JP2021165220A - Manufacturing method of light-weight cellular concrete - Google Patents

Manufacturing method of light-weight cellular concrete Download PDF

Info

Publication number
JP2021165220A
JP2021165220A JP2020069957A JP2020069957A JP2021165220A JP 2021165220 A JP2021165220 A JP 2021165220A JP 2020069957 A JP2020069957 A JP 2020069957A JP 2020069957 A JP2020069957 A JP 2020069957A JP 2021165220 A JP2021165220 A JP 2021165220A
Authority
JP
Japan
Prior art keywords
raw material
tile
mass
selben
alc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020069957A
Other languages
Japanese (ja)
Inventor
隆臣 日置
Takaomi Hioki
公一 今澤
Koichi Imazawa
昌利 堀口
Masatoshi Horiguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Siporex KK
Original Assignee
Sumitomo Metal Mining Siporex KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Siporex KK filed Critical Sumitomo Metal Mining Siporex KK
Priority to JP2020069957A priority Critical patent/JP2021165220A/en
Publication of JP2021165220A publication Critical patent/JP2021165220A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

To provide an ALC having excellent dry shrinkage.SOLUTION: In a manufacturing method of a light-weight cellular concrete by adding water and an aluminum powder to a solid raw material obtained by blending a siliceous raw material, calcareous raw material, and a tile potsherd with preferably a content of SiO2 of 70 mass% or over to form a semi-hardened body, followed by water-vapor curing the semi-hardened body at a high temperature under a high pressure, a sum total of 100 pts.mass of the siliceous raw material and the tile potsherd includes 20-60 pts.mass of the tile potsherd.SELECTED DRAWING: None

Description

本発明は、建築物の壁、屋根、床などに使用される軽量気泡コンクリートの製造方法に関する。 The present invention relates to a method for producing lightweight cellular concrete used for walls, roofs, floors, etc. of buildings.

ALC(Autoclaved Lightweight aerated Concrete)とも称される軽量気泡コンクリートは、内部に気泡や細孔を含むため、絶乾かさ比重0.5程度と非常に軽量でありながら比較的高い強度を有しており、建築物の壁、屋根、床などの建築部材として広く利用されている。上記のALCの優れた特性は、その製造段階において原料をオートクレーブに装入して高温高圧条件下で水蒸気養生することで発現しており、具体的には該水蒸気養生過程において、珪酸を高品位で含む珪石等の珪酸質原料とセメントや生石灰等の石灰質原料とから、珪酸カルシウム水和物のトバモライトからなる高強度の多孔質材料が生成される。 Lightweight aerated concrete, also known as ALC (Autoclaved Lightweight aerated Concrete), contains air bubbles and pores inside, so it is extremely lightweight with an absolute dryness specific gravity of about 0.5, but has relatively high strength. It is widely used as a building member for walls, roofs, floors, etc. of buildings. The above-mentioned excellent characteristics of ALC are exhibited by charging the raw material into an autoclave at the manufacturing stage and steam curing under high temperature and high pressure conditions. Specifically, in the steam curing process, silicic acid is of high quality. A high-strength porous material made of tovamorite, which is a calcium silicate hydrate, is produced from a siliceous raw material such as silica stone contained in the above and a calcareous raw material such as cement and fresh lime.

ところで、ALC向け原料珪石は鉱床の枯渇等により、全国的に資源枯渇が進んでいるうえ、環境問題に対する関心の高さも相まって、近年は採取が除々に規制される傾向にある。その対策として、再生原料や産業副産物の使用が積極的に研究されており、珪石の代替品の候補としてタイルセルベンが適していることが報告されている。タイルセルべンは、ガラス、陶器製品、磁器製品、碍子などの陶磁器製品を粉砕した形態のセラミックス系リサイクル原料であり、珪酸質を主成分としている。例えば特許文献1には、珪酸質原料のうち5〜20%をタイルセルベンで代替したALCの製造方法が開示されており、ALCの圧縮強度を保持したまま珪酸質原料の使用量を削減できると記載されている。また、特許文献2には、窯業製品を製造する際の非可塑性原料にガラス質廃棄物であるタイルセルベンを配合する技術が開示されている。 By the way, the raw material silica stone for ALC is depleted nationwide due to the depletion of ore deposits, and the collection of silica stone is gradually regulated in recent years due to the high level of interest in environmental problems. As a countermeasure, the use of recycled raw materials and industrial by-products is being actively studied, and it has been reported that tile selben is suitable as a candidate for a substitute for silica stone. Tile selben is a ceramic-based recycled raw material in the form of crushed ceramic products such as glass, ceramic products, porcelain products, and insulators, and contains silicic acid as a main component. For example, Patent Document 1 discloses a method for producing ALC in which 5 to 20% of silicic acid raw materials are replaced with tile selben, and describes that the amount of silicic acid raw materials used can be reduced while maintaining the compressive strength of ALC. Has been done. Further, Patent Document 2 discloses a technique of blending tile selben, which is a vitreous waste, with a non-plastic raw material for producing a ceramic product.

特開2016−169123号公報Japanese Unexamined Patent Publication No. 2016-169123 特開平09−100151号公報Japanese Unexamined Patent Publication No. 09-100151

近年、建築部材にはより耐熱性に優れた部材が求められており、ALCパネルにおいても耐熱性に優れたものに対する需要が高まっている。このような状況のもと、本発明者らはタイルセルベンがトバモライト結晶性に優れている点に着目し、タイルセルベンをALCの原料に配合することでALCの諸物性が向上する可能性があると考え、珪酸質原料の一部をタイルセルベンで代替した原料を用いてALCを製造したところ、ALCの乾燥収縮率を小さくしてひび割れを生じにくくできることを見出し、本発明を完成するに至った。 In recent years, there has been a demand for building members having more excellent heat resistance, and there is an increasing demand for ALC panels having excellent heat resistance. Under such circumstances, the present inventors have focused on the fact that tile selben is excellent in tovamorite crystallinity, and considered that there is a possibility that various physical properties of ALC may be improved by blending tile selben with the raw material of ALC. When ALC was produced using a raw material in which a part of the siliceous raw material was replaced with tile selben, it was found that the drying shrinkage rate of ALC could be reduced to prevent cracking, and the present invention was completed.

すなわち、本発明に係る軽量気泡コンクリートの製造方法は、珪酸質原料、石灰質原料、及びタイルセルベンを配合して得た固体原料に水及びアルミニウム粉末を添加して半硬化体を生成した後、該半硬化体を高温高圧下で水蒸気養生することで軽量気泡コンクリートを製造する方法であって、前記珪酸質原料及び前記タイルセルベンの合計100質量部のうち該タイルセルベンが20〜60質量部を占めるように前記配合を行うことを特徴としている。 That is, in the method for producing lightweight cellular concrete according to the present invention, water and aluminum powder are added to a solid raw material obtained by blending a siliceous raw material, a calcareous raw material, and tile selben to produce a semi-cured product, and then the semi-cured material is produced. A method for producing lightweight cellular concrete by steam curing a cured product under high temperature and high pressure, wherein the tile selben occupies 20 to 60 parts by mass in a total of 100 parts by mass of the siliceous raw material and the tile cerben. It is characterized by blending.

本発明によれば、乾燥収縮率を抑えたALCを提供することが可能になる。 According to the present invention, it is possible to provide an ALC having a suppressed drying shrinkage rate.

様々な種類の珪石を用いて生成したALCのトバモライト面のピーク強度と乾燥収縮率との関係を示すグラフである。It is a graph which shows the relationship between the peak intensity of the tovamorite surface of ALC produced using various kinds of silica stones, and the drying shrinkage rate.

以下、本発明の軽量気泡コンクリート(以下、ALCとも称する)の製造方法の実施形態について説明する。この本発明の実施形態のALCの製造方法は、先ず、主原料としての珪酸質原料粉末及び石灰質原料粉末と、副原料としてのタイルセルベンとを配合して得た固体原料に対して、水及び金属アルミニウム粉末を添加してスラリーを調製し、得られたスラリーを型枠に流し込んで発泡及び硬化させて半硬化体を生成する硬化工程と、該半硬化体をオートクレーブに装入して高温高圧下で水蒸気養生することでALCを生成する養生工程とからなる。 Hereinafter, embodiments of the method for producing lightweight cellular concrete (hereinafter, also referred to as ALC) of the present invention will be described. In the method for producing ALC according to the embodiment of the present invention, first, water and a metal are added to a solid raw material obtained by blending siliceous raw material powder and calcareous raw material powder as main raw materials and tile selben as an auxiliary raw material. A curing step of adding aluminum powder to prepare a slurry, pouring the obtained slurry into a mold, foaming and curing to produce a semi-cured product, and charging the semi-cured product into an autoclave under high temperature and high pressure. It consists of a curing process that produces ALC by steam curing in.

上記の各工程について具体的に説明すると、硬化工程においては、いずれも粉末状の主原料である珪酸質原料及び石灰質原料と、粉末状の副原料であるタイルセルベンとを配合して固体原料を得た後、この固体原料に水及びアルミニウム粉末を加えてスラリーを調製する。上記の珪酸質原料粉末には、例えば、珪石、珪砂、ケイ藻土、チャートなどを用いることができる。一方、石灰質原料粉末には、ポルトランドセメントなどのセメント、生石灰、及び消石灰のうちの1種類以上を用いることができる。 Specifically, each of the above steps will be described in detail. In the curing step, a solid raw material is obtained by blending a powdery main raw material, a siliceous raw material and a calcareous raw material, and a powdery auxiliary raw material, tile cerben. After that, water and aluminum powder are added to this solid raw material to prepare a slurry. As the siliceous raw material powder, for example, silica stone, silica sand, diatomaceous earth, chert and the like can be used. On the other hand, as the calcareous raw material powder, one or more of cement such as Portland cement, quicklime, and slaked lime can be used.

上記固体原料の配合の際、珪酸質原料及びタイルセルベンの合計100質量部のうち、該タイルセルベンが20〜60質量部を占めるように配合する。これにより、最終的に生成されるALCの乾燥収縮率を顕著に小さくすることができる。上記の珪酸質原料の一部を代替するタイルセルベンは、SiOの含有率が70質量%以上であるのが好ましい。これにより、タイルセルベンを用いることによる乾燥収縮率の低減の効果をより確実に得ることができる。 When blending the solid raw material, the tile selben occupies 20 to 60 parts by mass in a total of 100 parts by mass of the siliceous raw material and the tile selben. As a result, the drying shrinkage rate of the finally produced ALC can be significantly reduced. The tile selben that substitutes for a part of the siliceous raw material preferably has a SiO 2 content of 70% by mass or more. As a result, the effect of reducing the drying shrinkage rate by using tile selben can be obtained more reliably.

上記の固形原料の配合では、CaO/SiOのモル比(単にCa/Si比とも称する)が0.3〜0.7程度の範囲内となるように石灰質原料を調整するのが好ましい。その理由は、トバモライトは化学式が5CaO・6SiO・5HOであり、Ca/Si比の理論値は5/6=0.83であるが、ALCの工業生産では、オートクレーブ養生に要する時間を短縮するため、一般的に石灰質原料を上記理論値から求まる量よりも少なめに配合することが好ましいからである。 In the above-mentioned compounding of the solid raw material, it is preferable to adjust the calcareous raw material so that the molar ratio of CaO / SiO 2 (also simply referred to as the Ca / Si ratio) is in the range of about 0.3 to 0.7. The reason is that tobermorite is a chemical formula 5CaO · 6SiO 2 · 5H 2 O , theoretical values of the Ca / Si ratio is a 5/6 = 0.83, in the industrial production of ALC, the time required for autoclave curing This is because it is generally preferable to add a calcareous raw material in a smaller amount than the amount obtained from the above theoretical value in order to shorten the time.

上記のように、石灰質原料を少なめに配合することにより、トバモライトの生成に寄与しなかった未反応分の珪酸質原料やタイルセルベンをALCマトリックス中にそのまま残存させることができるので、それによる骨材としての効果によって強度をより一層高めることも可能になる。なお、アルミニウム粉末は、上記珪酸質原料及びタイルセルベンの合計100質量部に対して0.00073〜0.00077質量部の割合で配合するのが好ましい。また、上記のスラリーには、更に石膏や繊維質物質を添加してもよい。上記のスラリーの調製後は、該スラリーを型枠に流し込んで発泡及び硬化させることで半硬化体が得られる。 As described above, by blending a small amount of calcareous raw material, the unreacted siliceous raw material and tileselben that did not contribute to the formation of tovamorite can be left as they are in the ALC matrix, so that they can be used as aggregates. It is also possible to further increase the strength by the effect of. The aluminum powder is preferably blended in a ratio of 0.0073 to 0.00707 parts by mass with respect to 100 parts by mass of the total of the siliceous raw material and tile selben. Further, gypsum or a fibrous substance may be further added to the above slurry. After the above slurry is prepared, the slurry is poured into a mold to be foamed and cured to obtain a semi-cured product.

次に、養生工程において、上記硬化工程で得た半硬化体に対して、ピアノ線等で例えばパネル状に切断してからオートクレーブに装入し、該オートクレーブ内を好適には160〜260℃の飽和水蒸気雰囲気に保つことで高温高圧下での水蒸気養生(水熱養生とも称する)を行う。これにより、ケイ酸カルシウム水和物のトバモライトが生成し、軽量気泡コンクリートパネルが得られる。次に、実施例を挙げて本発明をより詳細に説明する。 Next, in the curing step, the semi-cured product obtained in the curing step is cut into a panel, for example, with a piano wire or the like, and then charged into an autoclave, and the temperature inside the autoclave is preferably 160 to 260 ° C. By maintaining a saturated steam atmosphere, steam curing (also called hydrothermal curing) is performed under high temperature and high pressure. This produces calcium silicate hydrate tovamorite, resulting in a lightweight cellular concrete panel. Next, the present invention will be described in more detail with reference to examples.

先ず、ALCのトバモライト面のピーク強度と乾燥収縮率との関係を示す検量線を作成するため、ロットの異なる6種類の珪石を用意し、それら珪石の各々に、珪石100質量部に対して、早強ポルトランドセメントを69.9質量部、生石灰を9.7質量部、及び石膏を14.6質量部の配合割合で添加した。得られた6種類の固体原料の各々の100重量部に対して水55重量部を添加し、更に全ての固体原料に同じ量のアルミニウム粉末及び気泡安定剤として界面活性剤を添加した後、混練することでスラリーを調製した。 First, in order to create a calibration line showing the relationship between the peak intensity of the Tobamolite surface of ALC and the drying shrinkage rate, 6 types of silica stones of different lots were prepared, and for each of these silica stones, with respect to 100 parts by mass of silica stone, 69.9 parts by mass of early-strength Portland cement, 9.7 parts by mass of quicklime, and 14.6 parts by mass of gypsum were added. 55 parts by weight of water was added to 100 parts by weight of each of the obtained 6 types of solid raw materials, and the same amount of aluminum powder and a surfactant as a bubble stabilizer were added to all the solid raw materials and then kneaded. To prepare a slurry.

得られた6種類のスラリーの各々を鋼製型枠(180mm×130mm×210mm)に流し込み、保温状態にして4時間静置させた。これにより、アルミニウム粉末の反応による膨張と、石灰質原料の水和反応による凝固とを生じさせて半硬化状態にした。得られた半硬化体を型枠から脱型してオートクレーブに装入し、180℃、10気圧の飽和水蒸気雰囲気からなる高温高圧条件下で6時間かけて水蒸気養生を施した。 Each of the obtained 6 types of slurries was poured into a steel mold (180 mm × 130 mm × 210 mm), kept warm and allowed to stand for 4 hours. As a result, expansion due to the reaction of the aluminum powder and solidification due to the hydration reaction of the calcareous raw material were caused to bring about a semi-cured state. The obtained semi-cured product was removed from the mold and charged into an autoclave, and steam-cured for 6 hours under high-temperature and high-pressure conditions consisting of a saturated steam atmosphere at 180 ° C. and 10 atm.

上記にて生成した6種類のALCブロックの各々に対して、アルミニウム粉末の発泡方向(鉛直方向)の中央部からJIS A1132(コンクリート強度試験用供試体の作り方)に従って40mm×40mm×160mmの角柱状の立方体をその長さ方向(長手方向)が発泡方向に対して垂直になるように切り出し、その長さ方向の両端中央部に真鍮製のピンを取り付けた。このようにして作製した試験体に対して、JIS A5416に準拠して乾燥収縮率を測定した。 For each of the 6 types of ALC blocks generated above, a 40 mm × 40 mm × 160 mm prismatic column from the center of the aluminum powder in the foaming direction (vertical direction) according to JIS A1132 (how to make a specimen for concrete strength test). The cube was cut out so that its length direction (longitudinal direction) was perpendicular to the foaming direction, and brass pins were attached to the central portions of both ends in the length direction. The dry shrinkage rate of the test body thus prepared was measured according to JIS A5416.

更に、上記にて切り出した残部から取り出した一部を乳鉢を用いて150μm以下に粉砕し、X線粉末回折法XRDによる分析を行った。XRD装置には株式会社リガク製のMini FlexII(CuKα線)を用い、測定条件は30kV、15a、20℃/minとした。得られた回折パターンのうち、トバモライト(002)面を示す回折角度(2θ=7.8°)におけるピーク強度cps(counts per second)を測定した。 Further, a part taken out from the rest cut out above was pulverized to 150 μm or less using a mortar, and analyzed by X-ray powder diffraction method XRD. A Mini FlexII (CuKα ray) manufactured by Rigaku Co., Ltd. was used as the XRD apparatus, and the measurement conditions were 30 kV, 15a, and 20 ° C./min. Among the obtained diffraction patterns, the peak intensity cps (counts per second) at the diffraction angle (2θ = 7.8 °) indicating the tobamolite (002) plane was measured.

このようにして測定した6種類のALCブロックのトバモライト面のピーク強度(トバモライトピーク)と乾燥収縮率との関係をプロットしたグラフを図1に示す。この図1から、トバモライト面のピーク強度と乾燥収縮率とは強い負の相関関係があることが分かる。そこで、これらプロットした点群から最小二乗法による近似直線を求め、図1の実線で示すように検量線を作成した。 FIG. 1 shows a graph plotting the relationship between the peak intensity (tobamolite peak) of the tobamolite surface of the six types of ALC blocks measured in this way and the drying shrinkage rate. From FIG. 1, it can be seen that there is a strong negative correlation between the peak intensity of the tobamolite surface and the drying shrinkage rate. Therefore, an approximate straight line by the least squares method was obtained from these plotted point clouds, and a calibration curve was created as shown by the solid line in FIG.

次に、上記の検量線の作成用として用いた6種類の珪石のうちの1種類のみを用い、その一部をタイルセルベンに代替させた以外は上記と同様の配合割合で試料1〜8のスラリーを調製した。具体的には、珪石の配合量をA[g]、タイルセルベン配合量をB[g]としたとき、B/(A+B)×100で表される代替率を、試料1は0%(すなわち、タイルセルベンの添加量はゼロ)、試料2は10%、試料3は20%、試料4は30%、試料5は40%、試料6は50%、試料7は60%、試料8は70%とした。そして、上記の検量線の作成用のALCブロックの場合と同じ配合割合で、早強ポルトランドセメント、生石灰、石膏、水、アルミニウム粉末及び界面活性剤を添加した。なお、使用したタイルセルベンのブレーン空気透過法による比表面積、及び蛍光エックス線分析法による質量基準の酸化物の割合を下記表1に示す。 Next, the slurry of Samples 1 to 8 was used in the same blending ratio as above except that only one of the six types of silica stone used for preparing the above calibration curve was used and a part of the silica stone was replaced with tile selben. Was prepared. Specifically, when the blending amount of siliceous stone is A [g] and the blending amount of tileselben is B [g], the substitution rate represented by B / (A + B) × 100 is 0% (that is, that is, sample 1). The amount of tile selben added is zero), sample 2 is 10%, sample 3 is 20%, sample 4 is 30%, sample 5 is 40%, sample 6 is 50%, sample 7 is 60%, and sample 8 is 70%. bottom. Then, early-strength Portland cement, quicklime, gypsum, water, aluminum powder and a surfactant were added in the same blending ratio as in the case of the ALC block for preparing the calibration curve described above. Table 1 below shows the specific surface area of the tile selben used by the brain air permeation method and the mass-based oxide ratio by the fluorescence X-ray analysis method.

Figure 2021165220
Figure 2021165220

得られた試料1〜8のスラリーの各々を容量100ccのマイクロボンベに装入し、上記の検量線の作成用のALCブロックの場合と同じ反応条件でALC試験片を生成した。このようにして生成した試料1〜8のALC試験片のトバモライト面のピーク強度(2θ=7.8°)を上記と同様にXRDにより測定した。上記試料1〜8の各々の固体原料Sの配合量、スラリー配合量、固体原料Sに対する水Wの質量比(W/S)、CaO/SiOのモル比、代替率を下記表2に示す。また、XRDにより測定したトバモライト面のピーク強度、並びに該ピーク強度の値を図1の検量線に照合することで求めた乾燥収縮率及びそれらの試料1に対する向上割合を下記表3に示す。 Each of the obtained slurries of Samples 1 to 8 was charged into a micro cylinder having a capacity of 100 cc, and an ALC test piece was produced under the same reaction conditions as in the case of the ALC block for preparing the calibration curve described above. The peak intensity (2θ = 7.8 °) of the tovamorite surface of the ALC test pieces of the samples 1 to 8 thus produced was measured by XRD in the same manner as described above. Table 2 below shows the blending amount of each solid raw material S, the slurry blending amount, the mass ratio of water W to the solid raw material S (W / S), the molar ratio of CaO / SiO 2 , and the substitution rate of each of the samples 1 to 8. .. Further, the peak intensity of the tovamorite surface measured by XRD, the drying shrinkage rate obtained by collating the value of the peak intensity with the calibration curve of FIG. 1, and the improvement rate of them with respect to the sample 1 are shown in Table 3 below.

Figure 2021165220
Figure 2021165220

Figure 2021165220
Figure 2021165220

上記表3に示すように、基準となる試料1の乾燥収縮率は0.039%であるのに対して、試料2の乾燥収縮率は0.034%であるので、(0.034−0.039)/0.039×100の計算により、試料2は試料1に比べて乾燥収縮率が12.8%向上していることが分かる。同様に試料3は61.5%向上しており、試料4は87.2%向上しており、試料5は89.7%向上しており、試料6は71.8%向上しており、試料7は61.5%向上しており、試料8は17.9%向上している。よって、珪酸質原料の一部をタイルセルベンで代替することで、代替しない場合に比べてより乾燥収縮率が低下することが分かる。特に代替率を20〜60%の範囲内に収めることで乾燥収縮率が顕著に低下することが分かる。 As shown in Table 3 above, the dry shrinkage rate of the reference sample 1 is 0.039%, whereas the dry shrinkage rate of the sample 2 is 0.034%, so (0.034-0). From the calculation of .039) / 0.039 × 100, it can be seen that the drying shrinkage rate of Sample 2 is improved by 12.8% as compared with that of Sample 1. Similarly, sample 3 is improved by 61.5%, sample 4 is improved by 87.2%, sample 5 is improved by 89.7%, sample 6 is improved by 71.8%, and so on. Sample 7 is improved by 61.5% and Sample 8 is improved by 17.9%. Therefore, it can be seen that by substituting a part of the siliceous raw material with tileselben, the drying shrinkage rate is further lowered as compared with the case where it is not replaced. In particular, it can be seen that the drying shrinkage rate is significantly reduced by keeping the substitution rate within the range of 20 to 60%.

Claims (2)

珪酸質原料、石灰質原料、及びタイルセルベンを配合して得た固体原料に水及びアルミニウム粉末を添加して半硬化体を生成した後、該半硬化体を高温高圧下で水蒸気養生することで軽量気泡コンクリートを製造する方法であって、前記珪酸質原料及び前記タイルセルベンの合計100質量部のうち該タイルセルベンが20〜60質量部を占めるように前記配合を行うことを特徴とする軽量気泡コンクリートの製造方法。 Water and aluminum powder are added to a solid raw material obtained by blending a siliceous raw material, a calcareous raw material, and tile selben to produce a semi-cured product, and then the semi-cured product is steam-cured under high temperature and high pressure to produce lightweight bubbles. A method for producing concrete, wherein the compounding is performed so that the tile selben occupies 20 to 60 parts by mass in a total of 100 parts by mass of the siliceous raw material and the tile cerben. .. 前記タイルセルベンはSiOの含有量が70質量%以上であることを特徴とする、請求項1に記載の軽量気泡コンクリートの製造方法。 The method for producing lightweight cellular concrete according to claim 1, wherein the tile selben has a SiO 2 content of 70% by mass or more.
JP2020069957A 2020-04-08 2020-04-08 Manufacturing method of light-weight cellular concrete Pending JP2021165220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020069957A JP2021165220A (en) 2020-04-08 2020-04-08 Manufacturing method of light-weight cellular concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020069957A JP2021165220A (en) 2020-04-08 2020-04-08 Manufacturing method of light-weight cellular concrete

Publications (1)

Publication Number Publication Date
JP2021165220A true JP2021165220A (en) 2021-10-14

Family

ID=78021662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069957A Pending JP2021165220A (en) 2020-04-08 2020-04-08 Manufacturing method of light-weight cellular concrete

Country Status (1)

Country Link
JP (1) JP2021165220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113977733A (en) * 2021-11-25 2022-01-28 浙江方远新材料股份有限公司 Preparation device and method of ceramsite aerated concrete block

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113977733A (en) * 2021-11-25 2022-01-28 浙江方远新材料股份有限公司 Preparation device and method of ceramsite aerated concrete block

Similar Documents

Publication Publication Date Title
JP4911580B2 (en) Low specific gravity lightweight foam concrete and method for producing the same
Morsy et al. Microstructure and hydration characteristics of artificial pozzolana-cement pastes containing burnt kaolinite clay
CN111566071B (en) Method for preparing ettringite binder for producing building materials
JPWO2002066396A1 (en) High strength calcium silicate cured product
JP4396969B2 (en) Lightweight cellular concrete and method for producing the same
Rahman et al. Light weight concrete from rice husk ash and glass powder
JP4453997B2 (en) High strength hardened calcium silicate
JP2021165220A (en) Manufacturing method of light-weight cellular concrete
RU2536693C2 (en) Crude mixture for producing non-autoclaved aerated concrete and method of producing non-autoclaved aerated concrete
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
KR101117780B1 (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust
Ouattara et al. Development and characterization of geopolymers based on kaolinitic clay
ABDULLAH et al. Synthesis of geopolymer binder from the partially de-aluminated metakaolinite by-product resulted from alum industry.
JP6933422B2 (en) How to manufacture lightweight cellular concrete panels
JP2002114562A (en) Hydrothermal hardened body and method for manufacturing the same
JP2021028280A (en) concrete
JP2001058884A (en) Production of calcium silicate hardened body
JP6838642B1 (en) Admixture for mortar / concrete, hydraulic composition, cement composition and concrete
CN115427372B (en) Method for producing autoclaved aerated concrete by using silica raw material with higher solubility than quartz
JP2001019571A (en) Production of autoclaved lightweight concrete and autoclaved lightweight concrete panel obtained by the same
JPH049747B2 (en)
JPH05310454A (en) Production of light-weight concrete having low shrinkage
Chelouah et al. Effect of Wood Biomass Ash on the Mechanical and Thermal Performance of Compressed Earth Bricks
RU2259331C1 (en) Light-weight concrete mix
Makridina et al. Check for updates Water-Resistant Clay and Slag Composite Materials of Autoclaved Hardening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205