183270A (en) * | 2018-03-30 | 2019-10-24 | Jfeスチール株式会社 | Method for charging raw materials to blast furnace |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11217605A (en) * | 1997-11-28 | 1999-08-10 | Nippon Steel Corp | Method for charging charging material into blast furnace |
JPH11269513A (en) * | 1998-01-23 | 1999-10-05 | Nippon Steel Corp | Charging of charging material into center part of blast furnace |
JPH11315308A (en) * | 1998-05-01 | 1999-11-16 | Nippon Steel Corp | Operation of blast furnace |
-
2000
- 2000-03-30 JP JP2000093561A patent/JP4585075B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11217605A (en) * | 1997-11-28 | 1999-08-10 | Nippon Steel Corp | Method for charging charging material into blast furnace |
JPH11269513A (en) * | 1998-01-23 | 1999-10-05 | Nippon Steel Corp | Charging of charging material into center part of blast furnace |
JPH11315308A (en) * | 1998-05-01 | 1999-11-16 | Nippon Steel Corp | Operation of blast furnace |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019183270A (en) * | 2018-03-30 | 2019-10-24 | Jfeスチール株式会社 | Method for charging raw materials to blast furnace |
Also Published As
Publication number | Publication date |
---|---|
JP4585075B2 (en) | 2010-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5546675B1 (en) | Blast furnace operating method and hot metal manufacturing method | |
EP2202324A1 (en) | Vertical furnace and method of operating the same | |
JP2001279308A (en) | Method for operating blast furnace using metallic iron- based raw material | |
JP4598204B2 (en) | Blast furnace operation method when a large amount of pulverized coal is injected | |
JP5693768B2 (en) | Blast furnace operating method and hot metal manufacturing method | |
JP5012138B2 (en) | Blast furnace operation method | |
JP3829516B2 (en) | Blast furnace operation method | |
JP3068967B2 (en) | Blast furnace operation method | |
Toyota et al. | Decreasing coke rate under all-pellet operation in Kobe No. 3 blast furnace | |
JP3017009B2 (en) | Blast furnace operation method | |
JP3014556B2 (en) | Blast furnace operation method | |
JPS6156211A (en) | Method for operating blast furnace | |
JP4598256B2 (en) | Blast furnace operation method | |
JP3777004B2 (en) | Usage of high alumina iron ore in blast furnace | |
JP2720058B2 (en) | Blast furnace operation method | |
JP3226652B2 (en) | Blast furnace operation method | |
JPS6043403B2 (en) | Blast furnace operation method using pulverized coal injection | |
JPH0913109A (en) | Operation of blowing large quantity of pulverized fine coal into blast furnace | |
JPH05239515A (en) | Method for operating blast furnace | |
JP2889088B2 (en) | Blast furnace operation method | |
CN114959160A (en) | Converter steelmaking method and device for dynamically adjusting scrap steel loading based on molten iron conditions | |
JP2837282B2 (en) | Production method of chromium-containing hot metal | |
JPH05255719A (en) | Method for operating blast furnace | |
JPH0364563B2 (en) | ||
JPH08260008A (en) | Operation of blast furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060906 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20061005 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081125 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090519 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090617 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100824 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100903 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4585075 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130910 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |