JP2001269190A - Microbiological method for production of glycine prevented from discoloration - Google Patents

Microbiological method for production of glycine prevented from discoloration

Info

Publication number
JP2001269190A
JP2001269190A JP2000090795A JP2000090795A JP2001269190A JP 2001269190 A JP2001269190 A JP 2001269190A JP 2000090795 A JP2000090795 A JP 2000090795A JP 2000090795 A JP2000090795 A JP 2000090795A JP 2001269190 A JP2001269190 A JP 2001269190A
Authority
JP
Japan
Prior art keywords
glycine
reaction
ammonia
glycinonitrile
microorganism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000090795A
Other languages
Japanese (ja)
Other versions
JP4596593B2 (en
Inventor
Tadanari Aoki
肇也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2000090795A priority Critical patent/JP4596593B2/en
Publication of JP2001269190A publication Critical patent/JP2001269190A/en
Application granted granted Critical
Publication of JP4596593B2 publication Critical patent/JP4596593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing glycine from glycinonitrile using a microorganism, wherein the process is not accompanied by decomposition or discoloration, is efficient per dry cell mass per unit time, is not accompanied by the disposal of a large amount of cell or spent broth, is not accompanied by the addition or disposal of acid, alkali or buffer for adjusting pH of the reaction liquid, permits stoichiometrically producing glycine and ammonia, is not accompanied by any decomposition or consumption of these, and permits separately collecting these. SOLUTION: This method comprises such a process that glycinonitrile is subjected to a microorganism or product therefrom in the presence of a sulfite compound, preferably under a reaction condition that does not require adding acid, alkali or buffer for adjusting pH, in a closed system or system that permits simultaneous separation of formed ammonia outside the system, thus separately collecting glycine and ammonia.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,グリシンの着色を
防止した微生物学的製造方法に関する。更に詳しくは、
亜硫酸塩の存在下グリシノニトリル水溶液に微生物また
はその処理物を作用させることを特徴とするグリシンの
着色を防止した微生物学的製造方法に関する。得られる
グリシンは食品添加物、、洗浄剤、医農薬合成原料とし
て有用である。本発明の製造法は、有用なグリシンを効
率よく工業的に製造するため利用することが出来る。
[0001] The present invention relates to a microbiological production method in which glycine is prevented from being colored. More specifically,
The present invention relates to a microbiological production method in which glycine is prevented from being colored, wherein a microorganism or a treated product thereof is allowed to act on an aqueous glycinonitrile solution in the presence of a sulfite. The obtained glycine is useful as a food additive, a detergent, and a raw material for synthesizing medical and agricultural chemicals. The production method of the present invention can be used to produce useful glycine efficiently and industrially.

【0002】[0002]

【従来の技術】グリシノニトリルを弱アルカリ水溶液で
微生物を用いて加水分解しグリシンを得る方法が知られ
ている。特公昭58−15120号明細書にはブレビバ
クテリウム R312株をpH8に維持して用いる方法、特開
平3−62391号明細書にはpH7.2に調整した反
応液にコリネバクテリウムN-774株を用いる方法、また
特開平3−280889号明細書にはpHを7.7付近に調整
した反応液にロドコッカス属、アルスロバクター属、カ
セオバクター属、シュードモナス属、エンテロバクター
属、アシネトバクター属、アルカリゲネス属、コリネバ
クテイリア属、またはストレプトマイセス属の微生物を
用いる方法が開示されている。
2. Description of the Related Art There is known a method for obtaining glycine by hydrolyzing glycinonitrile with a weak alkaline aqueous solution using a microorganism. Japanese Patent Publication No. 58-15120 discloses a method of using Brevibacterium R312 strain at a pH of 8, and Japanese Patent Application Laid-Open No. 3-62391 discloses a method wherein Corynebacterium strain N-774 is added to a reaction solution adjusted to a pH of 7.2. And JP-A-3-280889 discloses that a reaction solution having a pH adjusted to about 7.7 contains Rhodococcus, Arthrobacter, Caseobacter, Pseudomonas, Enterobacter, Acinetobacter and Alcaligenes. , Corynebacteria or Streptomyces are disclosed.

【0003】こうした弱アルカリ水溶液中ではグリシノ
ニトリルは不安定であることが知られている。例えばpH
が2.5以上では安定性が悪く、pHが高いほど、温度
が高いほど、および経過時間が長いほど分解や着色等の
変成をし易いことが開示されている(特開昭49−14
420号、特開昭54−46720号、特開昭54−4
6721号明細書)。こうした分解や変成はグリシンの
収率を低下するだけでなく、脱色するには、活性炭や特
殊なイオン交換樹脂を用いた煩雑な処理が必要である
(特開平3−190851号、平4−226949号明
細書)。更に、従来法はグリシンの生成に伴い等量のア
ンモニアが水性溶媒中に蓄積するため、pHは更に高く
なり強アルカリ性となるため、グリシノニトリルの着色
や変成は避けられない問題があった。このように従来の
微生物を用いる方法はグリシン収率の低下、脱色するた
め煩雑な操作が必要で、工業的に実施できるものではな
かった。
[0003] It is known that glycinonitrile is unstable in such a weak alkaline aqueous solution. For example, pH
Is 2.5 or more, the stability is poor, and it is disclosed that the higher the pH, the higher the temperature, and the longer the elapsed time, the more easily the metabolism such as decomposition or coloration is easily caused (JP-A-49-14).
No. 420, JP-A-54-47720, JP-A-54-4
6721). Such decomposition or denaturation not only lowers the yield of glycine, but also requires a complicated treatment using activated carbon or a special ion-exchange resin for decolorization (JP-A-3-190851, JP-A-4-226949). Specification). Further, in the conventional method, since an equal amount of ammonia accumulates in the aqueous solvent with the production of glycine, the pH becomes further higher and the alkali becomes more alkaline, so that there is a problem that glycinonitrile is inevitably colored or denatured. As described above, the conventional method using a microorganism requires a complicated operation for lowering the glycine yield and decoloring, and cannot be carried out industrially.

【0004】[0004]

【発明が解決しようとする課題】本発明は、微生物を用
いグリシノニトリルからグリシンを生産するにあたり、
分解や着色反応を伴わず、乾燥菌体当たり、且つ単位時
間当たり高活性であって菌体や培地の多量廃棄を伴わ
ず、反応液のpHを調整するための酸、アルカリまたは緩
衝液の添加や廃棄を伴わず、グリシンとアンモニアが定
量的に生成し、これらの分解および消費を伴わなず、グ
リシンとアンモニアを別々に回収するグリシンの製造法
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to the production of glycine from glycinonitrile using a microorganism.
Addition of acid, alkali or buffer solution to adjust the pH of the reaction solution without decomposing or coloring reaction, high activity per dry cell and per unit time, without large amount of cells and medium wasted It is an object of the present invention to provide a method for producing glycine, in which glycine and ammonia are quantitatively generated without accompanying or discarding the glycine and ammonia separately without decomposing and consuming them.

【0005】[0005]

【課題を解決するための手段】本発明者はこのような工
業的諸問題を解決するため、分解や着色反応を伴わず、
菌体当たり、且つ単位時間当たり高い活性を持ち、反応
系で生成したグリシンやアンモニアを分解または消費せ
ず、グリシンとアンモニアを別々に、定量的に、且つに
容易に回収できる反応系を構築すべく検討を鋭意行っ
た。驚くべき事に、特定の化合物がこうした微生物の活
性を損なわず反応液の着色を抑制し高いグリシン収率が
得られることを見いだし本発明を完成するに至った。
In order to solve such industrial problems, the inventor of the present invention does not involve decomposition or coloring reaction,
Construct a reaction system that has high activity per cell and per unit time, does not decompose or consume glycine and ammonia generated in the reaction system, and can collect glycine and ammonia separately, quantitatively and easily. Investigation was carried out earnestly. Surprisingly, they have found that a specific compound does not impair the activity of such microorganisms, suppresses the coloring of the reaction solution, and obtains a high glycine yield, and has completed the present invention.

【0006】即ち、本発明によれば、亜硫酸化合物の存
在下グリシノニトリルに微生物またはその処理物を作用
させることで、好ましくはpHを調整するための酸、アル
カリまたは緩衝液の添加をしない反応条件で、且つ閉鎖
系の反応条件下もしくは生成するアンモニアを反応と同
時に系外に分離する反応条件下で亜硫酸化合物の存在下
グリシノニトリルに微生物またはその処理物を作用させ
ることで、分解や着色反応を伴わず、乾燥菌体当たり、
且つ単位時間当たり高活性であって菌体や培地の多量廃
棄を伴わず、反応液のpHを調整するための酸、アルカリ
または緩衝液の添加や廃棄を伴わず、グリシンとアンモ
ニアが定量的に生成し、これらの分解および消費を伴わ
なず、グリシンとアンモニアを別々に回収するグリシン
の製造法が提供される。
That is, according to the present invention, by reacting a microorganism or a processed product thereof with glycinonitrile in the presence of a sulfite compound, a reaction is preferably performed without adding an acid, alkali or buffer for adjusting pH. Decomposition and coloration of glycinonitrile in the presence of a sulfite compound by the action of microorganisms or their processed products under the conditions of a closed system or under the reaction conditions of separating generated ammonia out of the system simultaneously with the reaction Without a reaction, per dry cell,
It has high activity per unit time and does not involve large amounts of cells and medium, and does not require the addition or disposal of acids, alkalis or buffers to adjust the pH of the reaction solution, and glycine and ammonia can be quantitatively determined. A process for the production of glycine is provided, wherein the glycine and the ammonia are produced separately, without the decomposition and consumption thereof, and glycine and ammonia are separately recovered.

【0007】[0007]

【発明の実施の形態】本発明について、以下具体的に説
明する。本発明で用いられるグリシノニトリルは純粋な
グリシノニトリルだけでなくホルムアルデヒドや青酸と
アンモニアの反応物やグリコロニトリルとアンモニアの
反応物など反応条件下でグリシノニトリルを生成しうる
反応物も使用することが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below. The glycinonitrile used in the present invention uses not only pure glycinonitrile but also a reactant capable of forming glycinonitrile under reaction conditions such as a reactant of formaldehyde, hydrocyanic acid and ammonia, or a reactant of glycolonitrile and ammonia. You can do it.

【0008】本発明で反応液に共存させる亜硫酸化合物
として制限はないが、例えば、亜硫酸ガス、亜硫酸、亜
硫酸二ナトリウム、亜硫酸水素ナトリウム、亜硫酸二カ
リウム、亜硫酸水素カリウム、亜硫酸二アンモニウム等
が用いられる。好ましくは、亜硫酸のアンモニウム塩と
して亜硫酸二アンモニウムが用いられる。亜硫酸化合物
の添加量はグリシノニトリルに対し0.001mol%
〜5mol%、好ましくは0.01mol%から2mo
l%でよい。
In the present invention, the sulfite compound coexisting in the reaction solution is not limited. For example, sulfurous acid gas, sulfurous acid, disodium sulfite, sodium hydrogen sulfite, dipotassium sulfite, potassium hydrogen sulfite, diammonium sulfite and the like are used. Preferably, diammonium sulfite is used as the ammonium salt of sulfite. The addition amount of the sulfite compound is 0.001 mol% based on glycinonitrile.
~ 5mol%, preferably 0.01mol% to 2mo
1% may be sufficient.

【0009】本発明に使用する微生物としては、例え
ば、アシネトバクター(Accinetobacter)属、ロドコッ
カス(Rhodococcus)属、コリネバクテリウム(Coryneb
acterium)属やアルカリゲネ(Alcaligenes)属に属す
る微生物が適していることが新たに発見されたが、これ
に限定されるものではない。本発明に適した微生物とし
て選択されたアシネトバクターsp.AK226株(A.sp.AK22
6)(以下AK226と略称する)、やアシネトバクターsp.A
K227株(A.sp.AK227)(以下AK227と略称する)は19
85年 年5月28日に工業技術院微生物工業技術研究所に
寄託されそれぞれ微工研菌寄第8271号と 微工研菌寄第8
272号の 受託番号を付与されており、微生物学的性質は
以下表1に示す通りである。
[0009] Examples of the microorganisms used in the present invention include the genus Acinetobacter, the genus Rhodococcus, and the genus Corynebacteria.
Microorganisms belonging to the genus acterium or the genus Alcaligenes have been newly found to be suitable, but are not limited thereto. Acinetobacter sp. AK226 strain (A. sp. AK22) selected as a microorganism suitable for the present invention
6) (hereinafter abbreviated as AK226), or Acinetobacter sp.A
The K227 strain (A.sp. AK227) (hereinafter abbreviated as AK227) has 19 strains.
Deposited on May 28, 1985, with the Institute of Microbial Industry and Technology, the National Institute of Advanced Industrial Science and Technology
No. 272 has been assigned an accession number, and the microbiological properties are as shown in Table 1 below.

【0010】[0010]

【表1】 [Table 1]

【0011】菌株の同定に際しては、バージェイズ・マ
ニュアル・オブ・システマティク・バイオテリオロジー
(Bergy's Manual of Determinative Bacteriolog)第
8版(1974)に従って分類した。また、本発明に適した微
生物として選択されたロドコッカス・マリスBP-479-9株
は1993年11月2日に工業技術院微生物工業技術研
究所に原寄託され、1995年9月1日に国際寄託に移
管されFERM BP−5219の受託番号を付与され
ており、微生物学的性質は以下表2に示す通りである。
[0011] The strains were identified according to the Bergy's Manual of Determinative Bacteriolog, 8th edition (1974). The Rhodococcus maris BP-479-9 strain selected as a microorganism suitable for the present invention was originally deposited on November 2, 1993 at the Institute of Microbial Industry and Technology, and on September 1, 1995, It was transferred to the deposit and given a deposit number of FERM BP-5219, and the microbiological properties are as shown in Table 2 below.

【0012】[0012]

【表2】 [Table 2]

【0013】菌株の同定に際しては、バージェイズ・マ
ニュアル・オブ・システマティク・バイオテリオロジー
(Bergy's Manual of Determinative Bacteriolog)第2
巻(1986)およびザ・プロカリオート(The Prokaryote
s)第2版(1992)に従って分類した。また、本発明に
適した微生物として選択されたコリネバクテリウム s
p. C5株(以下C5と略称する)は工業技術院微生物工
業技術研究所に寄託され微工研菌寄第8931号の 受託番
号を付与されており、微生物学的性質は、特開昭63−
129988号公報に示す通りである。
[0013] In identifying the strain, the Berg's Manual of Determinative Bacteriolog (Bergy's Manual of Systematic Bacteriolog)
Vol. (1986) and The Prokaryote
s) Classified according to the second edition (1992). In addition, Corynebacterium s selected as a microorganism suitable for the present invention
p. strain C5 (hereinafter abbreviated as C5) was deposited with the National Institute of Microbial Industry and Technology, and given the accession number of Microtechnical Research Bacteria No. 8931. −
As described in JP-A-129988.

【0014】また、本発明に適した微生物として選択さ
れたコリネバクテリウム ニトリロフィラス ATCC21
419株、アルカリゲネス フェカリス ATCC87
50株も使用することが出来る本発明に使用される微生
物の培養には、通常用いられる炭素源、例えば、グルコ
ース、グリセリン、有機酸、デキストリン、マルトース
等が用いられ、窒素源としてはアンモニアとその塩類、
尿素、硝酸塩および有機窒素源、例えば、酵母エキス、
麦芽エキス、ペプトン、肉エキス等が用いられる。
In addition, Corynebacterium nitriophilus ATCC21 selected as a microorganism suitable for the present invention.
419 strains, Alcaligenes faecalis ATCC87
For culturing the microorganism used in the present invention, which can also use 50 strains, commonly used carbon sources, for example, glucose, glycerin, organic acids, dextrin, maltose, etc. are used, and ammonia and its salts,
Urea, nitrates and organic nitrogen sources, such as yeast extract,
Malt extract, peptone, meat extract and the like are used.

【0015】また、培地にはリン酸塩、ナトリウム、カ
リウム、鉄、マグネシウム、コバルト、マンガン、亜鉛
等の無機栄養源が適宜添加される。培養はpH5から9、好
ましくはpH6から8、温度20から37℃、好ましくは2
7から32℃で好気的に行われる。本発明の微生物の培養
において、上記の培地に酵素誘導剤を加えても良い、例
えば、ラクタム化合物(γ-ラクタム、δ-ラクタム、ε
-カプロラクタム等)、ニトリル化合物、アミド化合物
等を用いてもよい。
[0015] In addition, inorganic nutrients such as phosphate, sodium, potassium, iron, magnesium, cobalt, manganese and zinc are appropriately added to the medium. The cultivation is carried out at pH 5 to 9, preferably pH 6 to 8, at a temperature of 20 to 37 ° C, preferably at 2
Performed aerobically at 7 to 32 ° C. In culturing the microorganism of the present invention, an enzyme inducer may be added to the above-mentioned medium, for example, lactam compounds (γ-lactam, δ-lactam, ε
-Caprolactam and the like), nitrile compounds, amide compounds and the like.

【0016】本発明の微生物はそのまま工業使用できる
が、適当な変異剤で突然変異を誘発する方法もしくは遺
伝子工学的手法により改良された変異株、例えば、酵素
を構成的に生産する変異株を育成し用いることもでき
る。本発明の菌体とは培養液から採取した菌体または菌
体処理物(菌体の破砕物、菌体破砕物より分離した酵
素、および菌体または菌体から分離抽出された酵素を固
定化した処理物)である。培養液からの菌体の採取は公
知の方法で行うことが出来る。
Although the microorganism of the present invention can be used industrially as it is, a mutant strain improved by a method of inducing a mutation with a suitable mutagen or a genetic engineering technique, for example, a mutant strain that produces an enzyme constitutively, is grown. Can also be used. The cells of the present invention are cells immobilized with cells collected from a culture solution or treated cells (crushed cells, enzymes separated from the cells, and enzymes separated or extracted from the cells). Processed material). Collection of the cells from the culture solution can be performed by a known method.

【0017】本発明においては、上述の方法で分離した
菌体および菌体処理物はグリシノニトリル水溶液に懸濁
することで、速やかに加水分解反応が進行しグリシンを
製造することができる。則ち、通常、前記微生物菌体ま
たは菌体処理物を、例えば0.01から5重量%、基質
のグリシノニトリルを1から30重量%、更にグリシノニ
トリルに対し0.001mol%〜5mol%、好まし
くは0.01mol%から0.2mol%の亜硫酸化合
物を含む水性懸濁液を反応装置に仕込み温度として例え
ば0から60℃、好ましくは10から50℃にて、反応時間を
例えば1時間ないし24時間、好ましくは3時間から8時
間反応させれば良い。
In the present invention, the cells isolated by the above-mentioned method and the treated cells are suspended in an aqueous glycinonitrile solution, whereby the hydrolysis reaction proceeds rapidly to produce glycine. That is, usually, the microbial cells or the processed cells are, for example, 0.01 to 5% by weight, the substrate glycinonitrile is 1 to 30% by weight, and the glycinonitrile is 0.001 mol% to 5 mol%. An aqueous suspension containing preferably 0.01 mol% to 0.2 mol% of a sulfite compound is charged into a reactor at a temperature of, for example, 0 to 60 ° C., preferably 10 to 50 ° C., and the reaction time is, for example, 1 hour to The reaction may be performed for 24 hours, preferably for 3 to 8 hours.

【0018】この場合、グリシノニトリルを薄い濃度で
仕込み経時的に追加添加したり、反応温度を経時的に変
化させても良い。また、反応後の廃棄物を減らす上でp
Hを調整するための緩衝液、酸やアルカリを反応液に添
加しないことが好ましい。また、生成するアンモニアを
回収するため、密閉型の反応容器を用い生成するアンモ
ニアを応容器中に一旦蓄積してもよいが、pHの上昇を
抑えるために生成するアンモニアを反応と同時に分離す
る反応分離装置を付属することが好ましい。こうしたア
ンモニアの反応分離法としてはアンモニアの反応蒸留法
や不活性ガスの流通法で実施することができる。
In this case, glycinonitrile may be charged at a low concentration and added over time, or the reaction temperature may be changed over time. Also, in reducing waste after the reaction,
It is preferable not to add a buffer for adjusting H, an acid or an alkali to the reaction solution. In addition, in order to recover the generated ammonia, the generated ammonia may be temporarily accumulated in the reaction vessel using a closed reaction vessel, but the reaction in which the generated ammonia is separated simultaneously with the reaction in order to suppress a rise in pH is performed. Preferably, a separating device is provided. Such a method of reacting and separating ammonia can be carried out by a reactive distillation method of ammonia or a flow method of an inert gas.

【0019】反応蒸留を行う場合、加水分解反応装置
に、アンモニアと同伴する水を冷却回収する冷却器の付
いた単管搭、棚段搭、または充填塔を備え、反応水溶液
の沸騰圧以上、例えば60℃で20.0kPa以上から
0℃で0.6kPa以上の圧力条件下で、連続的にまた
は間欠的に減圧反応蒸留することが好ましい。更に好ま
しくは、12.6kPaから1.3kPaの圧力条件下
で減圧反応蒸留することができる。不活性ガスを流通す
る場合、不活性ガスの吹き込みノズルと、アンモニアや
同伴する水を不活性ガスから回収する冷却トラップとを
備え、微加圧から減圧条件下で連続的にまたは間欠的に
アンモニアを不活性ガスに同伴し反応液から分離するこ
とができる。更に、アンモニア分離を促進するため減圧
反応蒸留を不活性ガス流通条件下で行うこともできる。
反応方式はバッチ型方式や流通型反応方式、またはこれ
らを組み合わせた方式で行うことが出来る。
When performing the reactive distillation, the hydrolysis reaction apparatus is provided with a single-tube tower, a tray tower, or a packed tower equipped with a cooler for cooling and recovering water accompanying ammonia. For example, it is preferable to continuously or intermittently perform the reduced pressure distillation under a pressure condition of 20.0 kPa or more at 60 ° C. to 0.6 kPa or more at 0 ° C. More preferably, the distillation under reduced pressure can be performed under a pressure condition of 12.6 kPa to 1.3 kPa. When flowing an inert gas, the system is provided with a nozzle for blowing the inert gas and a cooling trap for recovering ammonia and accompanying water from the inert gas. Can be entrained in an inert gas and separated from the reaction solution. Further, in order to promote the separation of ammonia, the reduced pressure reactive distillation can be performed under an inert gas flow condition.
The reaction system can be carried out by a batch type system, a flow type reaction system, or a combination thereof.

【0020】かくして、グリシノニトリルは、ほぼ100
%のモル収率で加水分解し、生成するアンモニアの全部
は密閉型反応容器中に一旦グリシンのアンモニウム塩を
含むグリシンの高濃度水溶液として生成蓄積させること
ができる。また、生成するアンモニアの全部または殆ど
は反応と同時に反応蒸留法や不活性ガスの流通法で反応
液から分離し冷却回収される。
Thus, glycinonitrile is almost 100
% Of the resulting ammonia can be once produced and accumulated in a closed reaction vessel as a high-concentration aqueous solution of glycine containing an ammonium salt of glycine. Further, all or most of the produced ammonia is separated from the reaction solution by a reactive distillation method or an inert gas flow method at the same time as the reaction, and is cooled and recovered.

【0021】もし、グリシンアミドが残存する場合はグ
リシンアミドの加水分解活性をもつ菌体もしくは酵素を
追添加することにより、完全にグリシンおよびアンモニ
アに転換することも可能である。グリシンのアンモニウ
ム塩を含むグリシンの高濃度水溶液からのグリシンの回
収は、例えば、反応液から菌体を遠心濾過、膜分離等に
よって除いた後、グリシンは晶析法、イオン交換法また
は貧性溶媒による分別沈澱法にて回収できる、またアン
モニアは一部の水と一緒に蒸発後、蒸留や抽出によって
回収することができる。本発明を実施例に基づいて説明
するが、本発明はこれらの例に制限される物ではない。
If glycinamide remains, it can be completely converted to glycine and ammonia by additionally adding cells or enzymes having glycinamide hydrolysis activity. Glycine is recovered from a high-concentration aqueous solution of glycine containing an ammonium salt of glycine by, for example, removing cells from the reaction solution by centrifugal filtration, membrane separation, etc., and then glycine is crystallized, ion-exchanged or poor solvent. And ammonia can be recovered by distillation or extraction after evaporating together with some of the water. The present invention will be described based on examples, but the present invention is not limited to these examples.

【0022】[0022]

【実施例1】酸素の混入を防ぐため、全ての反応操作は
窒素雰囲気下で行い、反応に用いる全ての水溶液は約5
℃に冷却し窒素ガスで一旦加圧後、再び常圧に戻す操作
を数回繰り返し空気との置換を行った。 (1)グリシノニトリルの合成 窒素雰囲気下でホルマリンに等量の青酸をを作用させて
一旦生成したグリコロニトリル水溶液に、過剰量のアン
モニア水溶液を添加し2時間反応した後、未反応のアン
モニアと過剰の水を減圧除去し30重量%グリシノニト
リル水溶液を得た。波長380nmで水溶液の吸光度を測
定したところグリシノニトリル1mol、10mm石英
セル当たり0.08であった。
Example 1 In order to prevent the incorporation of oxygen, all reaction operations were performed under a nitrogen atmosphere, and all aqueous solutions used for the reaction were about 5
The operation of cooling to ° C., pressurizing once with nitrogen gas, and returning to normal pressure again was repeated several times to replace the air. (1) Synthesis of glycinonitrile An excess amount of aqueous ammonia solution was added to an aqueous solution of glycolonitrile once produced by reacting an equal amount of hydrocyanic acid to formalin under a nitrogen atmosphere, and reacted for 2 hours. And excess water were removed under reduced pressure to obtain a 30% by weight glycinonitrile aqueous solution. The absorbance of the aqueous solution measured at a wavelength of 380 nm was 1 mol of glycinonitrile and 0.08 per 10 mm quartz cell.

【0023】(2)菌体の培養 アシネトバクターAK226株を、下記の条件で培養した。 (1)培地 フマル酸 1.0重量% 肉エキス 1.0 ペプトン 1.0 食塩 0.1 ε−カプロラクタム 0.3 リン酸第一カリウム 0.2 硫酸マグネシウム・7水塩 0.02 塩化アンモニウム 0.1 硫酸第二鉄・7水塩 0.003 塩化マンガン・4水塩 0.002 塩化コバルト・6水塩 0.002 pH 7.5 (2)培養条件 30℃/1日(2) Culture of cells The Acinetobacter AK226 strain was cultured under the following conditions. (1) Medium Fumaric acid 1.0% by weight Meat extract 1.0 Peptone 1.0 Salt 0.1 ε-caprolactam 0.3 Potassium phosphate 0.2 Magnesium sulfate ・ 7 hydrate 0.02 Ammonium chloride 0.1 Ferric sulfate ・ 7 hydrate 0.003 Manganese chloride ・ 4 water Salt 0.002 Cobalt chloride hexahydrate 0.002 pH 7.5 (2) Culture conditions 30 ° C / 1 day

【0024】(3)グリシノニトリルの加水分解 菌体は、得られた培養液から遠心分離により集菌し、蒸
留水で洗浄した後、窒素ガスで置換し反応に用いた。窒
素ガスで置換した100mlの硝子オートクレーブに乾燥菌
体量として49mgと亜硫酸二アンモニウム一水和物を2.4
mg含む30重量%グリシノニトリル水溶液3mlを17ml
の蒸留水に調合した、20℃にて反応を開始した。反応
開始後2時間後、pHは10に成っていた。この反応液を
液体クロマトグラフィー法で分析し、グリシノニトリル
は無くなりグリシンが定量的に生成していた。
(3) Hydrolysis of glycinonitrile The cells were collected from the obtained culture by centrifugation, washed with distilled water, replaced with nitrogen gas, and used for the reaction. In a 100 ml glass autoclave purged with nitrogen gas, 49 mg of dry cells and 2.4 g of diammonium sulfite monohydrate were added.
3 ml of 30% by weight glycinonitrile aqueous solution containing 17 mg
The reaction was started at 20 ° C. prepared in distilled water. Two hours after the start of the reaction, the pH had reached 10. The reaction mixture was analyzed by liquid chromatography, and glycinonitrile was lost and glycine was quantitatively generated.

【0025】そこで2時間毎に反応温度を5℃昇温し、
上記30重量%グリシノニトリル水溶液3mlを追加添加し反
応液を液体クロマトグラフィー法で分析した。この操作
を4回切り返し合計10時間反応を行った。得られた3
2gの反応液のうち2gを用い、生成したアンモニアは
ネスラー法により定量し、原料のグリシノニトリルと生
成したグリシンは液体クロマトグラフィー法で分析し、
グリシノニトリルは無くなりグリシンとアンモニアが定
量的に生成していた。乾燥菌体当たりのグリシンの生成
量は120g/g乾燥菌体であり、グリシンの生成活性は
12g/g・Hrであった。反応液2mlをrpm105
00の遠心分離濾過に15分掛け菌体を分離し、上澄み
液の紫外可視吸収スペクトルを測定した。波長380nm
での吸光度はグリシン1mol1cm当たり0.12で
あった。
Then, the reaction temperature was raised by 5 ° C. every two hours,
3 ml of the above 30% by weight glycinonitrile aqueous solution was additionally added, and the reaction solution was analyzed by liquid chromatography. This operation was repeated four times, and the reaction was performed for a total of 10 hours. 3 obtained
Using 2 g of the 2 g reaction solution, the generated ammonia was quantified by the Nessler method, and the raw material glycinonitrile and the generated glycine were analyzed by liquid chromatography,
Glycinonitrile disappeared, and glycine and ammonia were produced quantitatively. The amount of glycine produced per dried cell was 120 g / g dried cells, and the activity of producing glycine was 12 g / g · Hr. 2 ml of the reaction solution was rpm 105
The cells were separated by centrifugal filtration at 00 for 15 minutes, and the ultraviolet-visible absorption spectrum of the supernatant was measured. Wavelength 380nm
Was 0.12 per 1 cm 1 of glycine.

【0026】[0026]

【比較例1】実施例1と同様の反応を亜硫酸二アンモニ
ウム一水和物を添加せずに行った。乾燥菌体当たりのグ
リシンの生成量は変わらず120g/g乾燥菌体であり、
グリシンの生成活性は12g/g・Hrであった。遠心
濾過後の上澄み液の吸光度はグリシン1mol1cm当
たり0.79であった。
Comparative Example 1 The same reaction as in Example 1 was carried out without adding diammonium sulfite monohydrate. The amount of glycine produced per dry cell is 120 g / g dry cells unchanged,
The production activity of glycine was 12 g / g · Hr. The absorbance of the supernatant after centrifugal filtration was 0.79 per 1 cm1 of glycine.

【0027】[0027]

【実施例2から5】実施例1と同様の培養操作と反応を
菌体および亜硫酸化合物を表3のように変え行った。結
果は表3に実施例1や比較例1と合わせ示す。
Examples 2 to 5 The same culturing operation and reaction as in Example 1 were carried out by changing the cells and sulfite compounds as shown in Table 3. The results are shown in Table 3 together with Example 1 and Comparative Example 1.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【実施例6】実施例1で合成した30重量%グリシノニ
トリル水溶液を用い、反応方式を代えて実施した。菌体
は、得られた培養液から遠心分離により集菌し、蒸留水
で洗浄した後、窒素ガスで置換し反応に用いた。撹拌器
の付いた1000mlの恒温ジャケット槽型3つ口セパラブル
フラスコに、ドライアイストラップを経て減圧ポンプに
接続した単管型の蒸留塔、圧力センサー、温度計、およ
び液送ポンプに接続したサンプリング管を備えた。
Example 6 The reaction was carried out using the 30% by weight aqueous glycinonitrile solution synthesized in Example 1 and changing the reaction system. The cells were collected from the resulting culture by centrifugation, washed with distilled water, replaced with nitrogen gas, and used for the reaction. Sampling connected to a single-tube distillation column connected to a vacuum pump through a dry ice trap, a pressure sensor, a thermometer, and a liquid feed pump in a 1000 ml thermostatic jacket tank type three-neck separable flask with a stirrer. With a tube.

【0030】このセパラブルフラスコを窒素ガスで置換
した後、乾燥菌体量として650mg、亜硫酸二アンモニ
ウム一水和物を24mg含む30重量%グリシノニトリル水
溶液30mlと蒸留水170mlを調合した。減圧ポンプでフラ
スコ内の圧力を10kPaに調整し、30℃にて反応を開
始した。反応開始1時間後、この反応液を液体クロマト
グラフィー法で分析したところ、グリシノニトリルが消
失しグリシンが定量的に生成していた。
After the separable flask was replaced with nitrogen gas, 30 ml of a 30% by weight aqueous glycinonitrile solution containing 650 mg of dry cells and 24 mg of diammonium sulfite monohydrate and 170 ml of distilled water were prepared. The pressure inside the flask was adjusted to 10 kPa with a vacuum pump, and the reaction was started at 30 ° C. One hour after the start of the reaction, the reaction solution was analyzed by liquid chromatography, and it was found that glycinonitrile had disappeared and glycine had been generated quantitatively.

【0031】そこで基質の30重量%グリシノニトリル水
溶液30mlを追加添加した。1時間毎にこの操作を更に3
回繰り返し合計5時間反応を行った。ドライアイストラ
ップには固体が20g回収された。固体を50mlの水にと
かしネスラー法により定量したところアンモニアが14
g回収されていた。反応液は300g回収された。この
反応液のうち2gを用い、生成したアンモニアをネスラ
ー法により定量し、原料のグリシノニトリルと生成した
グリシンは液体クロマトグラフィー法で分析した。グリ
シノニトリルは無くなりグリシンが定量的に生成しトレ
ース量のアンモニアが残存していた。乾燥菌体当たりの
グリシンの生成量は88g/g乾燥菌体であり、グリシン
の生成活性は18g/g・Hrであった。反応液2ml
をrpm10500の遠心分離濾過に15分掛け菌体を分
離し、上澄み液の紫外可視吸収スペクトルを測定した。
波長380nmでの吸光度はグリシン1mol1cm当た
り0.08であった。
Therefore, 30 ml of a 30% by weight aqueous solution of glycinonitrile of the substrate was additionally added. Perform this operation 3 more times every hour.
The reaction was repeated 5 times for a total of 5 hours. 20 g of solid was recovered in the dry ice trap. The solid was dissolved in 50 ml of water and quantified by the Nessler method.
g had been recovered. 300 g of the reaction solution was recovered. Using 2 g of the reaction solution, the produced ammonia was quantified by the Nessler method, and glycinonitrile as a raw material and the produced glycine were analyzed by liquid chromatography. Glycinonitrile disappeared, glycine was quantitatively formed, and a trace amount of ammonia remained. The amount of glycine produced per dry cell was 88 g / g dry cells, and the activity of producing glycine was 18 g / g · Hr. 2 ml of reaction solution
Was centrifuged at 10500 rpm for 15 minutes to separate the cells, and the UV-visible absorption spectrum of the supernatant was measured.
The absorbance at a wavelength of 380 nm was 0.08 per 1 cm1 of glycine.

【0032】[0032]

【発明の効果】本発明の製造方法は、亜硫酸化合物の存
在下グリシノニトリルに微生物またはその処理物を作用
させることで、好ましくはpHを調整するための酸、アル
カリまたは緩衝液の添加をしない反応条件で、且つ閉鎖
系の反応条件下もしくは生成するアンモニアを反応と同
時に系外に分離する反応条件下で亜硫酸化合物の存在下
グリシノニトリルに微生物またはその処理物を作用させ
ることで、分解や着色反応を伴わず、乾燥菌体当たり、
且つ単位時間当たり高活性であって菌体や培地の多量廃
棄を伴わず、反応液のpHを調整するための酸、アルカリ
または緩衝液の添加や廃棄を伴わず、グリシンとアンモ
ニアが定量的に生成し、これらの分解および消費を伴わ
なず、グリシンとアンモニアを別々に回収出来る効果を
有する。
According to the production method of the present invention, a microorganism or a processed product thereof is allowed to act on glycinonitrile in the presence of a sulfite compound, and preferably no acid, alkali or buffer for adjusting pH is added. The reaction of microorganisms or a treated product thereof with glycinonitrile in the presence of a sulfite compound under reaction conditions and under closed reaction conditions or under reaction conditions in which generated ammonia is separated out of the system at the same time as the reaction, causes degradation or degradation. Without coloring reaction, per dry cell,
It has high activity per unit time and does not involve large amounts of cells and medium, and does not require the addition or disposal of acids, alkalis or buffers to adjust the pH of the reaction solution, and glycine and ammonia can be quantitatively determined. Glycine and ammonia can be separately recovered without producing and decomposing and consuming them.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C12R 1:15) C12R 1:15) (C12P 13/04 (C12P 13/04 C12R 1:05) C12R 1:05) (C12N 1/20 (C12N 1/20 E C12R 1:01) C12R 1:01) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C12R 1:15) C12R 1:15) (C12P 13/04 (C12P 13/04 C12R 1:05) C12R 1 : 05) (C12N 1/20 (C12N 1/20 E C12R 1:01) C12R 1:01)

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】亜硫酸化合物の存在下グリシノニトリル水
溶液に微生物またはその処理物を作用させることを特徴
とするグリシンの着色を防止した微生物学的製造法。
(1) A microbiological production method in which coloring of glycine is prevented, wherein a microorganism or a processed product thereof is allowed to act on an aqueous glycinonitrile solution in the presence of a sulfite compound.
【請求項2】亜硫酸化合物が亜硫酸アンモニウム塩であ
ることを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the sulfite compound is an ammonium sulfite.
【請求項3】グリシノニトリルがホルムアルデヒド、青
酸、およびアンモニアの反応で得られことを特徴とする
請求項1および請求項2記載の方法。
3. The process according to claim 1, wherein the glycinonitrile is obtained by the reaction of formaldehyde, hydrocyanic acid and ammonia.
【請求項4】微生物がシネトバクター(Accinetobacte
r)属、ロドコッカス(Rhodococcus)属、コリネバクテ
リウム(Corynebacterium)属やアルカリゲネ(Alcalig
enes)属に属する微生物であることを特徴とする請求項
1ないし請求項3いずれかに記載の方法。
4. The method according to claim 1, wherein the microorganism is Synechobacter (Accinetobacte).
r) genera, Rhodococcus, Corynebacterium and Alcalig
4. The method according to claim 1, wherein the microorganism is a microorganism belonging to the genus enes).
【請求項5】微生物またはその処理物を作用させる条件
がpHを調整するための酸、アルカリまたは緩衝液の添加
をしない反応条件であることを特徴とする請求項1ない
し請求項4いずれかに記載の方法。
5. The method according to claim 1, wherein the conditions under which the microorganisms or the processed product thereof act are reaction conditions in which no acid, alkali or buffer for adjusting the pH is added. The described method.
【請求項6】反応条件が閉鎖的反応条件であることを特
徴とする請求項5記載の方法。
6. The method according to claim 5, wherein the reaction conditions are closed reaction conditions.
【請求項7】反応条件が反応液中に生成するアンモニア
を反応液から分離する反応条件であることを特徴とする
請求項5記載の方法。
7. The method according to claim 5, wherein the reaction conditions are such that ammonia formed in the reaction solution is separated from the reaction solution.
【請求項8】アンモニアを反応液から分離する方法が反
応蒸留であることを特徴とする請求項7記載の方法。
8. The method according to claim 7, wherein the method for separating ammonia from the reaction solution is reactive distillation.
【請求項9】反応蒸留を減圧下で行うことを特徴とする
請求項8記載の方法。
9. The method according to claim 8, wherein the reactive distillation is performed under reduced pressure.
【請求項10】反応蒸留を不活性ガスの存在下で行うこ
とを特徴とする請求項9記載の方法。
10. The process according to claim 9, wherein the reactive distillation is carried out in the presence of an inert gas.
JP2000090795A 2000-03-29 2000-03-29 Microbiological production method in which coloring of glycine is prevented Expired - Lifetime JP4596593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090795A JP4596593B2 (en) 2000-03-29 2000-03-29 Microbiological production method in which coloring of glycine is prevented

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090795A JP4596593B2 (en) 2000-03-29 2000-03-29 Microbiological production method in which coloring of glycine is prevented

Publications (2)

Publication Number Publication Date
JP2001269190A true JP2001269190A (en) 2001-10-02
JP4596593B2 JP4596593B2 (en) 2010-12-08

Family

ID=18606347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090795A Expired - Lifetime JP4596593B2 (en) 2000-03-29 2000-03-29 Microbiological production method in which coloring of glycine is prevented

Country Status (1)

Country Link
JP (1) JP4596593B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225738A (en) * 1975-08-07 1977-02-25 Sun Ventures Inc Method of hydrolysing aromatic nitriles to carboxylic acid
JPS5446721A (en) * 1977-09-22 1979-04-12 Showa Denko Kk Stabilization of glycinonitrile
JPS5446720A (en) * 1977-09-22 1979-04-12 Showa Denko Kk Stabilization of aqueous glycinonitrile solution
JPH02196766A (en) * 1989-01-25 1990-08-03 Mitsui Toatsu Chem Inc Production of aminoacetonitrile
JPH03280889A (en) * 1990-03-30 1991-12-11 Nitto Chem Ind Co Ltd Microorganic production of glycine
JPH03280895A (en) * 1990-03-30 1991-12-11 Nitto Chem Ind Co Ltd Production of d-alpha-phenylglycine
JPH04304892A (en) * 1991-03-29 1992-10-28 Nitto Chem Ind Co Ltd Biological production of glycine
JPH05310677A (en) * 1992-05-01 1993-11-22 Asahi Chem Ind Co Ltd Production of carbamic acid ester
JPH10179183A (en) * 1996-12-20 1998-07-07 Daicel Chem Ind Ltd Production of carboxylic acid

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225738A (en) * 1975-08-07 1977-02-25 Sun Ventures Inc Method of hydrolysing aromatic nitriles to carboxylic acid
JPS5446721A (en) * 1977-09-22 1979-04-12 Showa Denko Kk Stabilization of glycinonitrile
JPS5446720A (en) * 1977-09-22 1979-04-12 Showa Denko Kk Stabilization of aqueous glycinonitrile solution
JPH02196766A (en) * 1989-01-25 1990-08-03 Mitsui Toatsu Chem Inc Production of aminoacetonitrile
JPH03280889A (en) * 1990-03-30 1991-12-11 Nitto Chem Ind Co Ltd Microorganic production of glycine
JPH03280895A (en) * 1990-03-30 1991-12-11 Nitto Chem Ind Co Ltd Production of d-alpha-phenylglycine
JPH04304892A (en) * 1991-03-29 1992-10-28 Nitto Chem Ind Co Ltd Biological production of glycine
JPH05310677A (en) * 1992-05-01 1993-11-22 Asahi Chem Ind Co Ltd Production of carbamic acid ester
JPH10179183A (en) * 1996-12-20 1998-07-07 Daicel Chem Ind Ltd Production of carboxylic acid

Also Published As

Publication number Publication date
JP4596593B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
AU2008249370B2 (en) Method for producing glucuronic acid by glucuronic acid fermentation
JP4651258B2 (en) Method for producing glycine
JP3154646B2 (en) Microbial production of glycolic acid
JP2696424B2 (en) Method for producing R (-)-mandelic acid
JPH1175885A (en) Production of calcium 2-hydroxy-4-methylthiobutanoate
JP4647059B2 (en) Microbiological production method that prevents coloring of glycine
JP2001269190A (en) Microbiological method for production of glycine prevented from discoloration
JP4544695B2 (en) Microbial production of glycine
JP4497659B2 (en) Method for microbiologically producing glycine
JP4544685B2 (en) Microbiological production method preventing coloring of glycine
JP4497638B2 (en) Microbiological production method of glycine using reaction separation of ammonia
JPH09154589A (en) Production of erythritol
EP0421477B1 (en) Enzymatic process for the preparation of L-serine
JP4560164B2 (en) Microbial production of glycine
JPH04218385A (en) Production of r(-)-mandelic acid
JP2001340096A (en) Method for microbiologically producing glycine
JP3055711B2 (en) Method for producing optically active (S) -3-phenyl-1,3-propanediol
JPH0740951B2 (en) Method for producing hydroxide of nitrogen-containing heterocyclic compound by microorganism
JPH1042860A (en) Production of inositol and acquirement of hexachlorocyclohexane-resistant strain
US20050176116A1 (en) Process for producing a-hydroxy acid ammonium salt
US4370415A (en) Process for producing uroporphyrin III
JPH1042883A (en) Production of inositol and collection of strain resistant to 6-halogeno-6-deoxyglucose
JPH0728750B2 (en) Method for producing hydroxide of pyrazinic acid by microorganism
JPS5816692A (en) Preparation of l-tryptophan by enzyme
JP2000078967A (en) Microorganism belonging to citrobacter and production of shikimic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Ref document number: 4596593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term