JP3589629B2 - Magnesium / calcium composition and method for producing the same - Google Patents

Magnesium / calcium composition and method for producing the same Download PDF

Info

Publication number
JP3589629B2
JP3589629B2 JP2000368219A JP2000368219A JP3589629B2 JP 3589629 B2 JP3589629 B2 JP 3589629B2 JP 2000368219 A JP2000368219 A JP 2000368219A JP 2000368219 A JP2000368219 A JP 2000368219A JP 3589629 B2 JP3589629 B2 JP 3589629B2
Authority
JP
Japan
Prior art keywords
calcium
magnesium
mixture
mol
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000368219A
Other languages
Japanese (ja)
Other versions
JP2002173356A (en
Inventor
良和 藤
Original Assignee
良和 藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 良和 藤 filed Critical 良和 藤
Priority to JP2000368219A priority Critical patent/JP3589629B2/en
Publication of JP2002173356A publication Critical patent/JP2002173356A/en
Application granted granted Critical
Publication of JP3589629B2 publication Critical patent/JP3589629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、セメント、コンクリート、セラミックスの代替品として用い得る緻密で強固な組成物に関する。
【0002】
【従来の技術】
周知のように、無機質膠着剤であるセメント、特に水硬性セメントや、それを配合してなるコンクリートは強アルカリ性であって、酸性雨に曝されることにより中性化し、脆くなったり剥落する被害が発生する。また、セラミックス、特にアルミナやジルコニア、窒化珪素等を用いるファインセラミックスは、耐腐食性、耐環境性に優れ、硬質機能、強度機能を有するが、塑性変形し難い代わりに脆く、切削等の機械加工によってクラックや割れ欠けが生じ易い。また、その製法も、例えばバインダを添加した原料粉末をプレス成形機等で9.8×10Pa以上の圧力で押し固めて成形したのち1200〜1400℃の温度で焼成するといった苛酷なもので、多大のエネルギを必要とするばかりでなく、その際どうしても製品の収縮が起き、寸法精度の確保が困難である。
【0003】
【発明が解決しようとする課題】
本発明は、上記のような現状に鑑み、セメント、コンクリート、セラミックスの代替品として、例えば、外壁材や屋根材等の建築材料、化粧板、調度品、装飾品、各種成形品等に用い得る組成物を、高温、高圧をかけない穏和な条件で省エネルギーかつ低コストに提供することを課題とする。
【0004】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意研究検討を重ねた結果、塩化マグネシウムおよび酸化マグネシウムのマグネシウム源と、例えば炭酸カルシウム等のカルシウム源とを所定のモル比に混合して硫酸等の強酸の存在下で放置すると、収縮や膨張等を起こすことなく、したがって寸法精度よく、常温、常圧で、強度および耐衝撃性に優れる構造体が得られることを見出し本発明を完成した。
【0005】
すなわち、本発明は、塩化マグネシウムと、酸化マグネシウムと、カルシウム化合物とを、常温、常圧、強酸の存在下で反応させることにより得られるマグネシウム・カルシウム組成物に関する。
【0006】
また、本発明は、塩化マグネシウムと、酸化マグネシウムと、カルシウム化合物とを、常温、常圧、強酸の存在下で1:1〜10:2〜20のモル比に混合し、12時間以上放置して養生させるマグネシウム・カルシウム組成物の製造方法に関する。
【0007】
本発明に係る組成物は、例えば、化学式(Mg・Ca・(HO)2(X+Y))で示され、化1に示すように、マグネシウムおよび/またはカルシウム原子(イオン)に2倍の個数の水分子が配位した結晶構造(例えば三方晶系に属する塩化カドミウム型構造)を基本骨格として有するものと考えられる。
【0008】
【化1】

Figure 0003589629
【0009】
本発明で使用可能なカルシウム化合物としては、炭酸カルシウム(CaCO)が最も好適であるが、その他に、フッ化カルシウム(CaF)、塩化カルシウム(CaCl)、臭化カルシウム(CaBr・6HO)、ヨウ化カルシウム(CaI・nHO)、乳酸カルシウム(Ca〔CHCH(OH)COO〕・5HO)、珪酸カルシウム(CaSiO)、メタ珪酸カルシウム(CaSiO・nHO)、珪フッ化カルシウム(Ca〔SiF〕・2HO)、硝酸カルシウム(Ca(NO・4HO)、亜硝酸カルシウム(Ca(NO・HO)、硫酸カルシウム(CaSO・2HO)、亜硫酸カルシウム((CaSO・HO)、蓚酸カルシウム(CaC・HO)、リン酸カルシウム(CaHPO・2HO)、クロム酸カルシウム(CaCrO・2HO)、過塩素酸カルシウム(Ca(ClO・4HO)、D−グルコン酸カルシウム(Ca〔HOCH(CHOH)COO〕)、サリチル酸カルシウム(Ca〔HOCCOO〕・2HO)、水酸化カルシウム(Ca(OH))、酸化カルシウム(CaO)等が挙げられ、これらのうちの1種または2種以上を混合して用いることができる。
【0010】
本発明で使用可能な強酸としては、例えば、硫酸、希硫酸、塩酸、希塩酸、硝酸等が挙げられる。特に50%以下の希硫酸、例えば15%希硫酸が好適に用いられる。ここで、強酸とは、水溶液系で酸解離指数pKが3.0以下のものをいう。本発明では、このような強酸を用いて、反応混合物のpHを3.0以下、好ましくは0.5ないし2.0に維持することが肝要である。強酸の添加量は、例えば15%希硫酸の場合、塩化マグネシウムおよび酸化マグネシウム100重量部、あるいは塩化マグネシウム、酸化マグネシウムおよびカルシウム化合物100重量部に対して30〜100重量部(酸成分として4.5〜15重量部、水成分として25.5〜85重量部)である。
【0011】
本発明では、例えば所定形状の型内に、塩化マグネシウム(常温では安定な六水和物([Mg(HO)]Cl)、つまり六水塩の構造)と、酸化マグネシウム(MgO)と、カルシウム化合物と、強酸(水成分)とを加えて攪拌・混合する。原料の添加順序は特に限定されない。例えば先に液状の強酸を型内に入れておき、ここにマグネシウム源、カルシウム源である上記金属塩類を任意の順に、または同時に添加して攪拌・混合してもよく、あるいは先に上記塩類をすべて型内に投入しておき、この粉体混合物に対して強酸の水溶液を注いで攪拌・混合してもよい。
【0012】
型は、生成するマグネシウム・カルシウム構造体を所望の形状に成形するために用いる。したがって、複数の割り型を集合させてその内部に所定形状の空所を形成する閉塞式のものや、上面が開放した開放式のもの等が好ましく採用可能である。開放式では、上記したように、型の空所に原料を順に加えていくことが容易にできる。しかし、これに限らず、原料をすべて加えた反応混合物を予め別に調製しておき、それを型の空所に流し込んでもよい。特に、閉塞式では、密閉状態の空所内に空気を抜きつつ反応混合物を注入することにより、該空所を反応混合物で充填させることができて好ましい。
【0013】
本発明では、基本的には、塩化マグネシウムを1、酸化マグネシウムを1、カルシウム化合物を2のモル比で配合する。ここで、酸化マグネシウムの配合割合を高くすれば反応混合物の安定性、すなわち可使時間が増大し、カルシウム化合物の配合割合を高くすれば反応生成物である組成物(構造体)の強度が増大する。したがって、酸化マグネシウムは、塩化マグネシウム1に対し、1〜10のモル比で配合することができる。また、カルシウム化合物は、塩化マグネシウム1および酸化マグネシウム1〜10に対し、2〜20のモル比で配合することができる。強酸は、前述したように、塩化マグネシウムおよび酸化マグネシウム100重量部に対して、例えば30〜100重量部を配合する。
【0014】
すべての原料を混合した反応混合物はそのまま静置して養生させる。この間、反応物を加熱したり加圧することは一切必要がない。したがって、反応混合物は収縮や膨張等を起こすことがなく、製品の寸法精度が担保される。およそ12時間以上養生させると、型の空所通りの形状に硬化した白色の組成物が生成する。組成物の表面は組織が緻密で滑らかである。必要に応じて水洗いをし、乾燥させる。上記したように、反応物は、養生期間中、収縮したり膨張したりしない。したがって、組成物には空所の形状および寸法が正確に移し取られる。例えば反応混合物をガラス製のビーカ内に放置すると、ビーカが割れたり、ビーカとの間に隙間ができたりすることなく、ビーカの内部形状をそのまま反映した円柱状の構造体が得られる。したがって、壁材や天井材等の薄くて広がりのある成形物や、大型で凹凸のある成形物であっても、反り返ったり、歪んだり、あるいは内部応力で割れたりせず、寸法精度よく製造できる。
【0015】
このようにして得られた本発明に係るマグネシウム・カルシウム組成物は、一軸圧縮強度が7.84×10〜1.18×10Pa(800〜1200kgf/cm)と、代表的なコンクリートの圧縮強度1.5×10〜4.0×10Paに劣らず、床材や舗装材にも使用できるほどの強度を有する。また、曲げ強度も3.92×10〜4.90×10Pa(400〜500kgf/cm)と、代表的なアルミナセラミックスの曲げ強度2.94×10〜3.92×10Pa(30〜40kgf/mm)と比べても見劣りすることがない。さらにヤング率も大きく弾性変形し難い。加えて、脆くなく、耐衝撃性に優れ、衝撃に対しては割れたり欠けたりせずに打痕や窪みが生成する。つまり、塑性変形をするほど高靭であり、その結果、切削や研削、穴開け等の機械加工を施こしてもクラックや割れ欠けが生じず加工性に優れる。
【0016】
本発明に係る組成物は、外壁材、屋根材、かわら、高級調度品、室内装飾品、洗面台、バスタブ、カウンタやテーブル等に用いられる化粧板、パネル類等、従来よりセメントやコンクリート、セラミックス等が用いられていた用途一般に広く好ましく適用できる。
【0017】
以下、具体例により本発明をさらに詳しく説明するが、本発明は以下に示す実施例に限定されるものでないことはいうまでもない。
【0018】
【実施例】
[実施例1/配合モル比=1:1:2]
100mlビーカに、塩化マグネシウム六水和物〔分子量203.3で計算・以下同様〕20.33g(0.1mol)と、酸化マグネシウム〔40.3〕4.03g(0.1mol)と、炭酸カルシウム〔100〕20g(0.2mol)とを入れ、ガラス棒でよく攪拌しながら、15%希硫酸7.3g(酸成分〔98〕1.1g:0.011mol/水成分〔18〕6.2g:0.34mol)を加えて混合した後、常温、常圧で12時間放置したところ、ビーカ内に反応混合物が固化した太い円柱状の白色組成物が生成した。混合物放置時の液温は平均23℃、pHは2.6であった。デシケータに一夜間入れてさらに乾燥させた。
【0019】
[比較例]
15%希硫酸に代えてクエン酸およびリンゴ酸水溶液を用いて上記と同様に混合物を常温、常圧で12時間放置・養生したが、混合物は固化しなかった。混合物放置時の液温は平均23℃、pHは3.5であった。
【0020】
[実施例2/配合モル比=1:1:2]
1000mlビーカに、15%希硫酸244g(酸成分36.6g:0.37mol/水成分207.4g:11.5mol)を入れ、ガラス棒でよく攪拌しながら、塩化マグネシウム六水和物203.3g(1mol)と、酸化マグネシウム40.3g(1mol)と、炭酸カルシウム200g(2mol)とをこの順に添加して混合した。ガラス板に四角い型枠を貼り付け、その中に上記混合物を流し込み、常温、常圧で12時間放置したところ、型枠内に上記混合物が固化した矩形状の白色組成物が生成した。混合物放置時の液温は平均19℃、pHは1.5であった。水洗いし、デシケータに一夜間入れて十分乾燥させた。
【0021】
[実施例3/配合モル比=1:10:11]
500mlビーカに、15%希硫酸61g(酸成分9.2g:0.093mol/水成分51.8g:2.9mol)を入れ、ガラス棒でよく攪拌しながら、塩化マグネシウム六水和物20.33g(0.1mol)と、酸化マグネシウム40.3g(1mol)と、炭酸カルシウム110g(1.1mol)とをこの順に添加して反応混合物を調製した。この混合物を実施例2と同様に四角い型枠内に流し込み、常温、常圧で放置したところ、およそ20時間後に混合物が十分固化して矩形状の白色組成物が得られた。混合物放置時の液温は平均17℃、pHは2.1であった。水洗いし、デシケータで十分乾燥させた。
【0022】
[実施例4/配合モル比=1:1:20]
500mlビーカに、塩化マグネシウム六水和物20.33g(0.1mol)と、酸化マグネシウム4.03g(0.1mol)と、炭酸カルシウム200g(2mol)とを入れ、ガラス棒でよく攪拌しながら、15%希硫酸25g(酸成分3.8g:0.038mol/水成分21.2g:1.18mol)を加えて混合した。この混合物を実施例2と同様に四角い型枠内に流し込み、常温、常圧で放置したところ、およそ12時間後に混合物が十分固化して矩形状の白色組成物が得られた。混合物放置時の液温は平均18℃、pHは2.4であった。水洗いし、デシケータで十分乾燥させた。
【0023】
[耐水中崩壊試験]
養生材齢3日後の実施例1〜4の各組成物を最大長さが10mm以下の破片となるように叩き割り、水道水を入れたビーカに投入して、5分間攪拌−3分間静置のユニットを20回繰り返した後、破砕物の状態や水の濁り具合を観察した。いずれの場合も破砕物は短時間で沈降し、上澄み液は白濁等しなかった。一夜間水中に没したまま放置して翌日同じテストを行なったが結果は同じであった。
【0024】
[圧縮強度試験]
養生材齢7日後の実施例1〜4の各組成物から直径約8mm、長さ約10mmの円柱状供試体を切り出し、該供試体の両端面を石膏混入セメントペーストでキャッピングした後、定速型万能試験機を用いて一軸漸増圧縮荷重を加えて最大荷重を求め、数1に従って圧縮強度を算出した。結果を表1に示す。
【0025】
【数1】
Figure 0003589629
【0026】
【表1】
Figure 0003589629
【0027】
[曲げ強度試験]
同じく養生材齢7日後の実施例1〜4の各組成物に関して、JIS R5201に準拠し、最大荷重を求め、曲げ強度を算出した。結果を表2に示す。
【0028】
【表2】
Figure 0003589629
【0029】
[耐衝撃試験]
同じく養生材齢7日後の実施例1〜4の各組成物に対して、直径3cmのスチールボールを1mの高さから自由落下させたが、いずれの場合も成形物は割れたり欠けたりせず、またクラックも生じず、表面がわずかに窪んだ。
【0030】
【発明の効果】
以上のように、本発明によれば、高い曲げ強度・圧縮強度を有し、耐衝撃性・加工性に優れた高靭性組成物が提供される。本発明に係る組成物は常温常圧セラミックスとでも称すべきもので、焼成・焼結して製造するファインセラミックスに比べて寸法安定性に優れ、穏和な条件で省エネ・省コストに作製できる。本発明に係る組成物は、セメント、コンクリート、セラミックスの代替として建築材料や各種成形品等に広く好ましく適用可能である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dense and strong composition that can be used as a substitute for cement, concrete and ceramics.
[0002]
[Prior art]
As is well known, cement as an inorganic glue, particularly hydraulic cement and concrete containing it, are strongly alkaline, and become neutralized by exposure to acid rain, and become brittle or fall off. Occurs. Ceramics, especially fine ceramics using alumina, zirconia, silicon nitride, etc., have excellent corrosion resistance and environmental resistance, and have hard and strong functions. Cracks and cracks are likely to occur. In addition, the production method is also severe, for example, the raw material powder to which the binder is added is pressed and molded at a pressure of 9.8 × 10 7 Pa or more by a press molding machine or the like, and then fired at a temperature of 1200 to 1400 ° C. Not only does this require a large amount of energy, but also in that case the product shrinks inevitably, making it difficult to ensure dimensional accuracy.
[0003]
[Problems to be solved by the invention]
In view of the above situation, the present invention can be used as a substitute for cement, concrete, and ceramics, for example, for building materials such as exterior wall materials and roofing materials, decorative boards, furniture, decorative articles, various molded articles, and the like. An object of the present invention is to provide a composition at low energy and low cost under mild conditions that do not apply high temperature and high pressure.
[0004]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and studies to solve the above problems, and as a result, mixed a magnesium source of magnesium chloride and magnesium oxide with a calcium source such as calcium carbonate at a predetermined molar ratio to obtain a strong acid such as sulfuric acid. It has been found that a structure excellent in strength and impact resistance at room temperature and pressure with good dimensional accuracy without shrinkage or swelling when left in the presence of is obtained, and completed the present invention.
[0005]
That is, the present invention relates to a magnesium / calcium composition obtained by reacting magnesium chloride, magnesium oxide, and a calcium compound at normal temperature and normal pressure in the presence of a strong acid.
[0006]
The present invention also provides a method of mixing magnesium chloride, magnesium oxide, and a calcium compound in a molar ratio of 1: 1 to 10: 2 to 20 at normal temperature, normal pressure, and in the presence of a strong acid, and allowing the mixture to stand for 12 hours or more. The present invention relates to a method for producing a magnesium-calcium composition to be cured by heating.
[0007]
The composition according to the present invention, for example, the formula (Mg X · Ca Y · ( H 2 O) 2 (X + Y)) indicated by, as shown in Chemical Formula 1, 2 to magnesium and / or calcium atoms (ions) It is considered to have, as a basic skeleton, a crystal structure (for example, a cadmium chloride type structure belonging to a trigonal system) in which twice as many water molecules are coordinated.
[0008]
Embedded image
Figure 0003589629
[0009]
The calcium compounds usable in the present invention, calcium carbonate (CaCO 3) is most preferred, other calcium fluoride (CaF 2), calcium chloride (CaCl 2), calcium bromide (CaBr 2 · 6H 2 O), calcium iodide (CaI 2 · nH 2 O) , calcium lactate (Ca [CH 3 CH (OH) COO] 2 · 5H 2 O), calcium silicate (Ca 2 SiO 4), calcium metasilicate (CaSiO 3 · nH 2 O), silicofluoride fluoride calcium (Ca [SiF 6] · 2H 2 O), calcium nitrate (Ca (NO 3) 2 · 4H 2 O), calcium nitrite (Ca (NO 2) 2 · H 2 O), calcium sulfate (CaSO 4 · 2H 2 O) , calcium sulfite ((CaSO 3) 2 · H 2 O), calcium oxalate (CaC 2 O 4 .H 2 O), calcium phosphate (CaHPO 4 .2H 2 O), calcium chromate (CaCrO 4 .2H 2 O), calcium perchlorate (Ca (ClO 4 ) 2 .4H 2 O), D- calcium gluconate (Ca [HOCH 2 (CHOH) 4 COO] 2), calcium salicylate (Ca [HOC 6 H 4 COO] 2 · 2H 2 O), calcium hydroxide (Ca (OH) 2), calcium oxide (CaO And the like, and one or more of these can be used as a mixture.
[0010]
Examples of the strong acid that can be used in the present invention include sulfuric acid, diluted sulfuric acid, hydrochloric acid, diluted hydrochloric acid, and nitric acid. In particular, 50% or less diluted sulfuric acid, for example, 15% diluted sulfuric acid is preferably used. Here, a strong acid refers to an aqueous solution having an acid dissociation index pK of 3.0 or less. In the present invention, it is important to maintain the pH of the reaction mixture at 3.0 or less, preferably 0.5 to 2.0, using such a strong acid. The amount of the strong acid added is, for example, in the case of 15% diluted sulfuric acid, 30 to 100 parts by weight per 100 parts by weight of magnesium chloride and magnesium oxide or 100 parts by weight of magnesium chloride, magnesium oxide and a calcium compound (4.5 as an acid component). To 15 parts by weight, and 25.5 to 85 parts by weight as a water component).
[0011]
In the present invention, for example, magnesium chloride (a hexahydrate stable at normal temperature ([Mg (H 2 O) 6 ] Cl 2 ), that is, a hexahydrate structure) and magnesium oxide (MgO 2 ) are placed in a mold having a predetermined shape. ), A calcium compound, and a strong acid (water component) are added and stirred and mixed. The order of adding the raw materials is not particularly limited. For example, a liquid strong acid is first placed in a mold, and the above-mentioned metal salts as a magnesium source and a calcium source may be added in any order or simultaneously and stirred and mixed, or the above-mentioned salts may be added first. All of the powder mixture may be charged into a mold, and an aqueous solution of a strong acid may be poured into the powder mixture and stirred and mixed.
[0012]
The mold is used to shape the resulting magnesium-calcium structure into a desired shape. Accordingly, a closed type in which a plurality of split dies are assembled to form a cavity of a predetermined shape inside the open type, an open type in which the upper surface is open, and the like can be preferably used. In the open type, as described above, it is easy to sequentially add the raw materials to the cavity of the mold. However, the present invention is not limited to this, and a reaction mixture containing all of the raw materials may be separately prepared in advance, and then may be poured into the cavity of the mold. In particular, the closed type is preferable because the reaction mixture is injected into the hermetically closed space while bleeding air so that the space can be filled with the reaction mixture.
[0013]
In the present invention, basically, a magnesium chloride, a magnesium oxide, and a calcium compound are blended in a molar ratio of 1, 2 and 2, respectively. Here, increasing the mixing ratio of magnesium oxide increases the stability of the reaction mixture, that is, the pot life, and increasing the mixing ratio of the calcium compound increases the strength of the composition (structure) as a reaction product. I do. Therefore, magnesium oxide can be blended in a molar ratio of 1 to 10 with respect to 1 of magnesium chloride. The calcium compound can be blended in a molar ratio of 2 to 20 with respect to 1 of magnesium chloride and 1 to 10 of magnesium oxide. As described above, for example, 30 to 100 parts by weight of the strong acid is mixed with 100 parts by weight of magnesium chloride and magnesium oxide.
[0014]
The reaction mixture obtained by mixing all the raw materials is left to cure as it is. During this time, there is no need to heat or pressurize the reactants. Therefore, the reaction mixture does not shrink or expand, and the dimensional accuracy of the product is ensured. After curing for approximately 12 hours or more, a white composition is formed that has hardened to the shape of the mold cavity. The surface of the composition is dense and smooth in texture. Rinse and dry as necessary. As mentioned above, the reactants do not shrink or expand during the curing period. Therefore, the shape and dimensions of the cavity are accurately transferred to the composition. For example, if the reaction mixture is left in a glass beaker, a columnar structure that reflects the internal shape of the beaker as it is without breaking the beaker or forming a gap with the beaker can be obtained. Therefore, even a thin and wide molded product such as a wall material or a ceiling material, or a large and uneven molded product can be manufactured with high dimensional accuracy without warping, distortion, or cracking due to internal stress. .
[0015]
The magnesium-calcium composition according to the present invention thus obtained has a uniaxial compressive strength of 7.84 × 10 7 to 1.18 × 10 8 Pa (800 to 1200 kgf / cm 2 ), which is a typical concrete. Compressive strength of 1.5 × 10 7 to 4.0 × 10 7 Pa, and has a strength that can be used for floor materials and pavement materials. Also, the bending strength is 3.92 × 10 7 to 4.90 × 10 7 Pa (400 to 500 kgf / cm 2 ), and the bending strength of typical alumina ceramics is 2.94 × 10 8 to 3.92 × 10 8. It is not inferior to Pa (30 to 40 kgf / mm 2 ). Furthermore, Young's modulus is large and it is difficult to elastically deform. In addition, it is not brittle, has excellent impact resistance, and produces dents and depressions without cracking or chipping upon impact. In other words, the higher the degree of plastic deformation, the higher the toughness. As a result, even if mechanical processing such as cutting, grinding, or drilling is performed, cracks and cracks are not generated and the workability is excellent.
[0016]
Compositions according to the present invention, exterior wall materials, roofing materials, tiles, luxury furnishings, upholstery, wash basins, bathtubs, decorative plates used for counters and tables, panels and the like, conventionally cement, concrete, ceramics It can be widely and preferably applied to applications in which the use of the compound has been used.
[0017]
Hereinafter, the present invention will be described in more detail with reference to specific examples. However, needless to say, the present invention is not limited to the examples described below.
[0018]
【Example】
[Example 1 / mixing molar ratio = 1: 1: 2]
In a 100 ml beaker, 20.33 g (0.1 mol) of magnesium chloride hexahydrate (calculated based on a molecular weight of 203.3; the same applies hereinafter), 4.03 g (0.1 mol) of magnesium oxide [40.3], and calcium carbonate 20 g (0.2 mol) of [100] was added, and 7.3 g of 15% diluted sulfuric acid (1.1 g of an acid component [98]: 0.011 mol / 6.2 g of a water component [18]) was sufficiently stirred with a glass rod. : 0.34 mol), and the mixture was allowed to stand at normal temperature and normal pressure for 12 hours. As a result, a thick columnar white composition in which the reaction mixture was solidified was formed in the beaker. The liquid temperature when the mixture was left was 23 ° C. on average, and the pH was 2.6. It was placed in a desiccator overnight to further dry.
[0019]
[Comparative example]
The mixture was left and cured for 12 hours at normal temperature and normal pressure using citric acid and malic acid aqueous solution instead of 15% diluted sulfuric acid, but the mixture did not solidify. The liquid temperature when the mixture was left was 23 ° C. on average, and the pH was 3.5.
[0020]
[Example 2 / Molecular ratio = 1: 1: 2]
In a 1000 ml beaker, 244 g of 15% diluted sulfuric acid (36.6 g of an acid component: 0.37 mol / 207.4 g of a water component: 11.5 mol) is added, and 203.3 g of magnesium chloride hexahydrate is stirred well with a glass rod. (1 mol), 40.3 g (1 mol) of magnesium oxide, and 200 g (2 mol) of calcium carbonate were added in this order and mixed. A square mold was attached to a glass plate, and the mixture was poured into the mold, and allowed to stand at normal temperature and normal pressure for 12 hours. As a result, a rectangular white composition in which the mixture was solidified was formed in the mold. The liquid temperature when the mixture was left was 19 ° C. on average, and the pH was 1.5. It was washed with water and put in a desiccator overnight to dry it sufficiently.
[0021]
[Example 3 / mixing molar ratio = 1: 10: 11]
In a 500 ml beaker, 61 g of 15% diluted sulfuric acid (9.2 g of acid component: 0.093 mol / 51.8 g of water component: 2.9 mol) is put, and while stirring well with a glass rod, 20.33 g of magnesium chloride hexahydrate (0.1 mol), 40.3 g (1 mol) of magnesium oxide, and 110 g (1.1 mol) of calcium carbonate were added in this order to prepare a reaction mixture. This mixture was poured into a square mold as in Example 2 and allowed to stand at normal temperature and normal pressure. After about 20 hours, the mixture was sufficiently solidified to obtain a rectangular white composition. The liquid temperature when the mixture was left was 17 ° C. on average, and the pH was 2.1. It was washed with water and thoroughly dried in a desiccator.
[0022]
[Example 4 / mixing molar ratio = 1: 1: 20]
In a 500 ml beaker, 20.33 g (0.1 mol) of magnesium chloride hexahydrate, 4.03 g (0.1 mol) of magnesium oxide, and 200 g (2 mol) of calcium carbonate were added, and with good stirring with a glass rod, 25 g of 15% dilute sulfuric acid (3.8 g of acid component: 0.038 mol / 21.2 g of water component: 1.18 mol) was added and mixed. This mixture was poured into a square mold in the same manner as in Example 2 and allowed to stand at normal temperature and normal pressure. After about 12 hours, the mixture was sufficiently solidified to obtain a rectangular white composition. The liquid temperature when the mixture was allowed to stand was 18 ° C on average, and the pH was 2.4. It was washed with water and thoroughly dried in a desiccator.
[0023]
[Water collapse test]
Three days after the curing material age, each composition of Examples 1 to 4 was broken into pieces having a maximum length of 10 mm or less, put into a beaker containing tap water, and stirred for 5 minutes to stand for 3 minutes. After repeating this unit 20 times, the state of the crushed material and the turbidity of water were observed. In each case, the crushed material settled out in a short time, and the supernatant liquid did not become cloudy. The same test was performed the next day after leaving it submerged in water overnight, but the results were the same.
[0024]
[Compression strength test]
A cylindrical specimen having a diameter of about 8 mm and a length of about 10 mm was cut out from each of the compositions of Examples 1 to 4 7 days after the curing material age, and both end faces of the specimen were capped with a gypsum-containing cement paste, and then subjected to a constant speed. The maximum load was determined by applying a uniaxial gradually increasing compressive load using a die universal testing machine, and the compressive strength was calculated according to Equation 1. Table 1 shows the results.
[0025]
(Equation 1)
Figure 0003589629
[0026]
[Table 1]
Figure 0003589629
[0027]
[Bending strength test]
Similarly, for each of the compositions of Examples 1 to 4 7 days after the curing material age, the maximum load was determined and the bending strength was calculated according to JIS R5201. Table 2 shows the results.
[0028]
[Table 2]
Figure 0003589629
[0029]
[Impact test]
Similarly, a steel ball having a diameter of 3 cm was freely dropped from a height of 1 m to each of the compositions of Examples 1 to 4 after the curing material age of 7 days. In any case, the molded product did not crack or chip. The surface was slightly depressed without cracks.
[0030]
【The invention's effect】
As described above, according to the present invention, a high toughness composition having high bending strength and compressive strength, and excellent in impact resistance and workability is provided. The composition according to the present invention should be referred to as a normal-temperature and normal-pressure ceramic, and is superior in dimensional stability to fine ceramics produced by firing and sintering, and can be produced under mild conditions with low energy and cost. The composition according to the present invention is widely and preferably applicable to building materials, various molded products, and the like as a substitute for cement, concrete, and ceramics.

Claims (2)

塩化マグネシウムと、酸化マグネシウムと、カルシウム化合物とを、常温、常圧、強酸の存在下で反応させて得られたことを特徴とするマグネシウム・カルシウム組成物。A magnesium-calcium composition obtained by reacting magnesium chloride, magnesium oxide, and a calcium compound at normal temperature, normal pressure and in the presence of a strong acid. 塩化マグネシウムと、酸化マグネシウムと、カルシウム化合物とを、常温、常圧、強酸の存在下で1:1〜10:2〜20のモル比に混合し、12時間以上放置することを特徴とするマグネシウム・カルシウム組成物の製造方法。Magnesium, characterized by mixing magnesium chloride, magnesium oxide, and a calcium compound in a molar ratio of 1: 1 to 10: 2 to 20 at normal temperature, normal pressure and in the presence of a strong acid, and allowing the mixture to stand for 12 hours or more. -A method for producing a calcium composition.
JP2000368219A 2000-12-04 2000-12-04 Magnesium / calcium composition and method for producing the same Expired - Fee Related JP3589629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368219A JP3589629B2 (en) 2000-12-04 2000-12-04 Magnesium / calcium composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368219A JP3589629B2 (en) 2000-12-04 2000-12-04 Magnesium / calcium composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002173356A JP2002173356A (en) 2002-06-21
JP3589629B2 true JP3589629B2 (en) 2004-11-17

Family

ID=18838512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368219A Expired - Fee Related JP3589629B2 (en) 2000-12-04 2000-12-04 Magnesium / calcium composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP3589629B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269532A (en) * 2006-03-31 2007-10-18 Taisei Corp Solid matter of powdery material
CN105016674A (en) * 2015-07-02 2015-11-04 安徽省中坤元新型建材有限公司 Light and high-strength partition board and production process thereof
CN105367036B (en) * 2015-11-30 2017-09-22 中国科学院青海盐湖研究所 A kind of low temperature magnesia oxychloride cement and preparation method thereof

Also Published As

Publication number Publication date
JP2002173356A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP6787816B2 (en) Cementum material for 3D modeling for construction and 3D modeling method for construction
AU664675B2 (en) Inorganic hardening composition
JP2017024979A (en) Cement composition for molding and manufacturing method of cement hardened body
KR101432750B1 (en) Mortar or concrete composition using fly ash and use thereof
WO2016105383A1 (en) Rapid setting material for improved processing and performance of carbonating metal silicate cement
JP4843733B1 (en) Stucco material and method for producing stucco
KR100853754B1 (en) The refractory material of high strength for construction and the making method thereof
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
CN100535351C (en) Ball-silicon composite building thermal insulation material and manufacturing method therefor
JP3589629B2 (en) Magnesium / calcium composition and method for producing the same
US4906297A (en) Silicate-bonded silica materials
RU2358931C2 (en) Composite high-strength gypsum material and method for its production
JPS61127656A (en) Gypsum hardened body
WO2021162104A1 (en) Cementitious material for three-dimensional modeling for construction and three-dimensional modeling method for construction
JP3735233B2 (en) Method for producing inorganic carbonized cured body
CN1180921C (en) Process of making block using plaster as main raw material
KR100544062B1 (en) Crack inhibitor for cement mortar
JP2021165220A (en) Manufacturing method of light-weight cellular concrete
JP3769446B2 (en) Method for producing inorganic carbonized cured body
CN101096295A (en) Dry method fluoric gypsum and building gypsum mixer
JP4179789B2 (en) Gypsum-based inorganic cured body and method for producing the same
RU2074144C1 (en) Raw material mix for preparation of chemically stable silicon-concrete of autoclave hardening
KR100455622B1 (en) The composition of mortar having various function
JP2527152B2 (en) Ceramic product and its manufacturing method
JP4222692B2 (en) Solid inorganic material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040817

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees