JP2001270913A - Effective hydrogenation method of conjugated diene polymer - Google Patents
Effective hydrogenation method of conjugated diene polymerInfo
- Publication number
- JP2001270913A JP2001270913A JP2000083702A JP2000083702A JP2001270913A JP 2001270913 A JP2001270913 A JP 2001270913A JP 2000083702 A JP2000083702 A JP 2000083702A JP 2000083702 A JP2000083702 A JP 2000083702A JP 2001270913 A JP2001270913 A JP 2001270913A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogenation
- catalyst
- polymer
- added
- conjugated diene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、有機アルカリ金属
化合物を重合開始剤として重合した共役ジエン系重合体
を、メタロセン系水素添加触媒を用いて、水素と接触さ
せて共役ジエンの二重結合を水素添加する方法におい
て、触媒量を削減し、且つ短時間で水素添加反応を完了
する水素添加方法に関する。更に具体的には、水素添加
触媒を数次に分けて添加し、水素添加率98%以上の共
役ジエン系重合体を得る際に、追加する水素添加触媒の
最適な追加時間を水素の吸収速度を測定する事により決
定し、安定に、短時間で経済的に水素添加する方法に関
する。The present invention relates to a conjugated diene-based polymer obtained by polymerizing an organic alkali metal compound as a polymerization initiator, by contacting the conjugated diene-based polymer with hydrogen using a metallocene-based hydrogenation catalyst to form a double bond of the conjugated diene. In the hydrogenation method, the present invention relates to a hydrogenation method in which the amount of a catalyst is reduced and the hydrogenation reaction is completed in a short time. More specifically, when a hydrogenation catalyst is added in several orders to obtain a conjugated diene polymer having a hydrogenation rate of 98% or more, the optimal addition time of the hydrogenation catalyst to be added is adjusted to the hydrogen absorption rate. And a method for stably and economically hydrogenating in a short time.
【0002】[0002]
【従来の技術】メタロセン系触媒は、重合物の水素添加
(以下水添と略す)に用いる場合、ニッケル系触媒に比
べれば、よりマイルドな条件下で、より少ない量で同量
の水添を成し遂げるという特徴が有り、この為、水添
後、触媒残差を取り除く特別な処理が必要なく、又たと
え行う場合も触媒残差を取り除く処理が軽くて済むとい
う特徴が有るため、近年、よく使われるようになってき
た。しかしメタロセン系触媒は、価格が高く、また容易
に活性を失い易いという問題を有するため、従来、より
高活性で、取扱い方が易しく長期貯蔵安定性の良い水添
触媒が種々検討され提案されてきた。例えば、特定のチ
タノセン化合物とアルキルリチウムを組み合わせて、オ
レフィン化合物を水添する方法(特開昭61−3313
2号、特開平1−53851号)、メタロセン化合物と
有機アルミニウム、亜鉛、マグネシウムと組み合わせで
オレフィン性不飽和(共)重合物を水添する方法(特開
昭61−28507号、62−209103号)、特定
のチタノセン化合物とアルキルリチウムとの組合せでオ
レフィン性不飽和基含有リビングポリマーを水添させる
方法(特開昭61−47706号、特開昭63−540
2号)、チタノセン化合物とトリメチルアルミニウムの
メタラサイクル化合物であるTebbe試薬によるオレ
フィン性不飽和二重結合含有ポリマー中のオレフィン性
二重結合を水添する方法(特開平11−71426
号)、チタノセン化合物を、特定された量のリチウムア
ルコキサイトと組み合わせオレフィン性不飽和二重結合
含有ポリマー中のオレフィン性二重結合を水添する方法
(特開平1−275605)等が提案されている2. Description of the Related Art When a metallocene catalyst is used for hydrogenation (hereinafter abbreviated as hydrogenation) of a polymer, a smaller amount of hydrogenation under the milder conditions is used as compared with a nickel catalyst. It has the characteristic that it can be achieved.Therefore, after hydrogenation, no special treatment for removing the catalyst residue is required, and even if it is performed, the treatment for removing the catalyst residue can be lightened. It has come to be. However, metallocene-based catalysts are problematic in that they are expensive and easily lose their activity, and various hydrogenation catalysts having higher activity, easier handling, and better long-term storage stability have been studied and proposed. Was. For example, a method of hydrogenating an olefin compound by combining a specific titanocene compound and an alkyl lithium (JP-A-63-1313)
No. 2, JP-A-1-53851), a method of hydrogenating an olefinically unsaturated (co) polymer by combining a metallocene compound with an organic aluminum, zinc, or magnesium (JP-A-61-28507, 62-209103) ), A method of hydrogenating an olefinically unsaturated group-containing living polymer with a combination of a specific titanocene compound and an alkyl lithium (JP-A-61-47706, JP-A-63-540)
No. 2), a method of hydrogenating an olefinic double bond in an olefinically unsaturated double bond-containing polymer with a Tebebe reagent which is a metallacycle compound of a titanocene compound and trimethylaluminum (JP-A-11-71426).
), A method of combining a titanocene compound with a specified amount of lithium alkoxide and hydrogenating the olefinic double bond in the olefinically unsaturated double bond-containing polymer (JP-A-1-275605). ing
【0003】[0003]
【発明が解決しようとする課題】しかしながら、この様
ないずれの方法においても、工業的な規模で、98%以
上の高水添率の共役ジエン系重合体を得ようとすると種
々の不具合が発生した。水添反応は激しい発熱反応であ
り、反応途中で温度が高くなり水添触媒の失活を招くト
ラブルが発生したり、経済性追求のため触媒使用量を削
減すると、水添時間が長くかかったり、はなはだしくは
目的の高水添率の重合体が得られないなどのトラブルが
生じた。この為、なるべく少ない触媒使用量で、工業的
に短時間で安定に高い水添率を達成する為の水添方法の
改良が望まれていた。However, in any of these methods, various problems occur when an attempt is made to obtain a conjugated diene polymer having a high degree of hydrogenation of 98% or more on an industrial scale. The hydrogenation reaction is a violently exothermic reaction.If the temperature rises in the course of the reaction and the hydrogenation catalyst is deactivated, troubles may occur.If the amount of catalyst used is reduced to pursue economic efficiency, the hydrogenation time will increase. However, troubles such as the inability to obtain the desired polymer having a high hydrogenation ratio occurred. For this reason, there has been a demand for an improved hydrogenation method for stably achieving a high hydrogenation rate industrially in a short time with a minimum amount of catalyst used.
【0004】[0004]
【課題を解決するための手段】本発明者らは従来技術の
上記の問題点を解決すべく鋭意検討した結果、工業的な
規模で水添を行う場合、水添触媒を数次に分けて添加す
る事が大切であり、しかも追加する水添触媒の最適添加
時期を、水素の吸収速度を測定することにより決定出来
ることを見いだし、安定に短時間で経済的に、高水添率
の水添を達成する本発明を成すに至った。The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems of the prior art. As a result, when hydrogenation is performed on an industrial scale, the hydrogenation catalyst is divided into several orders. It is important to add the hydrogenation catalyst, and it has been found that the optimal addition time of the hydrogenation catalyst to be added can be determined by measuring the hydrogen absorption rate. The present invention has been accomplished.
【0005】本発明は、有機アルカリ金属化合物を重合
開始剤として重合した共役ジエン系重合体を、メタロセ
ン系水素添加触媒を2回以上に分けて添加し、高い水素
添加率の共役ジエン系重合体を得る際、水素添加触媒の
追加時期を水素の吸収速度を測定する事により決定する
事を特徴とする改良された共役ジエン系重合体の水素添
加方法である。According to the present invention, a conjugated diene-based polymer obtained by polymerizing an organic alkali metal compound as a polymerization initiator is added in two or more portions to a metallocene-based hydrogenation catalyst to obtain a conjugated diene-based polymer having a high hydrogenation rate. The method for hydrogenating a conjugated diene-based polymer is characterized in that the time of addition of the hydrogenation catalyst is determined by measuring the rate of absorption of hydrogen.
【0006】本発明で重合開始剤として用いられる有機
アルカリ金属化合物は、一般的に共役ジエン化合物に対
しアニオン重合活性があることが知られている脂肪族炭
化水素アルカリ金属化合物、芳香族炭化水素アルカリ金
属化合物、有機アミノアルカリ金属化合物等が含まれ、
アルカリ金属としてはリチウム、ナトリウム、カリウム
等である。好適な有機アルカリ金属化合物としては、炭
素数1から20の脂肪族および芳香族炭化水素リチウム
化合物であり、1分子中に1個のリチウムを含む化合
物、1分子中に複数のリチウムを含むジリチウム化合
物、トリリチウム化合物、テトラリチウム化合物が含ま
れる。具体的にはn−プロピルリチウム、n−ブチルリ
チウム、sec−ブチルリチウム、tert−ブチルリ
チウム、n−ペンチルリチウム、n−ヘキシルリチウ
ム、ベンジルリチウム、フェニルリチウム、トリルリチ
ウム、ジイソプロペニルベンゼンとsec−ブチルリチ
ウムの反応生成物、さらにジビニルベンゼンとsec−
ブチルリチウムと少量の1,3−ブタジエンの反応生成
物等があげられる。The organic alkali metal compound used as a polymerization initiator in the present invention is generally an aliphatic hydrocarbon alkali metal compound or an aromatic hydrocarbon alkali compound which is known to have anionic polymerization activity for a conjugated diene compound. Metal compounds, including organic amino alkali metal compounds,
Examples of the alkali metal include lithium, sodium, and potassium. Preferred organic alkali metal compounds are aliphatic and aromatic hydrocarbon lithium compounds having 1 to 20 carbon atoms, compounds containing one lithium in one molecule, and dilithium compounds containing a plurality of lithium in one molecule. , Trilithium compounds and tetralithium compounds. Specifically, n-propyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, n-pentyl lithium, n-hexyl lithium, benzyl lithium, phenyl lithium, tolyl lithium, diisopropenyl benzene and sec- Reaction product of butyllithium, divinylbenzene and sec-
Reaction products of butyllithium and a small amount of 1,3-butadiene are exemplified.
【0007】本発明の共役ジエン系重合体は、共役ジエ
ンのホモ重合体、2種以上の共役ジエンからなる共役ジ
エンの共重合体、また共役ジエンと共重合可能な他の単
量体との共重合体であって、該重合体中に共役ジエンか
ら由来するオレフィン2重結合を有する1,4−重合
体、1,2または3,4−重合体を含むものである。共
役ジエンとしては、炭素数4から20の炭素原子を有す
る共役ジエン、具体的には1,3−ブタジエン、イソプ
レン、2,3−ジメチル−1,3−ブタジエン、1,3
−ペンタジエン、2−メチル−1,3−ペンタジエン、
1,3−ヘキサジエン、4,5−ジエチル−1,3−オ
クタジエン、3−ブチル−1,3−オクタジエン等が挙
げられる。工業的に有利に展開でき、物性の優れた弾性
体を得る上からは、1,3−ブタジエン、イソプレンが
好ましい。また、共役ジエンと共重合可能な他の単量体
として代表的なものはビニル芳香族化合物である。例え
ばスチレン、α−メチルスチレン、p−メチルスチレ
ン、ジビニルベンゼン、1,1−ジフェニルエチレン、
N,N−ジメチル−p−アミノエチルスチレン、N,N
−ジエチル−p−アミノエチルスチレン等があげられ、
好ましくはスチレン、α−メチルスチレンである。これ
らの共重合体はランダム、またはブロック共重合体であ
る。The conjugated diene-based polymer of the present invention comprises a conjugated diene homopolymer, a conjugated diene copolymer composed of two or more conjugated dienes, and a conjugated diene copolymerizable with another monomer. Copolymers containing 1,4-polymers, 1,2 or 3,4-polymers having an olefin double bond derived from a conjugated diene in the polymer. As the conjugated diene, a conjugated diene having 4 to 20 carbon atoms, specifically 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3
-Pentadiene, 2-methyl-1,3-pentadiene,
Examples thereof include 1,3-hexadiene, 4,5-diethyl-1,3-octadiene, and 3-butyl-1,3-octadiene. 1,3-butadiene and isoprene are preferable from the viewpoint of obtaining an elastic body which can be industrially advantageously developed and has excellent physical properties. Another typical monomer copolymerizable with the conjugated diene is a vinyl aromatic compound. For example, styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene,
N, N-dimethyl-p-aminoethylstyrene, N, N
-Diethyl-p-aminoethylstyrene and the like,
Preferred are styrene and α-methylstyrene. These copolymers are random or block copolymers.
【0008】水添は通常不活性炭化水素溶媒中で行われ
るが、この不活性炭化水素溶媒としては、共役ジエン系
重合体の溶媒であって水素添加の際に反応に悪影響を与
えないものである。本発明ではさらに、重合に引き続い
て同じ不活性炭化水素溶媒中で水素添加が行われること
が好ましい。好適な溶媒は、例えばn−ブタン、イソブ
タン、n−ペンタン、n−ヘキサン、n−ヘプタン、n
−オクタンの如き脂肪族炭化水素類、シクロヘキサン、
シクロヘプタン、メチルシクロヘプタンの如き脂環式炭
化水素類、また、ベンゼン、トルエン、キシレン、エチ
ルベンゼンの如き芳香族炭化水素も、選択された水添条
件下で芳香族二重結合が水添されない時に限って使用す
ることができる。この溶媒中に溶かす共役ジエン系重合
体の濃度は、5〜40%、好ましくは10〜30%の濃
度にする。この濃度が5%より低いと、共役ジエン系重
合体と溶媒を分離する後工程の負荷が大きくなり好まし
くなく、40%を越える濃度であると粘度がはなはだし
く高くなり、水素、水添触媒などとの混合性や伝熱性が
低下し、ひいては水添反応に影響するため好ましくな
い。The hydrogenation is usually carried out in an inert hydrocarbon solvent. The inert hydrocarbon solvent is a conjugated diene polymer solvent which does not adversely affect the reaction during hydrogenation. is there. It is further preferred in the present invention that the polymerization be followed by hydrogenation in the same inert hydrocarbon solvent. Suitable solvents are for example n-butane, isobutane, n-pentane, n-hexane, n-heptane, n-butane
Aliphatic hydrocarbons such as octane, cyclohexane,
Cycloheptane, alicyclic hydrocarbons such as methylcycloheptane, and aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene are also used when the aromatic double bond is not hydrogenated under the selected hydrogenation conditions. Can only be used. The concentration of the conjugated diene polymer dissolved in this solvent is 5 to 40%, preferably 10 to 30%. If the concentration is lower than 5%, the load of the subsequent step of separating the conjugated diene polymer and the solvent is undesirably increased, and if the concentration is higher than 40%, the viscosity becomes extremely high, and hydrogen, hydrogenation catalyst, etc. This is not preferable because the mixing property and the heat transfer property of the compound decrease, which eventually affects the hydrogenation reaction.
【0009】本発明で用いられるメタロセン系水添触媒
は、配位子として同一又は異なる2個の(置換)シクロ
ペンタジエニル基を持つチタン、ジルコニウム、ハフニ
ウム等の有機金属化合物であり、好ましくは還元性の有
機金属化合物、例えばアルキルリチウム、アルキルナト
リウム、アルキルカリウム、アルキルマグネシウム、ア
ルキルアルミニウム、アルキル亜鉛等と用いられる。The metallocene hydrogenation catalyst used in the present invention is an organometallic compound such as titanium, zirconium, hafnium or the like having two (substituted) cyclopentadienyl groups which are the same or different as ligands. It is used with reducing organic metal compounds such as alkyllithium, alkylsodium, alkylpotassium, alkylmagnesium, alkylaluminum, and alkylzinc.
【0010】水添方法としては、メタロセン系化合物を
用いる水添方法であれば公知のいかなる方法も採用でき
る。好ましくは、水素添加触媒がチタノセン系触媒であ
る水添方法である。例えば、特定のチタノセン化合物と
アルキルリチウムを組み合わせて、オレフィン化合物を
水添する方法(特開昭61−33132号、特開平1−
53851号)、メタロセン化合物と有機アルミニウ
ム、亜鉛、マグネシウムと組み合わせでオレフィン性不
飽和(共)重合物を水添する方法(特開昭61−285
07号、62−209103号)、特定のチタノセン化
合物とアルキルリチウムとの組合せでオレフィン性不飽
和基含有リビングポリマーを水添させる方法(特開昭6
1−47706号、特開昭63−5402号)、チタノ
セン化合物とトリメチルアルミニウムのメタラサイクル
化合物であるTebbe試薬によるオレフィン性不飽和
二重結合含有ポリマー中のオレフィン性二重結合を水添
する方法(特開平11−71426号)、チタノセン化
合物を、特定された量のリチウムアルコキサイトと組み
合わせオレフィン性不飽和二重結合含有ポリマー中のオ
レフィン性二重結合を水添する方法(特開平1−275
605)等の何れの方法でも良い。また水添条件も、こ
の様な水添触媒に合わせた、各明細書に書かれた方法を
用いる事ができる。As the hydrogenation method, any known method can be employed as long as it is a hydrogenation method using a metallocene compound. Preferably, a hydrogenation method in which the hydrogenation catalyst is a titanocene-based catalyst. For example, a method of hydrogenating an olefin compound by combining a specific titanocene compound and an alkyl lithium (Japanese Patent Application Laid-Open No.
No. 53851), a method of hydrogenating an olefinically unsaturated (co) polymer in combination with a metallocene compound and an organoaluminum, zinc or magnesium (JP-A-61-285).
No. 07, 62-209103), a method of hydrogenating an olefinically unsaturated group-containing living polymer with a combination of a specific titanocene compound and an alkyl lithium (Japanese Patent Application Laid-Open No.
A method of hydrogenating an olefinic double bond in an olefinically unsaturated double bond-containing polymer with a Tebbe reagent which is a metallacycle compound of a titanocene compound and trimethylaluminum (JP-A-47706 / 1988). JP-A-11-71426, a method of combining a titanocene compound with a specified amount of lithium alkoxide and hydrogenating the olefinic double bond in the olefinically unsaturated double bond-containing polymer (JP-A-1-27575)
605) or any other method. As for the hydrogenation conditions, the methods described in the respective specifications can be used in accordance with such a hydrogenation catalyst.
【0011】水添反応は典型的な発熱反応であり、水添
触媒を最初に多量に添加すると激しく反応は進行し、反
応温度は上昇していく。反応温度が高温になると水添触
媒の分解、二量化等の副反応が顕著になり、水添反応速
度は低下していく。更にはなはだしい場合には、途中で
反応が停止してしまい、高水添率の重合体が得られなく
なる。特に工業的な大きな反応器では、除熱が困難であ
り、この傾向は顕著となる。The hydrogenation reaction is a typical exothermic reaction. When a large amount of a hydrogenation catalyst is first added, the reaction proceeds violently and the reaction temperature rises. When the reaction temperature becomes high, side reactions such as decomposition and dimerization of the hydrogenation catalyst become remarkable, and the hydrogenation reaction rate decreases. Further, in extreme cases, the reaction is stopped halfway, and a polymer having a high degree of hydrogenation cannot be obtained. Particularly in an industrial large reactor, heat removal is difficult, and this tendency is remarkable.
【0012】この問題を解決するためには水添触媒を、
一度に全量添加するのでなく、少量づつ多段回に分けて
添加する事であり、当初の1回を含めて2回以上、好ま
しくは2〜10回に分け、更に好ましくは2〜5回に分
けて添加する事である。水添触媒を少量に分割して多段
回で添加することにより、急激な発熱反応が抑えられ、
水添反応は安定化し、水添触媒の使用量が削減できると
共に、水添反応に要する時間も短縮でき、効率的な水添
が可能となる。In order to solve this problem, a hydrogenation catalyst is used.
Rather than adding the whole amount at once, it is to be added in small portions in multiple stages, and is added in two or more times, including the initial one, preferably in 2 to 10 times, more preferably in 2 to 5 times. To be added. By dividing the hydrogenation catalyst into small portions and adding it in multiple stages, a rapid exothermic reaction is suppressed,
The hydrogenation reaction is stabilized, the amount of the hydrogenation catalyst used can be reduced, and the time required for the hydrogenation reaction can be shortened, so that efficient hydrogenation is possible.
【0013】最初に添加する水添触媒の添加量は、一度
の触媒添加で水添反応が完結する通常使用量は必要な
く、むしろその量より少ない事が望ましい。好ましく
は、水素添加率が50%以上かつ90%未満となる量を
添加する。具体的な添加量を示せば、通常使用量の70
%以下、更に望ましくは50%以下である。このような
少量の触媒量の場合には水添反応は途中で停止してしま
うが、追加する触媒で反応は継続し、結果として少ない
水添触媒使用量で、むしろ短時間で水添反応を完了する
事ができる。The amount of the hydrogenation catalyst to be added first does not need to be the usual amount required to complete the hydrogenation reaction by one addition of the catalyst, but is preferably smaller than that amount. Preferably, the hydrogenation rate is 50% or more and less than 90%. If the specific amount of addition is shown, 70
%, More preferably 50% or less. In the case of such a small amount of the catalyst, the hydrogenation reaction is stopped halfway, but the reaction is continued with the additional catalyst, and as a result, the hydrogenation reaction is performed in a short time with a small amount of the hydrogenation catalyst. Can be completed.
【0014】水添触媒の追加時期は、水素の吸収速度か
ら判断するものである。水素の吸収速度は例えば反応器
に加えた水素の量を測定することにより求められ、反応
器の圧力、温度が変動する場合には圧力、温度を補正し
て、反応器に残存する水素量を算出し、反応器に加えた
水素の量から加減する事により求められる。さらに、水
添反応の制御がやや困難にはなるが、予め反応器に必要
量の水素を仕込んでおき、反応器の圧力低下から測定す
る事も可能である。The time for adding the hydrogenation catalyst is determined from the hydrogen absorption rate. The rate of absorption of hydrogen is determined, for example, by measuring the amount of hydrogen added to the reactor.If the pressure and temperature of the reactor fluctuate, the pressure and temperature are corrected to determine the amount of hydrogen remaining in the reactor. It is calculated and calculated from the amount of hydrogen added to the reactor. Further, although it is somewhat difficult to control the hydrogenation reaction, it is also possible to prepare a required amount of hydrogen in the reactor in advance and measure the decrease in the pressure of the reactor.
【0015】水添反応が始まると、水素は速やかに吸収
されてゆき、通常数分程度の短時間で安定した水素の吸
収速度を示す。この安定した水素の吸収速度が本願発明
でいう反応開始時の水素の吸収速度である。When the hydrogenation reaction starts, hydrogen is rapidly absorbed, and usually shows a stable hydrogen absorption rate in a short time of about several minutes. This stable hydrogen absorption rate is the hydrogen absorption rate at the start of the reaction referred to in the present invention.
【0016】本願発明の望ましい触媒の追加時期は、水
素の吸収速度より決定するものでり、具体的な例を示せ
ば反応開始時の水素の吸収速度に対して80%以下に低
下した時点が望ましく、更に望ましくは60%以下に低
下した時点である。この時点で追加の触媒を添加すれば
触媒の添加量は少なく抑えられ、また水添に要する時間
も短い効率的な水添が達成できる。水添率が所定の値を
越えていれば、水素の吸収速度が低下していても更に水
添触媒を添加する必要は無いが、高い水添率を得るため
に更に少量の水添触媒を添加しても良い。The addition time of the desirable catalyst of the present invention is determined from the hydrogen absorption rate, and a specific example is that the point in time when the hydrogen absorption rate at the start of the reaction decreases to 80% or less. Desirably, more desirably, at the time when it is reduced to 60% or less. At this point, if an additional catalyst is added, the amount of the catalyst to be added can be suppressed to a small value, and efficient hydrogenation in which the time required for hydrogenation is short can be achieved. If the hydrogenation rate exceeds a predetermined value, it is not necessary to add a hydrogenation catalyst even if the hydrogen absorption rate is low, but in order to obtain a high hydrogenation rate, a smaller amount of the hydrogenation catalyst is required. It may be added.
【0017】本願発明のメタロセン触媒を使用し共役ジ
エン系の重合体を水添する方法では、水添反応速度は水
添反応の進行に依存せず、ほぼ一定の速度で推移し、反
応後半はむしろ加速する傾向がある。この為水素の吸収
速度を観測する事で水添触媒の劣化の程度が推定でき、
触媒の追加の必要性、追加の時期を的確に判断する事が
できる。In the method of hydrogenating a conjugated diene polymer using the metallocene catalyst of the present invention, the rate of the hydrogenation reaction does not depend on the progress of the hydrogenation reaction and changes at a substantially constant rate. Rather, they tend to accelerate. Therefore, by observing the hydrogen absorption rate, the degree of deterioration of the hydrogenation catalyst can be estimated,
The necessity and time of addition of a catalyst can be accurately determined.
【0018】本願発明では、水素の吸収速度から水添触
媒の追加時期を判断するが、通常この添加時期は条件が
同じなら再現性のあるものである。このような場合に
は、水添触媒の添加タイミングを1回或いは数回この方
法で測定し、的確な追加の時期を確認したならば、この
追加のタイミングを別の管理指標、例えば時間、水添率
或いは反応温度等で代行させても良い。In the present invention, the addition timing of the hydrogenation catalyst is determined from the hydrogen absorption rate. Usually, the addition timing is reproducible under the same conditions. In such a case, the addition timing of the hydrogenation catalyst is measured once or several times by this method, and if an accurate addition time is confirmed, the addition timing is determined by another control index such as time, water, or the like. The substitution may be performed depending on the addition rate or the reaction temperature.
【0019】本願発明において追加する水添触媒の量
は、二重結合の残存量により適宜選択すれば良い。触媒
追加の時点で残存二重結合量が多ければ、多量に添加す
れば良いし、少なければ少量添加すれば良い。具体的に
は最初に添加する触媒量の等量以下、望ましくは70%
以下が良い。一度に多量に触媒を添加すると、急激な発
熱を引き起こし、触媒の失活反応が顕著となり、望まし
いものではない。少量ずつ分けて添加する事により発熱
を抑えた安定な水添反応を達成できる。The amount of the hydrogenation catalyst to be added in the present invention may be appropriately selected depending on the remaining amount of double bonds. If the amount of the residual double bond is large at the time of adding the catalyst, it may be added in a large amount, and if it is small, it may be added in a small amount. Specifically, it is equal to or less than the amount of the catalyst added first, preferably 70%
The following is good. If a large amount of catalyst is added at one time, rapid heat generation is caused, and the catalyst deactivation reaction becomes remarkable, which is not desirable. By adding in small portions, a stable hydrogenation reaction with reduced heat generation can be achieved.
【0020】本願発明の水添触媒の追加回数は特に制限
が無く、少量づつ小刻みに添加することが望ましい。具
体的な追加の回数は、当初の1回を含めて2回から20
回であり、更に具体的には2回から5回の範囲である。
細かく分けるほど発熱は抑えられ、安定した水添反応が
達成できるが、あまり細かく分ける事は煩雑な操作とな
り、望ましいものでは無い。また追加する触媒を連続的
に微量添加することも望ましい方法である。The number of times of addition of the hydrogenation catalyst of the present invention is not particularly limited, and it is desirable to add the hydrogenation catalyst in small increments. Specifically, the number of additions is from 2 to 20 including the initial one.
Times, more specifically in the range of 2 to 5 times.
The finer the division, the less heat is generated, and a stable hydrogenation reaction can be achieved. However, the finer the division, the more complicated the operation, which is not desirable. It is also a desirable method to continuously add a small amount of an additional catalyst.
【0021】水添触媒は、最初の1回目の添加分は共役
ジエン系の重合体と混合した後で活性化しても良いが、
少なくとも追加する触媒は、水添活性を発現した後か水
素雰囲気で直ちに活性化する状態で添加する事が好まし
い。追加する水添触媒は、初回添加分と後添加の触媒は
同じ物でなくてもかまわないが、同じ物の方が、運転の
簡便性から望ましい。The hydrogenation catalyst may be activated after the first addition is mixed with the conjugated diene polymer.
It is preferable to add at least the catalyst to be added after the hydrogenation activity is developed or immediately activated in a hydrogen atmosphere. Regarding the hydrogenation catalyst to be added, the catalyst to be added initially and the catalyst to be added later do not have to be the same, but the same catalyst is more preferable in terms of simplicity of operation.
【0022】本発明は、96%以上の高い水添率、好ま
しくは水添率98%以上、より好ましくは水添率99%
以上を達成する方法である。水添率が低い場合は、得ら
れる水素添加共役ジエン系重合体の耐候性、耐熱安定性
が劣る。The present invention provides a high degree of hydrogenation of 96% or more, preferably 98% or more, more preferably 99% of hydrogenation.
This is how to achieve the above. If the degree of hydrogenation is low, the resulting hydrogenated conjugated diene-based polymer will have poor weather resistance and heat stability.
【0023】本願発明の方法は、バッチ式の水添反応に
適応しても良いし、連続式の水添反応に応用しても良
い。好ましくはバッチ式で行う方法である。連続式の水
添反応に使用するなら、1ヶ或いは複数個の反応器に水
添触媒の添加位置を複数個設ければ良いし、或いはチュ
ーブ型の反応器、或いはこれらの組み合わせたものを使
用して実施しても良い。連続式の場合には、一段目の反
応器の水素添加速度を観測して、2段目以降の反応器の
水添触媒の添加量を増減させれば良い。なお本発明にお
ける水添率は、重合体中に含まれる共役ジエン単位の水
添率を意味する。The method of the present invention may be applied to a batch type hydrogenation reaction or may be applied to a continuous type hydrogenation reaction. The method is preferably a batch method. If it is used for a continuous hydrogenation reaction, one or more reactors may be provided with a plurality of locations for adding the hydrogenation catalyst, or a tube-type reactor or a combination thereof may be used. May be implemented. In the case of the continuous type, the hydrogenation rate of the first-stage reactor may be monitored, and the amount of the hydrogenation catalyst added to the second-stage and subsequent reactors may be increased or decreased. The hydrogenation ratio in the present invention means the hydrogenation ratio of the conjugated diene unit contained in the polymer.
【0024】[0024]
【実施例】以下実施例、比較例により本発明を具体的に
説明するが、本発明はこれらに限定されるものではな
い。実施例、比較例に用いた各リビングポリマー(Aポ
リマー及びBポリマー)と水添触媒(TPM/Li)と
(Tebbe試薬)の合成例を以下の製造例に示した。EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The following production examples show synthesis examples of each living polymer (A polymer and B polymer), hydrogenation catalyst (TPM / Li), and (Tebbe reagent) used in Examples and Comparative Examples.
【0025】製造例1 16m3の撹拌機付き反応器中にシクロヘキサン4.3
トン、スチレンモノマー0.20トンを入れた後、n−
ブチルリチウム溶液4.8kg、更にテトラメチルエチ
レンジアミン0.62kgを加え、初期温度を70℃に
設定し撹拌下で40分間重合した。次いで、1,3ブタ
ジエンモノマーを0.924トンを含むシクロヘキサン
溶液を追加し、1時間重合した。更にスチレンモノマー
を0.20トンを含むシクロヘキサン溶液を追加し40
分間重合した。得られたリビングポリマー(Aポリマ
ー)は、結合スチレン含有量30%、ブロックスチレン
含有量30%、ブタジエン単位の1,2−ビニル結合含
有量37%であり、数平均分子量が約23万であるスチ
レン−ブタジエン−スチレン型のブロックポリマーであ
った。Production Example 1 Cyclohexane 4.3 was placed in a 16 m 3 reactor equipped with a stirrer.
Ton, 0.20 ton of styrene monomer, n-
4.8 kg of a butyllithium solution and 0.62 kg of tetramethylethylenediamine were added, and the initial temperature was set to 70 ° C., and polymerization was carried out for 40 minutes with stirring. Next, a cyclohexane solution containing 0.924 tons of 1,3 butadiene monomer was added, and polymerization was performed for 1 hour. Further, a cyclohexane solution containing 0.20 ton of styrene monomer was added and added.
Polymerized for minutes. The obtained living polymer (A polymer) has a bound styrene content of 30%, a block styrene content of 30%, a 1,2-vinyl bond content of butadiene unit of 37%, and a number average molecular weight of about 230,000. It was a styrene-butadiene-styrene type block polymer.
【0026】製造例2 16m3の撹拌機付き反応器中にシクロヘキサン3.8
8トン、スチレンモノマー0.264トンを入れた後、
n−ブチルリチウム溶液17kgを加え、更にテトラメ
チルエチレンジアミン2.1kgを加え、初期温度を7
0℃に設定し撹拌下で30分重合した。次いで、1,3
ブタジエンモノマーを1.242トン含むシクロヘキサ
ン溶液を追加し45分間重合した。更にスチレンモノマ
ーを0.264トン含むシクロヘキサン溶液を追加し3
0分間重合した。得られたリビングポリマー(Bポリマ
ー)は、結合スチレン含有量30%、ブロックスチレン
含有量30%、ブタジエン単位の1,2−ビニル結合含
有量51%である数平均分子量が約6.1万のスチレン
−ブタジエン−スチレン型のブロックポリマーであっ
た。Production Example 2 Cyclohexane 3.8 was placed in a 16 m 3 reactor equipped with a stirrer.
After putting 8 tons and 0.264 tons of styrene monomer,
17 kg of n-butyllithium solution was added, and 2.1 kg of tetramethylethylenediamine was further added.
It was set at 0 ° C. and polymerized for 30 minutes with stirring. Then, 1,3
A cyclohexane solution containing 1.242 tons of butadiene monomer was added and polymerized for 45 minutes. Further, a cyclohexane solution containing 0.264 tons of styrene monomer was added, and 3
Polymerized for 0 minutes. The obtained living polymer (B polymer) has a bound styrene content of 30%, a block styrene content of 30%, and a 1,2-vinyl bond content of butadiene unit of 51%, and a number average molecular weight of about 61,000. It was a styrene-butadiene-styrene type block polymer.
【0027】製造例3(Tebbe試薬) 特開平11−71426の方法に準拠した方法により水
添触媒調製を行った。ビス(シクロペンタジエニル)チ
タニウムジクロライド(TC)5kgをシクロヘキサン
70.1kgに添加し、撹拌後、10%トリメチルアル
ミニウム(TMAL)溶液24.9kgを追加し72時
間反応させ、水添触媒(Tebbe試薬)溶液として調
製した。Production Example 3 (Tebbe reagent) A hydrogenation catalyst was prepared by a method based on the method of JP-A-11-71426. 5 kg of bis (cyclopentadienyl) titanium dichloride (TC) was added to 70.1 kg of cyclohexane, and after stirring, 24.9 kg of a 10% trimethylaluminum (TMAL) solution was added and reacted for 72 hours to obtain a hydrogenation catalyst (Tebbe reagent). ) Prepared as solution.
【0028】製造例4(TPM/Li) 特開平8−33846の方法に準拠した方法により調整
した水添触媒を加えた。すなわち、ビス(シクロペンタ
ジエニル)チタニウムジ−p−トリル(TPM)6kg
をシクロヘキサン526kg中に溶解し、液状1,2ポ
リブタジエン60kgを添加した後、15%ブチルリチ
ウム溶液を7.1kg添加、更にはエタノール0.6k
gを添加し反応させ、水添触媒(TPM/Li)として
調製した。Production Example 4 (TPM / Li) A hydrogenation catalyst prepared by a method according to the method of JP-A-8-33846 was added. That is, 6 kg of bis (cyclopentadienyl) titanium di-p-tolyl (TPM)
Was dissolved in 526 kg of cyclohexane, 60 kg of liquid 1,2 polybutadiene was added, 7.1 kg of a 15% butyllithium solution was added, and ethanol 0.6 k was further added.
g was added and reacted to prepare a hydrogenation catalyst (TPM / Li).
【0029】実施例1 前処理として、製造例1で得られたリビングポリマー
(Aポリマー)に、エチルアルコールをn−ブチルリチ
ウムの0.9等量モル分加え、次いでこのポリマー溶液
を20m3の撹拌機付き反応器に全量移送した。さらに
該撹拌機付き反応器に、精製乾燥したシクロヘキサンを
加えて12%のポリマー濃度のシクロヘキサン溶液に調
整した後、撹拌下で反応器内を初期温度80℃に設定し
た、反応器内を水素ガスで置換し、更に0.7MPaの
水素ガス加圧下とした。このポリマー溶液に、製造例4
で得られた触媒(TPM/Li)を、Ti重量基準でポ
リマー重量に対し20ppmとなるように反応容器内に
添加し、水添を開始した。水添反応開始2分後に水素の
吸収速度が安定し、7.2Nm3/分となった。水素の
吸収速度がスタート時の速度の70%まで低下した時点
で追加の触媒20ppmを添加した。この時点の水素ガ
スの消費量からみたポリマーの水添率は85.4%であ
った。さらに水添反応を継続し、水素ガスの消費量から
みたポリマーの水添率が100%となり、水素のポリマ
ー溶液への吸収も停止したので水添を終了し、NMR法
によりポリマーの水添率を測定したところ99.7%で
あった。なお水添中の最高到達温度は92℃、反応に要
した時間は42分であった。[0029] As Example 1 pretreatment, the living polymer obtained in Production Example 1 (A polymer), ethyl alcohol was added 0.9 eq mole fraction of n- butyl lithium, followed of the polymer solution 20 m 3 The whole amount was transferred to a reactor equipped with a stirrer. Further, after adding purified and dried cyclohexane to the reactor with the stirrer to adjust the cyclohexane solution to a polymer concentration of 12%, the inside of the reactor was set to an initial temperature of 80 ° C. under stirring, and hydrogen gas was supplied to the inside of the reactor. And further pressurized with 0.7 MPa of hydrogen gas. Production Example 4 was added to this polymer solution.
The catalyst (TPM / Li) obtained in (1) was added to the reaction vessel so as to be 20 ppm based on the weight of the polymer based on the weight of Ti, and hydrogenation was started. Two minutes after the start of the hydrogenation reaction, the hydrogen absorption rate was stabilized, and reached 7.2 Nm 3 / min. When the rate of hydrogen absorption dropped to 70% of the starting rate, an additional 20 ppm of catalyst was added. At this time, the hydrogenation rate of the polymer was 85.4% based on the hydrogen gas consumption. Further, the hydrogenation reaction was continued, and the hydrogenation rate of the polymer became 100% in view of the consumption of hydrogen gas. Since the absorption of hydrogen into the polymer solution was stopped, the hydrogenation was terminated, and the hydrogenation rate of the polymer was measured by NMR. Was 99.7%. The maximum temperature during hydrogenation was 92 ° C., and the time required for the reaction was 42 minutes.
【0030】実施例2 前処理として、製造例1で得られたリビングポリマー
(Aポリマー)に、エチルアルコールをn−ブチルリチ
ウムの0.9等量モル分加え、次いでこのポリマー溶液
を20m3の撹拌機付き反応器に全量移送した。更に該
撹拌機付き反応器に、精製乾燥したシクロヘキサンを加
えて12%のポリマー濃度のシクロヘキサン溶液に調整
した後、撹拌下で反応器内を初期温度80℃に設定した
後、反応器内を水素ガスで置換し、更に0.7MPaの
水素ガス加圧下とした。このポリマー溶液に、製造例4
で得られた触媒(TPM/Li)を、Ti重量基準でポ
リマー重量に対し15ppmとなるように反応容器内に
添加し、水添を開始した。水添反応開始2分後に水素の
吸収速度が安定し、5.8Nm3/分となった。水素の
吸収速度がスタート時の速度の70%まで低下した時点
で追加の触媒10ppmを添加した。この時点の水素の
消費量からみたポリマーの水添率は80.1%であっ
た。再度水素の吸収速度がスタート時の70%まで低下
したので追加の触媒5ppmを添加した。この時点の水
素の消費量から見たポリマーの水添率は94.5%であ
った。さらに水添反応を継続し、水素ガスの消費量から
みたポリマーの水添率が100%となり、水素のポリマ
ー溶液への吸収も停止したので水添を終了し、NMR法
によりポリマーの水添率を測定したところ99.9%で
あった。なお水添中の最高到達温度は90℃、反応に要
した時間は39分であった。[0030] As Example 2 pretreatment, the living polymer obtained in Production Example 1 (A polymer), ethyl alcohol was added 0.9 eq mole fraction of n- butyl lithium, followed of the polymer solution 20 m 3 The whole amount was transferred to a reactor equipped with a stirrer. Further, after adding purified and dried cyclohexane to the reactor with the stirrer to adjust the cyclohexane solution to a polymer concentration of 12%, the inside of the reactor is set to an initial temperature of 80 ° C. with stirring, and the inside of the reactor is hydrogenated. The gas was replaced, and the pressure was further increased to 0.7 MPa with hydrogen gas. Production Example 4 was added to this polymer solution.
Was added into the reaction vessel so as to be 15 ppm based on the weight of the polymer based on the weight of Ti, and hydrogenation was started. Two minutes after the start of the hydrogenation reaction, the hydrogen absorption rate became stable and reached 5.8 Nm 3 / min. When the rate of hydrogen absorption dropped to 70% of the starting rate, an additional 10 ppm of catalyst was added. At this time, the hydrogenation rate of the polymer was 80.1% based on the hydrogen consumption. Again the hydrogen absorption rate dropped to 70% of the starting value, so an additional 5 ppm of catalyst was added. At this time, the hydrogenation rate of the polymer was 94.5% as viewed from the hydrogen consumption. Further, the hydrogenation reaction was continued, and the hydrogenation rate of the polymer became 100% in view of the consumption of hydrogen gas. Since the absorption of hydrogen into the polymer solution was stopped, the hydrogenation was terminated, and the hydrogenation rate of the polymer was measured by NMR. Was 99.9%. The maximum temperature during hydrogenation was 90 ° C., and the time required for the reaction was 39 minutes.
【0031】実施例3 前処理として、製造例2で得られたリビングポリマー
(Bポリマー)に、トリメチルクロルシランをn−ブチ
ルリチウムの0.9等量モル分加え、次いでこのポリマ
ー溶液を20m3の撹拌機付き反応器に全量移送した。
更に該撹拌機付き反応器に、精製乾燥したシクロヘキサ
ンを加えて17%のポリマー濃度のシクロヘキサン溶液
に調整した後、撹拌下で反応器内を初期温度80℃に設
定した後、反応器内を水素ガスで置換し、更に0.7M
Paの水素ガス加圧下とした。このポリマー溶液に、製
造例3と同様の方法で調整された水添触媒(Tebbe
試薬)をTi重量基準でポリマー重量に対し12ppm
反応容器内に添加し、水添を開始した。水添反応開始2
分後に水素の吸収速度が安定し、6.3Nm3/分とな
った。水素の吸収速度がスタート時の速度の50%に低
下した時点で追加の触媒(TTebbe試薬)を5pp
mを添加した。この時点で水素ガスの消費量からみたポ
リマーの水添率は82.0%であった。再度水素の吸収
速度がスタート時の50%に低下した時点で追加の触媒
(TC/TMAL)を5ppmを添加した。この時点の
水素の吸収量からみたポリマーの水添率は91.1%で
あった。更に水素の吸収速度がスタート時の速度の50
%に低下した時点で追加の触媒(TC/TMAL)を3
ppmを添加した。この時点の水素の吸収量からみたポ
リマーの水添率は97.5%であった。さらに水添反応
を継続し、水素ガスの消費量からみたポリマーの水添率
が100%となり、水素のポリマー溶液への吸収も停止
したので水添を終了し、NMR法によりポリマーの水添
率を測定したところ100%であった。なお水添中の最
高到達温度は90℃、反応に要した時間は38分であっ
た。Example 3 As a pretreatment, trimethylchlorosilane was added to the living polymer (B polymer) obtained in Production Example 2 in an amount of 0.9 equivalent mol of n-butyllithium, and then the polymer solution was added to 20 m 3. Was transferred to a reactor equipped with a stirrer.
Further, after adding purified and dried cyclohexane to the reactor with a stirrer to adjust the cyclohexane solution to a polymer concentration of 17%, the inside of the reactor is set to an initial temperature of 80 ° C. with stirring, and then the inside of the reactor is hydrogenated. Replace with gas, then 0.7M
The pressure was set to Pa hydrogen gas pressure. A hydrogenation catalyst (Tebebe) prepared in the same manner as in Production Example 3 was added to this polymer solution.
12 ppm based on the weight of the polymer based on the weight of Ti
It was added into the reaction vessel and hydrogenation was started. Start of hydrogenation reaction 2
After one minute, the absorption rate of hydrogen became stable, reaching 6.3 Nm 3 / minute. When the hydrogen absorption rate has dropped to 50% of the starting rate, 5 pp of additional catalyst (TTebbe reagent) was added.
m was added. At this time, the hydrogenation rate of the polymer was 82.0% based on the consumption of hydrogen gas. When the rate of hydrogen absorption again dropped to 50% of the starting value, 5 ppm of additional catalyst (TC / TMAL) was added. At this time, the hydrogenation rate of the polymer was 91.1%, based on the amount of hydrogen absorbed. Furthermore, the hydrogen absorption rate is 50% of the starting rate.
% Of additional catalyst (TC / TMAL)
ppm was added. At this time, the hydrogenation rate of the polymer was 97.5% based on the amount of hydrogen absorbed. Further, the hydrogenation reaction was continued, and the hydrogenation rate of the polymer became 100% from the viewpoint of the consumption of hydrogen gas. Since the absorption of hydrogen into the polymer solution was stopped, the hydrogenation was terminated. Was 100%. The maximum temperature during hydrogenation was 90 ° C., and the time required for the reaction was 38 minutes.
【0032】比較例1 製造例1と同様の方法で得られたリビングポリマー(A
ポリマー)溶液を、実施例1と同様の方法で前処理した
後、20m3の撹拌機付き反応器に全量移送し12%の
ポリマー溶液とした。撹拌下で反応器内を初期温度80
℃に設定した後、反応器内を水素ガスで置換し、0.7
MPaの水素ガス加圧下とした。このポリマー溶液に、
製造例4で得られた触媒(TPM/Li)をTi重量基
準でポリマー重量に対し40ppmとなるように添加
し、水添を開始した。水添開始52分後、水素ガスの消
費量からみたポリマーの水添率は91.3%で有った
が、水素のポリマー溶液への吸収がほぼ停止していたた
め、水添を終了した。NMR法による最終ポリマーの水
添率は91.2%であった。なお水添中の最高到達温度
は95℃であった。実施例1と比較例1から明かなよう
に、同じ水添触媒量を使用した場合には、最初に全ての
触媒を添加する比較例の方法では、目標とする水添率を
得ることはできない。Comparative Example 1 A living polymer (A) obtained in the same manner as in Production Example 1
After the polymer) solution was pretreated in the same manner as in Example 1, the whole amount was transferred to a 20 m 3 reactor equipped with a stirrer to obtain a 12% polymer solution. The initial temperature of the reactor is 80 with stirring.
° C, the inside of the reactor was replaced with hydrogen gas, and 0.7
The pressure was set at a hydrogen gas pressure of MPa. In this polymer solution,
The catalyst (TPM / Li) obtained in Production Example 4 was added so as to be 40 ppm based on the weight of the polymer based on the weight of Ti, and hydrogenation was started. 52 minutes after the start of hydrogenation, the hydrogenation rate of the polymer was 91.3% from the viewpoint of the consumption of hydrogen gas. However, the hydrogenation was stopped because the absorption of hydrogen into the polymer solution was almost stopped. The degree of hydrogenation of the final polymer determined by NMR was 91.2%. The maximum temperature reached during hydrogenation was 95 ° C. As is clear from Example 1 and Comparative Example 1, when the same amount of hydrogenation catalyst is used, the target hydrogenation rate cannot be obtained by the method of Comparative Example in which all the catalysts are added first. .
【0033】比較例2 製造例1と同様の方法で得られたリビングポリマー(A
ポリマー)溶液を、実施例1と同様の方法で前処理した
後、20m3の撹拌機付き反応器に全量移送し12%の
ポリマー溶液とした。撹拌下で反応器内を初期温度80
℃に設定した後、反応器内を水素ガスで置換し、0.7
MPaの水素ガス加圧下とした。このポリマー溶液に、
製造例4で得られた触媒(TPM/Li)をTi重量基
準でポリマー重量に対し20ppmとなるように添加
し、水添を開始した。水添開始後15分後に追加の触媒
を20ppm添加した。水素ガスの消費量からみたポリ
マーの水添率は43.3%であった。水添開始51分
後、水素ガスの消費量からみたポリマーの水添率は9
3.5%で有ったが、水素のポリマー溶液への吸収がほ
ぼ停止していたため、水添を終了した。NMR法による
最終ポリマーの水添率は93.4%であった。なお水添
中の最高到達温度は94℃であった。Comparative Example 2 A living polymer (A) obtained in the same manner as in Production Example 1
After the polymer) solution was pretreated in the same manner as in Example 1, the whole amount was transferred to a 20 m 3 reactor equipped with a stirrer to obtain a 12% polymer solution. The initial temperature of the reactor is 80 with stirring.
° C, the inside of the reactor was replaced with hydrogen gas, and 0.7
The pressure was set at a hydrogen gas pressure of MPa. In this polymer solution,
The catalyst (TPM / Li) obtained in Production Example 4 was added in an amount of 20 ppm based on the weight of the polymer based on the weight of Ti, and hydrogenation was started. Fifteen minutes after the start of hydrogenation, an additional 20 ppm of the catalyst was added. The hydrogenation rate of the polymer was 43.3% from the viewpoint of hydrogen gas consumption. 51 minutes after the start of hydrogenation, the hydrogenation rate of the polymer was 9 based on the hydrogen gas consumption.
Although it was 3.5%, hydrogenation was stopped because absorption of hydrogen into the polymer solution was almost stopped. The hydrogenation rate of the final polymer determined by NMR was 93.4%. The highest temperature reached during hydrogenation was 94 ° C.
【0034】実施例1と比較例2より明かなように、水
添触媒を2回に分けて添加する場合にも、触媒追加のタ
イミングが不適当だと目標とする水添率の製品を得るこ
とが出来ない。本願発明の水素の吸収量を測定しながら
添加の時期を決定する方法を使用すると、触媒活性度が
的確に判断でき、目標とする高い水添率のポリマーを、
低い水添触媒使用量で、しかも短時間に得ることが出来
る事が分かる。As is clear from Example 1 and Comparative Example 2, even when the hydrogenation catalyst is added in two portions, a product having a target hydrogenation rate is obtained if the timing of catalyst addition is inappropriate. I can't do that. By using the method of the present invention to determine the timing of addition while measuring the amount of hydrogen absorbed, the catalyst activity can be accurately determined, the target high hydrogenation rate polymer,
It can be seen that it can be obtained with a low amount of hydrogenation catalyst and in a short time.
【0035】[0035]
【表1】 [Table 1]
【0036】[0036]
【発明の効果】本発明は、メタロセン系水添触媒を使用
して水添率98%以上の共役ジエン系重合体を得る際
に、水添触媒を数次に分けて添加し、追加する触媒の添
加時期を水素の吸収速度を用いて決定する事により、少
ない水添触媒量で安定に短時間で確実に水添できる工業
的に極めて有利な方法を提供するものである。According to the present invention, when a metallocene-based hydrogenation catalyst is used to obtain a conjugated diene-based polymer having a degree of hydrogenation of 98% or more, the hydrogenation catalyst is added in several steps and added. By determining the time of addition of hydrogen using the rate of absorption of hydrogen, it is possible to provide an industrially extremely advantageous method capable of stably and reliably hydrogenating with a small amount of hydrogenation catalyst in a short time.
Claims (7)
して重合した共役ジエン系重合体を、メタロセン系水素
添加触媒を2回以上に分けて添加し、水素添加共役ジエ
ン系重合体を得る際、水素添加触媒の追加時期を水素の
吸収速度を測定する事により決定する事を特徴とする改
良された共役ジエン系重合体の水素添加方法。When a hydrogenated conjugated diene polymer is obtained by adding a metallocene-based hydrogenation catalyst in two or more portions to a conjugated diene-based polymer obtained by polymerizing an organic alkali metal compound as a polymerization initiator, hydrogen is added. An improved method for hydrogenating a conjugated diene-based polymer, characterized in that the time for adding the added catalyst is determined by measuring the rate of hydrogen absorption.
で行う事を特徴とする改良された共役ジエン系重合体の
水素添加方法。2. The improved method for hydrogenating a conjugated diene polymer according to claim 1, wherein the hydrogenation reaction is performed in a batch system.
追加時期を水素の吸収速度が反応開始時の水素の吸収速
度の80%以下に低下すれば添加する事を特徴とする改
良された共役ジエン系重合体の水素添加方法。3. The improvement according to claim 1, wherein the addition time of the hydrogenation catalyst is added when the hydrogen absorption rate falls to 80% or less of the hydrogen absorption rate at the start of the reaction. A method for hydrogenating a conjugated diene polymer.
する水素添加触媒量は、水添率が50%以上かつ90%
未満となる量を添加する事を特徴とする改良された共役
ジエン系重合体の水素添加方法。4. The hydrogenation catalyst as claimed in claim 1, wherein the hydrogenation rate is 50% or more and 90% or more.
An improved method for hydrogenating a conjugated diene-based polymer, characterized by adding an amount of less than 2.
が98%以上である改良された共役ジエン系重合体の水
素添加方法。5. The improved method for hydrogenating a conjugated diene polymer according to claim 1, wherein the degree of hydrogenation is 98% or more.
加する水素添加触媒量を最初に加える水素添加触媒量の
等量以下にする事を特徴とする改良された共役ジエン系
重合体の水素添加方法。6. The improved conjugated diene-based weight according to claim 1, wherein the amount of the added hydrogenation catalyst is equal to or less than the amount of the initially added hydrogenation catalyst. Method of hydrogenation of coalescence.
て、水素添加触媒がチタノセン系触媒である事を特徴と
する改良された共役ジエン系重合体の水素添加方法。7. The improved method for hydrogenating a conjugated diene-based polymer according to claim 1, wherein the hydrogenation catalyst is a titanocene-based catalyst.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000083702A JP4912519B2 (en) | 2000-03-24 | 2000-03-24 | Efficient method for hydrogenating conjugated diene polymers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000083702A JP4912519B2 (en) | 2000-03-24 | 2000-03-24 | Efficient method for hydrogenating conjugated diene polymers |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2001270913A true JP2001270913A (en) | 2001-10-02 |
JP2001270913A5 JP2001270913A5 (en) | 2007-04-26 |
JP4912519B2 JP4912519B2 (en) | 2012-04-11 |
Family
ID=18600296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000083702A Expired - Lifetime JP4912519B2 (en) | 2000-03-24 | 2000-03-24 | Efficient method for hydrogenating conjugated diene polymers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4912519B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2998574A1 (en) * | 2012-11-29 | 2014-05-30 | Michelin & Cie | RUBBER COMPOSITION COMPRISING A HIGHLY SATURATED DIENIC ELASTOMER |
WO2015199222A1 (en) * | 2014-06-27 | 2015-12-30 | 株式会社クラレ | Method for manufacturing hydrogenated polymer |
US10472451B2 (en) | 2014-09-04 | 2019-11-12 | Kuraray Co., Ltd. | Method for producing anionic polymer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6133132A (en) * | 1984-07-25 | 1986-02-17 | Asahi Chem Ind Co Ltd | Method for hydrogenating olefin |
JPH1171426A (en) * | 1997-06-30 | 1999-03-16 | Asahi Chem Ind Co Ltd | Hydrogenation of conjugated diene polymer |
JPH11286513A (en) * | 1998-03-31 | 1999-10-19 | Jsr Corp | Continuous production of hydrogenated olefinic unsaturated group-containing polymer |
JP2000095814A (en) * | 1998-09-22 | 2000-04-04 | Asahi Chem Ind Co Ltd | Improved hydrogenation of conjugated diene polymer |
-
2000
- 2000-03-24 JP JP2000083702A patent/JP4912519B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6133132A (en) * | 1984-07-25 | 1986-02-17 | Asahi Chem Ind Co Ltd | Method for hydrogenating olefin |
JPH1171426A (en) * | 1997-06-30 | 1999-03-16 | Asahi Chem Ind Co Ltd | Hydrogenation of conjugated diene polymer |
JPH11286513A (en) * | 1998-03-31 | 1999-10-19 | Jsr Corp | Continuous production of hydrogenated olefinic unsaturated group-containing polymer |
JP2000095814A (en) * | 1998-09-22 | 2000-04-04 | Asahi Chem Ind Co Ltd | Improved hydrogenation of conjugated diene polymer |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2998574A1 (en) * | 2012-11-29 | 2014-05-30 | Michelin & Cie | RUBBER COMPOSITION COMPRISING A HIGHLY SATURATED DIENIC ELASTOMER |
WO2014082919A1 (en) * | 2012-11-29 | 2014-06-05 | Compagnie Generale Des Etablissements Michelin | Rubber composition containing a highly saturated diene elastomer |
CN104822708A (en) * | 2012-11-29 | 2015-08-05 | 米其林集团总公司 | Rubber composition containing highly saturated diene elastomer |
US10364335B2 (en) | 2012-11-29 | 2019-07-30 | Compagnie Generale Des Etablissements Michelin | Rubber composition containing a highly saturated diene elastomer |
WO2015199222A1 (en) * | 2014-06-27 | 2015-12-30 | 株式会社クラレ | Method for manufacturing hydrogenated polymer |
JP6010709B2 (en) * | 2014-06-27 | 2016-10-19 | 株式会社クラレ | Method for producing hydrogenated polymer |
JP2017039936A (en) * | 2014-06-27 | 2017-02-23 | 株式会社クラレ | Manufacturing method of hydrogenated polymer |
KR20170026365A (en) | 2014-06-27 | 2017-03-08 | 주식회사 쿠라레 | Method for manufacturing hydrogenated polymer |
US10526435B2 (en) | 2014-06-27 | 2020-01-07 | Kuraray Co., Ltd. | Method for manufacturing hydrogenated polymer |
US10472451B2 (en) | 2014-09-04 | 2019-11-12 | Kuraray Co., Ltd. | Method for producing anionic polymer |
KR20220148937A (en) | 2014-09-04 | 2022-11-07 | 주식회사 쿠라레 | Method for producing anionic polymer |
Also Published As
Publication number | Publication date |
---|---|
JP4912519B2 (en) | 2012-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6815509B2 (en) | Method for hydrogenation of polymer | |
KR100201228B1 (en) | Process for hydrogenating living polymers | |
JP4121586B2 (en) | Olefinic double bond selective hydrogenation catalyst composition | |
JPS634841B2 (en) | ||
JP2001163919A (en) | Selective hydrogenation method for polymer containing conjugated diene | |
JPS635401B2 (en) | ||
EP0601953B1 (en) | Process of hydrogenation in solution of the double bonds of polymers of conjugated dienes, and hydrogenated block copolymer produced | |
JP2587893B2 (en) | Olefin hydrogenation | |
US6881797B2 (en) | Process for hydrogenation of conjugated diene polymer | |
KR100219260B1 (en) | Novel catalyst for hydrogenation of living polymer and its use for hydrogenation | |
JPS5927901A (en) | Novel catalyst and manufacture of polymer having increased 1,2-microstructure | |
JP2006316275A (en) | Selective hydrogenation method for unsaturated (co)polymer | |
JP4912519B2 (en) | Efficient method for hydrogenating conjugated diene polymers | |
JP4117945B2 (en) | Improved hydrogenation method of conjugated diene polymer | |
JP2903471B1 (en) | Method for hydrogenating conjugated diene polymers | |
JPS635402B2 (en) | ||
JP4285942B2 (en) | Process for producing partially hydrogenated butadiene polymer | |
JP3457891B2 (en) | Preparation of hydrogenated polymers with improved color. | |
KR100295599B1 (en) | Hydrogenation of conjugated diene polymer | |
KR100221358B1 (en) | New catalyst for hydrogenation of living polymer and hydrogenation process using it | |
JP3651931B2 (en) | Hydrogenation of alkyl-substituted conjugated diene polymers | |
KR100356533B1 (en) | Method for the selective hydrogenation of the conjugated diene polymer | |
KR100332465B1 (en) | Process for the hydrogenation of unsaturated polymer | |
JP4366833B2 (en) | Method for purifying conjugated diene compounds | |
JPH07304814A (en) | Inhomogenous hydrogenation catalyst improved so as to reduceisomerization of olefin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20040227 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070309 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091211 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100312 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100414 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110310 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120117 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120118 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4912519 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150127 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |