JP2001278679A - Method for manufacturing inorganic hardened article using carbonation - Google Patents

Method for manufacturing inorganic hardened article using carbonation

Info

Publication number
JP2001278679A
JP2001278679A JP2000091673A JP2000091673A JP2001278679A JP 2001278679 A JP2001278679 A JP 2001278679A JP 2000091673 A JP2000091673 A JP 2000091673A JP 2000091673 A JP2000091673 A JP 2000091673A JP 2001278679 A JP2001278679 A JP 2001278679A
Authority
JP
Japan
Prior art keywords
carbonation
wollastonite
cement
inorganic
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000091673A
Other languages
Japanese (ja)
Other versions
JP3769446B2 (en
Inventor
Takashi Osugi
高志 大杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2000091673A priority Critical patent/JP3769446B2/en
Publication of JP2001278679A publication Critical patent/JP2001278679A/en
Application granted granted Critical
Publication of JP3769446B2 publication Critical patent/JP3769446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0231Carbon dioxide hardening
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • C04B28/186Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step
    • C04B28/188Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type containing formed Ca-silicates before the final hardening step the Ca-silicates being present in the starting mixture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a carbonated inorganic cured article comparable to a cured cement, with high productivity and stable structure. SOLUTION: An aqueous slurry of wollastonit or an inorganic material containing it of specific surface area by nitrogen adsorption >=0.1 m2/g is casted and carbonated under the condition including a temperature of 30-20 deg.C and pressure of 0.5-20 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、短時間で製造可能
な組織の安定性に優れた無機炭酸化硬化体の製造方法に
関するものである。
TECHNICAL FIELD The present invention relates to a method for producing an inorganic carbonated cured product which can be produced in a short time and has excellent tissue stability.

【0001】[0001]

【従来の技術】従来、セメント硬化体の耐久性や強度を
増進させる方法として、セメント硬化体を炭酸ガス雰囲
気下にさらすことで、セメントの水和により生成した水
酸化カルシウムを炭酸カルシウムに変化させ、セメント
硬化体の細孔を埋めて強度を増進させる方法が試みられ
ている。具体的には例えば、セメントの水和反応が活発
化しだした以降で炭酸ガス雰囲気中で養生を行うことに
より、より炭酸化を進行させ緻密化させる方法が挙げら
れる(特開平6−263562号公報)。
2. Description of the Related Art Conventionally, as a method of increasing the durability and strength of a hardened cement body, calcium hydroxide produced by hydration of cement is changed into calcium carbonate by exposing the hardened cement body to a carbon dioxide gas atmosphere. Attempts have been made to increase the strength by filling the pores of the hardened cement. Specifically, for example, after the hydration reaction of cement is activated, curing is performed in a carbon dioxide gas atmosphere to further promote carbonation and make the cement denser (JP-A-6-263562). ).

【0002】しかし、上記方法では炭酸ガス雰囲気下の
養生に長時間を必要とし、生産性が良くないという問題
点が残されている他、材料に含有される水分量によって
は、水分の存在が炭酸ガスの拡散を阻害して内部まで炭
酸化が進行しないといった問題が残されている。セメン
ト硬化体の炭酸化物において内部に未反応の材料が残存
した場合、長期における材料変質の要因となることが予
想されるため、より高いレベルの安定性が望まれてい
る。
However, the above method requires a long time for curing under a carbon dioxide gas atmosphere, and has a problem that productivity is not good. In addition, depending on the amount of water contained in a material, the presence of water is not sufficient. There remains a problem that the diffusion of carbon dioxide is inhibited and the carbonation does not proceed to the inside. If unreacted material remains in the carbonate of the cement hardened material, it is expected that the unreacted material will cause deterioration of the material over a long period of time. Therefore, a higher level of stability is desired.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上記問題を
解決するためになされたものであり、短時間で製造可能
な組織安定性に優れた無機炭酸化硬化体を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide an inorganic carbonated cured product which can be produced in a short time and has excellent tissue stability. I do.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明は、窒素吸着比表面積が0.1m2 /g以上の
ウォラストナイト単体もしくは該ウォラストナイトを含
む材料を水と混合し賦形した後に、温度30〜200
℃、圧力0.5〜20MPaの条件で炭酸化処理するこ
とにより得られる無機炭酸化硬化体を提供する。
In order to achieve the above object, the present invention provides a method of mixing wollastonite alone having a nitrogen adsorption specific surface area of 0.1 m 2 / g or more or a material containing the wollastonite with water. After shaping, temperature 30-200
Provided is an inorganic carbonated cured product obtained by performing a carbonation treatment at a temperature of 0.5 to 20 MPa.

【0005】以下本発明を更に詳細に説明する。本発明
で使用するウォラストナイト(珪灰石)は、窒素吸着比
表面積が0.1m2 /g以上であり、より好ましくは、
2m2 /g以上である。比表面積が0.1m2 /g未満
の場合では、炭酸化処理における反応性が低くなる。比
表面積は大きい程、炭酸化処理は迅速に進めることが可
能であるが、現実的には製造上、1000m2 /g以下
である。
Hereinafter, the present invention will be described in more detail. The wollastonite (wollastonite) used in the present invention has a nitrogen adsorption specific surface area of 0.1 m 2 / g or more, more preferably,
2 m 2 / g or more. When the specific surface area is less than 0.1 m 2 / g, the reactivity in the carbonation treatment decreases. The larger the specific surface area, the more quickly the carbonation treatment can proceed, but it is practically 1000 m 2 / g or less in production.

【0006】ウォラストナイトとは、CaSiO3 で表
されるカルシウム珪酸塩鉱物であり、白色の繊維状又は
塊状物として天然に産出される。一般にその繊維状の形
状を利用して、アスベスト代替等の補強部材として利用
されているが、本発明におけるウォラストナイトは特に
繊維状である必要はなく、アスペクト比の小さいもので
良く、一般に補強材として繊維状に粉砕する際に発生す
る残留物を利用することも出来る。使用するウォラスト
ナイトは表面積が大きいことが好ましく、粒子の大きさ
(太さ)は小さい方が好ましく、平均粒径で10μm以
下が好適である。平均粒径が10μmより大きい場合、
粒子の内部まで炭酸化反応が進行しにくい。
[0006] Wollastonite is a calcium silicate mineral represented by CaSiO 3 and is naturally produced as a white fibrous or massive substance. Generally, the fibrous shape is used as a reinforcing member such as an asbestos substitute. However, the wollastonite in the present invention does not need to be particularly fibrous, and may have a small aspect ratio. Residue generated when the material is crushed into fibrous form can also be used. The wollastonite used preferably has a large surface area, and the size (thickness) of the particles is preferably small, and the average particle size is preferably 10 μm or less. When the average particle size is larger than 10 μm,
The carbonation reaction does not easily progress to the inside of the particles.

【0007】本発明は、無機炭酸化硬化体を構成する材
料としてウォラストナイト以外の無機材料を含んでも良
く、そのような無機材料としては例えば、セメント;珪
砂、川砂等のセメントモルタル用骨材;炭酸カルシウ
ム、珪藻土等の無機質充填材等が挙げられるが、賦形性
をより向上させるという点でセメントが好ましい。さら
に、本発明の無機炭酸化硬化体成分には、上記無機材料
以外にも木片、パルプ等の天然繊維;ビニロン、ポリエ
ステル、ナイロン等の合成樹脂繊維等が添加されても良
い。
[0007] The present invention may include an inorganic material other than wollastonite as a material constituting the inorganic carbonated cured product, such as cement; silica; aggregate for cement mortar such as river sand; An inorganic filler such as calcium carbonate and diatomaceous earth, etc., but cement is preferred from the viewpoint of further improving the shapeability. Further, in addition to the above-mentioned inorganic materials, natural fibers such as wood chips and pulp; and synthetic resin fibers such as vinylon, polyester, and nylon may be added to the inorganic carbonated cured component of the present invention.

【0008】上記セメントは、水和に伴い水酸化カルシ
ウムが生成するセメントであれば賦形体の炭酸化処理時
の反応させることが可能であり、例えば、普通ポルトラ
ンドセメント、特殊ポルトランドセメント,アルミナセ
メント等を使用することが出来る。但し、非常に高いレ
ベルの耐久性を得ることを目的として、完全炭酸化硬化
体を製造する場合、セメントの添加量は少ない方がよ
く、ウォラストナイトの1/3以下の使用量であること
が好ましい。
The above-mentioned cement can be reacted during the carbonation treatment of the shaped body if it is a cement that produces calcium hydroxide with hydration. For example, ordinary portland cement, special portland cement, alumina cement, etc. Can be used. However, when producing a fully carbonated cured product for the purpose of obtaining a very high level of durability, it is better to add a small amount of cement, and it should be less than 1/3 of wollastonite. Is preferred.

【0009】上記ウォラストナイト単体、もしくはウォ
ラストナイトを含む無機材料と、水は、所望の比率で混
合される。混合方法については周知の混合装置により混
練され得、特に限定されない。また、賦形方法について
は例えば、圧縮成形法(脱水プレス等)、押出成形法等
により所望の形状に賦形される。賦形に際しては賦形に
最適な流動性を得ることができる配合を選ぶことができ
るが、粒子間を水分が充填するほど水分が多いと炭酸化
の進行を阻害する。
The wollastonite alone or the inorganic material containing wollastonite and water are mixed in a desired ratio. The mixing method can be kneaded by a well-known mixing device, and is not particularly limited. As for the shaping method, for example, a desired shape is formed by a compression molding method (such as a dehydration press) or an extrusion molding method. At the time of shaping, it is possible to select a composition that can obtain the optimal fluidity for shaping. However, if the amount of water is large enough to fill the space between particles, the progress of carbonation is inhibited.

【0010】水の配合量は、ウォラストナイトの比表面
積、形状、その他の添加物の種類、量によって大きく変
化するが、一般的にウォラストナイト単体の場合、ウォ
ラストナイトの重量の10〜100%の重量であること
が好ましい。水の配合量が100%の重量を越える場合
は、賦形時に水が染みだす場合が有る。その場合には加
圧もしくは吸引によって炭酸化処理時の水分量を適当に
することができる。また、水の配合量がウォラストナイ
トの重量の10%未満の場合には二酸化炭素との反応が
充分に起こらず炭酸化反応の効率が低下する。
The amount of water varies greatly depending on the specific surface area and shape of wollastonite, and the type and amount of other additives. Preferably, it is 100% by weight. If the amount of water exceeds 100% by weight, water may seep out during shaping. In that case, the amount of water during the carbonation treatment can be made appropriate by pressurization or suction. When the amount of water is less than 10% of the weight of wollastonite, the reaction with carbon dioxide does not sufficiently occur, and the efficiency of the carbonation reaction decreases.

【0011】本発明における炭酸化処理とは、少なくと
もウォラストナイト成分が炭酸化されうる処理のことを
意味する。この様な炭酸化処理としては例えば気体、超
臨界状態の二酸化炭素を利用する方法が挙げられる。炭
酸ガスの濃度は任意の濃度を利用して良いが、100%
に近い濃度で処理することが炭酸化の効率という点で好
ましい。炭酸化処理時の温度としては、30℃〜200
℃の範囲内であることが好ましく、さらに好ましくは5
0℃〜200℃である。加温温度が30℃より低いと炭
酸化反応が充分に起こるには大きな時間を要し、逆に加
温温度が200℃より高いと炭酸化反応は迅速になるも
のの大きなエネルギーが必要となり、又、硬化体中の骨
材等の添加物に有機系の強化繊維等が含まれる場合に
は、これら繊維等が熱劣化を起こしやすくなる。
[0011] The carbonation treatment in the present invention means a treatment capable of carbonating at least the wollastonite component. As such a carbonation treatment, for example, a method using gas or carbon dioxide in a supercritical state can be mentioned. Any concentration of carbon dioxide gas may be used, but 100%
Treatment at a concentration close to the above is preferable in terms of carbonation efficiency. The temperature during the carbonation treatment is 30 ° C. to 200 ° C.
° C, more preferably 5 ° C.
0 ° C to 200 ° C. If the heating temperature is lower than 30 ° C., it takes a long time for the carbonation reaction to take place sufficiently. Conversely, if the heating temperature is higher than 200 ° C., the carbonation reaction is quick but requires a large amount of energy. When organic reinforcing fibers and the like are contained in additives such as aggregates in the cured body, these fibers and the like are liable to undergo thermal deterioration.

【0012】炭酸化処理時の圧力としては、0.5〜2
0MPaの範囲内であることが好ましい。加圧圧力が
0.5MPaより低いと成形体への浸透性、炭酸化反応
量が低下し、炭酸化反応が充分に起こらなくなるかもし
くは炭酸化反応が充分に起こるには大きな時間を要す
る。一方、加圧圧力を20MPaより高くしても炭酸化
反応は大きく変わらず、逆に、大きなエネルギーがかか
り工業生産性や設備の大型化という観点から不適当であ
る。上記炭酸化処理の時間としては特に限定されない
が、5〜120分以内であることが好ましい。処理時間
が5分より短いと、炭酸化反応が充分に起こらず成形体
の保型強度が得られにくくなる。又、処理時間を120
分より長くしても炭酸化の程度は大きく変化せず、余り
効率的でない。
The pressure during the carbonation treatment is 0.5 to 2
It is preferable that it is in the range of 0 MPa. If the pressurizing pressure is lower than 0.5 MPa, the permeability to the molded article and the amount of the carbonation reaction decrease, and the carbonation reaction does not sufficiently occur, or a long time is required for the carbonation reaction to sufficiently occur. On the other hand, even if the pressurizing pressure is higher than 20 MPa, the carbonation reaction does not greatly change, and on the contrary, a large amount of energy is applied, which is unsuitable from the viewpoint of industrial productivity and enlargement of equipment. The time for the carbonation treatment is not particularly limited, but is preferably within 5 to 120 minutes. If the treatment time is shorter than 5 minutes, the carbonation reaction does not sufficiently occur, and it is difficult to obtain a molded article having sufficient mold retention. Also, the processing time is 120
If it is longer than a minute, the degree of carbonation does not change much and is not very efficient.

【0013】(作用)ウォラストナイトはそれ自体、常
圧での炭酸加速度が非常に小さく、水和性も殆どみられ
ないため、通常のセメント材料おける残存未水和物と異
なり、硬化体中に炭酸化せずに残存した場合でも長期の
耐久性に悪影響を与えない。通常、このように反応性の
低いウォラストナイトを硬化させるには長時間の反応が
必要であるが、特定の比表面積を有するウォラストナイ
トを使用することにより炭酸化率を高めることが可能と
なり、生成した無機硬化体の機械物性を向上させること
が可能となる。従って、通常のセメント材料を炭酸化し
た場合、100%炭酸化した材料を得ることは殆ど不可
能であるが、ウォラストナイトを併用した場合には、完
全に炭酸化した無機硬化体組織を得ることが出来る。
(Action) Since wollastonite itself has a very small carbon dioxide acceleration at normal pressure and hardly any hydration property, unlike wollastonite, which is a residual unhydrated substance in a normal cement material, wollastonite is not contained in a hardened material. Even if it remains without carbonation, it does not adversely affect long-term durability. Usually, it takes a long time to cure such low-reactivity wollastonite, but it is possible to increase the carbonation rate by using wollastonite having a specific specific surface area. In addition, it is possible to improve the mechanical properties of the formed inorganic cured product. Therefore, when a normal cement material is carbonated, it is almost impossible to obtain a 100% carbonated material. However, when wollastonite is used together, a completely carbonized inorganic hardened body structure is obtained. I can do it.

【0014】[0014]

【発明の実施の形態】(実施例1〜3、比較例1〜2)
表1に示した配合でウォラストナイト、普通ポルトラン
ドセメント、水を混合し、25MPaでプレスを行い直
径15mm高さ30mmの円柱賦形体を得た。その後、
オートクレーブ中において表1に示す条件で炭酸化処理
を行い、無機炭酸化硬化体を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Examples 1-3, Comparative Examples 1-2)
Wollastonite, ordinary Portland cement, and water were mixed in the composition shown in Table 1, and pressed at 25 MPa to obtain a cylindrical shaped body having a diameter of 15 mm and a height of 30 mm. afterwards,
Carbonation treatment was performed in the autoclave under the conditions shown in Table 1 to obtain an inorganic carbonated cured product.

【0015】(比較例3)普通ポルトランドセメント1
00重量部、水20重量部を混合し、25MPaでプレ
スを行い直径15mm、高さ30mmの円柱賦形体を得
た。その後、オートクレーブ中において表1に示した条
件で炭酸化処理を行い、無機炭酸化硬化体を得た。 (比較例4)比較例と同様にして円柱賦形体を得た後、
室温で一週間養生し、無機硬化体を得た。 (比較例5)実施例1と同様にして円柱賦形体を得た
後、1週間室温で養生したが、硬化体にはならなかった
(乾燥して崩壊した)。実施例、及び比較例の硬化体に
ついて以下の試験を行い、その結果を表1に示した。
Comparative Example 3 Ordinary Portland Cement 1
00 parts by weight and 20 parts by weight of water were mixed and pressed at 25 MPa to obtain a cylindrical shaped body having a diameter of 15 mm and a height of 30 mm. Thereafter, carbonation treatment was performed in an autoclave under the conditions shown in Table 1 to obtain an inorganic carbonated cured product. (Comparative Example 4) After obtaining a cylindrical shaped body in the same manner as in Comparative Example,
After curing at room temperature for one week, an inorganic cured product was obtained. (Comparative Example 5) After obtaining a cylindrical shaped body in the same manner as in Example 1, it was cured at room temperature for one week, but did not become a cured body (dried and collapsed). The following tests were performed on the cured products of the examples and comparative examples, and the results are shown in Table 1.

【0016】[圧縮強度測定]実施例1〜3及び比較例
1〜4で得られた円柱状硬化体について、JIS A1
108に準拠した圧縮試験を行い、圧縮強度を測定し
た。
[Measurement of Compressive Strength] The columnar cured products obtained in Examples 1 to 3 and Comparative Examples 1 to 4 were measured according to JIS A1.
A compression test according to No. 108 was performed to measure the compression strength.

【0017】[29Si−NMR測定](組織反応度の評
価) 実施例1〜3、及び比較例1〜4における炭酸化処理前
の円柱状賦形体、及び炭酸化処理で得られた円柱状硬化
体について、組織の反応度を評価することを目的として
29Si−NMRの測定を行った。測定には、JOEL
社製、JNL−LA500を使用し、MASGHD(M
agic Angle Spinning Gated
Proton Decoupling)法によって、
積算回数5000回の条件で測定を行った。測定後、未
水和セメント原料に由来する−70ppm付近の鋭いピ
ーク(−57〜−76ppm)の積分強度をQ0、炭酸
化していないウォラストナイトに由来する−89ppm
付近の鋭いピーク及びセメント水和物に由来する−82
ppm付近の比較的ブロードなピーク(−77〜−95
ppm)の積分強度をQ1+Q2、ウォラストナイト、
セメントの炭酸化により生成するシリカゲルに由来する
−96〜125ppmのブロードなピークの積分強度を
Q3+Q4として、それぞれ全シグナルの積分強度に対
する割合を算出した。
[0017] [29 Si-NMR measurement (tissue reaction of the evaluation) Examples 1-3, and the cylindrical shaped bodies before carbonation process in Comparative Examples 1 to 4, and columnar shape obtained by the carbonation process About the hardened | cured material, 29Si-NMR measurement was performed for the purpose of evaluating the reactivity of a structure | tissue. For the measurement, JOEL
MAJHD (M) using JNL-LA500
magic Angle Spinning Gated
Proton Decoupling) method,
The measurement was performed under the condition that the number of integration was 5000 times. After the measurement, the integrated intensity of a sharp peak (−57 to −76 ppm) around −70 ppm derived from an unhydrated cement raw material was Q0, and −89 ppm derived from uncarbonated wollastonite.
-82 due to sharp peaks near and cement hydrate
A relatively broad peak around ppm (−77 to −95)
ppm) Q1 + Q2, wollastonite,
Assuming that the integrated intensity of the broad peak of −96 to 125 ppm derived from silica gel generated by carbonation of cement was Q3 + Q4, the ratio to the integrated intensity of all signals was calculated.

【0018】[組織溶解度測定]実施例1〜3及び比較
例1〜4で得られた円柱状硬化体について、粒径100
μm以下に粉砕したもの1gにイオン交換水100gを
注入し、5分間振とうした後に24時間放置した水溶液
中のカルシウムイオン濃度をICP(誘導結合プラズマ
発光分析)によって測定した。
[Measurement of Tissue Solubility] The columnar cured products obtained in Examples 1 to 3 and Comparative Examples 1 to 4 have a particle diameter of 100.
100 g of ion-exchanged water was poured into 1 g of a pulverized product having a particle size of not more than μm, shaken for 5 minutes, and allowed to stand for 24 hours.

【0019】[フェノールフタレイン試験]実施例1〜
3及び比較例1〜4で得られた円柱状硬化体について、
1/2に切断し、切断面にフェノールフタレインエタノ
ール溶液を滴下して中性化度を測定し、以下のように評
価した。(目視にて評価。) A:変色(赤色)部分が認められない。 B:変色部分が断面積の20%未満。 C:変色部分が断面積の60%未満20%以上。 D:変色部分が断面積の60%以上。 [耐熱性試験]実施例1及び比較例4の円柱状硬化体に
ついて、600℃で30分加熱した後に、JIS A1
108に準拠した圧縮試験を行い、圧縮強度を測定し
た。
[Phenolphthalein test]
3 and about the columnar cured body obtained in Comparative Examples 1 to 4,
It was cut in half, and a phenolphthalein ethanol solution was dropped on the cut surface to measure the degree of neutralization and evaluated as follows. (Evaluated visually.) A: No discolored (red) portion is observed. B: Discolored portion is less than 20% of the sectional area. C: Discolored portion is less than 60% and 20% or more of the cross-sectional area. D: The discolored portion is 60% or more of the cross-sectional area. [Heat Resistance Test] The columnar cured products of Example 1 and Comparative Example 4 were heated at 600 ° C. for 30 minutes, and then subjected to JIS A1.
A compression test according to No. 108 was performed to measure the compression strength.

【0020】[0020]

【表1】 [Table 1]

【0021】表1から分かる通り、実施例1〜3では使
用したウォラストナイトの比表面積、炭酸化処理条件が
適当であるため、炭酸化処理によって十分な初期強度を
有する硬化体が得られている。これに対して、比較例1
では使用したウォラストナイトの比表面積が小さいこと
から、また、比較例2では炭酸化処理条件が適当でない
ことから、十分な炭酸化反応が進行せず硬化体としての
強度が不十分なものとなった。これらの実施例と比較例
における炭酸化反応の進行度は炭酸化処理前後の29S
i−NMRの測定結果からも明らかであり、比較例では
炭酸化処理前後で積分強度比が殆ど変化していない。
As can be seen from Table 1, in Examples 1 to 3, the specific surface area of the wollastonite used and the conditions for carbonation treatment are appropriate, and thus a cured product having sufficient initial strength can be obtained by carbonation treatment. I have. On the other hand, Comparative Example 1
Since the specific surface area of wollastonite used was small, and the carbonation conditions in Comparative Example 2 were not appropriate, sufficient carbonation reaction did not proceed and the strength as a cured product was insufficient. became. The progress of the carbonation reaction in these Examples and Comparative Examples was 29S before and after the carbonation treatment.
It is clear from the measurement results of i-NMR, and in the comparative example, the integrated intensity ratio hardly changed before and after the carbonation treatment.

【0022】また、比較例3及び4の様にウォラストナ
イトを使用しなかった場合、通常のセメントを使用して
いるため硬化体強度は十分に得られるものの、溶出カル
シウムイオン濃度が大きくなっている。溶出カルシウム
イオン濃度は硬化体の組織が水に対しする安定性を示し
ており、ウォラストナイトを使用した組織(実施例1〜
3、比較例1及び2)では非常に小さく、水に対して安
定であることが示されている。
When no wollastonite was used as in Comparative Examples 3 and 4, although the strength of the cured product was sufficiently obtained because ordinary cement was used, the concentration of eluted calcium ions increased. I have. The dissolved calcium ion concentration indicates the stability of the tissue of the cured product to water, and the tissue using wollastonite (Examples 1 to 5)
3, Comparative Examples 1 and 2) are very small and are shown to be stable to water.

【0023】同様に、ウォラストナイトを使用した組織
ではフェノールフタレイン試験で変色がなく、二酸化炭
素等によって変質を起こさない中性の組織であることが
示されている。一方、比較例3及び4の硬化体はアルカ
リ性であり、炭酸化による組織の変化が懸念される。実
施例1と比較例4の硬化体を使用した耐熱性試験では、
ウォラストナイトを炭酸化して得られた組織と水和組織
の耐熱安定性の違いが示されている。実施例1の硬化体
が耐熱性試験後も外観、圧縮強度共に殆ど変化がなかっ
たのに対して、比較例4の水和硬化体では耐熱性試験後
の試料は直径が3%程度収縮して全体にクラックがみら
れ、圧縮強度も大幅に低下した。
Similarly, the structure using wollastonite has no discoloration in the phenolphthalein test, and shows that the structure is a neutral structure that does not undergo deterioration due to carbon dioxide or the like. On the other hand, the cured products of Comparative Examples 3 and 4 are alkaline, and there is a concern that the structure may change due to carbonation. In the heat resistance test using the cured products of Example 1 and Comparative Example 4,
The difference in heat stability between the structure obtained by carbonation of wollastonite and the hydrated structure is shown. The cured product of Example 1 hardly changed in appearance and compressive strength even after the heat resistance test, whereas the hydrated cured product of Comparative Example 4 shrunk by about 3% in diameter after the heat resistance test. In all cases, cracks were observed, and the compressive strength was significantly reduced.

【0024】[0024]

【発明の効果】本発明の方法によれば、特定の比表面積
を有するウォラストナイトを用いることで比較的、短時
間で、低温、低圧のマイルドな条件下で目的の無機炭酸
化硬化体を生産性良く得ることが出来る。このような方
法により得られた無機炭酸化硬化体は、ウォラストナイ
トとその炭酸化物より構成されるため、化学的に安定な
構造であり、水や二酸化炭素による組織の変化が殆どな
いため長期の耐久性に優れた組織である。また、通常の
水和組織と異なり組織中に水を含まないため、高い耐熱
性を有している。従って、この様な高い耐久性を活か
し、例えば住宅の外壁や瓦等の建築材料や土木建設材料
のロングライフ化に寄与することが出来る。
According to the method of the present invention, by using wollastonite having a specific specific surface area, the desired inorganic carbonated cured product can be produced in a relatively short time, under low temperature and low pressure under mild conditions. It can be obtained with good productivity. The inorganic carbonated cured product obtained by such a method has a chemically stable structure because it is composed of wollastonite and its carbonate, and has a long-term structure because there is almost no structural change due to water or carbon dioxide. It is an organization with excellent durability. Also, unlike a normal hydrated structure, it has high heat resistance because it does not contain water in the structure. Therefore, by utilizing such high durability, it is possible to contribute to extending the life of building materials such as outer walls and tiles of houses and civil engineering construction materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 窒素吸着比表面積が0.1m2 /g以上
のウォラストナイト単体もしくは該ウォラストナイトを
含む無機材料を水と混合し賦形した後に、温度30〜2
00℃、圧力0.5〜20MPaの条件で炭酸化処理す
ることを特徴とする無機炭酸化硬化体の製造方法。
1. A wollastonite having a nitrogen adsorption specific surface area of 0.1 m 2 / g or more or an inorganic material containing the wollastonite is mixed with water and shaped, and then heated to a temperature of 30 to 2
A method for producing an inorganic carbonated cured product, comprising performing carbonation treatment under the conditions of 00C and a pressure of 0.5 to 20 MPa.
【請求項2】 上記無機材料がセメントである請求項1
記載の無機炭酸化硬化体の製造方法。 【0000】
2. The method according to claim 1, wherein said inorganic material is cement.
The method for producing an inorganic carbonated cured product according to the above. [0000]
JP2000091673A 2000-03-29 2000-03-29 Method for producing inorganic carbonized cured body Expired - Fee Related JP3769446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000091673A JP3769446B2 (en) 2000-03-29 2000-03-29 Method for producing inorganic carbonized cured body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000091673A JP3769446B2 (en) 2000-03-29 2000-03-29 Method for producing inorganic carbonized cured body

Publications (2)

Publication Number Publication Date
JP2001278679A true JP2001278679A (en) 2001-10-10
JP3769446B2 JP3769446B2 (en) 2006-04-26

Family

ID=18607112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000091673A Expired - Fee Related JP3769446B2 (en) 2000-03-29 2000-03-29 Method for producing inorganic carbonized cured body

Country Status (1)

Country Link
JP (1) JP3769446B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302295A (en) * 2000-04-19 2001-10-31 Sekisui Chem Co Ltd Method of producing inorganic carbonated cured body
EP2683676A2 (en) * 2011-03-05 2014-01-15 Rutgers, The State University of New Jersey Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
WO2016154024A1 (en) * 2015-03-20 2016-09-29 Solidia Technologies, Inc. Composite materials and bonding elements from carbonation of calcium silicate and methods thereof
US10173927B2 (en) * 2014-08-04 2019-01-08 Solidia Technologies, Inc. Carbonatable calcium silicate compositions and methods thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302295A (en) * 2000-04-19 2001-10-31 Sekisui Chem Co Ltd Method of producing inorganic carbonated cured body
EP3527548A1 (en) * 2011-03-05 2019-08-21 Rutgers, the State University of New Jersey Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
EP2683676A2 (en) * 2011-03-05 2014-01-15 Rutgers, The State University of New Jersey Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
EP2683676A4 (en) * 2011-03-05 2014-08-13 Univ Rutgers Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
AU2012225755B2 (en) * 2011-03-05 2016-03-31 Rutgers, The State University Of New Jersey Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
US10913684B2 (en) 2011-03-05 2021-02-09 Rutgers, The State University Of New Jersey Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
US9868667B2 (en) 2011-03-05 2018-01-16 Rutgers, The State University Of New Jersey Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
US10266448B2 (en) 2011-03-05 2019-04-23 Rutgers, The State University Of New Jersey Bonding element, bonding matrix and composite material having the bonding element, and method of manufacturing thereof
US10611690B2 (en) 2014-08-04 2020-04-07 Solidia Technologies, Inc. Carbonatable calcium silicate compositions and methods thereof
US10173927B2 (en) * 2014-08-04 2019-01-08 Solidia Technologies, Inc. Carbonatable calcium silicate compositions and methods thereof
WO2016154024A1 (en) * 2015-03-20 2016-09-29 Solidia Technologies, Inc. Composite materials and bonding elements from carbonation of calcium silicate and methods thereof
JP2018508460A (en) * 2015-03-20 2018-03-29 ソリディア テクノロジーズ インコーポレイテッドSolidia Technologies, Inc. COMPOSITE MATERIAL AND BINDING COMPONENTS BY CARBONATION OF CALCIUM SILICATE AND METHOD FOR PRODUCING THEM
EA036191B1 (en) * 2015-03-20 2020-10-13 Солидиа Текнолоджиз, Инк. Microstructured carbonatable calcium silicate clinkers and methods for making same
WO2016154021A1 (en) * 2015-03-20 2016-09-29 Solidia Technologies, Inc. Microstructured carbonatable calcium silicate clinkers and methods thereof
JP7019557B2 (en) 2015-03-20 2022-02-15 ソリディア テクノロジーズ インコーポレイテッド Composite materials and binding components of calcium silicate by carbonate chloride and their manufacturing methods
JP2022031657A (en) * 2015-03-20 2022-02-22 ソリディア テクノロジーズ インコーポレイテッド Composite materials and bonding elements from carbonation of calcium silicate and methods thereof
US11718566B2 (en) 2015-03-20 2023-08-08 Solidia Technologies, Inc. Composite materials and bonding elements from carbonation of calcium silicate and methods thereof

Also Published As

Publication number Publication date
JP3769446B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
KR101265882B1 (en) Paste composition for marble and a method for manufacturing marble using thereof
JP2006213559A (en) Method of manufacturing inorganic carbonated hardened body
EP0562112B1 (en) High-strength molding of calcium silicate and production thereof
CN110550921A (en) anti-cracking autoclaved aerated concrete block and production method thereof
CN113956000A (en) Cement kiln tail gas carbonization building prefabricated product and preparation method thereof
JPH0840758A (en) Fiber-reinforced cement product and its production
JP3735233B2 (en) Method for producing inorganic carbonized cured body
JP2000203964A (en) Cement hardened material
JP2001278679A (en) Method for manufacturing inorganic hardened article using carbonation
JPH10231161A (en) Heat-curing type cement composition and production of wood-based cement board using the same composition
CN109336462B (en) High-compression-resistance long-service-life water permeable plate and preparation method thereof
CN111548109A (en) Preparation method of natural brucite fiber modified lime-metakaolin composite mortar
KR101262447B1 (en) Paste composition for manufacturing artificial stone, method of manufacturing artificial stone using the paste composition and inoragnic binder artificial stone manufactured the method
CN115894075A (en) Carbonized product and preparation method and application thereof
KR20100112800A (en) Cement binder composition, super ultra high strength precast concrete composition and method for producing super ultra high strength precast concrete goods using the same
CN111732378B (en) Geopolymer member and preparation method thereof
CN107555930B (en) High-strength water-blocking aerated concrete building block and preparation method thereof
JP3486363B2 (en) Molded body and molding method thereof
JP2803561B2 (en) Lightweight concrete product and method of manufacturing the same
JP3589629B2 (en) Magnesium / calcium composition and method for producing the same
CN115724612B (en) Calcium silicate board activator and application thereof in preparation of calcium silicate board
TW201127776A (en) Humidity-controlling building material and method for producing same
JPS6335595B2 (en)
JP4694708B2 (en) Method for producing calcium silicate molded body
CN110407522A (en) A kind of permeable mixed mud formula and preparation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees