JP2001273903A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP2001273903A
JP2001273903A JP2000088003A JP2000088003A JP2001273903A JP 2001273903 A JP2001273903 A JP 2001273903A JP 2000088003 A JP2000088003 A JP 2000088003A JP 2000088003 A JP2000088003 A JP 2000088003A JP 2001273903 A JP2001273903 A JP 2001273903A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
active material
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000088003A
Other languages
Japanese (ja)
Inventor
Noriki Muraoka
憲樹 村岡
Yutaka Kawadate
裕 川建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000088003A priority Critical patent/JP2001273903A/en
Publication of JP2001273903A publication Critical patent/JP2001273903A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve a low-temperature property in a lithium secondary battery that is constituted from a positive electrode in which lithium containing complex oxide is used as an active material, a negative electrode which is composed of carbonaceous materials wherein occlusion and emission of lithium ion is electrochemically possible, a separator, and a nonaqueous electrolytic solution. SOLUTION: By adding Co3O4 which has a surface area of specific range, an electro-conductivity of positive electrode can be enhanced and a lithium secondary battery which can be superior in the low-temperature property can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム含有複合
酸化物を活物質とする正極、リチウムイオンを電気化学
的に吸蔵、放出が可能な黒鉛などの炭素材料からなる負
極、セパレータおよび非水電解液を用いたリチウム二次
電池に関し、さらに詳しくは、低温特性に優れたリチウ
ム二次電池に関するものである。
The present invention relates to a positive electrode using a lithium-containing composite oxide as an active material, a negative electrode made of a carbon material such as graphite capable of electrochemically occluding and releasing lithium ions, a separator, and a non-aqueous electrolyte. The present invention relates to a lithium secondary battery using a liquid, and more particularly to a lithium secondary battery having excellent low-temperature characteristics.

【0002】[0002]

【従来の技術】非水電解液を用い、黒鉛などの炭素材料
を負極材料とし、リチウム含有複合酸化物を正極活物質
とするリチウム二次電池は、水溶液系の二次電池に比べ
て電圧、エネルギー密度が高く、近年ポータブル化、コ
ードレス化が進む民生用電子機器の主電源として期待さ
れている。また、負極にリチウム金属を用いないことか
らサイクル安定性、安全性にも優れている。さらに、非
水電解液を吸収保持するポリマーを活物質層に混合し、
前記ポリマーからなるフィルムを用いたリチウムポリマ
ー二次電池も薄型・軽量タイプの電池として開発されつ
つある。
2. Description of the Related Art A lithium secondary battery using a non-aqueous electrolyte, a carbon material such as graphite as a negative electrode material, and a lithium-containing composite oxide as a positive electrode active material has a higher voltage and voltage than an aqueous secondary battery. It is expected to be used as a main power source for consumer electronic devices, which have a high energy density and are becoming portable and cordless in recent years. Also, since lithium metal is not used for the negative electrode, cycle stability and safety are excellent. Furthermore, a polymer that absorbs and retains the non-aqueous electrolyte is mixed with the active material layer,
A lithium polymer secondary battery using a film made of the polymer is also being developed as a thin and lightweight battery.

【0003】しかしながら、軽量、高エネルギー密度を
特徴とするリチウムイオン二次電池、さらに薄型化を特
徴としたリチウムポリマー二次電池の用途の広がりに伴
ってこれらの二次電池の使用環境もより厳しいものとな
っている。携帯機器に搭載された場合には、屋外の低温
下での使用も想定され、それらの環境下でもより高い電
池性能を発揮できることが求められている。
[0003] However, with the widespread use of lithium ion secondary batteries characterized by light weight and high energy density, and lithium polymer secondary batteries characterized by thinning, the usage environment of these secondary batteries has become more severe. It has become something. When mounted on a portable device, it is expected that the device will be used outdoors under low temperatures, and it is required to exhibit higher battery performance even in such an environment.

【0004】しかしこれらのリチウム二次電池は、水溶
液系電解液に比べて粘性が高く電気伝導度が低い有機溶
媒系電解液を用いるため、低温特性に課題がある。
However, since these lithium secondary batteries use an organic solvent-based electrolyte having a higher viscosity and a lower electric conductivity than an aqueous electrolyte, there is a problem in low-temperature characteristics.

【0005】[0005]

【発明が解決しようとする課題】上記課題に対して、例
えば特開平10−334916号公報では、グラファイ
ト表面を非酸化雰囲気で加熱処理し表面修飾する提案が
なされているが、この手段においては大幅な製造コスト
の上昇がさけられない。また特開平5−217602号
公報、特開平10−312825号公報では電解液の溶
媒としてγ―ブチロラクトンの利用が提案されている
が、高温保存時において溶媒の分解によるガス発生の課
題があり、保存特性は必ずしも満足できるものではな
い。
To solve the above problem, for example, Japanese Patent Application Laid-Open No. Hei 10-334916 proposes to heat-treat a graphite surface in a non-oxidizing atmosphere to modify the surface. High production costs cannot be avoided. Japanese Patent Application Laid-Open Nos. Hei 5-217602 and Hei 10-31825 propose the use of γ-butyrolactone as a solvent for an electrolytic solution. However, there is a problem of gas generation due to decomposition of the solvent during high-temperature storage. The properties are not always satisfactory.

【0006】そこで、高温保存時の電池特性劣化の改善
を目的として、特開平9−330719号公報では、正
極に活物質としてリチウム-遷移金属複合酸化物以外に
FeOb 、CoOc、MnOd(0<b,c,d<
1.35)等の遷移金属酸化物を添加することが提案さ
れているが、表面積については述べられていない。
For the purpose of improving the deterioration of battery characteristics during high-temperature storage, Japanese Patent Application Laid-Open No. 9-330719 discloses FeOb, CoOc, MnOd (0 <b) in addition to a lithium-transition metal composite oxide as an active material. , C, d <
It has been proposed to add a transition metal oxide such as 1.35), but the surface area is not described.

【0007】本発明の目的は、リチウム含有複合酸化物
を正極活物質とし、リチウムイオンを電気化学的に吸
蔵、放出が可能な炭素材料を負極に用いたリチウム二次
電池において、高温保存特性を損なうことなく、低温に
おける電池内部の抵抗上昇による放電容量低下の改善、
例えば20℃における放電容量に対して−20℃で50
%以上の容量を維持することにある。
It is an object of the present invention to provide a lithium secondary battery using a lithium-containing composite oxide as a positive electrode active material and a carbon material capable of electrochemically occluding and releasing lithium ions for a negative electrode. Without loss, improvement of discharge capacity decrease due to resistance rise inside battery at low temperature,
For example, the discharge capacity at 20 ° C is 50 at -20 ° C.
% To maintain the capacity.

【0008】[0008]

【課題を解決するための手段】本発明は、この課題を解
決するために、リチウム含有複合酸化物を正極活物質と
し、リチウムイオンを電気化学的に吸蔵・放出が可能な
炭素材料を負極としたリチウム二次電池において、正極
中に特定範囲の表面積を有するCo34を含むことによ
って、高温保存時における電解液の酸化分解によるガス
発生がなく、正極の導電性を向上させ、低温における放
電容量低下を改善できることを見いだしたことに基づ
く。
In order to solve this problem, the present invention uses a lithium-containing composite oxide as a positive electrode active material and a carbon material capable of electrochemically storing and releasing lithium ions as a negative electrode. In the lithium secondary battery, by including Co 3 O 4 having a specific range of surface area in the positive electrode, there is no gas generation due to oxidative decomposition of the electrolyte during high-temperature storage, thereby improving the conductivity of the positive electrode, Based on the finding that the reduction in discharge capacity can be improved.

【0009】請求項1の発明は、リチウム含有複合酸化
物を活物質とする正極とリチウムイオンを電気化学的に
吸蔵、放出が可能な黒鉛などの炭素材料からなる負極
と、これらに含浸させた非水電解液からなるリチウム二
次電池において、前記正極中に表面積が15m2/g〜
65m2/gのCo34を含むことにより、低温におけ
る放電特性を改善し、且つ高温保存時のカ゛ス発生を低減
するものである。
According to a first aspect of the present invention, there is provided a positive electrode using a lithium-containing composite oxide as an active material, a negative electrode made of a carbon material such as graphite capable of electrochemically storing and releasing lithium ions, and impregnating them. In a lithium secondary battery comprising a non-aqueous electrolyte, a surface area of the positive electrode ranges from 15 m 2 / g to
By containing 65 m 2 / g of Co 3 O 4 , the discharge characteristics at low temperatures are improved and the occurrence of gas during high-temperature storage is reduced.

【0010】請求項2の発明は、リチウム含有複合酸化
物からなる活物質と非水電解液を吸収保持するポリマー
とを含む活物質混合物層とこの活物質混合物層を支持す
る集電体からなる正極、リチウムイオンを電気化学的に
吸蔵、放出が可能な黒鉛などの炭素材料と非水電解液を
吸収保持するポリマーとを含む混合物層とこの混合物層
を支持する集電体からなる負極、非水電解液を吸収保持
するポリマーからなる多孔性のフィルムと、これらに吸
収保持された非水電解液からなるリチウム二次電池にお
いて、前記正極中に表面積が10m2/g〜25m2/g
のCo34を含むことにより、低温における放電特性を
改善し、且つ高温保存時のガス発生を低減するものであ
る。
According to a second aspect of the present invention, there is provided an active material mixture layer containing an active material comprising a lithium-containing composite oxide and a polymer capable of absorbing and retaining a non-aqueous electrolyte, and a current collector supporting the active material mixture layer. A positive electrode, a negative electrode comprising a mixture layer containing a carbon material such as graphite capable of electrochemically occluding and releasing lithium ions and a polymer absorbing and retaining a non-aqueous electrolyte, and a current collector supporting the mixture layer; a porous film comprising a polymer that absorbs retain aqueous electrolyte, a lithium secondary battery comprising these absorption retained non-aqueous electrolyte, a surface area in the positive electrode is 10m 2 / g~25m 2 / g
By containing Co 3 O 4 , the discharge characteristics at low temperatures are improved, and gas generation during high-temperature storage is reduced.

【0011】低温における放電容量低下は、主に電池内
部、さらに詳しくは正極の抵抗上昇が原因と考えられて
いるが、この発明によれば、正極中に含まれたCo34
が充電状態で高い酸化状態になって導電性を持つことに
より、低温での正極の抵抗上昇を抑制する機能を担って
いるのではないかと推定される。
It is believed that the decrease in discharge capacity at low temperature is mainly caused by an increase in the resistance inside the battery, more specifically, the positive electrode. According to the present invention, however, Co 3 O 4 contained in the positive electrode is reduced.
It is presumed that by having a high oxidation state in the charged state and having conductivity, it has a function of suppressing an increase in the resistance of the positive electrode at low temperatures.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図を用いて説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は円筒形リチウムイオン二次電池の断
面図を示し、1は電池ケース、2はポリエチレン製絶縁
板、3はポリプロピレン製のガスケット、4は安全部材
を組み込んだ封口板、5はアルミニウム製の正極リー
ド、6は活物質にリチウムコバルト複合酸化物などを用
いた正極板、7はポリエチレン製のセパレータ、8は負
極材料に球状黒鉛などを用いた負極板、9は銅製の負極
リードである。正極板6は活物質と炭素材料からなる導
電剤とフッ素樹脂などの結着剤とをカルボキシメチルセ
ルロース(CMC)の水溶液に混合・分散したペースト
を正極集電体であるアルミニウム箔に塗着し、乾燥・圧
延したものを所定寸法に切断することにより得られたも
のである。負極板8は球状黒鉛粉末を結着剤のスチレン
ブタジエンラバー(SBR)とカルボキシメチルセルロ
ース(CMC)の水溶液に混合分散したペーストを負極
集電体である銅箔に塗着し、乾燥・圧延したものを所定
寸法に切断することにより得られたものである。
FIG. 1 is a sectional view of a cylindrical lithium ion secondary battery, 1 is a battery case, 2 is a polyethylene insulating plate, 3 is a polypropylene gasket, 4 is a sealing plate incorporating a safety member, and 5 is a sealing plate. A positive electrode lead made of aluminum, 6 is a positive electrode plate using lithium cobalt composite oxide or the like as an active material, 7 is a separator made of polyethylene, 8 is a negative electrode plate using spherical graphite or the like as a negative electrode material, 9 is a negative electrode lead made of copper It is. The positive electrode plate 6 is formed by applying a paste obtained by mixing and dispersing an active material, a conductive agent composed of a carbon material, and a binder such as a fluororesin in an aqueous solution of carboxymethyl cellulose (CMC) to an aluminum foil as a positive electrode current collector, It is obtained by cutting the dried and rolled product into predetermined dimensions. The negative electrode plate 8 is obtained by applying a paste obtained by mixing and dispersing spheroidal graphite powder in an aqueous solution of styrene butadiene rubber (SBR) and carboxymethyl cellulose (CMC) as binders onto a copper foil as a negative electrode current collector, followed by drying and rolling. Is obtained by cutting into a predetermined size.

【0014】また、図2は扁平型リチウムポリマー二次
電池の断面図を示し、11はアルミ箔を含む樹脂ラミネ
ート製の電池ケース、12はリード部の溶着シール、1
5はアルミニウムシート製の正極リード、16は活物質
としてリチウムコバルト複合酸化物などを用いた正極
板、17はフッ化ビニリデン−6フッ化プロピレン共重
合体P(VDF+HFP)からなり、非水電解液を吸収
保持してゲル状態になるフィルム、18はリチウムイオ
ンを電気化学的に吸蔵、放出可能な球状黒鉛などを用い
た負極板、19は銅シート製の負極リードである。正極
板16は、活物質であるリチウムコバルト複合酸化物と
導電剤のカーボンブラックと非水電解液を吸収保持し、
かつ結着剤としても作用するポリマーとしてフッ化ビニ
リデン−6フッ化プロピレン共重合体、ポリマーの溶媒
としてN−メチルー2ピロリドン、シクロヘキサノン、
造孔材としてフタル酸ジブチルを添加して混合分散した
ペーストを正極集電体であるアルミニウム製ラス材に塗
着し、乾燥後所定寸法に切断することにより得られたも
のである。負極板18は球状黒鉛と、非水電解液を吸収
保持し、かつ結着剤としても作用するポリマーとしてフ
ッ化ビニリデン−6フッ化プロピレン共重合体とを混合
したものに、溶媒としてN−メチル−2ピロリドンとア
セトン、フタル酸ジブチルを添加して混合分散したペー
ストを負極集電体である銅製ラス材に塗着し、乾燥後所
定寸法に切断することにより得られたものである。
FIG. 2 is a cross-sectional view of a flat type lithium polymer secondary battery, in which 11 is a battery case made of a resin laminate containing aluminum foil, 12 is a welding seal of a lead portion, and 1
5 is a positive electrode lead made of an aluminum sheet, 16 is a positive electrode plate using a lithium cobalt composite oxide or the like as an active material, 17 is a vinylidene fluoride-6-propylene copolymer P (VDF + HFP), and a non-aqueous electrolyte Is a film that absorbs and retains and forms a gel state, 18 is a negative electrode plate using spherical graphite or the like capable of electrochemically storing and releasing lithium ions, and 19 is a negative electrode lead made of a copper sheet. The positive electrode plate 16 absorbs and holds a lithium cobalt composite oxide as an active material, carbon black as a conductive agent, and a non-aqueous electrolyte.
Vinylidene fluoride-6-fluoropropylene copolymer as a polymer that also acts as a binder, N-methyl-2-pyrrolidone, cyclohexanone as a polymer solvent,
A paste obtained by adding and mixing and dispersing dibutyl phthalate as a pore-forming material to an aluminum lath material serving as a positive electrode current collector, drying and cutting into a predetermined size. The negative electrode plate 18 is a mixture of spherical graphite, vinylidene fluoride-6-propylene copolymer as a polymer that absorbs and holds a non-aqueous electrolyte and also acts as a binder, and N-methyl as a solvent. A paste obtained by adding and mixing and dispersing 2-pyrrolidone, acetone and dibutyl phthalate into a copper lath material as a negative electrode current collector, drying and cutting into a predetermined size.

【0015】フィルム17は前記同様フッ化ビニリデン
−6フッ化プロピレン共重合体と溶媒、フタル酸ジブチ
ルと構造材である酸化珪素微粒子をペースト化し、これ
を支持シートに塗着・乾燥後剥離して得られたものであ
る。正極板16、フィルム17と負極板18を熱ローラ
ーで加熱、加圧一体化した後、キシレン中に浸してフタ
ル酸ジブチルを溶出させることにより、多孔質なポリマ
ー電極群が得られた。この電極群を電池ケース11内に
入れた後、電解液を注液し、加温してポリマー部分をゲ
ル状にしたゲルポリマー電解質を形成した。最後に開口
部の樹脂ラミネートを熱溶着し、扁平型リチウムポリマ
ー二次電池とした。なお、以上の説明では円筒形電池と
扁平型電池を示したが、本発明は電池形状には関係なく
効果を発揮するものであり、他の形状である角形電池・
コイン形電池などに用いることも可能である。
The film 17 is formed by pasting the vinylidene fluoride-6-propylene copolymer, the solvent, dibutyl phthalate and the fine particles of silicon oxide as a structural material in the same manner as described above. It is obtained. The positive electrode plate 16, the film 17, and the negative electrode plate 18 were heated and integrated with a heat roller under pressure, and then immersed in xylene to elute dibutyl phthalate, whereby a porous polymer electrode group was obtained. After this electrode group was placed in the battery case 11, an electrolytic solution was injected and heated to form a gel polymer electrolyte having a polymer portion in a gel state. Finally, the resin laminate at the opening was heat-welded to obtain a flat lithium polymer secondary battery. In the above description, the cylindrical battery and the flat battery are shown. However, the present invention is effective regardless of the shape of the battery.
It is also possible to use it for a coin-shaped battery or the like.

【0016】ところで、Co34の表面積の好ましい範
囲は、リチウムイオン二次電池の場合、15m2/g〜
65m2/gである。表面積が20m2/g未満の場合に
は、低温特性を確保できる導電性が得られず、逆に60
2/gを越える場合には、低温特性を確保できる導電
性は得られるが、Co34表面での電解液の酸化分解に
よる高温保存時のガス発生を押さえることができない。
By the way, the preferable range of the surface area of Co 3 O 4 is 15 m 2 / g to lithium ion secondary battery.
65 m 2 / g. If the surface area is less than 20 m 2 / g, conductivity which can ensure low-temperature characteristics cannot be obtained.
If it exceeds m 2 / g, conductivity that can ensure low-temperature characteristics can be obtained, but gas generation during high-temperature storage due to oxidative decomposition of the electrolytic solution on the Co 3 O 4 surface cannot be suppressed.

【0017】また、リチウムポリマー二次電池の場合、
10m2/g〜25m2/gである。表面積が10m2
g未満の場合には、低温特性を確保できる導電性が得ら
れず、逆に25m2/gを越える場合には、低温特性を
確保できる導電性は得られるが、Co34表面での電解
液の酸化分解による高温保存時のガス発生を押さえるこ
とができない。
In the case of a lithium polymer secondary battery,
Is a 10m 2 / g~25m 2 / g. Surface area 10m 2 /
If it is less than g is not obtained conductive capable of ensuring low-temperature properties, when exceeding 25 m 2 / g Conversely, although the conductivity can be ensured low temperature properties are obtained, in the Co 3 O 4 surface Gas generation during high-temperature storage due to oxidative decomposition of the electrolyte cannot be suppressed.

【0018】リチウムイオン電池とリチウムポリマー電
池おいて、Co34の表面積の好ましい範囲が異なるの
は、リチウムポリマー電池が金属ケースに比べて、機械
的強度の低いアルミ箔等の金属薄膜を中間の一層に用い
た樹脂ラミネート製の電池ケースを用いる為、Co34
の表面積を小さくして、高温保存時のガス発生による電
池の変形を少なくする必要があるからである。
The difference in the preferable range of the surface area of Co 3 O 4 between the lithium ion battery and the lithium polymer battery is that the lithium polymer battery has an intermediate metal thin film such as an aluminum foil having lower mechanical strength than the metal case. Since the battery case made of resin laminate used for one layer is used, Co 3 O 4
This is because it is necessary to reduce the surface area of the battery to reduce the deformation of the battery due to gas generation during high-temperature storage.

【0019】またCo34の好ましい添加量は活物質1
00重量部に対して、1重量部以上、10重量部以下で
ある。1重量部未満では導電剤として機能が十分発揮さ
れず、低温特性の向上が少ない。逆に10重量部以上に
なると、正極活物質の含有量が減少し、電池容量が十分
に確保できない問題が生じる。
The preferable addition amount of Co 3 O 4 is as follows.
1 part by weight or more and 10 parts by weight or less based on 00 parts by weight. When the amount is less than 1 part by weight, the function as a conductive agent is not sufficiently exhibited, and the improvement in low-temperature characteristics is small. Conversely, when the amount is more than 10 parts by weight, the content of the positive electrode active material decreases, and a problem arises that the battery capacity cannot be sufficiently secured.

【0020】[0020]

【実施例】次に、本発明を実施例と比較例を用いて詳細
に説明する。
Next, the present invention will be described in detail with reference to examples and comparative examples.

【0021】(実施例1) <正極の作成>リチウム含有複合酸化物としてコバルト
酸リチウム(LiCoO2)100重量部、表面積が20
2/gのCo34を1重量部、導電剤としてアセチレ
ンブラックを2重量部、結着剤としてポリフッ化フルオ
ロエチレン(PTFE)5重量部をCMCを含む水で混
練・分散させることによってペーストを作製し、これを
アルミニウム箔の集電体に塗布、乾燥し正極とした。
Example 1 <Preparation of Positive Electrode> As a lithium-containing composite oxide, 100 parts by weight of lithium cobaltate (LiCoO 2 ) and a surface area of 20 were used.
By kneading and dispersing 1 part by weight of m 2 / g Co 3 O 4 , 2 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyfluoroethylene (PTFE) as a binder with water containing CMC. A paste was prepared, applied to a current collector made of aluminum foil, and dried to obtain a positive electrode.

【0022】<負極の作成>リチウムイオンを電気化学
的に吸蔵、放出可能な材料として球状黒鉛粉末100重
量部、結着剤としてSBR2重量部をCMCを含む水で
混練・分散させることによってペーストを作製し、これ
を銅箔製の集電体に塗布、乾燥し負極とした。
<Preparation of Negative Electrode> A paste is prepared by kneading and dispersing 100 parts by weight of spherical graphite powder as a material capable of electrochemically absorbing and releasing lithium ions and 2 parts by weight of SBR as a binder in water containing CMC. A negative electrode was prepared by applying this to a copper foil current collector and drying.

【0023】<電池の作成>上記正、負極にポリエンチ
レン製のセパレータ、さらにエチレンカーボネート(E
C)とエチルメチルカーボネート(EMC)を体積比
1:3で混合した混合溶媒3gに、電解質である6フッ
化リン酸リチウム(LiPF6)を1.5モル・dm−
3を加えた電解液を用いて図1に示した円筒形リチウム
二次電池を作製した。これを実施例1の電池とした。
<Preparation of Battery> The positive and negative electrodes were made of a polyethylene separator, and ethylene carbonate (E) was used.
C) and ethyl methyl carbonate (EMC) at a volume ratio of 1: 3 in a mixed solvent of 3 g, and lithium hexafluorophosphate (LiPF6) as an electrolyte at 1.5 mol · dm −
The cylindrical lithium secondary battery shown in FIG. 1 was produced using the electrolyte solution to which 3 was added. This was designated as the battery of Example 1.

【0024】(実施例2)Co34の添加量を5重量部
とした以外は実施例1と同様に構成した電池を実施例2
とした。
Example 2 A battery constructed in the same manner as in Example 1 except that the addition amount of Co 3 O 4 was changed to 5 parts by weight, was used in Example 2.
And

【0025】(実施例3)Co34の添加量を10重量
部とした以外は実施例1と同様に構成した電池を実施例
3とした。
Example 3 A battery constructed in the same manner as in Example 1 except that the amount of Co 3 O 4 was changed to 10 parts by weight was used as Example 3.

【0026】(実施例4)Co34の表面積が60m2
/gであること以外は実施例1と同様に構成した電池を
実施例4とした。
Example 4 Co 3 O 4 has a surface area of 60 m 2
A battery constructed in the same manner as in Example 1 except that the ratio was / g was designated as Example 4.

【0027】(実施例5) <正極の作成>リチウム含有複合酸化物としてコバルト
酸リチウム(LiCoO2)100重量部、表面積が10
2/gのCo34を1重量部、導電剤としてアセチレ
ンブラックを5重量部、結着剤としてPVDF−HFP
8重量部をアセトンで混練することによってペーストを
作製し、これをアルミニウム製ラス材の集電体に塗布、
乾燥し正極とした。
Example 5 <Preparation of Positive Electrode> As a lithium-containing composite oxide, 100 parts by weight of lithium cobalt oxide (LiCoO 2 ) and a surface area of 10 parts were used.
1 part by weight of m 2 / g Co 3 O 4 , 5 parts by weight of acetylene black as a conductive agent, and PVDF-HFP as a binder
A paste was prepared by kneading 8 parts by weight with acetone, and this was applied to a current collector made of an aluminum lath material,
It dried and was set as the positive electrode.

【0028】<負極の作成> リチウムイオンを電気化
学的に吸蔵、放出可能な材料として球状黒鉛粉末100
重量部、結着剤としてP(VDF−HFP)10重量部
をアセトンで混練することによってペーストを作製し、
これを銅製ラス材の集電体に塗布、乾燥し負極とした。
<Preparation of Negative Electrode> Spheroidal graphite powder 100 is used as a material capable of electrochemically absorbing and releasing lithium ions.
By weight, kneading 10 parts by weight of P (VDF-HFP) as a binder with acetone to prepare a paste,
This was applied to a copper lath current collector and dried to form a negative electrode.

【0029】<電池の作成>上記正、負極にP(VDF
−HFP)製のフィルム、さらにエチレンカーボネート
(EC)とエチルメチルカーボネート(EMC)を体積
比1:3で混合した混合溶媒3gに、電解質である6フ
ッ化リン酸リチウム(LiPF6)を1.5モル・dm
−3を加えた電解液を用いて図2に示した扁平型リチウ
ムポリマー二次電池を作製した。これを実施例5の電池
とした。
<Preparation of Battery> P (VDF
-HFP) film, and 3 g of a mixed solvent obtained by mixing ethylene carbonate (EC) and ethyl methyl carbonate (EMC) at a volume ratio of 1: 3, 1.5 L of lithium hexafluorophosphate (LiPF6) as an electrolyte was added. Mol dm
The flat lithium polymer secondary battery shown in FIG. 2 was manufactured using the electrolyte solution to which -3 was added. This was designated as a battery of Example 5.

【0030】(実施例6)Co34の表面積が20m2
/gであること以外は実施例5と同様に構成した電池を
実施例6とした。
Example 6 The surface area of Co 3 O 4 was 20 m 2.
A battery constituted in the same manner as in Example 5 except that the ratio was / g was designated as Example 6.

【0031】(比較例1)Co34を添加しない以外は
実施例1と同様に構成した電池を比較例1とした。
Comparative Example 1 A battery constructed in the same manner as in Example 1 except that Co 3 O 4 was not added was used as Comparative Example 1.

【0032】(比較例2)Co34の添加量を0.5重
量部とした以外は実施例1と同様に構成した電池を比較
例2とした。
(Comparative Example 2) A battery constructed in the same manner as in Example 1 except that the addition amount of Co 3 O 4 was 0.5 part by weight was set as Comparative Example 2.

【0033】(比較例3)Co34の添加量を15重量
部とした以外は実施例1と同様に構成した電池を比較例
3とした。
Comparative Example 3 A battery constructed in the same manner as in Example 1 except that the amount of Co 3 O 4 was changed to 15 parts by weight was used as Comparative Example 3.

【0034】(比較例4)Co34の表面積が80m2
/gであること以外は実施例1と同様に構成した電池を
比較例4とした。
(Comparative Example 4) The surface area of Co 3 O 4 was 80 m 2
A battery constructed in the same manner as in Example 1 except that the ratio was / g was designated as Comparative Example 4.

【0035】実施例1〜6と比較例1〜4の各電池を、
20℃環境下で500mAで4.2Vまで充電した後、
20℃環境下で100mAで3.0Vまで放電し、各電
池の20℃における放電容量を測定した。次に再度20
℃環境下で500mAで4.2Vまで充電した後、−2
0℃環境下で3.0Vまで放電し、各電池の−20℃に
おける放電容量を測定した。最後に再度20℃環境下で
500mAで4.2Vまで充電した後、各電池を90℃
で12時間保存し、流動パラフィン中で各電池を開封し
て発生したガスを捕集して、ガス発生量を測定した。そ
れぞれの結果を表1に示した。
The batteries of Examples 1 to 6 and Comparative Examples 1 to 4 were
After charging to 4.2V at 500mA under 20 ° C environment,
The battery was discharged to 3.0 V at 100 mA in a 20 ° C. environment, and the discharge capacity at 20 ° C. of each battery was measured. Then again 20
After charging to 4.2V at 500mA in an environment of
The battery was discharged to 3.0 V in a 0 ° C. environment, and the discharge capacity of each battery at −20 ° C. was measured. Finally, after charging again to 4.2 V at 500 mA in an environment of 20 ° C., each battery was charged at 90 ° C.
For 12 hours, and the gas generated by opening each battery in liquid paraffin was collected and the amount of generated gas was measured. Table 1 shows the results.

【0036】[0036]

【表1】 [Table 1]

【0037】表1より明らかなように、本発明の実施例
では−20℃における放電容量が360mAh以上と、
無添加の比較例1と比べて大幅に改善されており、Co
34の添加によって低温における抵抗上昇を抑制できる
ことができた。
As is apparent from Table 1, in the embodiment of the present invention, the discharge capacity at −20 ° C. is 360 mAh or more,
It is significantly improved as compared with Comparative Example 1 where no additive was added, and Co
By adding 3 O 4 , it was possible to suppress an increase in resistance at low temperatures.

【0038】しかし添加量が0.5重量部と少ない比較
例2では、それほど大きな抵抗抑制の効果は発見できな
かった。逆に添加量が15重量部の比較例3では、正極
活物質の充填性が低く、20℃における放電容量が大き
く低下した。
However, in Comparative Example 2 in which the addition amount was as small as 0.5 part by weight, no significant effect of suppressing the resistance could be found. Conversely, in Comparative Example 3 in which the addition amount was 15 parts by weight, the filling property of the positive electrode active material was low, and the discharge capacity at 20 ° C. was significantly reduced.

【0039】比較例4では表面積が80m2/gのCo3
4を添加したが、Co34表面での電解液の酸化分解
が原因と考えられるガス発生が実施例4と比べて急激に
増加した。
In Comparative Example 4, Co 3 having a surface area of 80 m 2 / g
Although O 4 was added, gas generation, which is considered to be caused by oxidative decomposition of the electrolytic solution on the surface of Co 3 O 4 , increased sharply as compared with Example 4.

【0040】また実施例5、6から、扁平型リチウムポ
リマー二次電池においてもCo34添加は低温特性向上
に有効であった。以上の結果から、Co34の添加量は
活物質100重量部に対して1重量部以上、10重量部
以下が最適であることが明らかになった。
Further, from Examples 5 and 6, the addition of Co 3 O 4 was effective in improving the low-temperature characteristics also in the flat type lithium polymer secondary battery. From the above results, it has been clarified that the optimal amount of Co 3 O 4 is 1 part by weight or more and 10 parts by weight or less based on 100 parts by weight of the active material.

【0041】[0041]

【発明の効果】このように本発明は、リチウム含有複合
酸化物を正極活物質とし、リチウムイオンを電気化学的
に吸蔵・放出が可能な黒鉛材料を負極に用いた非水電解
液系リチウム二次電池において、正極中に表面積が特定
範囲のCo34を含むことによって低温における放電容
量を改善させたものである。
As described above, the present invention provides a non-aqueous electrolyte-based lithium secondary battery using a lithium-containing composite oxide as a positive electrode active material and a graphite material capable of electrochemically storing and releasing lithium ions for a negative electrode. In the secondary battery, the discharge capacity at low temperature is improved by including Co 3 O 4 having a specific surface area in the positive electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の円筒型リチウム二次電池を示す断面図FIG. 1 is a cross-sectional view showing a cylindrical lithium secondary battery of the present invention.

【図2】本発明の平型リチウムポリマー二次電池を示
す断面図
Sectional view showing a Bian Flat-type lithium polymer secondary battery of the present invention; FIG

【符号の説明】[Explanation of symbols]

1 電池ケース 2 絶縁板 3 ガスケット 4 封口板 5 正極リード 6 正極板 7 セパレータ 8 負極板 9 負極リード 11 電池ケース 12 リード部の溶着シール 15 正極リード 16 正極板 17 フィルム 18 負極板 19 負極リード DESCRIPTION OF SYMBOLS 1 Battery case 2 Insulating plate 3 Gasket 4 Sealing plate 5 Positive electrode lead 6 Positive electrode plate 7 Separator 8 Negative electrode plate 9 Negative electrode lead 11 Battery case 12 Welding seal of lead part 15 Positive electrode lead 16 Positive electrode plate 17 Film 18 Negative electrode plate 19 Negative electrode lead

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AK03 AL06 AM00 AM03 AM05 AM07 AM16 BJ02 BJ04 BJ12 BJ14 DJ08 EJ05 HJ01 HJ07 5H050 AA06 AA10 CA07 CB07 DA02 DA09 DA10 EA01 HA01 HA07 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ02 AK03 AL06 AM00 AM03 AM05 AM07 AM16 BJ02 BJ04 BJ12 BJ14 DJ08 EJ05 HJ01 HJ07 5H050 AA06 AA10 CA07 CB07 DA02 DA09 DA10 EA01 HA01 HA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有複合酸化物を活物質とする
正極と、リチウムイオンを電気化学的に吸蔵、放出が可
能な炭素材料からなる負極と、セパレータと、これらに
含浸させた非水電解液からなるリチウム二次電池におい
て、前記正極中に表面積が15m2/g〜65m2/gの
Co34を含むことを特徴とするリチウム二次電池。
1. A positive electrode using a lithium-containing composite oxide as an active material, a negative electrode made of a carbon material capable of electrochemically occluding and releasing lithium ions, a separator, and a non-aqueous electrolyte impregnated therein. in the lithium secondary battery comprising a lithium secondary battery surface area in the positive electrode is characterized in that it comprises a Co 3 O 4 of 15m 2 / g~65m 2 / g.
【請求項2】 リチウム含有複合酸化物からなる活物質
と非水電解液を吸収保持するポリマーとを含む活物質混
合物層とこれを支持する集電体からなる正極と、リチウ
ムイオンを電気化学的に吸蔵、放出が可能な炭素材料と
非水電解液を吸収保持するポリマーとを含む活物質混合
物層とこれを支持する集電体からなる負極と、非水電解
液を吸収保持するポリマーからなる多孔性のフィルム
と、これらに吸収保持された非水電解液からなるリチウ
ム二次電池において、前記正極中に表面積が10m2
g〜25m2/gのCo34を含むことを特徴とするリ
チウム二次電池。
2. An active material mixture layer containing an active material made of a lithium-containing composite oxide and a polymer absorbing and retaining a non-aqueous electrolyte, a positive electrode made of a current collector supporting the active material mixture layer, An active material mixture layer containing a carbon material capable of occluding and releasing and a polymer that absorbs and retains a nonaqueous electrolyte, a negative electrode composed of a current collector that supports the active material mixture layer, and a polymer that absorbs and retains the nonaqueous electrolyte In a lithium secondary battery comprising a porous film and a non-aqueous electrolyte absorbed and retained therein, a surface area of 10 m 2 /
A lithium secondary battery comprising g to 25 m 2 / g of Co 3 O 4 .
【請求項3】 前記Co34が正極活物質100重量部
に対して1重量部以上、10重量部以下含まれている請
求項1または請求項2に記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the Co 3 O 4 is contained in an amount of 1 to 10 parts by weight based on 100 parts by weight of the positive electrode active material.
JP2000088003A 2000-03-28 2000-03-28 Lithium secondary battery Pending JP2001273903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088003A JP2001273903A (en) 2000-03-28 2000-03-28 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088003A JP2001273903A (en) 2000-03-28 2000-03-28 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001273903A true JP2001273903A (en) 2001-10-05

Family

ID=18603935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088003A Pending JP2001273903A (en) 2000-03-28 2000-03-28 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001273903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200827A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
CN106471651A (en) * 2014-07-11 2017-03-01 株式会社Lg 化学 Positive electrode of secondary cell and preparation method thereof
WO2019193324A1 (en) * 2018-04-03 2019-10-10 Ilika Technologies Limited Composition, methods for its production, and its use

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007200827A (en) * 2006-01-30 2007-08-09 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery
CN106471651A (en) * 2014-07-11 2017-03-01 株式会社Lg 化学 Positive electrode of secondary cell and preparation method thereof
JP2017527071A (en) * 2014-07-11 2017-09-14 エルジー・ケム・リミテッド Positive electrode material for secondary battery and method for producing the same
US10490806B2 (en) 2014-07-11 2019-11-26 Lg Chem, Ltd. Positive electrode material of secondary battery and preparation method thereof
WO2019193324A1 (en) * 2018-04-03 2019-10-10 Ilika Technologies Limited Composition, methods for its production, and its use
CN112204774A (en) * 2018-04-03 2021-01-08 伊利卡科技有限公司 Component, process for producing the same, and use thereof
JP7384420B2 (en) 2018-04-03 2023-11-21 イリカ テクノロジーズ リミテッド Composition, method of manufacturing and use thereof

Similar Documents

Publication Publication Date Title
CA2641152C (en) Lithium secondary battery using ionic liquid
WO2004066419A1 (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery using same
JP2008097879A (en) Lithium ion secondary battery
WO2019216275A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
WO2018059180A1 (en) High-power, high-energy chemical power supply and preparation method therefor
CN110676511A (en) Lithium ion battery electrolyte and lithium ion secondary battery
JP5357518B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT AND NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT CONTAINING THE SAME
JP2003077476A (en) Lithium ion secondary battery
JP2000277146A (en) Rectangular nonaqueous electrolyte secondary battery
JP2009129769A (en) Lithium-ion secondary battery
JP2016004657A (en) Positive electrode, method of manufacturing positive electrode, and nonaqueous electrolyte secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JPH1173943A (en) Nonaqueous electrolyte secondary battery
JP4824450B2 (en) Nonaqueous electrolyte secondary battery
JP2001222995A (en) Lithium ion secondary battery
JP2008282550A (en) Anode for lithium secondary battery and lithium secondary cell using the same
JP2008305688A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the negative electrode
JP2002083630A (en) LACTONE DERIVATIVE, gamma-BUTYROLACTONE DERIVATIVE, NONAQUEOUS ELECTROLYTE AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP4348771B2 (en) Lithium secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JP2001307735A (en) Lithium secondary battery
JP2012028086A (en) Positive electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP2016072119A (en) Lithium secondary battery
JP2002313418A (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery