JP4843733B1 - Stucco material and method for producing stucco - Google Patents
Stucco material and method for producing stucco Download PDFInfo
- Publication number
- JP4843733B1 JP4843733B1 JP2010274557A JP2010274557A JP4843733B1 JP 4843733 B1 JP4843733 B1 JP 4843733B1 JP 2010274557 A JP2010274557 A JP 2010274557A JP 2010274557 A JP2010274557 A JP 2010274557A JP 4843733 B1 JP4843733 B1 JP 4843733B1
- Authority
- JP
- Japan
- Prior art keywords
- stucco
- ion
- aqueous solution
- strength
- plaster
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 47
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims abstract description 89
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 88
- 239000007864 aqueous solution Substances 0.000 claims abstract description 52
- 239000000292 calcium oxide Substances 0.000 claims abstract description 45
- 235000012255 calcium oxide Nutrition 0.000 claims abstract description 45
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims abstract description 26
- 239000000920 calcium hydroxide Substances 0.000 claims abstract description 26
- 235000011116 calcium hydroxide Nutrition 0.000 claims abstract description 26
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims abstract description 26
- 238000011161 development Methods 0.000 claims abstract description 14
- 239000011505 plaster Substances 0.000 claims description 43
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 24
- 239000004576 sand Substances 0.000 claims description 13
- 239000004571 lime Substances 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 9
- 235000008733 Citrus aurantifolia Nutrition 0.000 claims description 8
- 235000011941 Tilia x europaea Nutrition 0.000 claims description 8
- 238000004898 kneading Methods 0.000 claims description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 5
- 230000002378 acidificating effect Effects 0.000 claims description 5
- 238000005452 bending Methods 0.000 abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 64
- 238000012360 testing method Methods 0.000 description 39
- 239000011575 calcium Substances 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 239000000843 powder Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 9
- 229910052791 calcium Inorganic materials 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 235000020637 scallop Nutrition 0.000 description 8
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 241000237502 Ostreidae Species 0.000 description 6
- 241000237509 Patinopecten sp. Species 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 235000020636 oyster Nutrition 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000004299 exfoliation Methods 0.000 description 3
- 241001474374 Blennius Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 241000237503 Pectinidae Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- -1 alkaline earth metal salts Chemical class 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 235000008216 herbs Nutrition 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 240000005499 Sasa Species 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229910052910 alkali metal silicate Inorganic materials 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000013601 eggs Nutrition 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000011433 polymer cement mortar Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 235000015170 shellfish Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000001040 synthetic pigment Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
【課題】強度発現性に優れ、曲げ強度や圧縮強度を高めた漆喰材料及び漆喰の製造方法を提供する。
【解決手段】本発明に係る漆喰材料は、生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料であって、該漆喰材料と高Caイオン含有水溶液とを含んでなる。本発明に係る漆喰の製造方法は、強度発現性に優れた漆喰の製造方法であって、生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料と高Caイオン含有水溶液とを混練することにより実施することができる。
【選択図】図1An object of the present invention is to provide a stucco material having excellent strength development and increased bending strength and compressive strength, and a method for producing the stucco.
A stucco material according to the present invention is a stucco material mainly composed of quick lime and / or slaked lime and fine aggregate, and comprises the stucco material and an aqueous solution containing high Ca ions. The method for producing a stucco according to the present invention is a method for producing a stucco excellent in strength development, and kneads a stucco material mainly composed of quick lime and / or slaked lime and fine aggregate and a high Ca ion-containing aqueous solution. Can be implemented.
[Selection] Figure 1
Description
本発明は、漆喰材料及び漆喰の製造方法に係り、特に高Caイオン含有水溶液を用いて混練する漆喰材料及び漆喰の製造方法に関する。 The present invention relates to a stucco material and a method for producing a stucco, and particularly relates to a stucco material kneaded using a high Ca ion-containing aqueous solution and a method for producing a stucco.
漆喰は、消石灰に麻の繊維や藁の繊維(すさ)、草本や海藻から得る接着剤、水などを混練して作られ、二酸化炭素を吸収しながら硬化する(気硬性)塗壁材料として知られている。また、漆喰は、防水性、調湿性、耐火性などの特性を有し、古くから城郭、神社、土蔵や家屋の土で造られた内外壁の上塗り材として用いられてきたが、近年ではその使用範囲は限られたものになっている。このため、合成樹脂や顔料等を混ぜた漆喰が商品化され、また、従来の低強度で脆いといわれる漆喰に対し、漆喰の強度の向上、強度発現性の改善、あるいは調湿機能やホルムアルデヒドの吸着分解機能など漆喰の本来の特性に着目した新たな製品の開発などが試みられ、漆喰の使用範囲・用途を拡大するための試みがなされている。 Plaster is made by mixing kneaded lime with hemp fibers, straw fibers, adhesives obtained from herbs and seaweed, water, etc., and is known as a coating material that hardens while absorbing carbon dioxide (air-hardness) It has been. In addition, plaster has properties such as waterproofness, humidity control, and fire resistance, and has been used as a coating material for inner and outer walls made of castles, shrines, storehouses and houses from ancient times. The range of use is limited. For this reason, plaster mixed with synthetic resins and pigments has been commercialized, and compared to conventional low-strength and brittle stucco, the improvement of stucco strength, improvement of strength development, or humidity control function and formaldehyde Attempts have been made to develop new products that focus on the original characteristics of plaster, such as the adsorption decomposition function, and attempts have been made to expand the range and applications of plaster.
例えば、特許文献1に、ひび割れやフレーキングを生じにくく強度発現性を改善した漆喰用組成物として、γ型2CaO・SiO2と水酸化カルシウムとを含有してなる漆喰用組成物が提案されている。そして、その明細書に、γC2Sと水酸化カルシウム、γC2Sと水酸化カルシウムの合計100部に対して、増粘剤0.5部、繊維物質1.5部、分散剤1部、及び消泡剤0.3部を配合した漆喰用組成物と、該漆喰用組成物100部に対して、50部の水とを混合して漆喰を調製し、コンクリート板に厚さ3mmで塗りつけて作製した試料のコテ作業性、ひび割れ抵抗性、フレーキングの有無、硬度を測定した結果が示されている。 For example, Patent Document 1 proposes a stucco composition comprising γ-type 2CaO · SiO2 and calcium hydroxide as a composition for stucco that is less prone to cracking and flaking and has improved strength development. . And in the description, 0.5 parts thickener, 1.5 parts fiber material, 1 part dispersant, and 0.3 part defoamer are added to 100 parts total of γC2S and calcium hydroxide and γC2S and calcium hydroxide. The stucco workability and cracking of a sample prepared by mixing 50 parts of water with 100 parts of the stucco composition and mixing the stucco with a thickness of 3 mm on a concrete board. The results of measurement of resistance, presence / absence of flaking, and hardness are shown.
特許文献2に、空中、水中を問わず硬化して高強度になり用途の拡大を図ることができるしっくい系接着硬化材が提案されている。すなわち、消石灰もしくは生石灰、およびその混合粉体を主原料として、これに珪酸アルカリ成分とアルカリ土類金属塩から選ばれた1種または2種以上の成分を配合して成るしっくい系接着硬化材が提案されている。そして、その明細書に、2号珪酸ソーダ、無水塩化マグネシウム、ポリエステル繊維、試料によっては粘土を加えて混合し水を適宜加えて混練したものを型枠に流し込み又は押し出し成形した試料について、28日養成後の曲げ強さが18〜73kgf/cm2、圧縮強さが125〜290kgf/cm2であり、従来の消石灰にCMC(カルボキシメチルセルロース)を加えたしっくいの圧縮強さ8〜12kgf/cm2と比較して機械的強度が非常に優れていると記載されている。 Patent Document 2 proposes a plaster-based adhesive curing material that can be hardened regardless of whether it is in the air or underwater, has high strength, and can be used for expanding its applications. That is, a plaster-based adhesive curing material comprising slaked lime or quicklime and a mixed powder thereof as a main raw material, and one or more components selected from alkali silicate components and alkaline earth metal salts are blended therein. Proposed. And in the specification, No. 2 sodium silicate, anhydrous magnesium chloride, polyester fiber, and depending on the sample, a sample obtained by pouring or extruding a sample obtained by adding and mixing clay, adding water appropriately and kneading it into a mold, 28 days flexural strength of 18~73kgf / cm 2 after training, compressive strength is 125~290kgf / cm 2, CMC in conventional slaked lime compressive strength of (carboxymethylcellulose) the plaster was added 8~12kgf / cm 2 It is described that the mechanical strength is very excellent compared to the above.
特許文献3には、大量に廃棄されているホタテ貝の有効利用を図ったホタテ貝殻粉末を主成分とする漆喰材料が提案されており、ホタテ貝殻粉末、消石灰、すさ・顔料等を含む漆喰材料について、調湿作用、脱臭作用、抗かび作用、さらにホルムアルデヒド吸着作用を有すると記載されている。また、ホタテ貝殻粉の組成は天然消石灰とほぼ同等であること、ホタテ貝殻粉末入りタイルは、曲げ強度が12〜45N/cmを有し、壁用の内装タイルとして十分な強度を備えていることなどが記載されている。 Patent Document 3 proposes a stucco material mainly composed of scallop shell powder for effective use of scallops discarded in large quantities. Stucco material containing scallop shell powder, slaked lime, sasa and pigment, etc. Is described as having a humidity control action, a deodorizing action, an antifungal action, and a formaldehyde adsorbing action. In addition, the composition of scallop shell powder is almost the same as natural slaked lime, and tiles with scallop shell powder have a bending strength of 12 to 45 N / cm and have sufficient strength as interior tiles for walls. Etc. are described.
特許文献4には、漆喰の主原料中に殻の粉末を混入した漆喰が提案されており、殻の粉末とは、貝、卵、珊瑚等の外殻を焼いて粉末にしたものであり、殻はカキ貝が最適であるとされる。そして、この殻は、消石灰になじみ結合力に寄与するので、原料全体の粘稠性、強靱性を増強すると記載されている。 Patent Document 4 proposes a plaster in which shell powder is mixed in the main raw material of plaster, and the shell powder is a powder obtained by baking the outer shell of shellfish, eggs, salmon, etc. Oyster shells are the best shell. And since this shell is familiar with slaked lime and contributes to the binding force, it is described that the viscosity and toughness of the whole raw material are enhanced.
漆喰は、気硬性を有するので長時間をかけて高い強度・硬度を発揮するものであるとされ、これが容認されているが、強度発現性に優れ、早期に所定の強度・硬度を発揮するならば、さらに広い漆喰の使用・用途の拡大が望まれる。しかしながら、漆喰の強度発現性の改善について記載する先行技術は少なく、特許文献1に強度発現性を著しく改善した漆喰用組成物を提供すると記載があるも、そのデータや説明は特になく、漆喰用組成物の強度発現性がどの程度改善されたのかは明確でない。 Stucco is said to exhibit high strength and hardness over a long time because it has air hardness, and this is accepted, but it is excellent in strength development and if it exhibits predetermined strength and hardness at an early stage For example, it is desired to expand the use and application of wider plaster. However, there are few prior arts describing the improvement of the strength development of stucco, and there is a description in Patent Document 1 that a composition for stucco with significantly improved strength development is provided. It is not clear how much the strength development of the composition has been improved.
また、特許文献1に記載された漆喰用組成物はγ型2CaO・SiO2を要し、特許文献2に記載されたしっくい系接着硬化材は珪酸アルカリ成分やアルカリ土類金属塩を要するなど特殊の成分を要するという問題がある。 Further, the plaster composition described in Patent Document 1 requires γ-type 2CaO · SiO2, and the plaster adhesive hardener described in Patent Document 2 requires special silicate components and alkaline earth metal salts. There is a problem of requiring ingredients.
特許文献3に記載された漆喰材料、特許文献4に記載された漆喰は、漆喰の主成分であるカルシウム成分を現状では大量に廃棄されているホタテ貝やカキ等の貝殻を焼成して得られる生石灰を基にしており資源保護、経済性の観点から望ましい。しかしながら、特許文献3に記載された漆喰材料は、ホタテ貝殻粉末の細かい区分のふるいを要するという問題があり、その強度や強度発現性はどの程度であるのかが明確でない。特許文献3に記載された漆喰に関しては、その強度や強度発現性についての記載はない。 The stucco material described in Patent Document 3 and the stucco described in Patent Document 4 are obtained by firing shells such as scallops and oysters, which are currently discarded in large quantities from the calcium component that is the main component of stucco. It is based on quicklime and is desirable from the viewpoint of resource protection and economy. However, the stucco material described in Patent Document 3 has a problem that it requires a finely divided sieve of scallop shell powder, and it is not clear how much strength and strength expression are. Regarding the plaster described in Patent Document 3, there is no description of its strength and strength development.
本発明は、このような漆喰の使用・用途の拡大の要請、従来の問題点に鑑み、強度発現性に優れ、曲げ強度や圧縮強度を高めた漆喰材料及び漆喰の製造方法を提供することを目的とする。 The present invention is to provide a method for producing a plaster material and a plaster that are excellent in strength development and have improved bending strength and compressive strength in view of the request for expansion of use / use of such plaster and conventional problems. Objective.
本発明に係る漆喰材料は、生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料であって、該漆喰材料と高Caイオン含有水溶液とを含んでなる。 The plaster material which concerns on this invention is a plaster material which has quick lime and / or slaked lime, and a fine aggregate as a main component, Comprising: This plaster material and high Ca ion containing aqueous solution are comprised.
上記発明において、高Caイオン含有水溶液は、重量百分率濃度で生石灰及び/又は消石灰を酸性水溶液に0.6〜2.0%溶解させたものであるのがよい。 In the above invention, the high Ca ion-containing aqueous solution is preferably one obtained by dissolving quick lime and / or slaked lime in an acidic aqueous solution at a concentration percentage by weight of 0.6 to 2.0%.
上記発明において、前記酸性水溶液は酢酸水溶液であるのがよい。 In the above invention, the acidic aqueous solution may be an acetic acid aqueous solution.
また、上記発明において、生石灰及び/又は消石灰は、カキ殻を900〜1200℃で焼成したものを使用することができ、細骨材として、石灰製砂を使用することができる。 Moreover, in the said invention, the quick lime and / or slaked lime can use what baked the oyster shell at 900-1200 degreeC, and can use lime sand as a fine aggregate.
本発明に係る漆喰の製造方法は、強度発現性に優れた漆喰の製造方法であって、生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料と高Caイオン含有水溶液とを混練することにより実施することができる。 The method for producing a stucco according to the present invention is a method for producing a stucco excellent in strength development, and kneads a stucco material mainly composed of quick lime and / or slaked lime and fine aggregate and a high Ca ion-containing aqueous solution. Can be implemented.
また、本発明に係る漆喰の製造方法は、強度を高めた漆喰の製造方法であって、生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料と高Caイオン含有水溶液とを混練することにより実施することができる。 Moreover, the manufacturing method of the stucco which concerns on this invention is a manufacturing method of the stucco which raised intensity | strength, Comprising: The stucco material which has quick lime and / or slaked lime, and a fine aggregate as a main component, and high Ca ion containing aqueous solution are knead | mixed. Can be implemented.
本発明によれば、優れた強度発現性を有する漆喰を提供することができ、また、漆喰の曲げ強度、圧縮強度を高めることができ、漆喰壁の表面強度、剥落強度を高めることができる。 ADVANTAGE OF THE INVENTION According to this invention, the stucco which has outstanding intensity | strength development property can be provided, the bending strength and compressive strength of a stucco can be raised, and the surface strength and peeling strength of a stucco wall can be raised.
以下、本発明を実施するための形態について説明する。本発明に係る漆喰材料は、生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料であって、該漆喰材料と高Caイオン含有水溶液とを含んでなる。生石灰及び/又は消石灰とは、本発明の漆喰材料はその主要成分として生石灰、消石灰又は生石灰と消石灰の混合物を使用することができることを意味する。生石灰又は消石灰の素材として、カキ殻やホタテ貝などの貝殻を焼成したものを使用することもできる。細骨材は、特に限定されないが、山砂、川砂や石灰製砂などを使用することができる。高Caイオン含有水溶液は、本発明において特に限定するものであり、以下に説明する。なお、本漆喰材料において、上記成分の他、漆喰において一般に使用される麻の繊維や藁の繊維(すさ)、草本や海藻から得る接着剤又は合成樹脂からなる接着剤等を使用することができる。 Hereinafter, modes for carrying out the present invention will be described. The plaster material which concerns on this invention is a plaster material which has quick lime and / or slaked lime, and a fine aggregate as a main component, Comprising: This plaster material and high Ca ion containing aqueous solution are comprised. Quicklime and / or slaked lime means that the plaster material of the present invention can use quicklime, slaked lime, or a mixture of quicklime and slaked lime as its main component. As a raw material of quicklime or slaked lime, one obtained by baking shells such as oyster shells or scallop shells can be used. Although the fine aggregate is not particularly limited, mountain sand, river sand, lime sand and the like can be used. The high Ca ion-containing aqueous solution is particularly limited in the present invention, and will be described below. In addition, in the present plaster material, in addition to the above components, hemp fibers and straw fibers generally used in plaster, adhesives obtained from herbs and seaweeds, or adhesives made of synthetic resins can be used. .
公開されているデータ(例えば、http://www.takenet-eco.co.jp/pages/jitsurei/sokai_senjo.html、http://www.questions.gr.jp/chem/odoroki1.htm)によると、生石灰(CaO)や消石灰(Ca(OH)2)は、重量百分率濃度で純水に0.2%程度溶解するとされる。本発明においては、CaOやCa(OH)2が0.2%よりもさらに多く溶解したものを使用する。このため、例えば、先ずCaOを溶解させやすい酢酸水溶液などに溶解させた原液を製造する。そして、これを水に希釈した水溶液を製造し、この水溶液を生石灰、細骨材などの漆喰材料に加えて混練を行う。この混練に使用される水溶液は、Caイオンが高い濃度で存在する。このため、本発明においては、高Caイオン含有水溶液と呼ぶ。すなわち、本発明においては、高Caイオン含有水溶液を使用して漆喰材料の混練を行う。なお、水は特に限定されず、上水、イオン水又は純水などいずれであってもよい。 According to published data (eg http://www.takenet-eco.co.jp/pages/jitsurei/sokai_senjo.html, http://www.questions.gr.jp/chem/odoroki1.htm) Quick lime (CaO) and slaked lime (Ca (OH) 2 ) are said to be dissolved in pure water at a concentration of about 0.2% by weight. In the present invention, a solution in which CaO or Ca (OH) 2 is dissolved more than 0.2% is used. For this reason, for example, first, a stock solution in which CaO is easily dissolved in an acetic acid aqueous solution or the like is prepared. And the aqueous solution which diluted this in water is manufactured, this aqueous solution is added to plaster materials, such as quicklime and a fine aggregate, and knead | mixing is performed. The aqueous solution used for this kneading has a high concentration of Ca ions. For this reason, in this invention, it calls the high Ca ion containing aqueous solution. That is, in the present invention, the stucco material is kneaded using a high Ca ion-containing aqueous solution. In addition, water is not specifically limited, Any may be clean water, ionic water, or pure water.
高Caイオン含有水溶液は、例えば、10%酢酸水溶液を用いると重量百分率濃度でCaOを常温で2%程度溶解させることができる。本発明においては、CaO及び/又はCa(OH)2を0.6〜2.0%溶解させた高Caイオン含有水溶液を使用するのが好ましい。なお、CaOやCa(OH)2の溶解が困難である場合は、炭酸水素ナトリウム(NaHCO3)を添加することができる。また、酢酸水溶液以外にクエン酸水溶液、ギ酸水溶液などの酸性水溶液を用いて、CaO及び/又はCa(OH)2を溶解させてもよい。但し、溶解能力等を考えれば酢酸水溶液が好ましい。また、使用に際し、高Caイオン含有水溶液のpHを調整することもできる。 As the high Ca ion-containing aqueous solution, for example, when a 10% aqueous acetic acid solution is used, CaO can be dissolved at about 2% at a normal temperature at a weight percentage concentration. In the present invention, it is preferable to use a high Ca ion-containing aqueous solution in which CaO and / or Ca (OH) 2 is dissolved by 0.6 to 2.0%. In addition, when it is difficult to dissolve CaO or Ca (OH) 2 , sodium hydrogen carbonate (NaHCO 3 ) can be added. In addition to the aqueous acetic acid solution, CaO and / or Ca (OH) 2 may be dissolved using an acidic aqueous solution such as an aqueous citric acid solution or an aqueous formic acid solution. However, an aqueous acetic acid solution is preferable in view of dissolution ability and the like. In use, the pH of the high Ca ion-containing aqueous solution can be adjusted.
高Caイオン含有水溶液の製造の際に使用するCaO及び/又はCa(OH)2は、特定のCaO及び/又はCa(OH)2に限定されるものではなく、後述の実施例で示すように900〜1200℃で焼成したカキ殻粉末を使用することができる。カキ殻に代え、他の貝殻を焼成し使用することもできる。 CaO and / or Ca (OH) 2 used in the production of a high Ca ion-containing aqueous solution is not limited to specific CaO and / or Ca (OH) 2 , as shown in the examples below. Oyster shell powder fired at 900-1200 ° C. can be used. Instead of oyster shells, other shells can be fired and used.
本漆喰材料は、生石灰や細骨材等の成分及び高Caイオン含有水溶液を個別に在庫しておき、使用時にこれらを混練して使用するものであってもよく、また、予め生石灰や細骨材等の成分と高Caイオン含有水溶液を加えたものであってもよい。なお、予め生石灰や細骨材等の成分と高Caイオン含有水溶液を加えたものは、気密に梱包して保管され、使用時に練り直したうえで使用される。 This plaster material may be prepared by separately stocking components such as quick lime and fine aggregate and an aqueous solution containing high Ca ions, and kneading them at the time of use. What added components, such as material, and the high Ca ion containing aqueous solution may be used. In addition, what added components, such as quick lime and a fine aggregate, and high Ca ion containing aqueous solution previously, is airtightly packed and stored, and is used after re-kneading at the time of use.
生石灰及び細骨材に高Caイオン含有水溶液を加えて混練を行った漆喰から漆喰試験体を作製し、強度試験、剥落試験、フロー試験及び乾燥収縮試験を行った。試験に使用した生石灰及び石灰製砂は中山石灰工業株式会社製のものを使用した。生石灰は、粒度が0.15mm以下で組成は表1の通りであった。石灰製砂は粒度が2.5mm以下であった。細骨材は、中国産の山砂を使用した。細骨材の量は、重量で生石灰100部に対して358部であった。なお、剥落試験の場合は、細骨材に石灰製砂を使用した漆喰材料から作製した漆喰試験体についても剥落試験を行った。 A stucco specimen was prepared from stucco obtained by adding a high Ca ion-containing aqueous solution to quicklime and fine aggregate, and subjected to a strength test, a peel test, a flow test, and a drying shrinkage test. The quicklime and lime sand used in the test were those manufactured by Nakayama Lime Industry Co., Ltd. Quick lime had a particle size of 0.15 mm or less and the composition was as shown in Table 1. Lime sand had a particle size of 2.5 mm or less. The fine aggregate was Chinese mountain sand. The amount of fine aggregate was 358 parts by weight with respect to 100 parts quicklime. In the case of a peeling test, a peeling test was also performed on a stucco specimen prepared from a stucco material using lime sand as a fine aggregate.
高Caイオン含有水溶液は以下のように作製した。すなわち、酢酸(和光純薬工業株式会社製一級、コードNo.014-00266)100gを900gの純水に加えた酢酸水溶液(10%濃度)にカキ殻を1200℃で焼成して得られた白色の粉末20gを加えて完全に溶解させた。この溶液を半日放置した後に上澄み液を採取し、これを原液として各純水に加え所定のCaイオン水濃度の高Caイオン含有水溶液を作製した。ここで、高Caイオン含有水溶液について、例えば、1%Caイオン水濃度とは、高Caイオン含有水溶液100g中にカキ殻焼成粉末が1g溶解しているものをいう。なお、本試験においては、高Caイオン含有水溶液の量が漆喰にどのような影響を与えるかを調べるために、生石灰100部に対し100部、110部、120部、130部の各種に変えた高Caイオン含有水溶液を作製して混練を行い、作製した漆喰試験体に対し種々の試験を行った。CaO粉末は、市販のCaO粉末を使用することができる。また、カキ殻の焼成温度は、900〜1200℃とすることができる。カキ殻を1200℃で焼成して得られた白色の粉末の成分分析結果を表2に示す。 A high Ca ion-containing aqueous solution was prepared as follows. That is, white obtained by baking oyster shells at 1200 ° C. in an acetic acid aqueous solution (10% concentration) in which 100 g of acetic acid (first grade manufactured by Wako Pure Chemical Industries, Ltd., code No.014-00266) was added to 900 g of pure water. 20 g of the powder was added and completely dissolved. After allowing this solution to stand for half a day, a supernatant was collected and added to each pure water as a stock solution to prepare a high Ca ion-containing aqueous solution having a predetermined Ca ion water concentration. Here, for the high Ca ion-containing aqueous solution, for example, the 1% Ca ion water concentration means that 1 g of oyster shell calcined powder is dissolved in 100 g of the high Ca ion-containing aqueous solution. In addition, in this test, in order to investigate how the amount of high Ca ion-containing aqueous solution affects stucco, it was changed to 100 parts, 110 parts, 120 parts, and 130 parts for 100 parts of quicklime. A high Ca ion-containing aqueous solution was prepared and kneaded, and various tests were performed on the prepared plaster specimen. A commercially available CaO powder can be used as the CaO powder. Moreover, the baking temperature of oyster shell can be 900-1200 degreeC. Table 2 shows the component analysis results of the white powder obtained by baking oyster shells at 1200 ° C.
<強度試験>
強度試験の結果を図1〜図3に示す。図1は、漆喰試験体の曲げ強度試験及び圧縮強度試験を行った結果のグラフである。漆喰試験体は、生石灰100部に対し、Caイオン水濃度を各種変えた高Caイオン含有水溶液120部を用いて混練を行った漆喰から作製したものの28日又は90日間養生した後のものである。図1において、横軸はCaイオン水濃度、縦軸は曲げ強度又は圧縮強度を示す。図中のパラメータのB120-90とは、高Caイオン含有水溶液が120部、90日養生(材齢)の漆喰試験体の曲げ強度を示す。C120-90とは、高Caイオン含有水溶液が120部、材齢が90日の漆喰試験体の圧縮強度を示す。曲げ漆喰試験体の形状は、40×40×160mmの角柱状、圧縮漆喰試験体の形状はφ50mm×100mmの円柱状であった。養生は、気中養生で行った。漆喰試験体の作製、曲げ強度試験と圧縮強度試験及び中性化試験は、JISA1171(ポリマーセメントモルタルの試験方法)に準じた方法で行った。
<Strength test>
The results of the strength test are shown in FIGS. FIG. 1 is a graph showing the results of a bending strength test and a compressive strength test of a plaster specimen. The stucco specimen was prepared from stucco kneaded using 120 parts of a high Ca ion-containing aqueous solution with various changes in Ca ion water concentration for 100 parts of quicklime, and after curing for 28 days or 90 days. . In FIG. 1, the horizontal axis represents Ca ion water concentration, and the vertical axis represents bending strength or compressive strength. The parameter B120-90 in the figure indicates the bending strength of a stucco specimen with 120 parts of a high Ca ion-containing aqueous solution and a 90-day curing (age). C120-90 refers to the compressive strength of a stucco specimen with a high Ca ion-containing aqueous solution of 120 parts and an age of 90 days. The shape of the bent stucco specimen was 40 × 40 × 160 mm prismatic, and the shape of the compression stucco specimen was φ50 mm × 100 mm cylindrical. Curing was done by air curing. The preparation of the stucco specimen, the bending strength test, the compressive strength test, and the neutralization test were performed in accordance with JIS A1171 (Test method for polymer cement mortar).
図1によると、曲げ強度及び圧縮強度ともCaイオン水濃度が高くなるほど大きく、曲げ強度及び圧縮強度は概してCaイオン水濃度に比例しているように観察される。しかしながら、曲げ強度曲線及び圧縮強度曲線を詳しく観察すると、材齢が90日の場合、曲げ強度曲線は、Caイオン水濃度が0.6%〜1.2%の範囲で階段状に上昇しており、1.2%を越えるとほぼ水平状になっている。圧縮強度曲線は、1.0%Caイオン水濃度で曲線の勾配が大きくなるが全体としてほぼ直線状をしている。しかし、1.6%を越えると勾配が小さくなっており、2.0%又は2.0%を越えると曲げ強度曲線のように水平になることも予想させる。一方、材齢が28日の場合は、2.0%Caイオン水濃度においても曲げ強度曲線及び圧縮強度曲線は右肩上がり状態であり、一定値になるようには観察されない。 According to FIG. 1, both the bending strength and the compressive strength increase as the Ca ion water concentration increases, and the bending strength and the compressive strength are generally observed to be proportional to the Ca ion water concentration. However, when observing the bending strength curve and compressive strength curve in detail, when the age is 90 days, the bending strength curve rises stepwise in the range of Ca ion water concentration from 0.6% to 1.2%, 1.2% It is almost horizontal when crossing over. The compressive strength curve is almost linear as a whole although the slope of the curve increases at 1.0% Ca ion water concentration. However, the slope becomes smaller when it exceeds 1.6%, and when it exceeds 2.0% or 2.0%, it is expected to become horizontal like a bending strength curve. On the other hand, when the age is 28 days, the bending strength curve and the compressive strength curve are in a rising state even at 2.0% Ca ion water concentration, and are not observed to be constant values.
図1において、B120-90とB120-28の曲げ強度曲線を比較すると、概してB120-28曲線はB120-90曲線が右側にずれた形状をしている。例えば、B120-90曲線はCaイオン水濃度が1.0%の場合に1MPaとなり、B120-28曲線は1.2%Caイオン水濃度で1MPaとなる。すなわち、Caイオン水濃度を調整することにより漆喰試験体の強度発現性を向上させることができることが分かる。 In FIG. 1, when the bending strength curves of B120-90 and B120-28 are compared, the B120-28 curve is generally shaped such that the B120-90 curve is shifted to the right. For example, the B120-90 curve is 1 MPa when the Ca ion water concentration is 1.0%, and the B120-28 curve is 1 MPa at the 1.2% Ca ion water concentration. That is, it can be seen that the strength development of the stucco specimen can be improved by adjusting the Ca ion water concentration.
また、曲げ強度について、B120-28の場合は0%Caイオン水濃度において0.2MPa、B120-90の場合は0.4MPaである。これに対し、2.0%Caイオン水濃度において、B120-28の場合は2MPa、B120-90の場合は2.45MPaである。すなわち、本発明によればCaイオン水濃度を調整することにより曲げ強度を5〜10倍程度向上させることができる。一方、圧縮強度は、0%Caイオン水濃度においてB120-28の場合は0.65MPa、B120-90の場合は1.0MPaであり、2.0%Caイオン水濃度においてB120-28の場合は2.7MPa、B120-90の場合は4.8MPaである。また、本発明によればCaイオン水濃度を調整することにより圧縮強度を5倍程度向上させることができる。 The bending strength is 0.2 MPa at 0% Ca ion water concentration for B120-28 and 0.4 MPa for B120-90. On the other hand, at a 2.0% Ca ion water concentration, it is 2 MPa for B120-28 and 2.45 MPa for B120-90. That is, according to the present invention, the bending strength can be improved about 5 to 10 times by adjusting the Ca ion water concentration. On the other hand, the compressive strength is 0.65 MPa for B120-28 at 0% Ca ion water concentration, 1.0 MPa for B120-90, and 2.7 MPa for B120-28 at 2.0% Ca ion water concentration, B120 In case of -90, it is 4.8MPa. Further, according to the present invention, the compressive strength can be improved by about 5 times by adjusting the Ca ion water concentration.
本発明によるこのような漆喰試験体の強度発現性又は強度の向上は、本発明においては漆喰中のカルシウム(Ca)成分の炭酸化、すなわちCaCO3の形成が促進されることと関係があると推測される。この漆喰中のCa成分の炭酸化について、以下に説明する。図2は、図1に示す強度試験を行った漆喰試験体(B120-90の0.6%Caイオン水濃度)の試験後の破断面をフェノールフタレインの1%アルコール溶液に浸したもの(中性化試験)の写真である。図2に示されるように、漆喰試験体の断面中央部に円形状の赤色部(一点鎖線で囲まれた部分)があり、縁部はうすい僅かに赤みがかった岩石状の破断面をしている。すなわち、漆喰試験体の中心部は、Ca(OH)2のままの(未だCaCO3化、炭酸化していない)部分であり、縁部は炭酸化していることが分かる。この炭酸化部分の面積(S)と断面の全面積(S0)との比を炭酸化率とし、漆喰試験体の炭酸化率とCaイオン水濃度との関係を示したグラフを図3に示す。 The improvement in strength or strength of such a plaster specimen according to the present invention is related to the fact that in the present invention, the carbonation of the calcium (Ca) component in the plaster, that is, the formation of CaCO 3 is promoted. Guessed. The carbonation of the Ca component in the plaster will be described below. Fig. 2 shows the fracture surface of the plaster specimen (0.6% Ca ionic water concentration of B120-90) subjected to the strength test shown in Fig. 1 immersed in a 1% alcohol solution of phenolphthalein (neutral) It is a photograph of a chemical conversion test. As shown in FIG. 2, there is a circular red portion (a portion surrounded by an alternate long and short dash line) in the center of the cross section of the plaster specimen, and the edge has a slightly reddish rock-like fracture surface. . That is, it can be seen that the central part of the plaster specimen is a part that remains Ca (OH) 2 (not yet CaCO 3 or carbonized), and the edge is carbonated. The ratio between the area of carbonation (S) and the total area (S 0 ) of the cross section is defined as the carbonation rate, and a graph showing the relationship between the carbonation rate of the plaster specimen and the Ca ion water concentration is shown in FIG. Show.
図3は、横軸がCaイオン水濃度、縦軸が炭酸化率を示す。図3において、パラメータは、高Caイオン含有水溶液の量と材齢を示す。例えば、120-28曲線は、生石灰100部に対して高Caイオン含有水溶液が120部、材齢が28日の漆喰試験体の炭酸化率を示す。図3によると、各炭酸化率曲線はいずれもほぼ勾配が同じ直線状をしており、炭酸化率はCaイオン水濃度と比例関係を有していることが分かる。また、120-28曲線の場合は2.0%Caイオン水濃度で100%炭酸化率、120-90曲線の場合は0.6%Caイオン水濃度で100%炭酸化率になることが分かる。 In FIG. 3, the horizontal axis represents the Ca ion water concentration, and the vertical axis represents the carbonation rate. In FIG. 3, the parameters indicate the amount and age of the high Ca ion-containing aqueous solution. For example, the 120-28 curve shows the carbonation rate of a stucco specimen with 120 parts of a high Ca ion-containing aqueous solution and a material age of 28 days with respect to 100 parts of quicklime. According to FIG. 3, each carbonation rate curve is linear with almost the same gradient, and it can be seen that the carbonation rate is proportional to the Ca ion water concentration. It can also be seen that the 120-28 curve has a 100% carbonation rate at 2.0% Ca ionic water concentration, and the 120-90 curve has a 100% carbonation rate at 0.6% Ca ionic water concentration.
図4は、図1及び図3のデータを基に、材齢90日の曲げ強度及び圧縮強度と炭酸化率との関係を示したグラフである。図4において、横軸はCaイオン水濃度、縦軸は炭酸化率、曲げ強度又は圧縮強度を示す。図4によると、曲げ強度曲線及び圧縮強度曲線は0〜1.0%Caイオン水濃度の範囲において直線状であり、炭酸化率曲線は0〜0.6%のCaイオン水濃度範囲において直線状で0.6%Caイオン水濃度で100%に達している。これらの曲線を比較すると、曲げ強度又は圧縮強度は炭酸化率と比例関係があるといえ、曲げ強度曲線及び圧縮強度曲線の勾配は、炭酸化率曲線の勾配より小さい。また、曲げ強度及び圧縮強度は、炭酸化率が100%に達した0.6%以上のCaイオン水濃度においてもなお増大していることが分かる。 FIG. 4 is a graph showing the relationship between the bending strength and compressive strength of 90 days of age and the carbonation rate based on the data of FIGS. 1 and 3. In FIG. 4, the horizontal axis represents the Ca ion water concentration, and the vertical axis represents the carbonation rate, bending strength, or compressive strength. According to FIG. 4, the bending strength curve and the compressive strength curve are linear in the range of 0 to 1.0% Ca ionic water concentration, and the carbonation rate curve is linear in the Ca ionic water concentration range of 0 to 0.6%. The Ca ion water concentration reaches 100%. When these curves are compared, it can be said that the bending strength or compressive strength is proportional to the carbonation rate, and the slope of the bending strength curve and the compressive strength curve is smaller than the slope of the carbonation rate curve. Further, it can be seen that the bending strength and compressive strength are still increased even at a Ca ion water concentration of 0.6% or more at which the carbonation rate reached 100%.
図5は、生石灰100部に対して、110部、120部又は130部の高Caイオン含有水溶液を用いて混練を行った漆喰から作製した漆喰試験体であって、材齢90日の漆喰試験体の曲げ強度試験の結果を示す。図5において、横軸はCaイオン水濃度、縦軸は曲げ強度、パラメータは図1と同様の表示を示す。図5によると、B110-90及びB120-90の曲げ強度曲線は、ともに1.4%以上のCaイオン水濃度においてほぼ一定値となり、その値は、B110-90曲線の場合は5MPa、B120-90曲線の場合は3MPaである。これに対し、B130-90の曲げ強度曲線は0〜2.0%Caイオン水濃度において、右肩上がりのほぼ直線状であり、曲げ強度は2.0%Caイオン水濃度において2MPaである。これらの曲げ強度曲線を比較すると、本漆喰材料において高Caイオン含有水溶液の量は使用目的に応じて最適な量があることが推測される。 FIG. 5 is a stucco test specimen prepared from a stucco kneaded using 100 parts, 120 parts or 130 parts of a high Ca ion-containing aqueous solution with respect to 100 parts of quicklime, and a stucco test at an age of 90 days The result of the bending strength test of a body is shown. In FIG. 5, the horizontal axis indicates the Ca ion water concentration, the vertical axis indicates the bending strength, and the parameters indicate the same display as in FIG. According to Fig. 5, the bending strength curves of B110-90 and B120-90 are almost constant at Ca ion water concentration of 1.4% or more, and the values are 5MPa and B120-90 curves for B110-90 curve. In the case of 3MPa. On the other hand, the bending strength curve of B130-90 is almost straight in the range of 0 to 2.0% Ca ionic water, and the bending strength is 2 MPa at 2.0% Ca ionic water. Comparing these bending strength curves, it is presumed that the amount of the high Ca ion-containing aqueous solution in the present plaster material has an optimum amount depending on the purpose of use.
<剥落試験>
剥落試験は、剥落試験体に剪断荷重を負荷し、その両面に塗布された漆喰が剥落したときの剪断荷重の大きさ(剥落荷重)を求めることにより行った。
剥落試験体は、図6に示すように、板材2350×250mm×50mmの両表面に幅30mm×厚さ15mmの角材を45mmのピッチで打ち付けて格子状にした芯材の両表面に厚さ20mmの漆喰を塗布したものを用いた。この剥落試験体に図7に示すように荷重を250N刻みに負荷し、ひび割れが生じた荷重を剥落荷重とした。
<Peeling test>
The exfoliation test was performed by applying a shear load to the exfoliation test body and determining the magnitude of the shear load (exfoliation load) when the plaster applied on both sides thereof was exfoliated.
As shown in FIG. 6, the peel test specimen is 20 mm thick on both surfaces of a core material formed by striking a square material of 30 mm width × 15 mm thickness at a pitch of 45 mm on both surfaces of 2350 × 250 mm × 50 mm plate material. The thing which applied the plaster of was used. As shown in FIG. 7, a load was applied to the peel test body in increments of 250 N, and the load at which cracks occurred was defined as the peel load.
剥落試験の結果を図8に示す。図8において、横軸はCaイオン水濃度、縦軸は剥落荷重、パラメータは高Caイオン含有水溶液の量を示す。110−石灰製砂と有るのは、生石灰100部、山砂の代わりに石灰製砂358部、高Caイオン含有水溶液110部を用いて混練を行った漆喰から作製した剥落試験体の剥落試験結果を示す。各剥落試験体の材齢は、28日である。図8によると、剥落荷重はCaイオン水濃度にほぼ比例しており、本発明によればCaイオン水濃度を調整することにより漆器壁の表面強度、剥落強度を高めることができることが分かる。また、高Caイオン含有水溶液の量の影響は曲げ強度の場合と異なり明確でない。110−石灰製砂曲線は、図の上側(高剥落荷重側)にあり、0%Caイオン水濃度でも高い剥落荷重を有していることが分かる。 The result of the peeling test is shown in FIG. In FIG. 8, the horizontal axis represents the Ca ion water concentration, the vertical axis represents the peeling load, and the parameter represents the amount of the high Ca ion-containing aqueous solution. 110-Lime sand has 100 parts of quick lime, 358 parts of lime sand instead of mountain sand, 110% of test specimens made of exfoliated specimens prepared from plaster kneaded using 110 parts of high Ca ion-containing aqueous solution Indicates. The age of each test specimen is 28 days. According to FIG. 8, it can be seen that the peeling load is substantially proportional to the Ca ion water concentration, and according to the present invention, the surface strength and the peeling strength of the lacquer ware wall can be increased by adjusting the Ca ion water concentration. Also, the effect of the amount of the high Ca ion-containing aqueous solution is not clear unlike the bending strength. It can be seen that the 110-lime sand curve is on the upper side (high peel load side) of the figure and has a high peel load even at 0% Ca ion water concentration.
<フロー試験>
フロー試験は、JISR5201(セメントの物理試験方法)のフロー試験に基づいて行った。生石灰100部に対し、高Caイオン含有水溶液120部を用いて混練を行った漆喰のフロー試験を図9に示す。図9において、横軸はCaイオン水濃度、縦軸はフロー量、パラメータは落下運動付与前(S)と落下運動付与後(E)のフロー量を示す。図9に示すように、フロー量はCaイオン水濃度に比例しているように観察されるが、少なくともフロー量は低Caイオン水濃度よりも高Caイオン水濃度で高くなっていることが分かる。
<Flow test>
The flow test was performed based on the flow test of JISR5201 (cement physical test method). FIG. 9 shows a flow test of stucco kneaded with 120 parts of a high Ca ion-containing aqueous solution for 100 parts of quicklime. In FIG. 9, the horizontal axis represents the Ca ion water concentration, the vertical axis represents the flow amount, and the parameters represent the flow amount before applying the drop motion (S) and after applying the drop motion (E). As shown in FIG. 9, the flow amount is observed to be proportional to the Ca ion water concentration, but at least the flow amount is higher at the high Ca ion water concentration than the low Ca ion water concentration. .
<乾燥収縮試験>
乾燥収縮試験は、40×40×160mmの角柱状の試験体に埋め込んだ金属チップの間隔をコンタクトゲージで計測し、その経時変化(乾燥収縮量)を求めることにより行った。生石灰100部に対し、高Caイオン含有水溶液120部を用いて混練を行った漆喰の乾燥収縮試験結果を図10に示す。図10において、横軸は材齢、縦軸は乾燥収縮量、パラメータはCaイオン水濃度を示す。図10によると、0〜2.0%Caイオン水濃度において、乾燥収縮量は10日材齢以降一定になることが分かる。また、Caイオン水濃度が高いほど乾燥収縮量は大きく、乾燥収縮量が一定値となる材齢日数は長くなることが分かる。
<Drying shrinkage test>
The drying shrinkage test was performed by measuring the interval between metal chips embedded in a 40 × 40 × 160 mm prismatic specimen with a contact gauge and determining the change with time (dry shrinkage). FIG. 10 shows the results of a dry shrinkage test of plaster kneaded with 100 parts of quicklime using 120 parts of a high Ca ion-containing aqueous solution. In FIG. 10, the horizontal axis indicates the age of the material, the vertical axis indicates the amount of drying shrinkage, and the parameter indicates the Ca ion water concentration. According to FIG. 10, it can be seen that the drying shrinkage amount becomes constant after 10 days of age at 0 to 2.0% Ca ion water concentration. It can also be seen that the higher the Ca ion water concentration, the greater the amount of drying shrinkage, and the longer the age of the material at which the amount of drying shrinkage becomes a constant value.
Claims (7)
生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料と高Caイオン含有水溶液とを混練することを特徴とする漆喰の製造方法。 A method for producing stucco with excellent strength development,
A method for producing stucco, characterized by kneading a stucco material mainly composed of quicklime and / or slaked lime and fine aggregates and a high Ca ion-containing aqueous solution.
生石灰及び/又は消石灰、細骨材を主要成分とする漆喰材料と高Caイオン含有水溶液とを混練することを特徴とする漆喰の製造方法。 A method for producing stucco with increased strength,
A method for producing stucco, characterized by kneading a stucco material mainly composed of quicklime and / or slaked lime and fine aggregates and a high Ca ion-containing aqueous solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010274557A JP4843733B1 (en) | 2010-12-09 | 2010-12-09 | Stucco material and method for producing stucco |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010274557A JP4843733B1 (en) | 2010-12-09 | 2010-12-09 | Stucco material and method for producing stucco |
Publications (2)
Publication Number | Publication Date |
---|---|
JP4843733B1 true JP4843733B1 (en) | 2011-12-21 |
JP2012121770A JP2012121770A (en) | 2012-06-28 |
Family
ID=45475253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010274557A Active JP4843733B1 (en) | 2010-12-09 | 2010-12-09 | Stucco material and method for producing stucco |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4843733B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0654537A (en) * | 1992-07-28 | 1994-02-25 | Matsushita Electric Works Ltd | Rectifier |
WO2013168673A1 (en) * | 2012-05-07 | 2013-11-14 | 学校法人近畿大学 | Plaster material, adsorbent material obtained from plaster material, and method for purifying contaminated water or contaminated solid object using adsorbent material |
JP2013234562A (en) * | 2012-04-11 | 2013-11-21 | Kinki Univ | HIGH-Ca POLYMER SOLUTION, METHOD FOR PRODUCING HIGH-Ca POLYMER SOLUTION AND PLASTER MATERIAL USING HIGH-Ca POLYMER SOLUTION, AND METHOD FOR PRODUCING PLASTER AND PLASTER APPLICATION METHOD |
JP2018140894A (en) * | 2017-02-28 | 2018-09-13 | 株式会社瀬戸漆喰本舗 | Plaster, plaster panel, and its manufacturing method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6273564B2 (en) * | 2013-02-08 | 2018-02-07 | 卓夫 下田 | Wall coating material using shells |
JP2017024977A (en) * | 2015-07-15 | 2017-02-02 | 株式会社瀬戸漆喰本舗 | Plaster material, manufacturing method of plaster material and manufacturing method of plaster hardening body |
JP6524857B2 (en) * | 2015-08-24 | 2019-06-05 | 株式会社瀬戸漆喰本舗 | Stucco material, plaster and plaster panel |
JP6524976B2 (en) * | 2016-06-30 | 2019-06-05 | 株式会社瀬戸漆喰本舗 | Production method of plaster, plaster panel and plaster panel |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222458A (en) * | 2007-03-08 | 2008-09-25 | Hiroshima Industrial Promotion Organization | Method of preparing calcium ion water, and cement hardened body and method of manufacturing the same |
-
2010
- 2010-12-09 JP JP2010274557A patent/JP4843733B1/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008222458A (en) * | 2007-03-08 | 2008-09-25 | Hiroshima Industrial Promotion Organization | Method of preparing calcium ion water, and cement hardened body and method of manufacturing the same |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0654537A (en) * | 1992-07-28 | 1994-02-25 | Matsushita Electric Works Ltd | Rectifier |
JP2013234562A (en) * | 2012-04-11 | 2013-11-21 | Kinki Univ | HIGH-Ca POLYMER SOLUTION, METHOD FOR PRODUCING HIGH-Ca POLYMER SOLUTION AND PLASTER MATERIAL USING HIGH-Ca POLYMER SOLUTION, AND METHOD FOR PRODUCING PLASTER AND PLASTER APPLICATION METHOD |
WO2013168673A1 (en) * | 2012-05-07 | 2013-11-14 | 学校法人近畿大学 | Plaster material, adsorbent material obtained from plaster material, and method for purifying contaminated water or contaminated solid object using adsorbent material |
JPWO2013168673A1 (en) * | 2012-05-07 | 2016-01-07 | 学校法人近畿大学 | Stucco material, adsorbent using stucco material, contaminated water and adsorbent purification method using adsorbent |
JP2018140894A (en) * | 2017-02-28 | 2018-09-13 | 株式会社瀬戸漆喰本舗 | Plaster, plaster panel, and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2012121770A (en) | 2012-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4843733B1 (en) | Stucco material and method for producing stucco | |
Alvarez et al. | RILEM TC 277-LHS report: a review on the mechanisms of setting and hardening of lime-based binding systems | |
Silva et al. | Influence of natural hydraulic lime content on the properties of aerial lime-based mortars | |
JP5931317B2 (en) | Hydraulic composition and concrete using the hydraulic composition | |
JP2011520753A (en) | Durable magnesium oxychloride cement and method therefor | |
JP4911580B2 (en) | Low specific gravity lightweight foam concrete and method for producing the same | |
JP2019085304A (en) | Non-shrinkage grout composition, and non-shrinkage grout material | |
Jannat et al. | Influences of agro-wastes on the physico-mechanical and durability properties of unfired clay blocks | |
CN110066160B (en) | Artificial granite composite magnesium oxysulfate cementing material and preparation method and application thereof | |
CN104926165A (en) | Carbonation-resistant basic magnesium sulfate cement and preparation method thereof | |
Sainudin et al. | Performance of concrete containing mussel shell (Perna viridis) ash under effect of sodium chloride curing | |
Bostancı et al. | Effect of various curing methods and addition of silica aerogel on mortar properties | |
Nikhila et al. | Partial replacement of cement with metakaolin in high strength concrete | |
Rashad et al. | Accelerated aging resistance, abrasion resistance and other properties of alkali-activated slag mortars containing limestone powder | |
JP6524857B2 (en) | Stucco material, plaster and plaster panel | |
JP6524976B2 (en) | Production method of plaster, plaster panel and plaster panel | |
RU2428390C1 (en) | Magnesia cement | |
RU2564429C1 (en) | Raw mix for obtaining of plaster materials | |
RU2371411C1 (en) | Mortar | |
JP2017024977A (en) | Plaster material, manufacturing method of plaster material and manufacturing method of plaster hardening body | |
JP6974819B2 (en) | Stucco, plaster panel and manufacturing method of plaster panel | |
RU2485066C1 (en) | Building mortar | |
Govindarajan et al. | Influence of different types of water on strength, porosity and hydric parameters of metakaolin admixtured cement | |
RU2478593C1 (en) | Mortar | |
JP2006306655A (en) | Method for suppressing deterioration of mortar or concrete |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110922 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111007 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4843733 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20161014 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |