JP2001278601A - Reformer for fuel cell - Google Patents

Reformer for fuel cell

Info

Publication number
JP2001278601A
JP2001278601A JP2000093729A JP2000093729A JP2001278601A JP 2001278601 A JP2001278601 A JP 2001278601A JP 2000093729 A JP2000093729 A JP 2000093729A JP 2000093729 A JP2000093729 A JP 2000093729A JP 2001278601 A JP2001278601 A JP 2001278601A
Authority
JP
Japan
Prior art keywords
hydrogen separation
separation tube
alloy
reformer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000093729A
Other languages
Japanese (ja)
Other versions
JP3878786B2 (en
Inventor
Toshitaka Yamada
俊孝 山田
Yoshihiro Ushio
義弘 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000093729A priority Critical patent/JP3878786B2/en
Publication of JP2001278601A publication Critical patent/JP2001278601A/en
Application granted granted Critical
Publication of JP3878786B2 publication Critical patent/JP3878786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a reformer for a fuel cell preserving joining strength of a hydrogen separation pipe for a long period under a high temperature circumstances of 500 deg.C of higher and preventing the degradation of a joined part by vibration or shock. SOLUTION: The hydrogen separation pipe 3 is composed of porous ceramics of which the surface is covered with Ag-Pd alloy layer 3a of 10-30 μm thickness. An end of the pipe is open and the other end is closed. The metalized layer 8 composed of Ag-Cu-Ti alloy of 5-60 μm thickness and formed on an outer surface or an inner surface of one end is joined with the outer surface or the inner surface of the cylindrical metal fixing part 6 through solder 9 of which the melting point is 700 deg.C or higher and lower than the melting point of Ag-Pd alloy layer, and fixing in a reforming reaction furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、メタノール等の炭
化水素系の燃料ガスを改質して水素ガスを発生させ、燃
料電池へその水素ガスを供給する燃料電池用改質器に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell reformer for reforming a hydrocarbon fuel gas such as methanol to generate hydrogen gas and supplying the hydrogen gas to a fuel cell.

【0002】[0002]

【従来の技術】従来の燃料電池用改質器(以下、改質器
という)の一例の基本構成を図3に示す。同図におい
て、1は改質器の筒状の外囲器、2は外囲器1の内部に
設置された改質反応炉としての筒状の炉体であり、その
内部の下端部にはメターノールの燃焼反応,水蒸気改質
反応,部分酸化改質反応等が発生する温度(200〜6
00℃)に加熱するためのバーナ(燃焼器)5が設置さ
れ、また炉体2の内部には、多数の水素分離管3が周囲
に改質触媒4が充填された状態で、筒状の炉体2の中心
軸方向に略平行に配置されている。この水素分離管3
は、下端が開口され上端が閉じられた筒状の形状であ
る。
2. Description of the Related Art FIG. 3 shows a basic structure of an example of a conventional fuel cell reformer (hereinafter, referred to as a reformer). In the figure, reference numeral 1 denotes a cylindrical envelope of a reformer, 2 denotes a cylindrical furnace body as a reforming reaction furnace installed inside the envelope 1, and a lower end portion inside thereof. Temperature at which combustion reaction of methanol, steam reforming reaction, partial oxidation reforming reaction, etc. occur (200 to 6)
A burner (combustor) 5 for heating to a temperature of about 00 ° C.) is provided. Inside the furnace body 2, a large number of hydrogen separation tubes 3 are filled with a reforming catalyst 4, and a cylindrical shape is formed. It is arranged substantially parallel to the central axis direction of the furnace body 2. This hydrogen separation tube 3
Has a cylindrical shape with a lower end opened and an upper end closed.

【0003】このような改質器は以下のように機能す
る。都市ガス,改質排ガス等を含む燃焼用の燃料ガスお
よび空気が供給されて燃焼するバーナ5により、炉体2
を所定の温度(200〜600℃)に加熱する。そし
て、外部より炉体2の内部にメタノール(CH3OH)
および水蒸気(H2O)を供給すると、以下のような反
応が生じる。 メタノールの燃焼反応(CH3OH+3/2O2→CO2
+2H2O) メタノールの水蒸気改質反応(CH3OH+H2O→CO
2+3H2) [3]メタノールの部分酸化改質反応(CH3OH+1
/2O2→CO2+2H2)である。
[0003] Such a reformer functions as follows. The burner 5 is supplied with combustion fuel gas and air including city gas, reformed exhaust gas and the like, and burns.
Is heated to a predetermined temperature (200 to 600 ° C.). Then, methanol (CH 3 OH) is introduced into the furnace body 2 from the outside.
And the supply of water vapor (H 2 O), the following reaction occurs. Methanol combustion reaction (CH 3 OH + 3 / 2O 2 → CO 2
+ 2H 2 O) Steam reforming reaction of methanol (CH 3 OH + H 2 O → CO
2 + 3H 2 ) [3] Partial oxidation reforming reaction of methanol (CH 3 OH + 1
/ 2O 2 → CO 2 + 2H 2 ).

【0004】上記[2]の反応は200〜300℃で、
[3]の反応は400〜600℃で、[2]および
[3]の併用反応は200〜600℃でそれぞれ生じ
る。また、改質後の改質ガス中には一酸化炭素が含まれ
ており、以下の反応により一酸化炭素から水素ガスを発
生させることもできる。 [4]一酸化炭素の変成(シフト)反応(CO+H2
→CO2+H2)である。
The above reaction [2] is carried out at 200 to 300 ° C.
The reaction [3] occurs at 400 to 600 ° C, and the combined reaction of [2] and [3] occurs at 200 to 600 ° C. In addition, the reformed gas after reforming contains carbon monoxide, and hydrogen gas can be generated from carbon monoxide by the following reaction. [4] Carbon monoxide shift reaction (CO + H 2 O)
→ CO 2 + H 2 ).

【0005】そして、図4に示すように、改質ガス中に
含まれるH2,CO2,CO,H2OのうちH2のみが、多
孔質の水素分離管3の壁を通過してその内部に侵入し、
水素リッチのガスとして外部に排出され、燃料電池へ供
給される。
As shown in FIG. 4, only H 2 of H 2 , CO 2 , CO and H 2 O contained in the reformed gas passes through the wall of the porous hydrogen separation tube 3. Penetrate into it,
It is discharged to the outside as a hydrogen-rich gas and supplied to the fuel cell.

【0006】この水素分離管3は、多孔質のジルコニア
セラミックス、所謂Y23を約8mol%ドープした安
定化ジルコニア(YSZ)セラミックス等から成り、図
2に示すように、その表面には改質反応の触媒としての
Pd合金であるAg−Pd層3aが厚膜印刷法等により
被着されている。そして、水素分離管3の下端部は、F
e−Ni−Co合金等から成る筒状で金属製の固定部材
6に挿入され、前記下端部の外周面が封着用ガラス7を
介して接合されていた。
The hydrogen separation tube 3 is made of a porous zirconia ceramic, so-called stabilized zirconia (YSZ) ceramic doped with about 8 mol% of Y 2 O 3 , and the surface thereof is modified as shown in FIG. Ag-Pd layer 3a, which is a Pd alloy as a catalyst for the quality reaction, is applied by a thick film printing method or the like. The lower end of the hydrogen separation tube 3 is
It was inserted into a cylindrical metal fixing member 6 made of an e-Ni-Co alloy or the like, and the outer peripheral surface of the lower end was joined via a sealing glass 7.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記従
来の改質器においては、水素分離管3は軟化点が500
〜700℃程度の封着用ガラス7で接合固定されおり、
またその接合部はバーナ5付近の500℃以上の高温環
境にあるため、封着用ガラス7が軟化して接合性が劣化
し易い環境にあった。また、改質器内部では動作時にメ
タノール,水蒸気,燃料ガス等の流動のため常時細かな
振動が発生しており、上記の高温環境状態で微振動が長
時間に及び水素分離管3に加えられたり、機械的衝撃が
加えられると、その接合部が破壊されて改質器が機能し
なくなるという問題があった。
However, in the above-mentioned conventional reformer, the hydrogen separation tube 3 has a softening point of 500.
It is bonded and fixed with a glass 7 for sealing at about 700 ° C.,
In addition, since the joint was in a high-temperature environment of 500 ° C. or more near the burner 5, the sealing glass 7 was softened and the joining property was easily deteriorated. Further, in the reformer, fine vibrations are constantly generated due to the flow of methanol, water vapor, fuel gas, etc. during operation, and fine vibrations are applied to the hydrogen separation pipe 3 for a long time in the high temperature environment described above. Or when a mechanical impact is applied, the joint is broken and the reformer does not function.

【0008】従って、本発明は上記事情に鑑みて完成さ
れたものであり、その目的は、水素分離管の接合性を改
善して、500℃以上の高温環境でも接合強度が保持さ
れ、振動や衝撃によって接合部が破壊されないものとす
ることにある。
Accordingly, the present invention has been completed in view of the above circumstances, and an object of the present invention is to improve the joining property of a hydrogen separation tube so that the joining strength is maintained even in a high temperature environment of 500 ° C. or more, and vibration and The object is to prevent the joint from being broken by the impact.

【0009】[0009]

【課題を解決するための手段】本発明は、容器体として
の外囲器内に、該外囲器内を200〜600℃に加熱す
る燃焼器と、炭化水素系ガスを含む原料ガスが内部で流
通されるとともに水素分離管が内蔵された改質反応炉と
を具備した燃料電池用改質器において、前記水素分離管
は、表面に厚さ10〜30μmのAg−Pd合金層が被
着された多孔質セラミックスから成るとともに一端が開
口され他端が閉じられており、かつ前記一端側の外周面
または内周面に形成された厚さ5〜60μmのAg−C
u−Ti合金から成るメタライズ層が、700℃以上前
記Ag−Pd合金層の融点未満の融点を有するロウ材を
介して筒状の金属製固定部材の内周面または外周面に接
合されることにより、前記改質反応炉内に固定されてい
ることを特徴とする。
According to the present invention, there is provided an envelope as a container, wherein a combustor for heating the interior to 200 to 600 ° C. and a raw material gas containing a hydrocarbon-based gas are contained therein. And a reformer for a fuel cell having a reforming reactor with a built-in hydrogen separation tube, wherein the hydrogen separation tube has an Ag-Pd alloy layer having a thickness of 10 to 30 μm deposited on the surface thereof. Ag-C having a thickness of 5 to 60 μm, which is formed on the outer peripheral surface or the inner peripheral surface of the one end side and is formed on the one end side and the other end is closed.
A metallized layer made of a u-Ti alloy is joined to the inner or outer peripheral surface of the cylindrical metal fixing member via a brazing material having a melting point of 700 ° C. or more and less than the melting point of the Ag—Pd alloy layer. And is fixed in the reforming reaction furnace.

【0010】本発明は、上記の構成により、水素分離管
の接合性を改善して、500℃以上の高温環境でも接合
強度が長期にわたり保持され、振動や衝撃によって接合
部が破壊されず、その結果改質器の機能を長期間維持で
きるものとすることにある。
According to the present invention, with the above-described structure, the joining property of the hydrogen separation tube is improved, the joining strength is maintained for a long time even in a high temperature environment of 500 ° C. or more, and the joint is not broken by vibration or impact. The object is to maintain the function of the result reformer for a long time.

【0011】また、前記メタライズ層の厚さが5μm〜
60μmであることにより、改質反応の触媒であるAg
−Pd合金層とメタライズ層とが反応して、それらの成
分が相互に拡散し接合強度が劣化するのを抑制できる。
The metallized layer has a thickness of 5 μm or less.
When the thickness is 60 μm, Ag which is a catalyst of the reforming reaction is used.
-It is possible to suppress the reaction between the Pd alloy layer and the metallized layer, the diffusion of these components mutually, and the deterioration of the bonding strength.

【0012】前記ロウ材の融点が700℃以上前記Ag
−Pd合金層の融点未満であることにより、ロウ材が6
00℃程度の改質反応時の温度で軟化溶融することがな
く、またロウ付け時の温度によりAg−Pd合金層が軟
化溶融することがない。従って、改質器を長期間にわた
って動作させることが可能となり、その寿命を長寿命化
し得る。
The melting point of the brazing material is at least 700 ° C.
-Less than the melting point of the Pd alloy layer,
There is no softening and melting at the temperature of the reforming reaction of about 00 ° C., and no softening and melting of the Ag—Pd alloy layer due to the temperature at the time of brazing. Therefore, the reformer can be operated for a long period of time, and its life can be extended.

【0013】さらには、前記Ag−Pd合金層とAg−
Cu−Ti合金から成るメタライズ層は、それらのAg
が相互に拡散され、酸化物混合ソルダーを形成して強固
な接合が可能となる。
Further, the Ag-Pd alloy layer and the Ag-Pd
Metallized layers made of Cu-Ti alloy are
Are diffused into each other to form an oxide mixed solder, thereby enabling a strong bonding.

【0014】[0014]

【発明の実施の形態】本発明の改質器について以下に説
明する。図1は、本発明の改質器の断面図であり、同図
において、3は、Y23を約8mol%ドープした多孔
質の安定化ジルコニア(YSZ)セラミックス等から成
り、一端が開口され他端が閉じられた筒状とされた水素
分離管、3aは、水素分離管3の表面に形成され、改質
反応の触媒のPdを含むAg−Pd合金層、6は、Fe
−Ni−Co合金等の金属から成り、水素分離管3を固
定するための筒状の金属製固定部材(以下、固定部材と
いう)、8は、水素分離管3の開口された一端側の外周
面に被着されたAg−Cu−Ti合金から成るメタライ
ズ層、9は接合用のロウ材である。なお、改質器全体の
基本構成は図3のものと同様であり、その詳細な説明は
省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reformer of the present invention will be described below. FIG. 1 is a cross-sectional view of a reformer of the present invention. In FIG. 1, reference numeral 3 denotes a porous stabilized zirconia (YSZ) ceramic doped with about 8 mol% of Y 2 O 3 , and one end is opened. A cylindrical hydrogen separation tube 3a having the other end closed is formed on the surface of the hydrogen separation tube 3, and an Ag-Pd alloy layer containing Pd as a catalyst for the reforming reaction.
A tubular metal fixing member (hereinafter, referred to as a fixing member) made of a metal such as a Ni-Co alloy for fixing the hydrogen separation tube 3; A metallized layer 9 made of an Ag-Cu-Ti alloy adhered to the surface, and 9 is a brazing filler metal. The basic configuration of the entire reformer is the same as that of FIG. 3, and a detailed description thereof will be omitted.

【0015】本発明において、原料ガスに含まれる炭化
水素系ガスとしては、メタノール,メタン,エタノー
ル,LPG,ガソリン,軽油等が、容易に改質されて水
素ガスを分離できる点で好適である。また、原料ガス中
には、炭化水素系ガスの燃焼反応および改質反応等を行
うための酸素(O2),水蒸気(H2O)等が含まれる。
なお、この原料ガスは、図3に示すように、改質反応炉
の炉体2内に水素分離管3の雰囲気ガスとして供給され
炉体2内を流通し、改質反応等により水素ガスが水素分
離管3内に分離吸収される。そして、一部の未反応ガス
等を含む改質排ガスが排気口より排出される。
In the present invention, as the hydrocarbon-based gas contained in the raw material gas, methanol, methane, ethanol, LPG, gasoline, light oil and the like are preferable because they can be easily reformed and hydrogen gas can be separated. The source gas contains oxygen (O 2 ), steam (H 2 O), and the like for performing a combustion reaction, a reforming reaction, and the like of the hydrocarbon-based gas.
As shown in FIG. 3, this raw material gas is supplied into the furnace body 2 of the reforming reaction furnace as an atmospheric gas of the hydrogen separation tube 3 and circulates through the furnace body 2, and hydrogen gas is generated by the reforming reaction or the like. Separated and absorbed in the hydrogen separation tube 3. Then, the reformed exhaust gas including a part of the unreacted gas and the like is discharged from the exhaust port.

【0016】本発明の水素分離管3は、Y23を約8m
ol%ドープした多孔質の安定化ジルコニア(YSZ)
セラミックス等から成るが、これに限らず、200〜6
00℃の高温環境でメタノール(CH3OH)等の炭化
水素系ガス,水蒸気(H2O),酸素(O2),二酸化炭
素(CO2),一酸化炭素(CO),水素ガス(H2)等
のガスに対して化学的に安定なセラミックスであればよ
い。また、多孔質の水素分離管3の気孔率は80〜97
%程度がよく、80%未満では、水素ガスを効率良く水
素分離管3の内部に取り込むことが困難となり、97%
を超えると、水素ガス以外のガスが水素分離管3の内部
に侵入し易くなる。
The hydrogen separation tube 3 of the present invention has a Y 2 O 3 of about 8 m.
ol% doped porous stabilized zirconia (YSZ)
It is made of ceramics or the like, but is not limited thereto.
In a high temperature environment of 00 ° C., a hydrocarbon gas such as methanol (CH 3 OH), water vapor (H 2 O), oxygen (O 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrogen gas (H 2 ) Any ceramics that are chemically stable with respect to such gases may be used. The porosity of the porous hydrogen separation tube 3 is 80-97.
%, And if it is less than 80%, it becomes difficult to efficiently take in hydrogen gas into the inside of the hydrogen separation tube 3, and 97%
When it exceeds, it becomes easy for gas other than hydrogen gas to enter the inside of the hydrogen separation tube 3.

【0017】また、水素分離管3の表面には、改質反応
の触媒であるPdを含むAg−Pd合金層が公知の厚膜
印刷法等により被着されており、これは電子混合導電体
として機能する。
On the surface of the hydrogen separation tube 3, an Ag-Pd alloy layer containing Pd, which is a catalyst for the reforming reaction, is applied by a known thick film printing method or the like. Function as

【0018】上記Ag−Pd合金層の厚さは10〜30
μmであるが、10μmでは、水素ガス以外のガスを透
過させることになり、30μmを超えると、水素ガスが
効率良く透過することができなくなる。
The thickness of the Ag-Pd alloy layer is 10-30.
Although it is μm, if it is 10 μm, a gas other than hydrogen gas is permeable, and if it exceeds 30 μm, hydrogen gas cannot be efficiently transmitted.

【0019】この水素分離管3の形状は、一端が開口さ
れ他端が閉じられた筒状であり、具体的には円筒状、ま
たは断面が三角形,四角形,六角形等の多角柱状でもよ
い。ただし、製造の容易さ、原料ガスとの接触面積の大
きさ等の点で円筒状のものが好ましい。また、水素分離
管3の断面積を可変とし、改質反応炉内の最も改質反応
が起こり易い部位でその断面積を若干大きくすることも
できる。
The shape of the hydrogen separation tube 3 is a cylindrical shape having one end opened and the other end closed, and may be specifically a cylindrical shape or a polygonal column having a triangular, quadrangular or hexagonal cross section. However, a cylindrical shape is preferable in terms of ease of production, the size of the contact area with the source gas, and the like. Further, the cross-sectional area of the hydrogen separation tube 3 can be made variable, and the cross-sectional area can be slightly increased at a portion where the reforming reaction is most likely to occur in the reforming reaction furnace.

【0020】そして、水素分離管3の一端側の外周面ま
たは内周面が、筒状の固定部材6の内周面または外周面
に接合される。この水素分離管3の内部に取り込まれた
水素ガスは、固定部材6に連結され外部に通じる排気管
等により、外部の燃料電池に供給される。
The outer peripheral surface or inner peripheral surface on one end side of the hydrogen separation tube 3 is joined to the inner peripheral surface or outer peripheral surface of the cylindrical fixing member 6. The hydrogen gas taken into the hydrogen separation pipe 3 is supplied to an external fuel cell via an exhaust pipe connected to the fixing member 6 and leading to the outside.

【0021】また、本発明において、水素分離管3の開
口を有する一端側の外周面または内周面には、酸素に対
する強い親和力を有する金属、所謂活性金属であるTi
を含むAg−Cu−Ti合金から成るメタライズ層8が
形成されており、活性金属のTiとAg,Niおよび遷
移金属との合金は、高温でセラミックスの酸化物中に拡
散して緻密で強固な結合を形成する。例えば、メタライ
ズ層8はAg72wt(重量)%−Cu28wt%共晶
合金ロウにTiを2〜3重量部程度加えたAg−Cu−
Ti合金を含有する金属ペーストを塗布し、不活性また
は真空雰囲気中で1000℃程度に加熱することにより
形成される。
In the present invention, a metal having a strong affinity for oxygen, that is, a so-called active metal, is provided on the outer peripheral surface or the inner peripheral surface at one end of the hydrogen separation tube 3 having the opening.
A metallized layer 8 made of an Ag—Cu—Ti alloy containing is formed. The alloy of the active metal Ti and Ag, Ni, and the transition metal diffuses into the oxide of the ceramic at a high temperature and is dense and strong. Form a bond. For example, the metallized layer 8 is made of Ag-Cu- obtained by adding about 2 to 3 parts by weight of Ti to a eutectic alloy wax of 72 wt% (wt) -28 wt% of Cu.
It is formed by applying a metal paste containing a Ti alloy and heating it to about 1000 ° C. in an inert or vacuum atmosphere.

【0022】また、上記のメタライズ層8とすること
で、ロウ材9との濡れ性が向上する。濡れ性が向上する
ことによって、金属製の固定部材6との接合強度がきわ
めて増大し、改質器の寿命を大きく伸ばすことが可能と
なる。さらには、Tiを2〜3重量部程度含むことによ
りメタライズ層8の融点が約10℃上昇し、780〜7
90℃となる。その結果、500℃以上、最高で600
℃程度で動作する改質器において、水素分離管3の接合
部が軟化しにくくなり、安定的な運転が可能となる。
The metallization layer 8 improves the wettability with the brazing material 9. By improving the wettability, the bonding strength with the metal fixing member 6 is extremely increased, and the life of the reformer can be greatly extended. Further, by containing about 2 to 3 parts by weight of Ti, the melting point of the metallized layer 8 increases by about 10 ° C.
90 ° C. As a result, 500 ° C or more, up to 600
In the reformer that operates at about ° C, the junction of the hydrogen separation tube 3 is hardly softened, and stable operation is possible.

【0023】また、メタライズ層8の厚さは5〜60μ
mであるが、5μm未満では、改質反応の触媒であるA
g−Pd合金層3aとメタライズ層8とが反応して接合
強度が劣化し易くなる。60μmを超えると、表面の凹
凸が大きくなり接合性が低下するため、均一で接合性の
良好なメタライズ層8を形成するうえで60μm以下と
する。
The thickness of the metallized layer 8 is 5 to 60 μm.
m, but when it is less than 5 μm, A, which is a catalyst for the reforming reaction,
The g-Pd alloy layer 3a reacts with the metallized layer 8 to easily deteriorate the bonding strength. If the thickness exceeds 60 μm, the surface roughness becomes large and the bonding property is reduced. Therefore, the thickness is set to 60 μm or less for forming a uniform metallized layer 8 having good bonding property.

【0024】さらに、メタライズ層8の金属分離管3の
中心軸方向に平行な方向での長さについて、メタライズ
層8の端部(図1では上端部)は固定部材6端部(上端
部)から1〜3mm突出していることが良い。1mm未
満では、メタライズ層8の端部付近にロウ材9の溜りが
でき、ロウ材9のメニスカスの形状が理想的な山裾状と
ならないため、接合強度が著しく低下する。3mmを超
えると、ロウ材9の流れが大きくなり、メタライズ層8
と固定部材6との間に隙間ができ易くなり、接合は可能
だがガス漏れを防ぐような封止が困難となる。
Further, regarding the length of the metallization layer 8 in the direction parallel to the central axis direction of the metal separation tube 3, the end (the upper end in FIG. 1) of the metallization layer 8 is the end (the upper end) of the fixing member 6. It is good that it protrudes from 1 to 3 mm. When the thickness is less than 1 mm, the brazing material 9 is accumulated near the end of the metallized layer 8, and the meniscus shape of the brazing material 9 does not become an ideal mountain skirt shape, so that the joining strength is significantly reduced. If it exceeds 3 mm, the flow of the brazing material 9 increases, and the metallized layer 8
It is easy to form a gap between the metal member and the fixing member 6, and it is possible to perform joining, but it is difficult to perform sealing so as to prevent gas leakage.

【0025】水素分離管3の一端側を固定部材6に接合
させるためのロウ材9は、改質反応時の温度により軟化
溶融しないものとし、融点が700℃以上のAg−Cu
合金等がよい。また、Ag−Pd合金層3aを軟化溶融
させないために、Ag−Pd合金層3aの融点未満のも
のとする。例えば、Ag−Pd合金層3aの融点は約8
50℃である。
The brazing material 9 for joining one end of the hydrogen separation tube 3 to the fixing member 6 is not softened and melted by the temperature during the reforming reaction, and has a melting point of Ag-Cu of 700 ° C. or more.
Alloys and the like are good. In order to prevent the Ag-Pd alloy layer 3a from softening and melting, the melting point is lower than the melting point of the Ag-Pd alloy layer 3a. For example, the melting point of the Ag-Pd alloy layer 3a is about 8
50 ° C.

【0026】本発明の固定部材6は、熱膨張係数が10
×10-6〜13×10-6/℃と小さい金属、例えばFe
−Ni−Co合金,Fe−Ni合金等から成るのがよ
い。また固定部材6の形状は、水素分離管3と断面形状
が相似形のものがよく、円筒状、または断面が三角形
状,四角形状,六角形状等の多角柱状である。
The fixing member 6 of the present invention has a coefficient of thermal expansion of 10
A metal as small as × 10 -6 to 13 × 10 -6 / ° C.
-Ni-Co alloy, Fe-Ni alloy, etc. The shape of the fixing member 6 is preferably similar to that of the hydrogen separation tube 3 in cross section. The fixing member 6 has a cylindrical shape or a polygonal column shape such as a triangular shape, a square shape, or a hexagonal shape.

【0027】かくして、本発明は、水素分離管の接合性
を改善して、500℃以上の高温環境でも接合強度が長
期にわたり保持され、振動や衝撃によって接合部が破壊
されず、その結果改質器の機能を長期間維持できるとい
う作用効果を有する。
Thus, the present invention improves the joining property of the hydrogen separation tube, maintains the joining strength for a long time even in a high temperature environment of 500 ° C. or more, and does not destroy the joined portion due to vibration or impact. It has the effect that the function of the vessel can be maintained for a long time.

【0028】なお、本発明は上記実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲内におい
て種々の変更を行なうことは何等差し支えない。
It should be noted that the present invention is not limited to the above embodiment, and that various changes may be made without departing from the spirit of the present invention.

【0029】[0029]

【実施例】本発明の実施例について以下に説明する。 (実施例)図1の水素分離管3を以下のようにして接合
し構成した。Y23を約8mol%ドープした、気孔率
が97%の安定化ジルコニアセラミックスから成り、上
端が閉じ下端が開口とされた円筒状の水素分離管3の表
面に、厚さ20μmのAg−Pd合金層を厚膜印刷法に
より形成した。この水素分離管3の下端側の外周面に、
厚さが30μmで、水素分離管3の中心軸方向に平行な
方向での長さに関して固定部材3の端部より1.5mm端
部が突出したAg−Cu−Ti合金(Ag72wt%−
Cu28wt%共晶合金ロウにTiを3重量部加えたも
の)から成るメタライズ層8を被着させた。このメタラ
イズ層8上を、厚さ5μmのNiメッキ層で被覆した。
Embodiments of the present invention will be described below. (Example) The hydrogen separation tube 3 of FIG. 1 was joined and configured as follows. A 20-μm-thick Ag— is formed on a surface of a cylindrical hydrogen separation tube 3 made of stabilized zirconia ceramics doped with about 8 mol% of Y 2 O 3 and having a porosity of 97% and having an upper end and an open lower end. A Pd alloy layer was formed by a thick film printing method. On the outer peripheral surface on the lower end side of the hydrogen separation tube 3,
An Ag-Cu-Ti alloy (Ag 72 wt%-
A metallized layer 8 made of Cu 28 wt% eutectic alloy braze with 3 parts by weight of Ti) was applied. The metallized layer 8 was covered with a 5 μm thick Ni plating layer.

【0030】そして、このメタライズ層8にほぼ相当す
る部位と、Fe−Ni−Co合金からなる円筒状の固定
部材6の内周面とを、融点が770℃で、25μmの隙
間を埋めるためにφ(断面の直径)0.3mmの線状と
されたAg−Cu合金から成るロウ材9により、810
℃に加熱して接合させた。これを本実施例の製品Aとし
た。
Then, a portion substantially corresponding to the metallized layer 8 and the inner peripheral surface of the cylindrical fixing member 6 made of an Fe—Ni—Co alloy are filled with a melting point of 770 ° C. and a gap of 25 μm. 810 is formed by a brazing material 9 made of an Ag-Cu alloy having a 0.3 mm diameter (cross-sectional diameter).
C. for bonding. This was designated as product A of the present example.

【0031】また、比較例1として、Ag−Cu−Ti
合金から成るメタライズ層8およびNiメッキ層がない
以外は上記実施例と同様に作製したものを製品Bとし
た。
As Comparative Example 1, Ag—Cu—Ti
The product B was manufactured in the same manner as in the above example except that the metallized layer 8 made of an alloy and the Ni plating layer were not provided.

【0032】比較例2として、Ag−Cu−Ti合金か
ら成るメタライズ層8の代わりにNiメッキ層を施した
以外は上記実施例と同様に作製したものを製品Cとし
た。
As Comparative Example 2, a product C was prepared in the same manner as in the above example except that a Ni plating layer was applied instead of the metallized layer 8 made of an Ag-Cu-Ti alloy.

【0033】比較例3として、図2の従来技術による融
点が800℃の封着用ガラス7により接合した以外は上
記実施例と同様に作製したものを製品Dとした。
As Comparative Example 3, a product D was prepared in the same manner as in the above-mentioned Example except that it was joined with the sealing glass 7 having a melting point of 800 ° C. according to the prior art shown in FIG.

【0034】これらの製品A〜Dのそれぞれについて、
大気雰囲気中で500℃に加熱して10分間保持した
後、振動試験{MIL-STD(Military standard:アメリカ
軍用規格)-202F METHOD210A}および衝撃試験(MIL-S
TD-202F METHOD213A)を行い、その接合部に異常がな
いか確認した。その結果、製品Aは何らの異常も確認さ
れなかった。製品Bは、ロウ材9による接合後に異常が
発生した。即ち、水素分離管3表面のAg−Pd合金層
中のAgと、Ag−Cu合金のロウ材9中のAgとが、
加熱処理により互いに混ざり合い、面積の広いAg−P
d合金層側にAgが拡散して、水素分離管3と固定部材
6との接合部に隙間が発生し接合不良となった。製品C
は、振動試験と引き続き行った衝撃試験の後に接合部に
亀裂が発生した。製品Dは、振動試験と衝撃試験の後に
接合部が破壊された。
For each of these products A to D,
After heating to 500 ° C in air atmosphere and holding for 10 minutes, vibration test {MIL-STD (Military standard: US military standard) -202F METHOD210A} and impact test (MIL-S
TD-202F METHOD213A) was performed and it was confirmed that there was no abnormality in the joint. As a result, no abnormality was confirmed for the product A. Product B had an abnormality after joining with brazing material 9. That is, Ag in the Ag—Pd alloy layer on the surface of the hydrogen separation tube 3 and Ag in the brazing material 9 of the Ag—Cu alloy are:
Ag-P with large area mixed with each other by heat treatment
Ag diffused into the d-alloy layer side, and a gap was generated at the joint between the hydrogen separation pipe 3 and the fixing member 6, resulting in poor joining. Product C
In the test, after the vibration test and the subsequent impact test, a crack was generated in the joint. The joint of the product D was broken after the vibration test and the impact test.

【0035】上記のように、本発明の製品Aは各層間が
強固に接合され、500℃程度の高温環境下においても
振動、衝撃に対して接合性が劣化することがなく、良好
な接合強度を維持できるものであることが判った。
As described above, in the product A of the present invention, the layers are firmly joined to each other. Even in a high temperature environment of about 500.degree. Was maintained.

【0036】[0036]

【発明の効果】本発明は、水素分離管は、表面に厚さ1
0〜30μmのAg−Pd合金層が被着された多孔質セ
ラミックスから成るとともに一端が開口され他端が閉じ
られており、かつ前記一端側の外周面または内周面に形
成された厚さ5〜60μmのAg−Cu−Ti合金から
成るメタライズ層が、700℃以上前記Ag−Pd合金
層の融点未満の融点を有するロウ材を介して筒状の金属
製固定部材の内周面または外周面に接合されることによ
り、改質反応炉内に固定されていることにより、500
℃以上の高温環境下でも接合強度が長期にわたり保持さ
れ、振動や衝撃によって接合部が破壊されず、その結果
改質器の機能を長期間維持できるという作用効果を有す
る。
According to the present invention, the hydrogen separation tube has a thickness of 1 mm on the surface.
It is made of porous ceramics having an Ag-Pd alloy layer of 0 to 30 µm, has one end opened and the other end closed, and has a thickness 5 formed on the outer peripheral surface or inner peripheral surface on the one end side. A metallized layer made of an Ag-Cu-Ti alloy having a thickness of 6060 μm and an inner or outer peripheral surface of a cylindrical metal fixing member via a brazing material having a melting point of 700 ° C. or more and less than the melting point of the Ag-Pd alloy layer. By being fixed in the reforming reactor,
The joint strength is maintained for a long time even in a high-temperature environment of not less than ° C., and the joint is not destroyed by vibration or impact. As a result, the function of the reformer can be maintained for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による水素分離管とそれが接合固定され
る固定部材の断面図である。
FIG. 1 is a sectional view of a hydrogen separation tube according to the present invention and a fixing member to which the hydrogen separation tube is joined and fixed.

【図2】従来の水素分離管と固定部材の断面図である。FIG. 2 is a sectional view of a conventional hydrogen separation tube and a fixing member.

【図3】燃料電池用の改質器の断面図である。FIG. 3 is a sectional view of a reformer for a fuel cell.

【図4】水素分離管の機能を説明するためのものであ
り、改質反応炉と水素分離管の部分断面斜視図である。
FIG. 4 is a partial sectional perspective view of a reforming reactor and a hydrogen separation tube for explaining the function of the hydrogen separation tube.

【符号の説明】[Explanation of symbols]

1:外囲器 2:炉体 3:水素分離管 3a:Ag−Pd合金層 4:改質触媒 5:バーナ 6:固定部材 8:メタライズ層 9:ロウ材 1: envelope 2: furnace body 3: hydrogen separation tube 3a: Ag-Pd alloy layer 4: reforming catalyst 5: burner 6: fixing member 8: metallization layer 9: brazing material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 8/06 H01M 8/06 G Fターム(参考) 4D006 GA41 HA21 JA22A JA22C JA30A JA30C LA06 MA02 MA06 MA24 MA31 MC02X MC03X MC90 NA45 PA01 PB18 PB66 PC80 4G040 EA02 EA03 EA06 EB33 EB46 FA02 FC01 FE01 5H027 AA02 BA01 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01M 8/06 H01M 8/06 GF term (Reference) 4D006 GA41 HA21 JA22A JA22C JA30A JA30C LA06 MA02 MA06 MA24 MA31 MC02X MC03X MC90 NA45 PA01 PB18 PB66 PC80 4G040 EA02 EA03 EA06 EB33 EB46 FA02 FC01 FE01 5H027 AA02 BA01

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】容器体としての外囲器内に、該外囲器内を
200〜600℃に加熱する燃焼器と、炭化水素系ガス
を含む原料ガスが内部で流通されるとともに水素分離管
が内蔵された改質反応炉とを具備した燃料電池用改質器
において、前記水素分離管は、表面に厚さ10〜30μ
mのAg−Pd合金層が被着された多孔質セラミックス
から成るとともに一端が開口され他端が閉じられてお
り、かつ前記一端側の外周面または内周面に形成された
厚さ5〜60μmのAg−Cu−Ti合金から成るメタ
ライズ層が、700℃以上前記Ag−Pd合金層の融点
未満の融点を有するロウ材を介して筒状の金属製固定部
材の内周面または外周面に接合されることにより、前記
改質反応炉内に固定されていることを特徴とする燃料電
池用改質器。
1. A combustor for heating an inside of an envelope as a container body to 200 to 600 ° C., a raw material gas containing a hydrocarbon-based gas being circulated therein, and a hydrogen separation tube. Wherein the hydrogen separation tube has a thickness of 10 to 30 μm on the surface thereof.
m made of a porous ceramic having an Ag-Pd alloy layer adhered thereto, having one end opened and the other end closed, and a thickness of 5 to 60 μm formed on the outer peripheral surface or the inner peripheral surface on the one end side. Is bonded to the inner or outer peripheral surface of the cylindrical metal fixing member via a brazing material having a melting point of 700 ° C. or more and less than the melting point of the Ag—Pd alloy layer. The fuel cell reformer is fixed in the reforming reaction furnace.
JP2000093729A 2000-03-30 2000-03-30 Fuel cell reformer Expired - Fee Related JP3878786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000093729A JP3878786B2 (en) 2000-03-30 2000-03-30 Fuel cell reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000093729A JP3878786B2 (en) 2000-03-30 2000-03-30 Fuel cell reformer

Publications (2)

Publication Number Publication Date
JP2001278601A true JP2001278601A (en) 2001-10-10
JP3878786B2 JP3878786B2 (en) 2007-02-07

Family

ID=18608874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000093729A Expired - Fee Related JP3878786B2 (en) 2000-03-30 2000-03-30 Fuel cell reformer

Country Status (1)

Country Link
JP (1) JP3878786B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032192A (en) * 2004-07-20 2006-02-02 Toyota Motor Corp Fuel cell, hydrogen separation film module and manufacturing method thereof
JP2006273658A (en) * 2005-03-29 2006-10-12 Nippon Steel Corp Composite structure and its forming process
JP2006314877A (en) * 2005-05-11 2006-11-24 Ngk Spark Plug Co Ltd Hydrogen separator
JP2007253152A (en) * 2005-07-14 2007-10-04 Daikin Ind Ltd Hydrogen separator and hydrogen manufacturing apparatus
JP2007254173A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Composite structure, method for producing composite structure, film type oxygen separator, and film type reactor
JP2007269600A (en) * 2006-03-31 2007-10-18 Ngk Spark Plug Co Ltd Hydrogen separation apparatus and hydrogen production system
JP2010036080A (en) * 2008-08-03 2010-02-18 National Institute Of Advanced Industrial & Technology Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
KR101125098B1 (en) * 2009-04-22 2012-03-21 최영종 Sealing nethod ane metal granule using the same SOFC

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006032192A (en) * 2004-07-20 2006-02-02 Toyota Motor Corp Fuel cell, hydrogen separation film module and manufacturing method thereof
JP2006273658A (en) * 2005-03-29 2006-10-12 Nippon Steel Corp Composite structure and its forming process
JP2006314877A (en) * 2005-05-11 2006-11-24 Ngk Spark Plug Co Ltd Hydrogen separator
JP2007253152A (en) * 2005-07-14 2007-10-04 Daikin Ind Ltd Hydrogen separator and hydrogen manufacturing apparatus
JP2007254173A (en) * 2006-03-20 2007-10-04 Nippon Steel Corp Composite structure, method for producing composite structure, film type oxygen separator, and film type reactor
JP2007269600A (en) * 2006-03-31 2007-10-18 Ngk Spark Plug Co Ltd Hydrogen separation apparatus and hydrogen production system
JP2010036080A (en) * 2008-08-03 2010-02-18 National Institute Of Advanced Industrial & Technology Hydrogen gas separation material with elevated temperature resistance which does not deteriorate under elevated temperature hyperbaric pressure-humid environment for a long term
KR101125098B1 (en) * 2009-04-22 2012-03-21 최영종 Sealing nethod ane metal granule using the same SOFC

Also Published As

Publication number Publication date
JP3878786B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP5204958B2 (en) Zygote
US20070295734A1 (en) Thermal Insulating Container for a Heat Generating Unit of a Fuel Cell System
JP5554747B2 (en) Gas seal composite and apparatus comprising the gas seal composite
US8182559B2 (en) Fuel reformer housing container and fuel reforming apparatus
JP2001278601A (en) Reformer for fuel cell
JP2011522353A (en) Sealing mechanism for high temperature fuel cell stacks
JP4911917B2 (en) Hydrogen separator
JP2006273658A (en) Composite structure and its forming process
US7719192B2 (en) Metal halide lamp with intermetal interface gradient
US20050132648A1 (en) Fuel reformer housing container and fuel reforming apparatus
KR101125098B1 (en) Sealing nethod ane metal granule using the same SOFC
JP4812288B2 (en) Fuel reformer storage container and fuel reformer
JP4582923B2 (en) Ceramic heater
JP5046484B2 (en) Fuel reformer storage container and fuel reformer
JP4903380B2 (en) Fuel reformer storage container, fuel reformer, and fuel reforming system
JP4889217B2 (en) Manufacturing method of fuel reformer
JP4628090B2 (en) Fuel reformer storage container and fuel reformer
JP4948759B2 (en) Fuel reformer storage container and fuel reformer
JP4493357B2 (en) Fuel reformer storage container and fuel reformer
JP4854421B2 (en) REACTOR AND METHOD FOR PRODUCING REACTOR
JP4628069B2 (en) Fuel reformer storage container and fuel reformer
JP4458889B2 (en) Fuel reformer storage container and fuel reformer
JP4903381B2 (en) Fuel reformer
JP2005213076A (en) Vessel for containing fuel reformer, and fuel reforming apparatus
JP2006182573A (en) Fuel-reforming device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees