JP2001269581A - Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and its production method - Google Patents

Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and its production method

Info

Publication number
JP2001269581A
JP2001269581A JP2000083903A JP2000083903A JP2001269581A JP 2001269581 A JP2001269581 A JP 2001269581A JP 2000083903 A JP2000083903 A JP 2000083903A JP 2000083903 A JP2000083903 A JP 2000083903A JP 2001269581 A JP2001269581 A JP 2001269581A
Authority
JP
Japan
Prior art keywords
photocatalyst
coating film
zeolite
coated
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000083903A
Other languages
Japanese (ja)
Other versions
JP3371104B2 (en
Inventor
Setsuko Koura
節子 小浦
Yoshiko Sakamoto
佳子 坂本
Hiroshige Nakamura
浩茂 中村
Kenji Sakado
健二 坂戸
Akihiro Ando
彰啓 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2000083903A priority Critical patent/JP3371104B2/en
Publication of JP2001269581A publication Critical patent/JP2001269581A/en
Application granted granted Critical
Publication of JP3371104B2 publication Critical patent/JP3371104B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Laminated Bodies (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst-coated composite member which is improved in photocatalytic activity and excellent in light resistance and in which the decomposition of a coating film used as a binder is controlled. SOLUTION: A photocatalyst coating film 3 in which photocatalyst particles coated with zeolite are dispersed is formed on a base material directly or through a primer layer 2. The photocatalyst particles 4 are coated with zeolite films 5, for example, 5 nm-5 μm in thickness and dispersed in the coating film 3 in a ratio of 5-80 mass%. Metal, glass, tile, a synthetic resin, a particle board, gypsum, cocrete, or the like, are used for the base material 1. The photocatalyst coating film 3 is formed by applying an organic resin coating material containing the photocatalyst particles 4 coated with the zeolite films 5 on a primer coating film and heat-treating the coating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有機物,SOx,NO
x等を分解し、抗菌にも有効な光触媒作用をもち、有機
樹脂との組合せでも耐光性に優れた複合部材に関する。
The present invention relates to organic substances, SOx, NO
The present invention relates to a composite member which decomposes x and the like, has a photocatalytic effect effective for antibacterial activity, and has excellent light resistance even in combination with an organic resin.

【0002】[0002]

【従来の技術】TiO2を初めとする光触媒は、光照射
で活性化し、有機物,SOx,NOx等を分解する作用
を呈する。この作用を活用し、光触媒粒子を配合した塗
膜を基材表面に設けることにより,各種材料に光触媒活
性を付与することが検討されている。光触媒活性が付与
された複合部材は,大都市周辺,工場地帯等の煤煙,排
ガス等で汚染された大気に起因する表面汚れを分解し、
長期にわたって美観を保持する。この種の光触媒被覆複
合部材において、光触媒粒子を分散させる塗膜のバイン
ダに有機物を使用すると、光触媒反応で生成したO2 -
・OH等の活性酸素で有機塗膜が分解され、チョーキン
グによる塗膜剥離が生じる虞がある。
2. Description of the Related Art Photocatalysts such as TiO 2 are activated by light irradiation and exhibit an action of decomposing organic substances, SOx, NOx and the like. Utilizing this effect, it has been studied to impart photocatalytic activity to various materials by providing a coating film containing photocatalyst particles on the surface of a substrate. The composite member with photocatalytic activity decomposes surface dirt caused by air contaminated with soot, exhaust gas, etc. around large cities and industrial areas,
Maintain aesthetics for a long time. In this type of photocatalyst-coated composite member, when an organic substance is used as a binder of a coating film for dispersing photocatalyst particles, O 2 ,
-The organic coating film is decomposed by active oxygen such as OH, and the coating film may be peeled off by chalking.

【0003】有機塗膜の分解を抑えるため、光触媒粒子
の配合量を減らしても、満足できる耐光性及び光触媒活
性が得られない。そのため、シリカ系等の無機材料がベ
ース樹脂として一般的に使用されている(特開平7−1
13272号公報、特開平8−164334号公報、W
O96/29375号等参照)。また、有機系塗膜でも
比較的安定なフッ素樹脂をベースとするとき塗膜の分解
が抑制されるため、フッ素樹脂をベースとしてアナター
ゼ型TiO2粒子を分散させた塗膜が知られている(特
開平7−171408号公報)。
[0003] Even if the amount of the photocatalyst particles is reduced to suppress the decomposition of the organic coating film, satisfactory light resistance and photocatalytic activity cannot be obtained. Therefore, an inorganic material such as a silica-based material is generally used as a base resin (Japanese Patent Laid-Open No. 7-1).
13272, JP-A-8-164334, W
O96 / 29375). In addition, even when an organic coating film is based on a relatively stable fluororesin, the decomposition of the coating film is suppressed. Therefore, a coating film in which anatase TiO 2 particles are dispersed based on a fluororesin is known ( JP-A-7-171408).

【0004】[0004]

【発明が解決しようとする課題】無機材料をバインダと
する光触媒塗膜をもつ複合部材は、長期間にわたって光
照射に曝される建材等として使用されてもチョーキング
を発生せず、美観が長期間維持される。しかし、光触媒
粒子を担持する樹脂や要分解成分との接触を促進させ、
或いは光触媒粒子周囲に要分解成分の濃度を高めるもの
でなく、要分解成分と光触媒粒子が接触したときに始め
て光触媒反応が生じるため、使用すると分解能が低く濃
度の低いホルムアルデヒドの分解,脱SOx,脱NOx
等では改善の余地がある。
A composite member having a photocatalytic coating film using an inorganic material as a binder does not cause chalking even when used as a building material or the like exposed to light irradiation for a long period of time. Will be maintained. However, it promotes contact with the resin carrying photocatalyst particles and components requiring decomposition,
Alternatively, the photocatalytic reaction occurs only when the photocatalytic particles come into contact with the photocatalytic particles without increasing the concentration of the photocatalytic particles around the photocatalytic particles. NOx
For example, there is room for improvement.

【0005】活性炭,ゼオライト等の吸着剤と共に光触
媒粒子を難分解性バインダで基体に担持させるとき、雰
囲気中の要分解成分が吸着剤で優先的に補集され、光触
媒粒子の分解能が向上する。しかし、光触媒粒子及び吸
着剤を塗膜に均一分散させることが難しく、しかも両者
がバインダで覆われてしまうと触媒作用及び吸着作用が
著しく低下する。更には、光触媒粒子を分散させた無機
塗膜が形成された金属板等では、加工性に劣ることも難
点である。たとえば、無機塗膜に光触媒粒子を分散させ
て光触媒活性を付与した塗装鋼板に曲げ加工を施すと、
クラックが発生しやすく、塗膜も鋼板表面から剥離しや
すい。他方、フッ素樹脂に光触媒粒子を分散させた塗膜
は、耐光性が不足しがちである。耐光性及び光触媒活性
の双方を満足させるために、光触媒粒子の周囲をシリカ
でコーティングすることにより光触媒粒子と有機塗膜と
の直接接触を防止する方法も考えられるが、この場合に
は光触媒粒子の光触媒活性が低下する。
When the photocatalyst particles are supported on the substrate with a hardly decomposable binder together with an adsorbent such as activated carbon or zeolite, the components required for decomposition in the atmosphere are preferentially collected by the adsorbent, and the resolution of the photocatalyst particles is improved. However, it is difficult to uniformly disperse the photocatalyst particles and the adsorbent in the coating film, and if both are covered with the binder, the catalytic action and the adsorptive action are significantly reduced. Further, a metal plate or the like on which an inorganic coating film in which photocatalyst particles are dispersed is formed is also disadvantageous in that the processability is poor. For example, when bending the coated steel sheet with photocatalytic activity by dispersing photocatalyst particles in the inorganic coating,
Cracks are easily generated and the coating film is easily peeled off from the steel sheet surface. On the other hand, a coating film in which photocatalyst particles are dispersed in a fluororesin tends to have insufficient light resistance. In order to satisfy both light resistance and photocatalytic activity, a method of preventing direct contact between the photocatalyst particles and the organic coating film by coating the periphery of the photocatalyst particles with silica may be considered. Photocatalytic activity decreases.

【0006】[0006]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、ゼオライトで被
覆した光触媒粒子を塗膜に分散させることにより、光触
媒活性を高めると共に、バインダとして使用されている
塗膜の分解を抑制し、耐光性に優れた光触媒被覆複合部
材を提供することを目的とする。本発明の光触媒被覆複
合部材は、その目的を達成するため、ゼオライトで被覆
された光触媒粒子が分散した無機又は有機の光触媒塗膜
が基材表面に形成されていることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention has been devised in order to solve such a problem. By dispersing photocatalyst particles coated with zeolite in a coating film, the photocatalytic activity can be enhanced, It is an object of the present invention to provide a photocatalyst-coated composite member that suppresses decomposition of a coating film used as a binder and has excellent light resistance. In order to achieve the object, the photocatalyst-coated composite member of the present invention is characterized in that an inorganic or organic photocatalyst coating film in which photocatalyst particles coated with zeolite are dispersed is formed on a substrate surface.

【0007】ゼオライトで被覆された光触媒粒子として
は、たとえば膜厚5nm〜5μmのゼオライト皮膜で覆
われた光触媒粒子が使用され、5〜80質量%の割合で
光触媒塗膜に分散させることが好ましい。基材には、金
属,ガラス,タイル,合成樹脂,パーティクルボード,
石膏,コンクリート等が使用される。金属性基体として
は、普通鋼板,めっき鋼板,ステンレス鋼板,アルミニ
ウム板,アルミニウム合金板等がある。ゼオライトで被
覆された光触媒粒子が分散した光触媒塗膜は、顔料を含
むプライマ塗膜を基材表面に形成した後、ゼオライトで
被覆された光触媒粒子を含む有機樹脂塗料をプライマ塗
膜の上に塗布し、熱処理により形成される。或いは、プ
ライマ層を省略し,基材表面に光触媒塗膜を直接形成し
てもよい。
As the photocatalyst particles coated with zeolite, for example, photocatalyst particles covered with a zeolite film having a thickness of 5 nm to 5 μm are used, and it is preferable to disperse them in the photocatalyst coating film at a ratio of 5 to 80% by mass. Base materials include metal, glass, tile, synthetic resin, particle board,
Gypsum, concrete, etc. are used. Examples of the metallic substrate include a normal steel plate, a plated steel plate, a stainless steel plate, an aluminum plate, and an aluminum alloy plate. The photocatalyst coating film in which the zeolite-coated photocatalyst particles are dispersed forms a primer coating film containing a pigment on the substrate surface, and then applies an organic resin coating containing the zeolite-coated photocatalyst particles on the primer coating film. And formed by heat treatment. Alternatively, the primer layer may be omitted, and the photocatalytic coating film may be formed directly on the surface of the substrate.

【0008】[0008]

【作用】光触媒粒子は,紫外線照射によって励起され、
有機物を分解する光触媒活性を呈する。そのため、有機
樹脂を用いて塗膜を形成すると、樹脂自体が酸化分解さ
れ、チョーキングが発生する。本発明者等は、光触媒反
応に起因したチョーキングを抑制する方法を検討する過
程で、ゼオライトで被覆された光触媒粒子を有機樹脂塗
膜に分散させると、光触媒活性を維持したまま有機樹脂
の分解が抑制されることを見出した。これは、次のよう
に推察される。
[Function] Photocatalytic particles are excited by ultraviolet irradiation,
It exhibits photocatalytic activity to decompose organic substances. Therefore, when a coating film is formed using an organic resin, the resin itself is oxidatively decomposed and chalking occurs. The present inventors disperse the zeolite-coated photocatalyst particles in the organic resin coating film in the process of studying a method of suppressing choking caused by the photocatalytic reaction, and the decomposition of the organic resin is maintained while maintaining the photocatalytic activity. Found to be suppressed. This is inferred as follows.

【0009】ゼオライトは、一般式Mx/mAlxSi
(1-x)2・nH2O(Mは陽イオン,mは陽イオンMの価
数,nは空孔中に吸着された水分子の個数)で表される
アルミノケイ酸塩の結晶であり、ガス状成分を選択的に
吸着透過させる分子サイズ(5〜13Å)の空孔を結晶
内部にもつモレキュラーシーブとして知られている。そ
のため、光触媒粒子の表面にゼオライト膜を設けても、
雰囲気中のホルムアルデヒド,SOx,NOx等はゼオ
ライト膜を透過し、光触媒粒子の表面に到達する。むし
ろ、ホルムアルデヒド,SOx,NOx等が雰囲気中か
ら優先的にゼオライト膜に吸着され、光触媒粒子に接触
する機会が増加し、光触媒活性が向上する。
The zeolite has the general formula M x / m Al x Si
(1-x) aluminosilicate crystal represented by O 2 .nH 2 O (M is a cation, m is the valence of cation M, and n is the number of water molecules adsorbed in pores) It is known as a molecular sieve having pores of a molecular size (5 to 13 °) for selectively adsorbing and transmitting gaseous components inside the crystal. Therefore, even if a zeolite membrane is provided on the surface of the photocatalyst particles,
Formaldehyde, SOx, NOx and the like in the atmosphere pass through the zeolite membrane and reach the surface of the photocatalyst particles. Rather, formaldehyde, SOx, NOx, and the like are preferentially adsorbed to the zeolite membrane from the atmosphere, the chance of contact with the photocatalyst particles increases, and the photocatalytic activity improves.

【0010】ゼオライト膜を設けることにより光触媒活
性が向上する作用は、無機塗膜及び有機塗膜の何れでも
有効に機能する。有機塗膜では、更にゼオライト膜の形
成によって耐チョーキング性が改善される。すなわち、
光触媒粒子の表面で発生したラジカルは、移動可能距離
が非常に短く、光触媒粒子の表面がゼオライト膜で覆わ
れているため、塗膜を構成する有機樹脂まで到達しな
い。この点、シリカで被覆した光触媒粒子を分散させた
塗膜では、光触媒粒子と要分解成分との接触がシリカで
妨げられ、光触媒活性が低下する。
The effect of improving the photocatalytic activity by providing a zeolite membrane effectively functions for both inorganic coatings and organic coatings. In the organic coating film, the chalking resistance is further improved by forming a zeolite membrane. That is,
The radical generated on the surface of the photocatalyst particles has a very short movable distance and does not reach the organic resin constituting the coating film because the surface of the photocatalyst particles is covered with the zeolite film. In this regard, in a coating film in which photocatalyst particles coated with silica are dispersed, contact between the photocatalyst particles and the components requiring decomposition is prevented by the silica, and the photocatalytic activity is reduced.

【0011】[0011]

【実施の形態】本発明に従った光触媒被覆複合部材は、
たとえば図1に示すように、金属,ガラス,タイル,合
成樹脂,パーティクルボード,石膏,コンクリート等の
基材1の表面に、必要に応じてプライマ層2を介して光
触媒塗膜3を設けている。プライマ層2は光触媒塗膜3
の密着性を向上させるために設けられるが、光触媒反応
の影響を受けにくい金属製等の無機質基材1ではプライ
マ層2を省略することも可能である(図2)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A photocatalyst-coated composite member according to the present invention comprises:
For example, as shown in FIG. 1, a photocatalytic coating film 3 is provided on a surface of a base material 1 such as metal, glass, tile, synthetic resin, particle board, gypsum, concrete, etc. via a primer layer 2 as necessary. . The primer layer 2 is a photocatalytic coating 3
The primer layer 2 can be omitted from an inorganic base material 1 made of metal or the like that is not easily affected by a photocatalytic reaction, which is provided to improve the adhesion of the primer layer (FIG. 2).

【0012】基材1として使用される金属製基板には、
普通鋼板,亜鉛めっき鋼板,アルミめっき鋼板等の各種
めっき鋼板,ステンレス鋼板,アルミニウム板,アルミ
ニウム合金板等がある。金属製基板を使用する場合、必
要に応じてアルカリ脱脂,クロメート処理,リン酸塩処
理等の前処理が施される。プライマ層2は、防錆顔料,
体質顔料,白色顔料等を有機樹脂に分散させた塗料を基
材1に塗布し,焼き付けることにより形成される。プラ
イマ層2は,光触媒塗膜3の密着性及び耐食性を改善す
る。有機樹脂としては、ポリエステル樹脂,アクリル樹
脂,エポキシ樹脂,ウレタン樹脂等が使用される。な
お、耐食性に優れ且つ光触媒塗膜3との密着性も良好な
金属製基板を使用する場合には、プライマ層2を省略す
ることもできる。
The metal substrate used as the substrate 1 includes:
There are various types of plated steel sheets such as ordinary steel sheets, galvanized steel sheets, and aluminum-plated steel sheets, stainless steel sheets, aluminum sheets, and aluminum alloy sheets. When a metal substrate is used, pretreatment such as alkali degreasing, chromate treatment, and phosphate treatment is performed as necessary. The primer layer 2 is made of a rust preventive pigment,
It is formed by applying a paint in which an extender, a white pigment, and the like are dispersed in an organic resin to the substrate 1 and baking it. The primer layer 2 improves the adhesion and corrosion resistance of the photocatalytic coating film 3. As the organic resin, a polyester resin, an acrylic resin, an epoxy resin, a urethane resin, or the like is used. When a metal substrate having excellent corrosion resistance and good adhesion to the photocatalytic coating film 3 is used, the primer layer 2 can be omitted.

【0013】光触媒塗膜3は、ゼオライト膜5で被覆さ
れた光触媒粒子4を分散させた塗料を静電吹付けやロー
ルコート等により塗布し、焼き付けることにより形成さ
れる。シリカ,アルミナ等の無機バインダを使用する場
合には400℃以下で焼き付けられ、有機バインダを使
用する場合には200℃以下の低温焼付けも可能であ
る。有機バインダには、ポリエステル樹脂,アクリル樹
脂,エポキシ樹脂,ウレタン樹脂,フッ化ビニリデン樹
脂,シリコーン樹脂等がある。光触媒粒子4としては、
TiO2,ZnO,WO3,FeTiO3,SrTiO3
1種又は2種以上が使用される。なかでも、化学的安定
性に優れ安価で活性度の高い微粒子(粒径:5〜200
nm)が得られることから、アナターゼ型のTiO2
好ましい。光触媒粒子4は、粒径が小さいほど活性度が
高くなるが、あまり細かな粒径では塗料への分散が困難
になる。
The photocatalyst coating film 3 is formed by applying a coating material in which the photocatalyst particles 4 covered with the zeolite film 5 are dispersed by electrostatic spraying or roll coating and baking. When an inorganic binder such as silica or alumina is used, baking is performed at 400 ° C. or less, and when an organic binder is used, low-temperature baking at 200 ° C. or less is also possible. Examples of the organic binder include polyester resin, acrylic resin, epoxy resin, urethane resin, vinylidene fluoride resin, and silicone resin. As the photocatalyst particles 4,
One or more of TiO 2 , ZnO, WO 3 , FeTiO 3 and SrTiO 3 are used. Among them, fine particles with excellent chemical stability and low cost and high activity (particle size: 5-200
nm), anatase-type TiO 2 is preferable. The activity of the photocatalyst particles 4 increases as the particle size decreases, but if the particle size is too small, it becomes difficult to disperse the photocatalyst particles in the paint.

【0014】アルミニウムアルコキシド,アルコキシシ
ラン、アルカリ金属及び/又はアルカリ土類金属アルコ
キシド,アミン類及び水を有機溶媒に溶解して調製した
溶液に光触媒粒子を分散させた後、粉末を濾過して10
0〜400℃で乾燥すると、溶液に含まれているアルコ
キシドが加水分解した状態で光触媒粒子4の表面に付着
し、加熱工程で脱水及び縮重合反応してゼオライト膜5
が形成される。このとき、アミン類が存在していると加
水分解後の白濁化が防止され、均質なゼオライト膜5が
生成すると共にゲル化が防止される。その結果、光触媒
粒子4の表面が均一なゼオライト膜5で覆われる。
After dispersing the photocatalyst particles in a solution prepared by dissolving aluminum alkoxide, alkoxysilane, alkali metal and / or alkaline earth metal alkoxide, amines and water in an organic solvent, the powder is filtered and filtered.
When dried at 0 to 400 ° C., the alkoxide contained in the solution adheres to the surface of the photocatalyst particles 4 in a hydrolyzed state, and undergoes a dehydration and polycondensation reaction in a heating step to form a zeolite membrane 5.
Is formed. At this time, if amines are present, clouding after hydrolysis is prevented, a uniform zeolite membrane 5 is formed, and gelation is also prevented. As a result, the surface of the photocatalyst particles 4 is covered with the uniform zeolite membrane 5.

【0015】ゼオライト膜5で被覆された光触媒粒子4
は、5〜80質量%の割合で光触媒塗膜3に分散され
る。光触媒粒子4の分散量が5質量%未満では光触媒反
応による有機物,SOx,NOx等の分解効率が十分で
なく、逆に80質量%を超える配合量では光触媒塗膜3
の形成が困難になる。ゼオライト膜5は、5nm〜5μ
mの膜厚で光触媒粒子4の表面に形成することが好まし
い。5nm未満の膜厚では、ガスに対する吸着能が不足
すると共に、バインダとして有機樹脂を用いた場合に光
触媒粒子4と有機樹脂との接触を完全には防止できなく
なる。逆に、5μmを超える膜厚では、ゼオライト膜5
にクラックが発生しやすくなる。なお、ゼオライト膜5
の膜厚は、溶液の濃度,粘度及び光触媒粒子4との接触
時間等によって調整される。
Photocatalyst particles 4 coated with zeolite membrane 5
Is dispersed in the photocatalytic coating film 3 at a ratio of 5 to 80% by mass. When the dispersion amount of the photocatalyst particles 4 is less than 5% by mass, the decomposition efficiency of organic substances, SOx, NOx, etc. by the photocatalytic reaction is not sufficient.
Formation becomes difficult. The zeolite membrane 5 has a thickness of 5 nm to 5 μm.
It is preferably formed on the surface of the photocatalyst particles 4 with a film thickness of m. When the film thickness is less than 5 nm, the ability to adsorb gas is insufficient, and the contact between the photocatalyst particles 4 and the organic resin cannot be completely prevented when the organic resin is used as the binder. Conversely, when the film thickness exceeds 5 μm, the zeolite membrane 5
Cracks are more likely to occur. The zeolite membrane 5
Is adjusted by the concentration and viscosity of the solution, the contact time with the photocatalyst particles 4, and the like.

【0016】有機樹脂をバインダに使用する場合、光触
媒塗膜3形成時の焼付け温度は、使用する樹脂の種類に
応じた最適温度に定められる。一般の樹脂では150〜
300℃の焼付け温度で十分であるが、耐熱樹脂を使用
する場合には450℃まで焼付け温度を拡げることがで
きる。150℃未満の焼付け温度では、高分子間の架橋
が十分に進行せず、密着不良や塗膜剥離を生じやすい。
逆に高すぎる焼付け温度では、樹脂の分解による塗膜剥
離が生じ、加工性が低下する。焼付け温度を適正に設定
することにより、プライマ層2と光触媒塗膜3との間に
強固な結合が得られ、プライマ層2に対する光触媒塗膜
3の密着性が向上する。なお、フッ化ビニリデン樹脂及
びアクリル樹脂の混合物をベースにした塗料では、焼付
け後に塗膜の結晶化を抑制するため制御冷却することが
好ましい。
When an organic resin is used for the binder, the baking temperature at the time of forming the photocatalytic coating film 3 is set to an optimum temperature according to the type of the resin used. 150 ~
A baking temperature of 300 ° C. is sufficient, but when using a heat-resistant resin, the baking temperature can be extended to 450 ° C. At a baking temperature of less than 150 ° C., crosslinking between polymers does not proceed sufficiently, and poor adhesion and peeling of the coating film are likely to occur.
Conversely, if the baking temperature is too high, peeling of the coating film due to decomposition of the resin occurs, and the workability decreases. By properly setting the baking temperature, a strong bond is obtained between the primer layer 2 and the photocatalytic coating film 3, and the adhesion of the photocatalytic coating film 3 to the primer layer 2 is improved. In the case of a paint based on a mixture of a vinylidene fluoride resin and an acrylic resin, it is preferable to perform controlled cooling after baking in order to suppress crystallization of the coating film.

【0017】[0017]

【実施例1】アルミニウムイソプロポキシド1.0モ
ル,テトラエトキシシラン2.5モル,ナトリウムメト
キシド1.0モル,モノイソプロパノールアミン5.0
モル,水7.0モルをブチルセロソルブ15.0モルに
溶解することにより、ゼオライトのゾル−ゲル基本浴を
調製した。ゾルゲル浴にブチルセロソルブを加えて粘度
を低下させたもの,及びヒドロキシプロピルセルロース
を0.2〜2.0%添加して粘度を増大させた浴を準備
した。
Example 1 1.0 mol of aluminum isopropoxide, 2.5 mol of tetraethoxysilane, 1.0 mol of sodium methoxide, 5.0 mol of monoisopropanolamine
A sol-gel basic bath of zeolite was prepared by dissolving 7.0 mol of water and 15.0 mol of water in 15.0 mol of butyl cellosolve. A sol-gel bath was prepared by adding butyl cellosolve to decrease the viscosity, and a bath was prepared by adding 0.2 to 2.0% of hydroxypropylcellulose to increase the viscosity.

【0018】各ゾルゲル浴1リットルに粒径20nmの
アナターゼ型TiO2粒子をそれぞれ1kg添加し、攪
拌して十分に分散させた後、フィルタで濾過し、300
℃の乾燥炉で10分間加熱した。TiO2粒子4の表面
に形成されたゼオライト膜5は、5.0nm〜5.0μ
mの膜厚をもっていた。基材1にコンクリート板及び板
厚0.5mmのアルミニウムめっき鋼板を使用し、防錆
顔料及び体質顔料を分散させたエポキシ樹脂塗料を塗布
し、200℃×20分で焼き付けてプライマ層2を形成
した。
1 kg of anatase-type TiO 2 particles having a particle size of 20 nm were added to 1 liter of each sol-gel bath, stirred and sufficiently dispersed, and then filtered with a filter.
Heated in a drying oven at 10 ° C. for 10 minutes. The zeolite membrane 5 formed on the surface of the TiO 2 particles 4 has a thickness of 5.0 nm to 5.0 μm.
m. Using a concrete plate and an aluminum-plated steel plate having a plate thickness of 0.5 mm as a base material 1, applying an epoxy resin paint in which rust-preventive pigments and extender pigments are dispersed, and baking at 200 ° C. for 20 minutes to form a primer layer 2 did.

【0019】コンクリート板に対しては、ゼオライト膜
5で被覆した粒径20nmのアナターゼ型TiO2粒子
5を分散させた光触媒塗料をプライマ層2に塗布し、2
00℃×20分の焼付けで光触媒塗膜3を形成した。ア
ルミニウムめっき鋼板に対しては、粒径7nmのアナタ
ーゼ型TiO2粒子4を分散させた光触媒塗料を用いて
同様に光触媒塗膜3を形成した。
On the concrete plate, a photocatalytic coating material in which anatase-type TiO 2 particles 5 having a particle size of 20 nm and covered with a zeolite film 5 are dispersed is applied to the primer layer 2.
The photocatalyst coating film 3 was formed by baking at 00 ° C. for 20 minutes. A photocatalytic coating film 3 was similarly formed on an aluminum-plated steel sheet using a photocatalytic coating material in which anatase TiO 2 particles 4 having a particle size of 7 nm were dispersed.

【0020】比較のため、ゼオライト膜5で被覆してい
ない粒径20nmのアナターゼ型TiO2粒子を含む光
触媒塗膜3を形成したコンクリート板,粒径20nmの
アナターゼ型TiO2粒子4及び粒径2μmのゼオライ
ト粉末を含む光触媒塗膜3を形成したコンクリート板,
ゼオライト膜5で被覆していない粒径7nmのアナター
ゼ型TiO2粒子4を含む光触媒塗膜3を形成したアル
ミニウムめっき鋼板,粒径7nmのアナターゼ型TiO
2粒子4及び粒径2μmのゼオライト粉末を含む光触媒
塗膜3を形成したアルミニウムめっき鋼板を用意した。
For comparison, a concrete plate on which a photocatalytic coating film 3 containing anatase-type TiO 2 particles having a particle size of 20 nm which is not covered with the zeolite film 5 was formed, an anatase-type TiO 2 particle 4 having a particle size of 20 nm and a particle size of 2 μm Concrete plate on which a photocatalytic coating film 3 containing zeolite powder of
Aluminum-plated steel sheet on which a photocatalytic coating film 3 containing anatase-type TiO 2 particles 7 having a particle size of 7 nm which is not covered with the zeolite film 5 is formed.
(2) An aluminum-plated steel sheet having a photocatalytic coating film 3 containing particles 4 and zeolite powder having a particle size of 2 μm was prepared.

【0021】光触媒塗膜3が形成された各複合部材をN
Ox分解能試験及び耐光性試験に供した。NOx分解能
試験では、光触媒被覆複合部材をサイズ210mm×3
00mmの試験片に切り出し、ガラス容器に入れた。蛍
光灯で照射しながら、濃度1ppmのNOガスを含む高
純度空気を流量0.5リットル/分で連続的にガラス容
器に送り込み、ガラス容器のガス出側でNO濃度及びN
2濃度をNOxメータで測定した。測定値から次式に
従ってNOx除去率を算出し、得られたNOx除去率か
ら各試験片のNOx分解能を評価した。 NOx除去率=〔A1−(A2+B2)/A1〕×100(%) ただし、A1:初期NO濃度 A2:分解後のNO濃度 B2:分解後のNO2濃度
Each composite member on which the photocatalytic coating film 3 is formed is
It was subjected to an Ox resolution test and a light fastness test. In the NOx resolution test, the photocatalyst-coated composite member was sized 210 mm x 3
A test piece of 00 mm was cut out and placed in a glass container. While irradiating with a fluorescent lamp, high-purity air containing NO gas having a concentration of 1 ppm is continuously fed into the glass container at a flow rate of 0.5 L / min.
The O 2 concentration was measured with a NOx meter. The NOx removal rate was calculated from the measured value according to the following equation, and the NOx resolution of each test piece was evaluated from the obtained NOx removal rate. NOx removal rate = [A 1 − (A 2 + B 2 ) / A 1 ] × 100 (%) where A 1 : initial NO concentration A 2 : NO concentration after decomposition B 2 : NO 2 concentration after decomposition

【0022】耐光性試験では、光触媒被覆複合部材をサ
イズ100mm×100mmの試験片に切り出し、10
センチ離れた位置に配置した20Wのブラックライト
(UV強度: 5.0mW/cm2)で照射した。照射を
24時間継続した後、試験片の表面を指でこすり、塗膜
が指に付着したものを×,指に付着することはないが光
沢保持率が80%未満のものを△,指に付着せず光沢保
持率が80%以上を○として耐光性を評価した。
In the light resistance test, the photocatalyst-coated composite member was cut into test pieces having a size of 100 mm × 100 mm,
Irradiation was performed with a 20 W black light (UV intensity: 5.0 mW / cm 2 ) placed at a position distant from a centimeter. After the irradiation was continued for 24 hours, the surface of the test piece was rubbed with a finger, and the coating film adhered to the finger was evaluated as ×. Light resistance was evaluated as ○ when gloss retention was 80% or more without adhesion.

【0023】表1及び表2の調査結果にみられるよう
に、ゼオライト膜5で被覆したTiO 2粒子4を分散さ
せた光触媒塗膜3は、TiO2粒子4を単独で分散させ
た光触媒塗膜3やTiO2粒子及びゼオライト粉末を分
散させた光触媒塗膜3に比較して高いNOx分解能を示
した。また、紫外線照射によっても塗膜の有機成分が分
解されることなく、耐光性も良好であった。
As can be seen from the survey results in Tables 1 and 2.
TiO coated with zeolite membrane 5 TwoDispersed particles 4
The coated photocatalyst coating 3 is made of TiOTwoParticle 4 is dispersed alone
Photocatalyst coating 3 or TiOTwoSeparate particles and zeolite powder
Higher NOx resolution than the dispersed photocatalytic coating 3
did. In addition, the organic components of the coating film can be separated by UV irradiation.
Without being understood, the light resistance was also good.

【0024】 [0024]

【0025】 [0025]

【0026】[0026]

【実施例2】基材1に板厚0.5mmの亜鉛めっき鋼板
及びアルミニウムめっき鋼板を使用し、アルカリ脱脂,
リン酸塩処理を施した後、水洗,乾燥した。次いで、防
錆顔料及び体質顔料を分散させたポリエステル樹脂塗料
を塗布し、215℃×40秒で焼き付けてプライマ層2
を形成した。亜鉛めっき鋼板に対してはゼオライト膜で
被覆した粒径20nmのアナターゼ型TiO2を各種有
機樹脂に分散させた光触媒塗料をプライマ層2に塗布
し、アルミニウムめっき鋼板に対しては粒径7nmのア
ナターゼ型TiO2を各種有機樹脂に分散させた光触媒
塗料を用いて同様に光触媒塗膜3を形成した。ゼオライ
ト膜5で被覆した光触媒粒子4としては、実施例1と同
様に調製したものを使用した。ポリエステル樹脂をベー
スとする光触媒塗膜3では200〜250℃×1分間、
フッ化ビニリデン−アクリル混合樹脂をベースとする光
触媒塗膜3では250℃×1分間で焼き付けた。
Example 2 A zinc-plated steel sheet and an aluminum-plated steel sheet having a thickness of 0.5 mm were used for a base material 1 and alkali degreasing was performed.
After the phosphate treatment, it was washed with water and dried. Next, a polyester resin paint in which a rust-preventive pigment and an extender pigment are dispersed is applied and baked at 215 ° C. × 40 seconds to form a primer layer 2
Was formed. For a galvanized steel sheet, apply a photocatalytic paint in which anatase type TiO 2 having a particle diameter of 20 nm coated with a zeolite film is dispersed in various organic resins to the primer layer 2. For an aluminum plated steel sheet, an anatase having a particle diameter of 7 nm is applied. Photocatalytic coating film 3 was similarly formed using a photocatalytic coating material in which type TiO 2 was dispersed in various organic resins. As the photocatalyst particles 4 covered with the zeolite membrane 5, those prepared in the same manner as in Example 1 were used. In the photocatalytic coating film 3 based on a polyester resin, 200 to 250 ° C. × 1 minute,
The photocatalytic coating film 3 based on a vinylidene fluoride-acrylic mixed resin was baked at 250 ° C. for 1 minute.

【0027】比較のため、ゼオライト膜5で被覆してい
ない粒径20nmのアナターゼ型TiO2粒子4を含む
光触媒塗膜3を形成した亜鉛めっき鋼板,粒径20nm
のアナターゼ型TiO2粒子4及び粒径2μmのゼオラ
イト粉末を含む光触媒塗膜3を形成した亜鉛めっき鋼
板,ゼオライト膜5で被覆していない粒径7nmのアナ
ターゼ型TiO2粒子4を含む光触媒塗膜3を形成した
アルミニウムめっき鋼板,粒径7nmのアナターゼ型T
iO2粒子4及び粒径2μmのゼオライト粉末を含む光
触媒塗膜3を形成したアルミニウムめっき鋼板を用意し
た。
For comparison, a galvanized steel sheet having a photocatalytic coating film 3 containing anatase-type TiO 2 particles 4 having a particle size of 20 nm, not covered with a zeolite film 5, having a particle size of 20 nm
Galvanized steel sheet formed with a photocatalytic coating film 3 containing anatase-type TiO 2 particles 4 and zeolite powder having a particle size of 2 μm, and a photocatalytic coating film containing anatase-type TiO 2 particles 4 having a particle size of 7 nm which are not covered with a zeolite film 5 Coated aluminum plate, anatase type T having a particle size of 7 nm
An aluminum-plated steel sheet having a photocatalytic coating film 3 containing iO 2 particles 4 and zeolite powder having a particle size of 2 μm was prepared.

【0028】光触媒塗膜3が形成された各複合部材につ
いて、実施例1と同様な試験でNOx分解能及び耐光性
を調査すると共に、加工性も評価した。加工性試験で
は、25mm×50mmの試験片を2t曲げし、曲げ部
に粘着テープを貼り付けて瞬時に引き剥がした後、曲げ
部の塗膜剥離状況を目視観察し、塗膜剥離が検出された
ものを×,塗膜剥離が生じなかったものを○として加工
性を評価した。表3及び表4の調査結果にみられるよう
に、ゼオライト膜5で被覆したTiO 2粒子4を分散さ
せた光触媒塗膜3は、高いNOx分解能を示すと共に、
耐光性及び加工性も良好であった。これに対し、TiO
2粒子4を単独で分散させた光触媒塗膜3やTiO2粒子
4及びゼオライト粉末を分散させた光触媒塗膜3は,紫
外線照射で塗膜の有機成分が分解しチョーキングが発生
した。
For each composite member having the photocatalytic coating film 3 formed thereon,
In the same test as in Example 1, NOx resolution and light resistance
And the processability was also evaluated. In the workability test
Is a 2mm bend of a 25mm x 50mm test piece,
Paste the adhesive tape on the tape and peel it off instantly, then bend
Visual observation of the coating peeling state of the part, the coating peeling was detected
Processed as × and those without peeling as ○
The sex was evaluated. As can be seen from the survey results in Tables 3 and 4.
TiO coated with zeolite membrane 5 TwoDispersed particles 4
The coated photocatalyst coating 3 shows high NOx resolution and
Light resistance and workability were also good. In contrast, TiO
TwoPhotocatalyst coating film 3 in which particles 4 are dispersed alone or TiOTwoparticle
4 and the zeolite powder-dispersed photocatalytic coating 3
Organic components of the coating film are decomposed by external radiation, causing chalking.
did.

【0029】 [0029]

【0030】 [0030]

【0031】[0031]

【発明の効果】以上に説明したように、本発明の光触媒
被覆複合部材は,ゼオライト膜で被覆された光触媒粒子
を分散させた光触媒塗膜を形成しているので、雰囲気中
のホルムアルデヒド,SOx,NOx等の有害成分がゼ
オライト膜で吸着され,光触媒粒子の至近距離に維持さ
れる。そのため、光触媒反応が有害成分の分解に効率よ
く利用され、高い分解能が示される。また、光触媒粒子
を被覆するゼオライト膜は、塗膜を構成する有機成分と
光触媒粒子との直接接触を防止するため、光照射で励起
された光触媒粒子が発生するラジカルによって塗膜の有
機成分が分解されることがない。したがって、耐光性に
優れた光触媒塗膜となる。更に、基材に金属製基板を使
用するとき、加工性にも優れた塗装金属板が得られるの
で、光触媒活性を利用した各種内装建材,家電機器外板
等として広範な分野で使用される。
As described above, since the photocatalyst-coated composite member of the present invention forms a photocatalyst coating film in which photocatalyst particles coated with a zeolite film are dispersed, formaldehyde, SOx, SOx, Harmful components such as NOx are adsorbed by the zeolite membrane and are maintained at a short distance from the photocatalyst particles. Therefore, the photocatalytic reaction is efficiently used for decomposing harmful components, and high resolution is exhibited. In addition, the zeolite membrane that covers the photocatalyst particles prevents the organic components that make up the coating film from directly contacting the photocatalyst particles. Never be. Therefore, a photocatalytic coating film having excellent light resistance is obtained. Furthermore, when a metal substrate is used as a base material, a coated metal plate excellent in workability can be obtained, and thus it is used in a wide range of fields as various interior building materials utilizing photocatalytic activity, outer panels of home electric appliances, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 プライマ層を介して光触媒塗膜を形成した光
触媒被覆複合部材の表面層を示す断面図
FIG. 1 is a cross-sectional view showing a surface layer of a photocatalyst-coated composite member on which a photocatalyst coating film is formed via a primer layer.

【図2】 基材に光触媒塗膜を直接形成した光触媒被覆
複合部材の表面層を示す断面図
FIG. 2 is a cross-sectional view showing a surface layer of a photocatalyst-coated composite member having a photocatalyst coating film formed directly on a substrate.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 35/02 311 B01D 53/36 J B32B 9/00 104Z (72)発明者 中村 浩茂 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 (72)発明者 坂戸 健二 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 (72)発明者 安藤 彰啓 千葉県市川市高谷新町7番1号 日新製鋼 株式会社技術研究所内 Fターム(参考) 4D048 AA02 AA06 AA17 AB03 AB05 BA03Y BA07Y BA12Y BB03 CC04 CC38 EA01 EA08 4F100 AA20 AA21 AB01 AB03 AB10 AC04 AC04A AE01 AE06 AG00 AK01A AK17 AK25 AK41 AK52 AP03 AR00C AT00B BA02 BA03 BA07 BA10A BA10B CC00 CC00A DE01A EH46 EH462 EH71 EJ422 EJ65 EJ65C GB07 GB08 GB48 JA20A JL01 JL08 JL08A JM02A JN02 JN30 YY00A 4G069 AA03 AA08 AA11 BA04A BA04B BA07A BA07B BA17 BA22A BA22B BA48A BB02A BB02B BC16B BC50A BC50B CA02 CA03 CA10 CA11 CA12 CA13 DA06 EA07 EA08 EA14 EB15X EB15Y EE01 EE06 FA03 FB23 FB30 FC05 FC08Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) B01J 35/02 311 B01D 53/36 J B32B 9/00 104Z (72) Inventor Hiroshige Nakamura 7 Takatani-machi, Ichikawa-shi, Chiba No. 1 Inside Nisshin Steel R & D Co., Ltd. (72) Inventor Kenji Sakado 7-1 Inside Nisshin Steel Co., Ltd. R & D Laboratories (72) Inventor Akihiro Ando 7 Takaya Shinmachi, Ichikawa-shi, Chiba No. 1 F-term in Nisshin Steel R & D Co., Ltd. F-term (reference) 4D048 AA02 AA06 AA17 AB03 AB05 BA03Y BA07Y BA12Y BB03 CC04 CC38 EA01 EA08 4F100 AA20 AA21 AB01 AB03 AB10 AC04 AC04A AE01 AE06 AG00 AK01 AK52 AT00 AK17 AK52 AP02 BA03 BA07 BA10A BA10B CC00 CC00A DE01A EH46 EH462 EH71 EJ422 EJ65 EJ65C GB07 GB08 GB48 JA20A JL01 JL08 JL08A JM02A JN02 JN30 YY00A 4G069 AA03 AA08 AA11 BA04A BA04B CA07 BA02B02 BA17 BC EA14 EB15X EB15Y EE01 EE06 FA03 FB23 FB30 FC05 FC08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ゼオライトで被覆された光触媒粒子が分
散した光触媒塗膜が基材表面に形成されていることを特
徴とする光触媒活性及び耐光性に優れた光触媒被覆複合
部材。
1. A photocatalyst-coated composite member having excellent photocatalytic activity and light resistance, characterized in that a photocatalyst coating film in which photocatalyst particles coated with zeolite are dispersed is formed on a substrate surface.
【請求項2】 ゼオライトで被覆された光触媒粒子が5
〜80質量%の割合で光触媒塗膜に分散している請求項
1記載の光触媒被覆複合部材。
2. The photocatalyst particles coated with zeolite are 5
The photocatalyst-coated composite member according to claim 1, wherein the photocatalyst-coated composite member is dispersed in the photocatalytic coating film at a ratio of from about 80% by mass.
【請求項3】 膜厚5nm〜5μmのゼオライト皮膜で
覆われた光触媒粒子が光触媒塗膜に分散している請求項
1記載の光触媒被覆複合部材。
3. The photocatalyst-coated composite member according to claim 1, wherein the photocatalyst particles covered with the zeolite film having a thickness of 5 nm to 5 μm are dispersed in the photocatalyst coating film.
【請求項4】 ゼオライトで被覆された光触媒粒子を含
む有機樹脂塗料をプライマ塗膜の上に塗布し、熱処理に
よりゼオライトで被覆された光触媒粒子が分散した光触
媒塗膜を形成することを特徴とする光触媒活性及び耐光
性に優れた光触媒被覆複合部材の製造方法。
4. An organic resin paint containing photocatalyst particles coated with zeolite is applied on the primer coating film, and a heat treatment forms a photocatalyst coating film in which the photocatalyst particles coated with zeolite are dispersed. A method for producing a photocatalyst-coated composite member having excellent photocatalytic activity and light resistance.
JP2000083903A 2000-03-24 2000-03-24 Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same Expired - Fee Related JP3371104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000083903A JP3371104B2 (en) 2000-03-24 2000-03-24 Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000083903A JP3371104B2 (en) 2000-03-24 2000-03-24 Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001269581A true JP2001269581A (en) 2001-10-02
JP3371104B2 JP3371104B2 (en) 2003-01-27

Family

ID=18600460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000083903A Expired - Fee Related JP3371104B2 (en) 2000-03-24 2000-03-24 Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3371104B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261093A (en) * 2007-04-10 2008-10-30 Matsushita Electric Works Ltd Functional flooring material and its manufacturing method
US20130164542A1 (en) * 2007-05-10 2013-06-27 Ppg B.V. Primer Composition
JPWO2011115237A1 (en) * 2010-03-15 2013-07-04 株式会社キャタラー Photocatalytic filter and deodorizing apparatus having the same
JPWO2022190994A1 (en) * 2021-03-08 2022-09-15

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008261093A (en) * 2007-04-10 2008-10-30 Matsushita Electric Works Ltd Functional flooring material and its manufacturing method
US20130164542A1 (en) * 2007-05-10 2013-06-27 Ppg B.V. Primer Composition
US9085701B2 (en) * 2007-05-10 2015-07-21 Ppg B.V. Primer composition
JPWO2011115237A1 (en) * 2010-03-15 2013-07-04 株式会社キャタラー Photocatalytic filter and deodorizing apparatus having the same
JPWO2022190994A1 (en) * 2021-03-08 2022-09-15
WO2022190994A1 (en) * 2021-03-08 2022-09-15 株式会社クリエイティブコーティングス Method for producing zeolite membrane, gas adsorbent, and gas adsorption device
JP7382687B2 (en) 2021-03-08 2023-11-17 株式会社クリエイティブコーティングス Zeolite membrane manufacturing method

Also Published As

Publication number Publication date
JP3371104B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
CA2126418C (en) Photocatalyst composite and process for producing the same
JP3559892B2 (en) Photocatalytic film and method for forming the same
JP3732247B2 (en) Titanium oxide coating film-forming liquid composition for photocatalyst and process for producing the same
Ho et al. Application of recycled lanthanum-doped TiO2 immobilized on commercial air filter for visible-light photocatalytic degradation of acetone and NO
US20110236284A1 (en) Photocatalyst-coated body and photocatalytic coating liquid
JP4053911B2 (en) Photocatalyst and method for producing photocatalyst
JP2002301378A (en) Photocatalyst module, method for producing the same and photocatalytic reactor
JP2002346393A (en) Photocatalyst and method for manufacturing the same
JP2001269581A (en) Photocatalyst-coated composite member excellent in photocatalytic activity and light resistance and its production method
JP3300940B2 (en) Method of forming underlayer for photocatalytic film
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP2000302422A (en) Coating composition for forming photocatalyst film
JP3372451B2 (en) Photocatalyst-coated metal plate and method for producing the same
JPH10286456A (en) Adsorbing functional body
JP3866147B2 (en) Painted metal plate with excellent processability, concealability and photocatalytic activity, and method for producing the same
JP2001031483A (en) Production of ceramic building material having photocatalytic function
JP2003010696A (en) Photocatalyst body and method for manufacturing the same
JPH11290696A (en) Photocatalyst base material
TWI239269B (en) Interior design material or indoor furniture with titanium oxide
JP3726366B2 (en) Fluorescent lamp
JP2003093892A (en) Metal material for photocatalyst product and method for manufacturing metal material and product
JP2000290533A (en) Titanyl oxalate coating solution and preparation of photocatalytic element using this
JP2003093893A (en) Primer composition for coating photocatalyst and photocatalyst coating material
JP2005163050A (en) Liquid composition for forming titanium dioxide coating film for photocatalyst and method for producing the same
JP2004010422A (en) Liquid for forming titania film, method for forming titania film, titania film and member using titania film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees