JP2001267544A - Solid-state image pickup device and manufacturing method - Google Patents

Solid-state image pickup device and manufacturing method

Info

Publication number
JP2001267544A
JP2001267544A JP2000078028A JP2000078028A JP2001267544A JP 2001267544 A JP2001267544 A JP 2001267544A JP 2000078028 A JP2000078028 A JP 2000078028A JP 2000078028 A JP2000078028 A JP 2000078028A JP 2001267544 A JP2001267544 A JP 2001267544A
Authority
JP
Japan
Prior art keywords
solid
light
imaging device
state imaging
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000078028A
Other languages
Japanese (ja)
Other versions
JP3827909B2 (en
Inventor
Takayuki Kawasaki
隆之 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2000078028A priority Critical patent/JP3827909B2/en
Publication of JP2001267544A publication Critical patent/JP2001267544A/en
Application granted granted Critical
Publication of JP3827909B2 publication Critical patent/JP3827909B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid-state image pickup device which can eliminate noise in a picked up image caused by an unwanted incident light and can meet requirements of future miniaturization of pixels. SOLUTION: 1st-3rd embedded metal layers 5, 8 and 11, which surround a light-receiving part 3 on a P-type semiconductor substrate 1 three- dimensionally in a fence shape, are embedded continuously in grooves of 1st-3rd insulating films 4, 7 and 10. The whole outside of the top part of the 3rd embedded metal layer 11 is covered with a light shielding 3rd layer metal 12. The 1st-3rd embedded metal layers 5, 8 and 11 are composed of single layer films of Cu.W.TiW or composite films of Cu.W.TiW and TiN.TiW.Ti. The 3rd layer metal 12 is composed of a single layer film of Al.Al-Si.A1-Cu.Cu.W or a composite film of Al.Al-Si.Al-Cu.Cu.W and W.TiN.TiW.Ti and are formed simultaneously, when wiring metal films of a transistor are formed so as not to be connected electrically to the wiring metal films.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体撮像装置およ
びその製造方法に関し、より詳しくは、駆動用回路への
光の入射によるノイズの発生を抑えることのできる固体
撮像装置およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device and a method of manufacturing the same, and more particularly, to a solid-state imaging device capable of suppressing generation of noise due to light incident on a driving circuit and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、固体撮像装置、特に、受光部と各
受光部をドライブするためのトランジスタをアレイ状に
配置し、さらに受光領域周辺に駆動用回路を配置したC
MOS型(相補型金属酸化膜半導体)固体撮像装置の受光
部は、図11,図12,図13に示すような構造を有す
る。これらのCMOS型固体撮像装置は、アレイ状に配
置した受光部の夫々が複数のドライブ用トランジスタを
もつ構造となっており、その場合、ドライブ用トランジ
スタに接続する配線層と、トランジスタへの光入射によ
るノイズを抑える遮光用の金属膜層との双方を受光領域
内に配置する必要がある。CMOS型固体撮像装置は、
一般に2層以上の多層メタルプロセスを用いて製造され
ており、例えば3層メタルプロセスによるものは、図1
1に示すような構造を有する。
2. Description of the Related Art Conventionally, a solid-state image pickup device, in particular, a light receiving section and a transistor for driving each light receiving section are arranged in an array, and a driving circuit is arranged around a light receiving area.
The light receiving section of a MOS (complementary metal oxide semiconductor) solid-state imaging device has a structure as shown in FIGS. Each of these CMOS solid-state imaging devices has a structure in which each of the light receiving units arranged in an array has a plurality of drive transistors. In this case, a wiring layer connected to the drive transistors and light incident on the transistors are provided. It is necessary to arrange both the light shielding metal film layer and the light shielding metal film layer in the light receiving region. CMOS solid-state imaging devices are:
Generally, it is manufactured by using a multi-layer metal process of two or more layers.
It has a structure as shown in FIG.

【0003】図11のCMOS型固体撮像装置は、P型
半導体(シリコン)の基板21上に、N型不純物層からな
る受光部23と、この受光部23とドライブ用のトラン
ジスタを分離するためのシリコン酸化膜22を形成し、
これらの上に形成した絶縁膜24にドライブ用トランジ
スタや周辺回路に接続する接続孔(図示せず)を設け、こ
の接続孔内にW・TiN・TiW等の高融点金属層を単層
または多層で埋め込んだ後、配線として使用する1層目
メタル26をAl・Al-Si・Al-Cu等の単層膜または
これらとTiN・Ti・TiW等との多層膜により形成す
る。さらに、1層目メタル26および絶縁膜24の上に
シリコン酸化膜等の絶縁膜27を形成し、CMP(メカノ
ケミカルポリッシング)等により平坦化した後、ドライ
ブ用トランジスタや周辺回路での多層配線を行うための
接続孔(図示せず)を同様に設け、この接続孔内にW・T
iN・TiW等の高融点金属層を単層または多層で埋め込
んだ後、遮光用(トランジスタ部では配線用)として使用
する2層目メタル29をAl・Al-Si・Al-Cu等の単
層膜またはこれらとTiN・Ti・TiWとの多層膜によ
り受光部23上を除いて全面を覆うように形成する。
The CMOS type solid-state imaging device shown in FIG. 11 is provided on a substrate 21 made of a P-type semiconductor (silicon) for separating a light-receiving portion 23 made of an N-type impurity layer and a transistor for driving from the light-receiving portion 23. Forming a silicon oxide film 22;
A connection hole (not shown) for connecting to a drive transistor or a peripheral circuit is provided in the insulating film 24 formed thereon, and a single- or multi-layer metal layer having a high melting point such as W, TiN, or TiW is provided in the connection hole. After that, the first-layer metal 26 used as a wiring is formed of a single-layer film of Al, Al-Si, Al-Cu or the like, or a multilayer film of these and TiN, Ti, TiW or the like. Further, an insulating film 27 such as a silicon oxide film is formed on the first layer metal 26 and the insulating film 24, and is planarized by CMP (mechanochemical polishing) or the like. In the same manner, a connection hole (not shown) for performing
After embedding a high melting point metal layer such as iN · TiW or the like in a single layer or a multilayer, a second layer metal 29 used for light shielding (for a wiring in a transistor portion) is a single layer such as Al · Al-Si · Al-Cu. A film or a multilayer film of TiN, Ti, and TiW is formed so as to cover the entire surface except for the light receiving section 23.

【0004】次いで、シリコン酸化膜等の絶縁膜30を
形成し、CMP等により平坦化後、この上にAl・Al-S
i・Al-Cu等の単層膜またはこれらとTiN・Ti・Ti
Wとの多層膜により3層目メタルを形成するが、この例
では、3層目メタルは受光部領域周辺での駆動回路のみ
で用いられ、受光部23上では総て取り除かれるので、
図11には示されていない。また、2層目メタル29を
遮光に用いているのは、3層目メタルで遮光を行なう
と、後に形成するマイクロレンズ36との距離が短くな
って、集光上不利になるため、できるだけ基板21に近
い低い位置のメタルで遮光するためである。最後に、絶
縁膜30上に表面保護膜33,34としてシリコン酸化
膜やシリコン窒化膜を単層または多層で形成し、さらに
平坦化膜35およびアクリル系材料からなるマイクロレ
ンズ36を形成して、CMOS型固体撮像装置としてい
る。
Then, an insulating film 30 such as a silicon oxide film is formed, flattened by CMP or the like, and Al / Al-S
i. Al-Cu or other single-layer films or TiN, Ti, Ti
Although a third metal layer is formed by a multilayer film with W, in this example, the third metal layer is used only in the driving circuit around the light receiving area and is entirely removed on the light receiving section 23.
It is not shown in FIG. Further, the reason why the second-layer metal 29 is used for shading is that if shading is performed with the third-layer metal, the distance to the microlens 36 formed later becomes short, which is disadvantageous in terms of light collection. This is because light is shielded by a metal at a low position close to 21. Finally, a silicon oxide film or a silicon nitride film is formed as a single layer or a multilayer as the surface protection films 33 and 34 on the insulating film 30, and further, a flattening film 35 and a microlens 36 made of an acrylic material are formed. It is a CMOS solid-state imaging device.

【0005】一方、最近の画素の高精細化に伴い1つの
画素面積が小さくなり、トランジスタ駆動用の配線が1
層目メタル26だけでは不足し、配線が困難になりつつ
あるため、図12に示す2層目メタル29も配線に用い
る方法や、図13に示す1層目メタル26および2層目
メタル29を配線に用い、3層目メタル37を遮光に用
いる方法も採用されている。
On the other hand, the area of one pixel has been reduced with the recent increase in the definition of the pixel, and the number of wirings for driving the transistor has been reduced to one.
Since only the second-layer metal 26 is insufficient and wiring is becoming difficult, the second-layer metal 29 shown in FIG. 12 is also used for wiring, or the first-layer metal 26 and the second-layer metal 29 shown in FIG. A method of using the third-layer metal 37 for light shielding and light shielding is also adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、図12
に示す1層目メタル26と2層目メタル29の双方を配
線に用いる構造では、配線用金属膜を遮光用金属膜と兼
用する構造であるため、所々で金属膜が開いていて、マ
イクロレンズ36で集光していても、斜めからの入射光
や乱反射光があった場合、受光部23のドライブ用トラ
ンジスタに光が入射して、撮像画像にノイズ成分が現わ
れるという問題がある。また、上面からみて完全に遮光
されている図11や図13の構造においても、各メタル
26,29間には500〜1000nmの層間絶縁膜27が存在す
るため、斜め入射光や乱反射光のドライブ用トランジス
タヘの入射は避けられず、その結果、撮像画像にノイズ
成分が現われる。
However, FIG.
In the structure in which both the first-layer metal 26 and the second-layer metal 29 are used for wiring as shown in (1), the wiring metal film also serves as the light-shielding metal film. Even if the light is condensed at 36, if there is oblique incident light or irregularly reflected light, the light enters the drive transistor of the light receiving unit 23, and a noise component appears in the captured image. Also, in the structure shown in FIGS. 11 and 13 in which light is completely shielded when viewed from the top, since the interlayer insulating film 27 of 500 to 1000 nm exists between the respective metals 26 and 29, drive of obliquely incident light and irregularly reflected light is performed. Inevitably, the light enters the transistor for use, and as a result, a noise component appears in the captured image.

【0007】そこで、本発明の目的は、製造プロセスに
おいて工程数を増加することなく、トランジスタ部への
入射光を完全に防ぐことができ、撮像画像のノイズを無
くし、将来の画素微細化にも対応できる固体撮像装置お
よびその製造方法を提供することにある。
Accordingly, an object of the present invention is to completely prevent incident light on a transistor portion without increasing the number of steps in a manufacturing process, to eliminate noise in a captured image, and to reduce the size of pixels in the future. An object of the present invention is to provide a solid-state imaging device and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、一導電型の半導体基板上に、受
光部と複数のトランジスタで構成された画素セルがマト
リックス状に配置され、上記複数のトランジスタを駆動
するための駆動回路を備えた固体撮像装置において、上
記受光部をフェンス状に囲む少なくとも2層以上の溝状
の埋め込み金属層が積層された構造を有することを特徴
とする。
To achieve the above object, according to the present invention, a pixel cell including a light receiving portion and a plurality of transistors is arranged in a matrix on a semiconductor substrate of one conductivity type. A solid-state imaging device including a driving circuit for driving the plurality of transistors, wherein the solid-state imaging device has a structure in which at least two or more groove-shaped buried metal layers that surround the light-receiving unit in a fence shape are stacked. I do.

【0009】請求項1の固体撮像装置では、受光部をフ
ェンス状に囲む少なくとも2層以上の溝状の埋め込み金
属層が積層されている。つまり、上記受光部は、上方を
除く周辺部が遮光用の金属膜で単に平面的に覆われた従
来の受光部と異なり、マイクロレンズから受光部へ垂直
に入射する光の光路以外の部分が総て遮光用金属膜で3
次元的にフェンス状に覆われた構造によって、受光部以
外の領域への光の入射を完全に防いだものである。より
詳しくは、従来から配線接続孔の埋め込み用として用い
ていた高融点金属膜層などの埋め込み金属層を、受光部
を囲むパターンでフェンス状に形成した溝に埋め込み、
これをメタル層の数だけ垂直上方へ連続するように繰り
返した後、最後のメタル層を受光部上以外の総ての部分
を覆うパターンで形成して、受光部以外の領域の遮光を
完全にしたものである。
In the solid-state imaging device according to the first aspect, at least two or more groove-shaped buried metal layers that surround the light receiving portion in a fence shape are stacked. In other words, unlike the conventional light receiving unit in which the peripheral part except the upper part is simply covered two-dimensionally with the light-shielding metal film, the light receiving part has a part other than the optical path of light that is vertically incident on the light receiving part from the microlens. It is all 3 in the metal film for shading
The light is completely prevented from entering the area other than the light receiving section by the structure covered in a three-dimensional fence shape. More specifically, a buried metal layer such as a refractory metal film layer that has been conventionally used for filling the wiring connection hole is buried in a groove formed in a fence shape with a pattern surrounding the light receiving portion,
After repeating this process vertically and continuously by the number of metal layers, the last metal layer is formed with a pattern that covers all parts other than the light-receiving part, and the light-shielding of the area other than the light-receiving part is completely completed. It was done.

【0010】受光部上以外の総ての部分を覆う遮光パタ
ーンを最後(最上)のメタル層で形成することは、既に述
べたマイクロレンズの集光上、遮光用金属膜をできるだ
け下層に形成した方がよいという事実と反しない。なぜ
なら、従来のように受光部23以外を遮光膜のみで遮光
する場合は、遮光膜を、図1(C)の37のように上層に
形成すると、マイクロレンズ36で収束された斜め入射
光が遮光膜37で反射され、受光部23への入射光量が
減少するが、図1(B)の29のように下層に形成する
と、斜め入射光も受光部23に達して入射光量が増加す
るので、遮光膜をできるだけ基板21に近い下層に形成
する必要があった。しかし、本発明では、図1(A)に示
すように、遮光用として受光部3を3次元的に囲むよう
に形成したフェンス状の金属膜層19が斜め入射光を反
射し、受光部3に導く導波効果をもたらすので、遮光膜
(遮光メタル層)12をマイクロレンズ16と略同じ上層
に形成しても入射光量が減少しないのである。従って、
マイクロレンズ16の集光をマイクロレンズ16から近
い位置に設計することが可能になり、将来の画素微細化
に伴うアスペクト比の増大にも対応できるという利点を
もつことになる。
Forming the light-shielding pattern covering all parts other than the light-receiving portion with the last (uppermost) metal layer means that the light-shielding metal film is formed as low as possible in light of the condensing of the microlens. Not against the fact that it is better. This is because, in the case where light is shielded only by the light-shielding film except for the light-receiving portion 23 as in the related art, if the light-shielding film is formed in the upper layer as indicated by 37 in FIG. Although the amount of light that is reflected by the light-shielding film 37 and decreases the amount of incident light on the light receiving unit 23, if formed in the lower layer as shown in FIG. 1B, oblique incident light also reaches the light receiving unit 23 and the amount of incident light increases. In addition, it is necessary to form a light shielding film in a lower layer as close to the substrate 21 as possible. However, in the present invention, as shown in FIG. 1 (A), a fence-shaped metal film layer 19 formed so as to three-dimensionally surround the light receiving unit 3 for light shielding reflects obliquely incident light, and Light-shielding film
Even if the (light shielding metal layer) 12 is formed on the substantially same upper layer as the microlens 16, the amount of incident light does not decrease. Therefore,
The light condensing of the microlens 16 can be designed at a position close to the microlens 16, which has an advantage that it can cope with an increase in the aspect ratio due to future miniaturization of pixels.

【0011】つまり、請求項1の固体撮像装置によれ
ば、受光部以外のトランジスタ部に入射する光を完全に
防いで、過剰な光や斜め入射光によるノイズの発生をな
くすとともに、マイクロレンズによる光の集光を基板か
ら高い位置に設計することができ、将来の画素微細化に
伴うアスペクト比の増大にも充分に対応できるのであ
る。
In other words, according to the solid-state imaging device of the first aspect, the light incident on the transistor section other than the light receiving section is completely prevented, the generation of noise due to excessive light or oblique incident light is eliminated, and the micro lens is used. The light condensing can be designed at a higher position from the substrate, and can sufficiently cope with an increase in the aspect ratio due to future pixel miniaturization.

【0012】請求項2の固体撮像装置は、最下層の上記
溝状の埋め込み金属層の下部にフローティングゲートが
設けられていることを特徴とする。
A solid-state imaging device according to a second aspect is characterized in that a floating gate is provided below the lowermost groove-shaped buried metal layer.

【0013】請求項2の固体撮像装置では、受光部をフ
ェンス状に囲む埋め込み金属層の下部にフローティング
ゲートが設けられているので、請求項1の作用効果に加
えて、埋め込み用の溝を形成する際のエッチングをフロ
ーティングゲート上で止めることができ、溝形成エッチ
ングを容易に行なうことができる。なお、フローテイン
グゲートの形成は、トランジスタ部におけるゲート電極
の形成と同時に行なうことができるので、これによって
製造プロセスの工程数が増加することはない。
In the solid-state imaging device according to the second aspect, since the floating gate is provided below the embedded metal layer surrounding the light receiving portion in a fence shape, an embedding groove is formed in addition to the effect of the first aspect. Can be stopped on the floating gate, and the trench formation etching can be easily performed. Since the floating gate can be formed simultaneously with the formation of the gate electrode in the transistor portion, the number of steps in the manufacturing process does not increase.

【0014】請求項3の固体撮像装置は、上記少なくと
も2層以上の溝状の埋め込み金属層の間に、上記受光部
を囲む遮光用の金属層が設けられていることを特徴とす
る。
According to a third aspect of the present invention, in the solid-state imaging device, a light-shielding metal layer surrounding the light receiving portion is provided between the at least two or more groove-shaped buried metal layers.

【0015】受光部をフェンス状に囲む少なくとも2層
以上の溝状の埋め込み金属層を半導体基板上に重ね合わ
す場合、金属層の幅が同じであることから、相互の位置
合わせが難しい。しかし、請求項3の固体撮像装置で
は、これらの金属層の間に受光部を囲む遮光用の金属層
が設けられているので、請求項1の作用効果に加えて、
この遮光用の金属層の幅を上記金属層の幅よりも大きく
することによって、上下の金属層を容易に位置合わせし
つつ連続的に接続することができる。
When at least two groove-shaped buried metal layers surrounding the light receiving portion in a fence shape are superimposed on a semiconductor substrate, it is difficult to align the metal layers because the widths of the metal layers are the same. However, in the solid-state imaging device according to the third aspect, a light-shielding metal layer surrounding the light receiving unit is provided between these metal layers.
By making the width of the light shielding metal layer larger than the width of the metal layer, the upper and lower metal layers can be easily aligned and continuously connected.

【0016】請求項4の固体撮像装置は、請求項3の溝
状の埋め込み金属層と遮光用の金属層は、上記受光部を
囲う面積が上層になるほど大きいことを特徴とする。
A solid-state imaging device according to a fourth aspect is characterized in that the groove-shaped buried metal layer and the light-shielding metal layer according to the third aspect are so large that the area surrounding the light receiving section is higher.

【0017】請求項3で述べたように幅の大きい遮光用
の金属層を介して上下の埋め込み金属層を重ね合わす
と、マイクロレンズなどで集光した光の受光部への導波
効果が乱反射等の影響によって低下するが、請求項4の
固体撮像装置では、上記埋め込み金属層および遮光用の
金属層の受光部を囲む面積が上層になるほど大きくなっ
ているので、導波効果をもつフェンス状のこれら金属層
が上に向かってテーパ状に広がる。従って、請求項1の
作用効果に加えて、マイクロレンズで集光された斜め入
射光が妨げられたり乱反射されにくくなって、受光部へ
の入射光量を一層増すことができる。
As described in the third aspect, when the upper and lower buried metal layers are overlapped with each other via the light shielding metal layer having a large width, the waveguide effect of the light condensed by the microlens or the like to the light receiving portion is irregularly reflected. In the solid-state imaging device according to claim 4, since the area surrounding the light-receiving portion of the buried metal layer and the light-shielding metal layer increases as the layer becomes higher, the solid-state imaging device according to claim 4 has a fence shape having a waveguide effect. These metal layers spread upward in a tapered shape. Therefore, in addition to the function and effect of the first aspect, the oblique incident light condensed by the microlens is less likely to be hindered or irregularly reflected, and the amount of light incident on the light receiving unit can be further increased.

【0018】請求項5の固体撮像装置は、請求項3また
は4の遮光用金属層の側面が、テーパ形状を呈している
ことを特徴とする。
According to a fifth aspect of the present invention, there is provided a solid-state imaging device according to the third or fourth aspect, wherein the side surface of the light-shielding metal layer has a tapered shape.

【0019】請求項5の固体撮像装置では、上下の埋め
込み金属層間の遮光用金属層の側面がテーパ形状を呈し
ているので、請求項1の作用効果に加えて、導波効果を
もつフェンス状の金属層の内周面に直角の突起がなくな
るので、マイクロレンズで集光された斜め入射光が妨げ
られたり乱反射されにくくなって、受光部への入射光量
を一層増すことができる。
In the solid-state imaging device according to the fifth aspect, since the side surface of the light-shielding metal layer between the upper and lower buried metal layers has a tapered shape, in addition to the effect of the first aspect, a fence shape having a waveguide effect is provided. Since there is no projection at right angles on the inner peripheral surface of the metal layer, oblique incident light condensed by the microlens is less likely to be hindered or irregularly reflected, and the amount of light incident on the light receiving portion can be further increased.

【0020】請求項6の固体撮像装置は、請求項3乃至
5の遮光用の金属層が、トランジスタおよびトランジス
タを駆動するための駆動回路の配線用金属膜と同時に形
成され、かつこの配線用金属膜と電気的に接続していな
いことを特徴とする。
According to a sixth aspect of the present invention, in the solid-state imaging device, the light-shielding metal layer is formed simultaneously with the wiring metal film of the transistor and a driving circuit for driving the transistor. It is not electrically connected to the film.

【0021】請求項6の固体撮像装置では、上下の埋め
込み金属層を繋ぐ遮光用の金属層が、トランジスタやそ
の駆動回路の配線金属膜と同時に形成、つまり配線金属
膜の形成と同一工程で行なわれるので、遮光用の金属層
の形成で製造プロセスの工程数が増加することはなく、
製造工程数を増やすことなく請求項3乃至5の作用効果
を奏することができる。
In the solid-state imaging device according to the present invention, the light shielding metal layer connecting the upper and lower embedded metal layers is formed simultaneously with the wiring metal film of the transistor and its driving circuit, that is, in the same step as the formation of the wiring metal film. Therefore, the number of steps in the manufacturing process does not increase by forming the metal layer for light shielding,
The functions and effects of claims 3 to 5 can be achieved without increasing the number of manufacturing steps.

【0022】請求項7の固体撮像装置は、上記溝状の埋
め込み金属層として、Cu・W・TiWの単層膜、または
Cu・W・TiWとTiN・TiW・Tiとの複合膜を用い
ることを特徴とする。
According to a seventh aspect of the present invention, in the solid-state imaging device, a single layer film of Cu.W.TiW or a composite film of Cu.W.TiW and TiN.TiW.Ti is used as the groove-shaped buried metal layer. It is characterized by.

【0023】請求項7の固体撮像装置では、導波効果を
もつフェンス状の埋め込み金属層として、受光部をドラ
イブ用トランジスタや周辺回路に接続するために接続孔
に埋め込まれる一般的な高融点金属であるCu・W・Ti
Wの単層膜、またはCu・W・TiWとTiN・TiW・T
iとの複合膜を用いているので、導波効果をもつフェン
ス状の埋め込み金属層を、接続孔への高融点金属の埋め
込み工程と同一工程で形成でき、製造工程数を増やすこ
となく上記作用効果を奏することができる。
In the solid-state imaging device according to the seventh aspect, a general high melting point metal which is embedded in a connection hole for connecting a light receiving portion to a drive transistor or a peripheral circuit as a fence-like embedded metal layer having a waveguide effect. Cu ・ W ・ Ti
W single-layer film, or CuWTiW and TiNTiWTT
Since a composite film with i is used, a fence-shaped buried metal layer having a waveguide effect can be formed in the same step as the step of burying the high melting point metal in the connection hole, and the above-described operation can be performed without increasing the number of manufacturing steps. The effect can be achieved.

【0024】請求項8の固体撮像装置は、上記遮光用の
金属層として、Al・Al-Si・Al-Cu・Cu・Wの単層
膜、またはAl・Al-Si・Al-Cu・Cu・WとW・Ti
N・TiW・Tiとの複合膜を用いることを特徴とする。
In the solid-state imaging device according to the present invention, the metal layer for light shielding may be a single-layer film of Al, Al-Si, Al-Cu, Cu, W, or Al, Al-Si, Al-Cu, Cu.・ W and W ・ Ti
It is characterized in that a composite film with N.TiW.Ti is used.

【0025】請求項8の固体撮像装置では、上下の埋め
込み金属層を繋ぐ遮光用の金属層として、ドライブ用の
トランジスタや周辺回路部のトランジスタの配線に一般
的に用いられるAl・Al-Si・Al-Cu・Cu・Wの単層
膜、またはAl・Al-Si・Al-Cu・Cu・WとW・Ti
N・TiW・Tiとの複合膜を用いているので、上記遮光
用の金属層を、トランジスタの配線工程と同一工程で形
成でき、製造工程数を増やすことなく上記作用効果を奏
することができる。
In the solid-state imaging device according to the present invention, Al.Al-Si.multidot., Which is generally used for wiring of a drive transistor or a transistor of a peripheral circuit portion, as a light shielding metal layer connecting the upper and lower embedded metal layers. Al-Cu-Cu-W single-layer film, or Al-Al-Si-Al-Cu-Cu-W and W-Ti
Since the composite film of N.TiW.Ti is used, the light-shielding metal layer can be formed in the same step as the wiring step of the transistor, and the above effects can be obtained without increasing the number of manufacturing steps.

【0026】請求項9の発明は、一導電型の半導体基板
上に、受光部と複数のトランジスタで構成された画素セ
ルがマトリックス状に配置され、上記複数のトランジス
タを駆動するための駆動回路を備えた固体撮像装置の製
造方法において、上記受光部を囲むように受光部上の絶
縁膜を少なくとも2回以上溝状に除去し、この溝内に金
属層を埋め込む工程を含むことを特徴とする。
According to a ninth aspect of the present invention, there is provided a driving circuit for driving a plurality of transistors, wherein pixel cells each including a light receiving portion and a plurality of transistors are arranged in a matrix on a semiconductor substrate of one conductivity type. The method for manufacturing a solid-state imaging device provided includes a step of removing the insulating film on the light receiving portion in a groove shape at least twice so as to surround the light receiving portion and embedding a metal layer in the groove. .

【0027】請求項9の固体撮像装置の製造方法では、
受光部を囲むように受光部上の絶縁膜を少なくとも2回
以上溝状に除去し、この溝内に金属層を埋め込むので、
製造された固体撮像装置の受光部は、マイクロレンズか
ら受光部へ垂直に入射する光の光路以外の部分が総て遮
光用金属膜で3次元的にフェンス状に覆われた構造にな
って、受光部以外の領域への光の入射が完全に防がれ
る。従って、請求項1で述べたように、過剰な光や斜め
入射光によるノイズの発生をなくすとともに、マイクロ
レンズによる光の集光を基板から高い位置に設計するこ
とができ、将来の画素微細化に伴うアスペクト比の増大
にも充分に対応できる。
According to a ninth aspect of the present invention, there is provided a method for manufacturing a solid-state imaging device, comprising:
Since the insulating film on the light receiving portion is removed at least twice in a groove shape so as to surround the light receiving portion and the metal layer is buried in the groove,
The light-receiving part of the manufactured solid-state imaging device has a structure in which all parts other than the optical path of light that is perpendicularly incident on the light-receiving part from the microlens are three-dimensionally covered in a fence shape by a light-shielding metal film. Light is completely prevented from entering the area other than the light receiving section. Therefore, as described in claim 1, the generation of noise due to excessive light or oblique incident light can be eliminated, and the light condensing by the microlens can be designed at a higher position from the substrate, and future pixel miniaturization can be achieved. Can sufficiently cope with an increase in the aspect ratio.

【0028】請求項10の固体撮像装置の製造方法は、
上記溝内に埋め込まれる金属層が、上記トランジスタお
よびトランジスタを駆動するための駆動回路の配線接続
孔用の金属層と同時に形成されることを特徴とする。
According to a tenth aspect of the present invention, there is provided a method for manufacturing a solid-state imaging device, comprising:
The metal layer buried in the trench is formed simultaneously with the metal layer for a wiring connection hole of the transistor and a driving circuit for driving the transistor.

【0029】請求項10の固体撮像装置の製造方法で
は、溝内に埋め込まれる金属層が、トランジスタおよび
トランジスタを駆動するための駆動回路の配線接続孔用
の金属層と同時に形成されるので、受光部をフェンス状
に囲み、導波効果をもつ金属層を、トランジスタやその
駆動回路の配線接続孔用の金属層と同時、つまり同一工
程で形成できるから、導波効果をもつフェンス状の金属
層の形成で製造プロセスの工程数が増加することはな
く、製造工程数を増やすことなく請求項9の作用効果を
奏することができる。
In the method of manufacturing a solid-state imaging device according to the tenth aspect, the metal layer buried in the groove is formed simultaneously with the metal layer for the transistor and the wiring connection hole of the drive circuit for driving the transistor. Since the metal layer having a waveguide effect can be formed at the same time as the metal layer for the wiring connection hole of the transistor and its driving circuit, that is, in the same process, the fence-shaped metal layer having the waveguide effect can be formed. By the formation of the above, the number of steps of the manufacturing process does not increase, and the operation and effect of claim 9 can be obtained without increasing the number of manufacturing steps.

【0030】[0030]

【発明の実施の形態】以下、本発明を図示の実施の形態
により詳細に説明する。本発明の固体撮像装置は、一導
電型の半導体基板上に受光部と複数のトランジスタで構
成された画素セルをマトリックス状に配置し、その周辺
に上記トランジスタを駆動するための駆動回路を配置し
てなり、図2は、請求項1,6〜8に記載の固体撮像装
置の一実施形態である固体撮像素子(画像セル)の断面図
を示している。上記固体撮像素子は、P型の半導体基板
1表面に燐,砒素などのN型不純物をドープして設けら
れた受光部3と、この受光部3の両側をドライブ用トラ
ンジスタと分離する素子分離絶縁膜2と、受光部3およ
び素子分離絶縁膜2の表面を覆う第1絶縁膜4と、この
第1絶縁膜4に受光部3をフェンス状に囲むように設け
られた溝に遮光のために埋め込まれた第1埋め込み金属
層5と、受光部上方を除く第1絶縁膜4上にドライブ用
または周辺回路のトランジスタとの配線のために設けら
れた1層目メタル6を備えている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the illustrated embodiments. In the solid-state imaging device of the present invention, a pixel cell including a light receiving portion and a plurality of transistors is arranged in a matrix on a semiconductor substrate of one conductivity type, and a driving circuit for driving the transistor is arranged around the pixel cells. FIG. 2 is a cross-sectional view of a solid-state imaging device (image cell) which is an embodiment of the solid-state imaging device according to claims 1, 6 to 8. The solid-state imaging device includes a light receiving section 3 provided on a surface of a P-type semiconductor substrate 1 by doping an N-type impurity such as phosphorus or arsenic, and an element isolation insulator for separating both sides of the light receiving section 3 from a drive transistor. A first insulating film 4 covering the surface of the film 2, the light receiving unit 3 and the element isolation insulating film 2, and a groove provided in the first insulating film 4 so as to surround the light receiving unit 3 in a fence shape for shielding light. The semiconductor device includes a buried first buried metal layer 5 and a first-layer metal 6 provided on the first insulating film 4 except for a portion above the light receiving portion for wiring to a drive or a transistor of a peripheral circuit.

【0031】上記固体撮像素子は、次に上記第1絶縁膜
4および1層目メタル6を覆う第2絶縁膜7と、この第
2絶縁膜7に受光部3をフェンス状に囲むように設けら
れた溝に上記第1埋め込み金属層5の上方に連続するよ
うに埋め込まれた第2埋め込み金属層8と、受光部上方
を除く第2絶縁膜7上にトランジスタとの配線のために
設けられた2層目メタル9を備え、更に第2絶縁膜7お
よび2層目メタル9を覆う第3絶縁膜10と、この第3
絶縁膜10に同様にフェンス状に設けられた溝に埋め込
まれた第3埋め込み金属層11と、第3絶縁膜10上に
フェンス状の埋め込み金属層5,7,10の外側を総て覆
う遮光膜としての3層目メタル12と、第3絶縁膜10
および3層目メタルを覆う2層の表面保護膜13,14
と、表面保護膜14上の平坦化膜15と、集光のため最
上部に設けられたマイクロレンズ16を備えている。
Next, the solid-state image pickup device is provided with a second insulating film 7 covering the first insulating film 4 and the first-layer metal 6, and a light-receiving section 3 is surrounded by the second insulating film 7 in a fence shape. A second buried metal layer 8 buried so as to be continuous above the first buried metal layer 5 in the groove and a second insulating film 7 except for a portion above the light receiving portion for wiring to a transistor. A third insulating film 10 covering the second insulating film 7 and the second metal 9;
Similarly, a third buried metal layer 11 buried in a fence-shaped groove in the insulating film 10 and a light-shielding layer covering the outside of the fence-shaped buried metal layers 5, 7, 10 on the third insulating film 10 A third metal 12 as a film and a third insulating film 10
And two-layer surface protection films 13 and 14 covering the third metal layer
And a flattening film 15 on the surface protective film 14 and a microlens 16 provided on the uppermost portion for condensing light.

【0032】上記第1,第2,第3絶縁膜4,7,10は、
夫々1層目,2層目,3層目メタル6,9,12の下地とな
るため、メタルの微細化を促す平坦性をもった燐,硼素
を含むシリコン酸化(BPSG)膜からなる。第1,第2,
第3埋め込み金属層5,7,10には、接続,配線用に一
般的な高融点金属であり、遮光にも用いることができる
Cu・W・TiWの単層膜、またはCu・W・TiWとTi
N・TiW・Tiとの複合膜を用い、各絶縁膜4,7,10
に設けられるフェンス状の溝は、ドライブ用トランジス
タや周辺回路への接続孔の形成と同一工程で形成され
る。上記1層目,2層目,3層目メタル6,9,12には、
トランジスタの配線用に一般的で遮光性をもつAl・Al
-Si・Al-Cu・Cu・Wの単層膜、またはAl・Al-Si
・Al-Cu・Cu・WとW・TiN・TiW・Tiとの複合
膜を用いる。上記表面保護膜13,14には、シリコン
窒化膜・シリコン酸化膜・燐を含んだシリコン酸化膜
(PSG膜)・SiON膜などの単層膜または多層膜を用
いることができるが、本実施の形態では、PSG膜と表
面の安定性に優れるシリコン窒化膜との多層膜を用い
た。また、マイクロレンズ16およびその下地である平
坦化膜15は、アクリル系材料からなる。
The first, second, and third insulating films 4, 7, and 10 are
The first, second, and third metal layers 6, 9, and 12 are formed of silicon oxide (BPSG) films containing phosphorus and boron having flatness for promoting fineness of the metal. First, second,
The third buried metal layers 5, 7, and 10 are made of a single-layer film of Cu.W.TiW, which is a common high melting point metal for connection and wiring and can be used for light shielding, or Cu.W.TiW. And Ti
Using a composite film with N.TiW.Ti, each insulating film 4,7,10
Are formed in the same step as the formation of the connection holes for the drive transistor and the peripheral circuit. The first, second, and third metal layers 6, 9, and 12 include:
Al ・ Al with general light shielding properties for transistor wiring
-Si-Al-Cu-Cu-W single-layer film or Al-Al-Si
Use a composite film of Al-Cu-Cu-W and W-TiN-TiW-Ti. The surface protection films 13 and 14 include a silicon nitride film, a silicon oxide film, and a silicon oxide film containing phosphorus.
(PSG film) A single-layer film or a multilayer film such as a SiON film can be used. In the present embodiment, a multilayer film of a PSG film and a silicon nitride film having excellent surface stability is used. Further, the microlenses 16 and the underlying planarizing film 15 are made of an acrylic material.

【0033】請求項9,10の製造方法の一例の説明を
兼ねて、図2で述べた固体撮像素子の製造方法について
図3〜図5を参照しつつ説明する。まず、図3(A)に示
すように、P型シリコンの半導体基板1上に受光部3と
ドライブ用トランジスタや周辺回路トランジスタとを分
離する絶縁膜2をシリコンの熱酸化により形成する。酸
化条件として、950〜1100℃の炉中に水素と酸素ガスを
導入して、炉内の半導体基板1の表面に200〜600nmのシ
リコン酸化膜を形成する。なお、受光部3の周辺のトラ
ンジスタ等は示されていない。次に、受光部となる部分
にリン・砒素等のN型不純物をイオン注入して受光部3
を形成する。次に、図3(B)に示すように、1層目メタ
ル6(図3(C)参照)の下地となる第1絶縁膜4をシリコ
ン酸化膜により形成するが、シリコン酸化膜4には、配
線用の1層目メタル6を微細化させるため平坦性をもっ
たものが望ましいので、燐・硼素を含んだシリコン酸化
膜(BPSG膜)を用いた。半導体基板1を収容した常圧
CVD装置に、SiH4ガスを70〜100cc/min.、PH3
スを150〜250cc/min.、B26ガスを150〜250cc/mi
n.、O2ガスを2〜31/min.で夫々導入し、400〜500
℃の温度で成膜を行ない、膜中に含まれる燐の濃度を3.
0〜3.5mol%、硼素の濃度を3.0〜3.5wt%として、900〜
1000℃の温度で熱処理を行なって平坦化された第1絶縁
膜4を得た。
The method of manufacturing the solid-state image pickup device shown in FIG. 2 will be described with reference to FIGS. First, as shown in FIG. 3A, an insulating film 2 for separating a light receiving portion 3 from a drive transistor and a peripheral circuit transistor is formed on a P-type silicon semiconductor substrate 1 by thermal oxidation of silicon. As oxidation conditions, hydrogen and oxygen gas are introduced into a furnace at 950 to 1100 ° C. to form a 200 to 600 nm silicon oxide film on the surface of the semiconductor substrate 1 in the furnace. Note that transistors and the like around the light receiving unit 3 are not shown. Next, an N-type impurity such as phosphorus or arsenic is ion-implanted into a portion serving as a light receiving portion to form a light receiving portion 3.
To form Next, as shown in FIG. 3B, a first insulating film 4 serving as a base of the first-layer metal 6 (see FIG. 3C) is formed of a silicon oxide film. In order to make the first metal layer 6 for wiring finer, it is desirable to use a silicon oxide film (BPSG film) containing phosphorus and boron because it is desirable to have flatness. The atmospheric pressure CVD apparatus containing a semiconductor substrate 1, SiH 4 gas 70~100cc / min., PH 3 gas 150~250cc / min., A B 2 H 6 gas 150~250cc / mi
n. and O 2 gas are introduced at 2 to 31 / min.
The film was formed at a temperature of ° C, and the concentration of phosphorus contained in the film was adjusted to 3.
Assuming 0-3.5mol% and boron concentration 3.0-3.5wt%, 900 ~
Heat treatment was performed at a temperature of 1000 ° C. to obtain a planarized first insulating film 4.

【0034】その後、図3(B)の右側の平面図に示すよ
うに、受光部3を囲むパターンでフェンス状の遮光膜と
なる埋め込み金属層5用の溝を形成するが、受光部3の
不要電荷を吐き出すためのリセットトランジスタを隣接
して設ける必要上、上記溝は、平面図に5aで示すよう
に一部切断されたパターンとしている。溝の一部が切断
されているのは、溝の形成をドライエッチングで行なう
ため、厚い第1絶縁膜4が形成された部分ではエッチン
グを止めることができるが、第1絶縁膜4がない引出し
部5aに溝を作るとエッチングを止めることができず、
半導体基板1へダメージを与えるからである。上記溝の
形成および後の埋め込み金属層5の埋め込みは、受光部
3のドライブ用トランジスタや周辺回路部トランジスタ
ヘの接続孔の形成、およびコンタクト抵抗を下げるため
のコンタクトの埋め込みと同一工程で行なえるので、製
造プロセスの工程数が増加することはない。
Thereafter, as shown in the plan view on the right side of FIG. 3B, a groove for the buried metal layer 5 serving as a fence-shaped light-shielding film is formed in a pattern surrounding the light receiving section 3. Due to the necessity of providing a reset transistor adjacent to discharge unnecessary charges, the groove has a partially cut pattern as shown by 5a in a plan view. The part of the groove is cut off because the groove is formed by dry etching, so that the etching can be stopped at the part where the thick first insulating film 4 is formed, but the drawing without the first insulating film 4 If a groove is made in part 5a, etching cannot be stopped,
This is because the semiconductor substrate 1 is damaged. The formation of the groove and the subsequent filling of the buried metal layer 5 can be performed in the same process as the formation of the connection hole for the drive transistor and the peripheral circuit transistor of the light receiving section 3 and the burying of the contact for reducing the contact resistance. Therefore, the number of steps in the manufacturing process does not increase.

【0035】ここで、受光部周辺のフェンス状の溝への
埋め込み金属層5の埋め込みは、トランジスタ部でのコ
ンタクト用の高融点金属膜のCVD成長,エッチバック
と同一工程になるので、上記溝をコンタクト径以下の幅
にする必要がある。そのため、上記溝およびトランジス
タ部でのコンタクトのエッチングは、RIE(反応性イ
オンエッチング)を用い、処理室の圧力を100〜300Pa、
CHF3ガス流量を20〜100sccm、CF4ガス流量を5
〜50sccm、Arガス流量を500〜1000sccm、電極のRF
パワーを500〜1000Wにして、受光部周辺の厚い絶縁膜
4の途中でエッチングが止まるようなエッチング時間で
処理する。そして、溝およびコンタクト内への高融点金
属膜5の埋め込みは、TiN等の材料をスパッタリング
等の方法で成膜した後、六弗化タングステン(WF6)と
アルゴン・水素(H2)・窒素(N2)を原料ガスに用いた減
圧CVD法等により、5000〜10000Paの圧力、250〜650
℃の成長温度でタングステンの成膜を行う。
Since the burying metal layer 5 is buried in the fence-shaped groove around the light receiving portion in the same step as the CVD growth and etch-back of the contact refractory metal film in the transistor portion, Must be smaller than the contact diameter. Therefore, the etching of the contact in the trench and the transistor portion uses RIE (reactive ion etching), and the pressure of the processing chamber is set to 100 to 300 Pa,
CHF 3 gas flow rate is 20-100 sccm, CF 4 gas flow rate is 5
~ 50sccm, Ar gas flow rate 500 ~ 1000sccm, electrode RF
The power is set to 500 to 1000 W, and the processing is performed for an etching time such that the etching stops in the middle of the thick insulating film 4 around the light receiving portion. The high melting point metal film 5 is buried in the trench and the contact after a material such as TiN is formed by sputtering or the like, and then tungsten hexafluoride (WF 6 ), argon / hydrogen (H 2 ) / nitrogen (N 2 ) is used as a source gas by a reduced pressure CVD method or the like.
A tungsten film is formed at a growth temperature of ° C.

【0036】次に、別のRIEチャンバにウェハを移
し、処理室の圧力を15〜50Pa、SF6ガス流量を5
0〜200sccm、Arガス流量を50〜150sccm、Heガス流
量を2〜20sccm、電極のRFパワーを300〜700Wにし
て、タングステン下のTiN膜が露出するまで高融点金
属膜をエッチングした後、例えばECR(電子サイクロ
トロン共鳴)型プラズマエッチング装置等を用い、処理
室の圧力を0.1〜3Pa、BCl3ガス流量を20〜100scc
m、SF6ガス流量を10〜50sccm、マイクロ波のパワ
ーを200〜500W、バイアスRFのパワーを20〜100W
として、絶縁膜4が露出するまでTiNのエッチングを
行なう。こうして、図3(B)に示すように、フェンス状
の遮光膜としての埋め込み金属層5が形成される。続い
て、受光部3のドライブ用や周辺回路部用のトランジス
タで配線として用いる1層目メタル6をAl・Al-Si・
Al・Cu・Cu・Wの単層膜またはAl・Al-Si・Al・
Cu・Cu・WとW・TiN・TiW・Tiとの複合膜とし
てスパッタリング等の方法で成膜した後、フォト・ドラ
イエッチングによって配線6を形成する。ドライエッチ
ングの条件は、例えばECR型プラズマエッチング装置
を用い、処理室の圧力を0.1〜3Pa、BCl3ガス流量を
20〜100sccm、Cl2ガス流量を20〜100sccm、マイク
ロ波のパワーを200〜500W、バイアスRFのパワーを2
0〜100Wとした。なお、本実施の形態では、図3(C)
に示すように、受光部3上方の1層目メタルは全面除去
されている。なお、図3(C)の右側の平面図では、配線
6は省略している。
Next, the wafer is transferred to another RIE chamber, the processing chamber pressure is set to 15 to 50 Pa, and the SF 6 gas flow rate is set to 5
After etching the refractory metal film until the TiN film under tungsten is exposed by setting the Ar gas flow rate to 0 to 200 sccm, the Ar gas flow rate to 50 to 150 sccm, the He gas flow rate to 2 to 20 sccm, and the electrode RF power to 300 to 700 W, for example, Using an ECR (Electron Cyclotron Resonance) type plasma etching apparatus, etc., the pressure of the processing chamber is 0.1 to 3 Pa, and the flow rate of BCl 3 gas is 20 to 100 scc.
m, SF6 gas flow rate 10 ~ 50sccm, microwave power 200 ~ 500W, bias RF power 20 ~ 100W
The etching of TiN is performed until the insulating film 4 is exposed. In this way, as shown in FIG. 3B, a buried metal layer 5 as a fence-shaped light shielding film is formed. Subsequently, the first-layer metal 6 used as a wiring in the transistor for driving the light receiving unit 3 and the transistor for the peripheral circuit unit is changed to Al, Al-Si,
Al ・ Cu ・ Cu ・ W single layer film or Al ・ Al-Si ・ Al ・
After forming a composite film of Cu, Cu, W and W, TiN, TiW, Ti by a method such as sputtering, the wiring 6 is formed by photo-dry etching. Dry etching conditions are, for example, using an ECR type plasma etching apparatus, the pressure of the processing chamber is 0.1 to 3 Pa, the flow rate of BCl 3 gas is 20 to 100 sccm, the flow rate of Cl 2 gas is 20 to 100 sccm, and the microwave power is 200 to 500 W. , The bias RF power is 2
0 to 100W. Note that in this embodiment mode, FIG.
As shown in the figure, the first metal layer above the light receiving section 3 is entirely removed. Note that the wiring 6 is omitted in the plan view on the right side of FIG.

【0037】その後、2層目メタル9(図4(E)参照)の
下地となる第2絶縁膜7としてのシリコン酸化膜を、C
VD等で成膜した後、CMP(メカノケミカルポリッシ
ング)等で平坦化し、受光部を囲む上記埋め込み金属層
5上に重なるように2層目のフェンス状の埋め込み金属
層8およびトランジスタ部でのメタル層間接続用の接続
孔を、上述の埋め込み金属層5および1層目の接続孔の
形成と同様の方法で形成して、図3(D)に示すようなフ
ェンス状の埋め込み金属層8が得られる。なお、2層目
の埋め込み金属層8は、受光部3から引き出されるリセ
ットトランジスタへの配線の問題がないので、図3(D)
の平面図に示すように、図3(B)のような切断部5aの
ない全周に亘って連続したパターンとなっている。
Thereafter, a silicon oxide film as a second insulating film 7 serving as a base of the second-layer metal 9 (see FIG.
After the film is formed by VD or the like, it is planarized by CMP (mechanochemical polishing) or the like, and the second-layer fence-shaped buried metal layer 8 and the metal in the transistor portion are overlapped on the buried metal layer 5 surrounding the light receiving portion. A connection hole for interlayer connection is formed in the same manner as the formation of the buried metal layer 5 and the first-layer connection hole, thereby obtaining a fence-shaped buried metal layer 8 as shown in FIG. Can be Since the second buried metal layer 8 has no problem of wiring to the reset transistor drawn out from the light receiving section 3, FIG.
As shown in the plan view of FIG. 3, the pattern is continuous over the entire circumference without the cut portion 5a as shown in FIG.

【0038】さらに、既に述べたと同様の処理の繰り返
しにより、図4(E)に示すように、第2絶縁膜7上に2
層目メタル9(トランジスタ部での配線に使用,右側の平
面図では図示せず)を形成し、図4(F)に示すように、
その表面に第3絶縁膜10と接続孔(図示せず)を形成
し、この第3絶縁膜10にフェンス状に設けた溝に3層
目の埋め込み金属層11を、上記接続孔にコンタクトメ
タル(図示せず)を夫々埋め込む。次いで、第3絶縁膜1
0上の埋め込み金属層11の外側、つまり受光部3の真
上を除く総てを覆うように、図4(G)の如く遮光膜とし
ての3層目メタル12(右側の平面図では図示せず)を形
成する。これによって、受光部3以外の部分への光の入
射を完全に防ぐことができる。なお、上記3層目メタル
12は、受光部3がアレイ状に並んだ受光領域外側の図
示しない周辺回路部においては、遮光用のみならず配線
用としても用いられる。
Further, by repeating the same processing as described above, as shown in FIG.
A layer metal 9 (used for wiring in the transistor portion, not shown in the plan view on the right side) is formed, and as shown in FIG.
A third insulating film 10 and a connection hole (not shown) are formed on the surface thereof, a third buried metal layer 11 is formed in a groove provided in a fence shape in the third insulating film 10, and a contact metal is formed in the connection hole. (Not shown) are embedded. Next, the third insulating film 1
As shown in FIG. 4 (G), a third metal layer 12 as a light-shielding film (shown in the plan view on the right side) is formed so as to cover the outside of the embedded metal layer 11 on ) Is formed. This makes it possible to completely prevent light from entering other portions than the light receiving section 3. The third-layer metal 12 is used not only for light shielding but also for wiring in a peripheral circuit portion (not shown) outside the light receiving region where the light receiving portions 3 are arranged in an array.

【0039】その後、図5(H)に示すように、第3絶縁
膜10および3層目メタル12を覆うようにシリコン窒
化膜および燐を含んだシリコン酸化膜により表面保護膜
13,14およびレンズ下地としてのアクリル系材料か
らなる平坦化膜15を順次形成し、最後に、図5(I)に
示すように、マイクロレンズ16をアクリル系材料で形
成して固体撮像素子を完成する。
Thereafter, as shown in FIG. 5H, the surface protection films 13 and 14 and the lens are covered with a silicon nitride film and a silicon oxide film containing phosphorus so as to cover the third insulating film 10 and the third metal layer 12. A planarization film 15 made of an acrylic material as a base is sequentially formed, and finally, as shown in FIG. 5I, a microlens 16 is formed of an acrylic material to complete a solid-state imaging device.

【0040】上記構成の固体撮像素子は、次のように動
作する。固体撮像素子の受光部3は、図1(B),(C)で
述べた受光部23の真上以外を平面的な金属膜29,3
7で覆われた従来のものと異なり、図1(A)に示すよう
に、マイクロレンズ16から受光部3へ垂直に入射する
光の光路以外の部分が、埋め込み金属層19と遮光用の
3層目メタル12で3次元的にフェンス状に覆われた構
造となっていて、受光部3以外の領域を完全に遮光して
いる。しかも、埋め込み金属層19は、図1(A)の矢印
の如くマイクロレンズ16を経て入射した光を反射して
受光部3に導く導波効果をもつ。従って、斜めからの入
射光や乱反射光が受光部3以外のドライブ用トランジス
タ等に入射しないから、このような光によって撮像画像
に現れるノイズを無くすことができる。また、遮光用の
メタル12を半導体基板1から離れた3層目に設けて
も、受光部3への入射光量が減少しないので、マイクロ
レンズ16に近い位置で集光することができ、将来の画
素微細化に伴うアスペクト比の増大にも対応することが
できる。
The solid-state imaging device having the above configuration operates as follows. The light receiving section 3 of the solid-state imaging device has a planar metal film 29, 3 except for the area directly above the light receiving section 23 described in FIGS. 1B and 1C.
1A, the portion other than the optical path of the light vertically incident on the light receiving portion 3 from the microlens 16 is embedded in the buried metal layer 19 and the light shielding portion 3 as shown in FIG. It has a three-dimensionally fenced structure with the layer metal 12 and completely shields the area other than the light receiving section 3 from light. In addition, the buried metal layer 19 has a waveguide effect of reflecting light incident through the microlens 16 and guiding the light to the light receiving section 3 as shown by an arrow in FIG. Therefore, since obliquely incident light and irregularly reflected light do not enter the drive transistors and the like other than the light receiving unit 3, noise appearing in a captured image due to such light can be eliminated. Further, even if the light shielding metal 12 is provided in the third layer away from the semiconductor substrate 1, the amount of light incident on the light receiving unit 3 does not decrease, so that light can be collected at a position close to the microlens 16. It is possible to cope with an increase in the aspect ratio due to pixel miniaturization.

【0041】図6は、請求項2,3に記載の固体撮像装
置の一実施形態としての固体撮像素子の断面図である。
この固体撮像素子は、図2の固体撮像素子では、図3
(B)で述べた第1埋め込み金属層5のための溝を第1絶
縁膜4にエッチングで形成する場合、受光部3周辺の素
子分離絶縁膜2が薄いと、エッチングを素子分離絶縁膜
2中で止める制御が難しくなる点、および図3(D);
(F)で上下の埋め込み金属層5,8;8,11を位置合わ
せして重ね合わすのが難しい点を改善したものである。
上記固体撮像素子は、第1埋め込み金属層5の下部にフ
ローティングゲート17が設けられ、第1,第2埋め込
み金属層5,8および第2,第3埋め込み金属層8,11
の間に受光部3を囲む遮光用の金属層として夫々1層目
メタル6,2層目メタル9が設けられている点のみが図
2の固体撮像素子と異なるので、同一構成部材には、同
一番号を付して説明を省略する。
FIG. 6 is a sectional view of a solid-state imaging device as one embodiment of the solid-state imaging device according to the second and third aspects.
This solid-state imaging device is the same as the solid-state imaging device of FIG.
When the groove for the first buried metal layer 5 described in (B) is formed in the first insulating film 4 by etching, if the element isolation insulating film 2 around the light receiving section 3 is thin, the etching is performed. The point that it is difficult to stop in the middle, and FIG. 3 (D);
(F) is an improvement on the point that it is difficult to position the upper and lower buried metal layers 5, 8;
In the solid-state imaging device, a floating gate 17 is provided below the first buried metal layer 5, and the first and second buried metal layers 5, 8 and the second and third buried metal layers 8, 11 are provided.
Only the point that a first-layer metal 6 and a second-layer metal 9 are provided as light-shielding metal layers surrounding the light-receiving unit 3 is different from the solid-state imaging device of FIG. 2. The same numbers are assigned and the description is omitted.

【0042】上記フローティングゲート17は、受光部
3から出力される電流信号のオン・オフを制御、あるいは
電流信号を増幅するトランジスタのフローティングゲー
ト電極であり、上部の絶縁膜を介して第1埋め込み金属
層5に連続するとともに、第1埋め込み金属層5の溝よ
りも広い幅を有し、上記トランジスタのゲート電極形成
と同一工程で形成される。上記遮光用の金属層としての
1層目メタル6および2層目メタル9は、具体的にはフ
ローティング配線用の金属膜からなり、夫々上部に連続
する第2埋め込み金属層8および第3埋め込み金属層1
1の溝よりも広い幅を有し、同層で外側にあるトランジ
スタの配線用メタル6または9と同一工程でこれら配線
用メタルに電気的に接続されないように形成される。
The floating gate 17 is a floating gate electrode of a transistor for controlling the on / off of a current signal output from the light receiving section 3 or amplifying the current signal, and the first buried metal via an upper insulating film. It is continuous with the layer 5 and has a wider width than the groove of the first buried metal layer 5, and is formed in the same step as the formation of the gate electrode of the transistor. The first-layer metal 6 and the second-layer metal 9 as the light-shielding metal layers are specifically formed of a floating-interconnect metal film, and are respectively continuous with the second buried metal layer 8 and the third buried metal layer. Tier 1
It has a width wider than one groove, and is formed so as not to be electrically connected to the wiring metal 6 or 9 of the transistor outside in the same layer in the same step.

【0043】図7(A)〜(D),図8(E)〜(G),図9(H)
〜(J)は、図6の固体撮像素子の製造工程を順に示して
おり、この製造工程は、図7(B)でフローティングゲー
ト17が設けられ、図7(D),図8(F)で遮光用の1層
目,2層目メタル6,9が設けられる点のみが図3〜図5
の製造工程と異なるので、同一工程の説明は省略する。
図7(C)の受光部3をフェンス状に囲む第1埋め込み金
属層5のための溝を第1絶縁膜4にエッチングで形成す
る際、これに先立つ図7(B)の工程で素子分離絶縁膜2
上にフローティングゲート17が形成されている。従っ
て、受光部3周辺の素子分離絶縁膜2が薄い場合でも、
溝のエッチングをフローティングゲート17上で確実に
止めることができ、過剰エッチングで半導体基板1がダ
メージを受けることがなくなる。なお、フローティング
ゲート17は、トランジスタ部でのゲート電極の形成と
同時に形成されるので、これによって製造プロセスの工
程数が増加することはない。
FIGS. 7A to 7D, 8E to 8G, and 9H.
6 to (J) sequentially show the manufacturing process of the solid-state imaging device in FIG. 6. In this manufacturing process, the floating gate 17 is provided in FIG. 7 (B), and FIG. 7 (D) and FIG. Only the point that the first and second metal layers 6 and 9 for light shielding are provided in FIGS.
Therefore, the description of the same process is omitted.
When a groove for the first buried metal layer 5 surrounding the light receiving portion 3 in FIG. 7C in a fence shape is formed in the first insulating film 4 by etching, element isolation is performed in a step shown in FIG. Insulating film 2
The floating gate 17 is formed thereon. Therefore, even when the element isolation insulating film 2 around the light receiving section 3 is thin,
The etching of the groove can be reliably stopped on the floating gate 17, and the semiconductor substrate 1 is not damaged by excessive etching. Since the floating gate 17 is formed simultaneously with the formation of the gate electrode in the transistor portion, the number of steps in the manufacturing process does not increase.

【0044】図8(E)の第2埋め込み金属層8を下方の
第1埋め込み金属層5に位置合わせして重ね合わす場
合、第1埋め込み金属層5の上には、先立つ図7(D)の
工程で遮光用の幅広の1層目メタル6が形成されている
ので、第2絶縁膜7に設ける埋め込み用の溝の位置精度
が多少悪くても、第2埋め込み金属層8と第1埋め込み
5を1層目メタル6を介して連続的に接続することがで
き、上下の埋め込み金属層8,5を容易に位置合わせで
きる。また、図8(G)の第3埋め込み金属層11の第2
埋め込み金属層8との重ね合わせにおいても、遮光用の
2層目メタル9により同様に位置合わせを容易にするこ
とができる。なお、遮光用の1層目,2層目メタル6,9
は、トランジスタ部での配線金属膜の形成と同時に形成
されるので、これによって製造プロセスの工程数が増加
することはない。
In the case where the second buried metal layer 8 of FIG. 8E is aligned with the lower first buried metal layer 5 and is superimposed, the first buried metal layer 5 is placed on the first buried metal layer 5 as shown in FIG. Since the light-shielding wide first-layer metal 6 is formed in the step, the second buried metal layer 8 and the first buried metal layer 8 can be formed even if the positioning accuracy of the burying groove provided in the second insulating film 7 is somewhat poor. 5 can be continuously connected via the first metal layer 6, and the upper and lower embedded metal layers 8, 5 can be easily aligned. Further, the second buried metal layer 11 shown in FIG.
In the superposition with the buried metal layer 8 as well, the alignment can be similarly facilitated by the second-layer metal 9 for light shielding. The first and second metal layers 6 and 9 for shading are used.
Is formed at the same time as the formation of the wiring metal film in the transistor portion, so that the number of steps in the manufacturing process does not increase.

【0045】図10は、請求項4,5に記載の固体撮像
装置の一実施形態としての固体撮像素子の断面図であ
る。この固体撮像素子は、図6の固体撮像素子では、図
示の如く受光部3をフェンス状に囲む各埋め込み金属層
5,8,11の間に遮光用の広幅の1,2層目メタル6,9
があって、その直角隅部が内周面から突出しているた
め、マイクロレンズ16で集光された光が図1(A)の如
く上記内周面で反射されて受光部3へ導かれるとき、上
記直角隅部で乱反射されて受光光量が減少するという不
具合があるので、これを改善したものである。上記固体
撮像素子は、溝(フェンス)状の各埋め込み金属層5,8,
11および遮光用の1,2層目メタル6,9の受光部3を
囲う面積が、上層になるほど大きく、1,2層目メタル
6,9の側面がテーパ状を呈する点を除いて図6で述べ
た固体撮像素子と同じ構成であるので、同一構成部材に
は同一番号を付して説明を省略する。第1,第2,第3埋
め込み金属層5,8,11の間隔は、この順に上層にいく
に伴って層幅の2倍程度ずつ増え、1,2層目メタル6,
9は、上記層幅の2倍程度の幅をもつ等脚台形状の断面
を呈するとともに、2層目メタル9の間隔が、1層目メ
タル6の間隔より上記層幅の2倍程度大きく、これらに
よって上方に向かってテーパ状に広がる連続的な導光面
が形成されている。
FIG. 10 is a sectional view of a solid-state imaging device as one embodiment of the solid-state imaging device according to the fourth and fifth aspects. This solid-state imaging device is different from the solid-state imaging device shown in FIG. 6 in that the first and second wide metal layers 6, 5 for shielding light are interposed between the embedded metal layers 5, 8, 11 surrounding the light receiving section 3 in a fence shape as shown in the figure. 9
Since the right-angled corners protrude from the inner peripheral surface, the light condensed by the microlens 16 is reflected by the inner peripheral surface as shown in FIG. However, there is a problem that the amount of received light is reduced due to irregular reflection at the right-angled corners. The solid-state imaging device includes grooves (fences) having respective buried metal layers 5, 8,
6 except that the area surrounding the light receiving section 3 of the first and second metal layers 6 and 9 for light shielding is larger in the upper layer, except that the side surfaces of the first and second metal layers 6 and 9 are tapered. Since the configuration is the same as that of the solid-state imaging device described above, the same components are denoted by the same reference numerals and description thereof is omitted. The distance between the first, second, and third buried metal layers 5, 8, and 11 increases by about twice the layer width in this order toward the upper layer, and the first and second metal layers 6, 8, 11
Reference numeral 9 denotes an isosceles trapezoidal cross section having a width of about twice as large as the above-mentioned layer width. These form a continuous light guide surface that extends upward in a tapered shape.

【0046】1,2層目メタル6,9の等脚台形断面は、
これらメタルのエッチング時に側壁保護膜生成(反応生
成物)を多くすることによって形成でき、具体的には、
ECR型プラズマエッチング装置等を用い、処理室の圧
力を1〜5Pa、BCl3ガス流量を50〜150sccm、
Cl2ガス流量を10〜50sccm、マイクロ波のパワーを
300〜500W、バイアスRFのパワーを5〜50Wにすれ
ば実現することができる。こうして、第1〜3埋め込み
金属層5,8,11および第1,2層目メタル6,9によっ
て上に向かってテーパ状に広がる導波面が形成されるの
で、マイクロレンズ16で集光された斜め入射光が妨げ
られたり乱反射されることなく受光部3に達して、受光
光量を一層増すことができ、撮像画像の画質を一層向上
させることができる。
The equilateral trapezoidal cross sections of the first and second metal layers 6 and 9 are as follows.
It can be formed by increasing the generation of a sidewall protective film (reaction product) during the etching of these metals.
Using an ECR type plasma etching apparatus or the like, the pressure in the processing chamber is 1 to 5 Pa, the flow rate of BCl 3 gas is 50 to 150 sccm,
Cl 2 gas flow rate 10 ~ 50sccm, microwave power
This can be realized by setting the power of the bias RF to 300 to 500 W and the bias RF power to 5 to 50 W. In this manner, the first to third buried metal layers 5, 8, 11 and the first and second metal layers 6, 9 form a waveguide surface that expands in a tapered shape upward. The obliquely incident light reaches the light receiving section 3 without being obstructed or irregularly reflected, the amount of received light can be further increased, and the quality of a captured image can be further improved.

【0047】[0047]

【発明の効果】以上の説明で明らかなように、請求項1
の発明は、半導体基板上の固体撮像素子の受光部が少な
くとも2層以上の溝状の埋め込み金属層によってフェン
ス状に囲まれているので、マイクロレンズから受光部へ
垂直に入射する光の光路以外の部分を総て遮光用金属膜
で覆うことで、受光部以外のトランジスタ部等に入射す
る光を完全に防いで、過剰な光や斜め入射光によるノイ
ズの発生をなくすことができ、撮像画像の画質を向上で
きるうえ、フェンス状の埋め込み金属層が入射光を反射
して受光部へ導く導波効果をもつので、集光をマイクロ
レンズに近い位置で行なうことができ、将来の画素微細
化に伴うアスペクト比の増大にも対応することができ
る。
As is apparent from the above description, claim 1
Since the light receiving portion of the solid-state imaging device on the semiconductor substrate is surrounded by at least two layers of groove-shaped buried metal layers in a fence shape, the light path other than the optical path of light that is perpendicularly incident on the light receiving portion from the microlens is By covering the entire area with a light-shielding metal film, it is possible to completely prevent light that enters the transistor section etc. other than the light receiving section, and to eliminate the occurrence of noise due to excessive light or oblique incident light. In addition to improving the image quality, the fence-shaped buried metal layer has a waveguide effect that reflects incident light and guides it to the light receiving part, so that light can be collected at a position close to the microlens and future pixel miniaturization Can increase the aspect ratio.

【0048】請求項2の固体撮像装置は、受光部をフェ
ンス状に囲む埋め込み金属層の下部にフローティングゲ
ートが設けられているので、請求項1の作用効果に加え
て、埋め込み用の溝を形成する際のエッチングをフロー
ティングゲート上で止めることができ、製造プロセスの
工程数を増加させることなく溝形成エッチングを容易化
することができる。
In the solid-state imaging device according to the second aspect, since the floating gate is provided below the embedded metal layer surrounding the light receiving portion in a fence shape, in addition to the effect of the first aspect, a trench for embedding is formed. Etching can be stopped on the floating gate, and groove formation etching can be facilitated without increasing the number of steps in the manufacturing process.

【0049】請求項3の固体撮像装置は、受光部をフェ
ンス状に囲む少なくとも2層以上の溝状の埋め込み金属
層の間に受光部を囲む遮光用の金属層が設けられている
ので、請求項1の作用効果に加えて、この遮光用の金属
層の幅を上記金属層の幅よりも大きくすることによっ
て、上下の金属層を容易に位置合わせしつつ連続的に接
続することができる。
In the solid-state imaging device according to the third aspect, a light-shielding metal layer surrounding the light receiving portion is provided between at least two or more groove-shaped buried metal layers surrounding the light receiving portion in a fence shape. In addition to the function and effect of item 1, by making the width of the light-shielding metal layer larger than the width of the metal layer, the upper and lower metal layers can be easily aligned and continuously connected.

【0050】請求項4の固体撮像装置は、上記埋め込み
金属層および遮光用の金属層の受光部を囲む面積が上層
になるほど大きくなっているので、導波効果をもつフェ
ンス状のこれら金属層が上に向かってテーパ状に広がっ
て、マイクロレンズで集光された斜め入射光が妨げられ
たり乱反射されたりせずに受光部へ達するから、受光光
量をさらに増すことができ、撮像画像の画質を一層向上
させることができる。
In the solid-state imaging device according to the fourth aspect, since the area surrounding the light receiving portion of the buried metal layer and the light shielding metal layer becomes larger as the upper layer becomes higher, the fence-shaped metal layer having a waveguide effect is formed. Since the obliquely incident light condensed by the microlens reaches the light receiving portion without being obstructed or irregularly reflected, the amount of received light can be further increased, and the image quality of the captured image can be improved. It can be further improved.

【0051】請求項5の固体撮像装置は、上下の埋め込
み金属層間の遮光用金属層の側面がテーパ形状を呈して
いるので、導波効果をもつフェンス状の金属層の内周面
に直角の突起がなくなるから、マイクロレンズで集光さ
れた斜め入射光が妨げられたり乱反射されずに受光部へ
達し、その結果、受光光量をさらに増すことができ、撮
像画像の画質を一層向上させることができる。
In the solid-state imaging device according to the fifth aspect, since the side surface of the light-shielding metal layer between the upper and lower buried metal layers has a tapered shape, it is perpendicular to the inner peripheral surface of the fence-shaped metal layer having a waveguide effect. Since there is no protrusion, the oblique incident light condensed by the microlens reaches the light receiving section without being hindered or irregularly reflected, and as a result, the amount of received light can be further increased, and the image quality of the captured image can be further improved. it can.

【0052】請求項6の固体撮像装置は、上下の埋め込
み金属層を繋ぐ遮光用の金属層が、トランジスタやその
駆動回路の配線金属膜の形成と同一工程で行なわれるの
で、製造工程数を増やすことなく上記作用効果を奏する
ことができる。
In the solid-state imaging device according to the sixth aspect, the metal layer for shielding connecting the upper and lower buried metal layers is formed in the same step as the formation of the wiring metal film of the transistor and its driving circuit, so that the number of manufacturing steps is increased. The above-mentioned effects can be obtained without the above.

【0053】請求項7の固体撮像装置は、上記溝状の埋
め込み金属層として、接続孔の埋め込みに一般的に用い
られる高融点金属であるCu・W・TiWの単層膜、また
はCu・W・TiWとTiN・TiW・Tiとの複合膜を用
いるので、導波効果をもつフェンス状の埋め込み金属層
を、接続孔への高融点金属の埋め込み工程と同一工程で
形成でき、製造工程数を増やすことなく上記作用効果を
奏することができる。
In the solid-state imaging device according to a seventh aspect of the present invention, the groove-shaped buried metal layer is a single-layer film of Cu.W.TiW, which is a refractory metal generally used for burying connection holes, or Cu.W.・ Since a composite film of TiW and TiN / TiW / Ti is used, a fence-shaped buried metal layer having a waveguide effect can be formed in the same step as the step of burying the high melting point metal in the connection hole. The above-described effects can be obtained without increasing the number.

【0054】請求項8の固体撮像装置は、上記遮光用の
金属層として、トランジスタの配線に一般的に用いられ
るAl・Al-Si・Al-Cu・Cu・Wの単層膜、またはA
l・Al-Si・Al-Cu・Cu・WとW・TiN・TiW・T
iとの複合膜を用いるので、遮光用の金属層を、トラン
ジスタの配線工程と同一工程で形成でき、製造工程数を
増やすことなく上記作用効果を奏することができる。
In the solid-state imaging device according to the present invention, as the metal layer for light shielding, a single-layer film of Al, Al-Si, Al-Cu, Cu, or W, which is generally used for a transistor wiring, is used.
l ・ Al-Si ・ Al-Cu ・ Cu ・ W and W ・ TiN ・ TiW ・ T
Since the composite film with i is used, the light-shielding metal layer can be formed in the same step as the wiring step of the transistor, and the above operation and effect can be obtained without increasing the number of manufacturing steps.

【0055】請求項9の固体撮像装置の製造方法は、上
記受光部を囲むように受光部上の絶縁膜を少なくとも2
回以上溝状に除去し、この溝内に金属層を埋め込む工程
を含むので、マイクロレンズから受光部へ垂直に入射す
る光の光路以外の部分を総て遮光用金属膜で覆うこと
で、受光部以外のトランジスタ部等に入射する光を完全
に防いで、過剰な光や斜め入射光によるノイズの発生を
なくすことができ、撮像画像の画質を向上できるうえ、
フェンス状の埋め込み金属層が入射光を反射して受光部
へ導く導波効果をもつので、集光をマイクロレンズに近
い位置で行なうことができ、将来の画素微細化に伴うア
スペクト比の増大にも対応することができる。
According to a ninth aspect of the present invention, in the method of manufacturing a solid-state imaging device, at least two insulating films on the light receiving portion are provided so as to surround the light receiving portion.
Since the process includes removing the metal layer in the groove more than once and embedding the metal layer in this groove, the light-receiving metal film is covered by covering all the parts other than the optical path of the light that is perpendicularly incident from the microlens to the light-receiving part with the metal film for light shielding. By completely preventing light incident on the transistor section other than the section, noise caused by excessive light or oblique incident light can be eliminated, and the image quality of the captured image can be improved.
Since the fence-shaped buried metal layer has a waveguide effect of reflecting incident light and guiding it to the light receiving part, light can be condensed at a position close to the microlens, and the aspect ratio will increase with future pixel miniaturization. Can also respond.

【0056】請求項10の固体撮像装置の製造方法は、
溝内に埋め込まれる金属層が、トランジスタおよびトラ
ンジスタを駆動するための駆動回路の配線接続孔用の金
属層と同時に形成されるので、受光部をフェンス状に囲
み、導波効果をもつ金属層を、トランジスタやその駆動
回路の配線接続孔の形成と同一工程で形成できるから、
製造工程数を増やすことなく上記作用効果を奏すること
ができる。
According to a tenth aspect of the present invention, there is provided a
Since the metal layer embedded in the groove is formed simultaneously with the metal layer for the transistor and the wiring connection hole of the driving circuit for driving the transistor, the light receiving portion is surrounded in a fence shape, and the metal layer having a waveguide effect is formed. Since it can be formed in the same process as the formation of the wiring connection hole of the transistor and its driving circuit,
The above effects can be obtained without increasing the number of manufacturing steps.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明と従来の固体撮像装置による集光軌跡
を比較して示す断面図である。
FIG. 1 is a cross-sectional view showing a comparison between converging trajectories of the present invention and a conventional solid-state imaging device.

【図2】 本発明の固体撮像装置の一実施形態の要部を
示す断面図である。
FIG. 2 is a cross-sectional view illustrating a main part of one embodiment of the solid-state imaging device according to the present invention.

【図3】 図2の固体撮像装置の製造工程を示す要部断
面図である。
FIG. 3 is a cross-sectional view of a principal part showing a manufacturing process of the solid-state imaging device in FIG. 2;

【図4】 図2の固体撮像装置の製造工程を示す要部断
面図である。
4 is a fragmentary cross-sectional view showing a manufacturing step of the solid-state imaging device in FIG. 2;

【図5】 図2の固体撮像装置の製造工程を示す要部断
面図である。
5 is a fragmentary cross-sectional view showing a manufacturing step of the solid-state imaging device in FIG. 2;

【図6】 本発明の固体撮像装置の他の実施形態の要部
を示す断面図である。
FIG. 6 is a cross-sectional view illustrating a main part of another embodiment of the solid-state imaging device of the present invention.

【図7】 図6の固体撮像装置の製造工程を示す要部断
面図である。
7 is a fragmentary cross-sectional view showing a manufacturing step of the solid-state imaging device of FIG. 6;

【図8】 図6の固体撮像装置の製造工程を示す要部断
面図である。
8 is a fragmentary cross-sectional view showing a manufacturing step of the solid-state imaging device in FIG. 6;

【図9】 図6の固体撮像装置の製造工程を示す要部断
面図である。
9 is a fragmentary cross-sectional view showing a manufacturing step of the solid-state imaging device of FIG. 6;

【図10】 本発明の固体撮像装置の他の実施形態の要
部を示す断面図である。
FIG. 10 is a sectional view showing a main part of another embodiment of the solid-state imaging device of the present invention.

【図11】 従来の固体撮像装置の一例を示す要部断面
図である。
FIG. 11 is a cross-sectional view of a main part showing an example of a conventional solid-state imaging device.

【図12】 従来の固体撮像装置の他の例を示す要部断
面図である。
FIG. 12 is a cross-sectional view of main parts showing another example of a conventional solid-state imaging device.

【図13】 従来の固体撮像装置の他の例を示す要部断
面図である。
FIG. 13 is a cross-sectional view of a main part showing another example of a conventional solid-state imaging device.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 素子分離絶縁膜 3 受光部 4 第1絶縁膜 5 第1埋め込み金属層 6 1層目メタル 7 第2絶縁膜 8 第2埋め込み金属層 9 2層目メタル 10 第3絶縁膜 11 第3埋め込み金属層 12 3層目メタル 13,14 表面保護膜 15 平坦化膜 16 マイクロレンズ 17 フローティングゲート 19 フェンス状の金属膜層 REFERENCE SIGNS LIST 1 semiconductor substrate 2 element isolation insulating film 3 light receiving section 4 first insulating film 5 first buried metal layer 6 first layer metal 7 second insulating film 8 second buried metal layer 9 second layer metal 10 third insulating film 11th 3 buried metal layer 12 3rd metal 13 and 14 surface protection film 15 planarization film 16 micro lens 17 floating gate 19 fence-shaped metal film layer

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板上に、受光部と複
数のトランジスタで構成された画素セルがマトリックス
状に配置され、上記複数のトランジスタを駆動するため
の駆動回路を備えた固体撮像装置において、 上記受光部をフェンス状に囲む少なくとも2層以上の溝
状の埋め込み金属層が積層された構造を有することを特
徴とする固体撮像装置。
1. A solid-state imaging device in which pixel cells each including a light receiving portion and a plurality of transistors are arranged in a matrix on a semiconductor substrate of one conductivity type, and provided with a driving circuit for driving the plurality of transistors. 3. The solid-state imaging device according to claim 1, wherein the solid-state imaging device has a structure in which at least two or more groove-shaped buried metal layers surrounding the light receiving unit in a fence shape are stacked.
【請求項2】 請求項1に記載の固体撮像装置におい
て、最下層の上記溝状の埋め込み金属層の下部にフロー
ティングゲートが設けられていることを特徴とする固体
撮像装置。
2. The solid-state imaging device according to claim 1, wherein a floating gate is provided below the lowermost groove-shaped buried metal layer.
【請求項3】 請求項1に記載の固体撮像装置におい
て、上記少なくとも2層以上の溝状の埋め込み金属層の
間に、上記受光部を囲む遮光用の金属層が設けられてい
ることを特徴とする固体撮像装置。
3. The solid-state imaging device according to claim 1, wherein a light-shielding metal layer surrounding the light-receiving portion is provided between the at least two or more groove-shaped buried metal layers. Solid-state imaging device.
【請求項4】 請求項3に記載の固体撮像装置におい
て、上記溝状の埋め込み金属層と上記遮光用の金属層
は、上記受光部を囲う面積が上層になるほど大きいこと
を特徴とする固体撮像装置。
4. The solid-state imaging device according to claim 3, wherein the groove-shaped buried metal layer and the light-shielding metal layer are larger as the area surrounding the light receiving section is higher. apparatus.
【請求項5】 請求項3または請求項4に記載の固体撮
像装置において、上記遮光用の金属層の側面は、テーパ
形状を呈していることを特徴とする固体撮像装置。
5. The solid-state imaging device according to claim 3, wherein a side surface of the light-shielding metal layer has a tapered shape.
【請求項6】 請求項3乃至請求項5のいずれか1つに
記載の固体撮像装置において、上記遮光用の金属層は、
上記トランジスタおよびトランジスタを駆動するための
駆動回路の配線用金属膜と同時に形成され、かつこの配
線用金属膜と電気的に接続していないことを特徴とする
固体撮像装置。
6. The solid-state imaging device according to claim 3, wherein the metal layer for light shielding comprises:
A solid-state imaging device which is formed simultaneously with the wiring and the wiring metal film of the driving circuit for driving the transistor, and is not electrically connected to the wiring metal film.
【請求項7】 請求項1乃至請求項6のいずれか1つに
記載の固体撮像装置において、上記溝状の埋め込み金属
層として、Cu・W・TiWの単層膜、またはCu・W・
TiWとTiN・TiW・Tiとの複合膜を用いることを特
徴とする固体撮像装置。
7. The solid-state imaging device according to claim 1, wherein the groove-shaped buried metal layer is a single-layer film of Cu.W.TiW or a Cu.W.Ti.
A solid-state imaging device using a composite film of TiW and TiN / TiW / Ti.
【請求項8】 請求項1乃至請求項6のいずれか1つに
記載の固体撮像装置において、上記遮光用の金属層とし
て、Al・Al-Si・Al-Cu・Cu・Wの単層膜、または
Al・Al-Si・Al-Cu・Cu・WとW・TiN・TiW・
Tiとの複合膜を用いることを特徴とする固体撮像装
置。
8. The solid-state imaging device according to claim 1, wherein the metal layer for shielding is a single-layer film of Al.Al-Si.Al-Cu.Cu.W. , Or Al ・ Al-Si ・ Al-Cu ・ Cu ・ W and W ・ TiN ・ TiW ・
A solid-state imaging device using a composite film with Ti.
【請求項9】 一導電型の半導体基板上に、受光部と複
数のトランジスタで構成された画素セルがマトリックス
状に配置され、上記複数のトランジスタを駆動するため
の駆動回路を備えた固体撮像装置の製造方法において、 上記受光部を囲むように受光部上の絶縁膜を少なくとも
2回以上溝状に除去し、この溝内に金属層を埋め込む工
程を含むことを特徴とする固体撮像装置の製造方法。
9. A solid-state imaging device in which pixel cells each including a light receiving portion and a plurality of transistors are arranged in a matrix on a semiconductor substrate of one conductivity type, and provided with a driving circuit for driving the plurality of transistors. The method of manufacturing a solid-state imaging device according to claim 1, further comprising a step of removing the insulating film on the light receiving section in a groove shape at least twice so as to surround the light receiving section and embedding a metal layer in the groove. Method.
【請求項10】 請求項9に記載の固体撮像装置の製造
方法において、上記溝内に埋め込まれる金属層は、上記
トランジスタおよびトランジスタを駆動するための駆動
回路の配線接続孔用の金属層と同時に形成されることを
特徴とする固体撮像装置の製造方法。
10. The method for manufacturing a solid-state imaging device according to claim 9, wherein the metal layer buried in the groove is formed simultaneously with the metal layer for a wiring connection hole of the transistor and a driving circuit for driving the transistor. A method for manufacturing a solid-state imaging device, which is formed.
JP2000078028A 2000-03-21 2000-03-21 Solid-state imaging device and manufacturing method thereof Expired - Fee Related JP3827909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000078028A JP3827909B2 (en) 2000-03-21 2000-03-21 Solid-state imaging device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000078028A JP3827909B2 (en) 2000-03-21 2000-03-21 Solid-state imaging device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001267544A true JP2001267544A (en) 2001-09-28
JP3827909B2 JP3827909B2 (en) 2006-09-27

Family

ID=18595495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000078028A Expired - Fee Related JP3827909B2 (en) 2000-03-21 2000-03-21 Solid-state imaging device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3827909B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396888A2 (en) * 2002-09-05 2004-03-10 Kabushiki Kaisha Toshiba Solid-state imaging device
WO2004055898A1 (en) * 2002-12-13 2004-07-01 Sony Corporation Solid-state imaging device and production method therefor
EP1439582A2 (en) 2003-01-16 2004-07-21 Samsung Electronics Co., Ltd. Image sensor device with copper interconnects and method for forming the same
WO2004061911A2 (en) * 2002-12-18 2004-07-22 Agere Systems Inc. Semiconductor devices with reduced active region defects and unique contacting schemes
JP2005167003A (en) * 2003-12-03 2005-06-23 Canon Inc Solid state image pickup device, manufacturing method therefor, and image pickup system provided therewith
EP1598873A1 (en) * 2004-05-17 2005-11-23 Samsung Electronics Co., Ltd. CMOS image sensor and method of fabrication thereof
WO2006010284A1 (en) * 2004-07-26 2006-02-02 Csem Centre Suisse D'electronique Et De Microtechnique Sa Solid-state photodetector pixel and photodetecting method
JP2006093687A (en) * 2004-09-23 2006-04-06 Samsung Electronics Co Ltd Image sensor and its manufacturing method
JP2006156611A (en) * 2004-11-29 2006-06-15 Canon Inc Solid-state imaging device and image pick-up system
FR2880732A1 (en) * 2005-01-13 2006-07-14 St Microelectronics Sa IMAGE SENSOR
JP2007080918A (en) * 2005-09-12 2007-03-29 Seiko Epson Corp Solid state image sensor
KR100728647B1 (en) * 2005-11-30 2007-06-14 매그나칩 반도체 유한회사 Image Sensor and Manufacturing Method thereof
JP2008010544A (en) * 2006-06-28 2008-01-17 Renesas Technology Corp Solid-state image pickup element
JP2008103757A (en) * 2002-12-25 2008-05-01 Sony Corp Solid-state imaging device and its manufacturing method
JP2008108917A (en) * 2006-10-25 2008-05-08 Sony Corp Solid-state imaging device and electronic apparatus
JP2008244269A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Semiconductor device
JP2008270615A (en) * 2007-04-23 2008-11-06 Oki Electric Ind Co Ltd Semiconductor device, light measuring apparatus, light detector, and manufacturing method of semiconductor device
US7453129B2 (en) 2002-12-18 2008-11-18 Noble Peak Vision Corp. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
JP2009027004A (en) * 2007-07-20 2009-02-05 Canon Inc Photoelectric conversion device and imaging system using photoelectric conversion device
JP2009239053A (en) * 2008-03-27 2009-10-15 Texas Instr Japan Ltd Semiconductor device
JP2010073808A (en) * 2008-09-17 2010-04-02 Oki Semiconductor Co Ltd Illuminance sensor and manufacturing method therefor
JP2011503842A (en) * 2007-11-01 2011-01-27 インシアヴァ (ピーテーワイ) リミテッド Optoelectronic device having a light guiding mechanism and method for forming the mechanism
KR101014471B1 (en) * 2003-08-20 2011-02-14 크로스텍 캐피탈, 엘엘씨 Method for manufacturing image sensor
EP1746638A3 (en) * 2002-12-18 2011-03-23 Noble Peak Vision Corp. Semiconductor devices with reduced active region defectcs and unique contacting schemes
US7935994B2 (en) 2005-02-24 2011-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. Light shield for CMOS imager
JP2011129780A (en) * 2009-12-18 2011-06-30 Toshiba Corp Solid-state image pickup device
JP2011203247A (en) * 2010-03-05 2011-10-13 Seiko Epson Corp Optical sensor and electronic apparatus
JP2011238949A (en) * 2005-02-04 2011-11-24 Canon Inc Imaging device
JP2012009881A (en) * 2011-08-12 2012-01-12 Canon Inc Solid imaging device and imaging system
WO2012073491A1 (en) * 2010-11-29 2012-06-07 株式会社ニコン Imaging element and imaging device
JP2012151367A (en) * 2011-01-20 2012-08-09 Canon Inc Image pickup element and image pickup device
US8252614B2 (en) 2004-09-03 2012-08-28 Canon Kabushiki Kaisha Solid-state image sensor and imaging system
CN102680094A (en) * 2011-03-17 2012-09-19 精工爱普生株式会社 Spectroscopic sensor and angle limiting filter
JP2012189931A (en) * 2011-03-14 2012-10-04 Seiko Epson Corp Spectral sensor and angle restriction filter
JP2012194438A (en) * 2011-03-17 2012-10-11 Seiko Epson Corp Spectroscopic sensor and angle limiting filter
JP2012194055A (en) * 2011-03-16 2012-10-11 Seiko Epson Corp Optical sensor and electronic apparatus
JP2012194054A (en) * 2011-03-16 2012-10-11 Seiko Epson Corp Optical sensor and electronic apparatus
JP2013102173A (en) * 2007-03-09 2013-05-23 Tai Hyuk Nam Image sensor with pixel wiring to reflect light
JP2013145917A (en) * 2013-04-08 2013-07-25 Canon Inc Solid-state image pickup device and imaging system
JP2013156325A (en) * 2012-01-27 2013-08-15 Seiko Epson Corp Spectroscopic sensor and angle limit filter
JP2016029374A (en) * 2015-08-31 2016-03-03 セイコーエプソン株式会社 Spectroscopic sensor and angle restriction filter
JP2016096323A (en) * 2014-11-13 2016-05-26 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor
JP2016178341A (en) * 2016-06-15 2016-10-06 キヤノン株式会社 Imaging element and imaging device
JP2016534557A (en) * 2013-08-05 2016-11-04 アップル インコーポレイテッド Image sensor with embedded light shield and vertical gate
US9546906B2 (en) 2010-03-29 2017-01-17 Seiko Epson Corporation Spectrum sensor and angle restriction filter
CN108511472A (en) * 2017-02-28 2018-09-07 佳能株式会社 Photoelectric conversion device and device
JP2020027887A (en) * 2018-08-13 2020-02-20 株式会社東芝 Solid-state imaging apparatus
US11362223B2 (en) 2015-01-16 2022-06-14 Personal Genomics, Inc. Method for manufacturing an optical sensor
JP7544602B2 (en) 2018-12-27 2024-09-03 ソニーセミコンダクタソリューションズ株式会社 Image sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283145A (en) * 2009-06-04 2010-12-16 Sony Corp Solid-state image pickup element and method of manufacturing the same, electronic apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344071A (en) * 1989-07-11 1991-02-25 Nec Corp Optical semiconductor device
JPH04354161A (en) * 1991-05-30 1992-12-08 Mitsubishi Electric Corp Solid-state image sensing element
JPH06112513A (en) * 1992-09-28 1994-04-22 Ricoh Co Ltd Photoelectric conversion device and its manufacture
JPH06232256A (en) * 1992-12-29 1994-08-19 Internatl Business Mach Corp <Ibm> Crack stop formation of semiconductor device and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344071A (en) * 1989-07-11 1991-02-25 Nec Corp Optical semiconductor device
JPH04354161A (en) * 1991-05-30 1992-12-08 Mitsubishi Electric Corp Solid-state image sensing element
JPH06112513A (en) * 1992-09-28 1994-04-22 Ricoh Co Ltd Photoelectric conversion device and its manufacture
JPH06232256A (en) * 1992-12-29 1994-08-19 Internatl Business Mach Corp <Ibm> Crack stop formation of semiconductor device and semiconductor device

Cited By (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396888A3 (en) * 2002-09-05 2004-05-06 Kabushiki Kaisha Toshiba Solid-state imaging device
EP1396888A2 (en) * 2002-09-05 2004-03-10 Kabushiki Kaisha Toshiba Solid-state imaging device
US7842986B2 (en) * 2002-12-13 2010-11-30 Sony Corporation Solid-state imaging device and method for fabricating the same related application data
WO2004055898A1 (en) * 2002-12-13 2004-07-01 Sony Corporation Solid-state imaging device and production method therefor
US7442973B2 (en) * 2002-12-13 2008-10-28 Sony Corporation Solid-state imaging device and production method therefor
US7012314B2 (en) 2002-12-18 2006-03-14 Agere Systems Inc. Semiconductor devices with reduced active region defects and unique contacting schemes
US8664739B2 (en) 2002-12-18 2014-03-04 Infrared Newco, Inc. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
US7973377B2 (en) 2002-12-18 2011-07-05 Infrared Newco, Inc. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
US7297569B2 (en) 2002-12-18 2007-11-20 Noble Device Technologies Corporation Semiconductor devices with reduced active region defects and unique contacting schemes
WO2004061911A3 (en) * 2002-12-18 2004-09-16 Agere Systems Inc Semiconductor devices with reduced active region defects and unique contacting schemes
WO2004061911A2 (en) * 2002-12-18 2004-07-22 Agere Systems Inc. Semiconductor devices with reduced active region defects and unique contacting schemes
EP1746638A3 (en) * 2002-12-18 2011-03-23 Noble Peak Vision Corp. Semiconductor devices with reduced active region defectcs and unique contacting schemes
US7453129B2 (en) 2002-12-18 2008-11-18 Noble Peak Vision Corp. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
US9142585B2 (en) 2002-12-18 2015-09-22 Infrared Newco, Inc. Image sensor comprising isolated germanium photodetectors integrated with a silicon substrate and silicon circuitry
JP2008103757A (en) * 2002-12-25 2008-05-01 Sony Corp Solid-state imaging device and its manufacturing method
CN100416842C (en) * 2003-01-16 2008-09-03 三星电子株式会社 Structure of complementary metal oxide semiconductor image sensor and its manufacturing method
EP1439582A3 (en) * 2003-01-16 2006-01-18 Samsung Electronics Co., Ltd. Image sensor device with copper interconnects and method for forming the same
EP1439582A2 (en) 2003-01-16 2004-07-21 Samsung Electronics Co., Ltd. Image sensor device with copper interconnects and method for forming the same
KR101014471B1 (en) * 2003-08-20 2011-02-14 크로스텍 캐피탈, 엘엘씨 Method for manufacturing image sensor
JP2005167003A (en) * 2003-12-03 2005-06-23 Canon Inc Solid state image pickup device, manufacturing method therefor, and image pickup system provided therewith
JP4508619B2 (en) * 2003-12-03 2010-07-21 キヤノン株式会社 Method for manufacturing solid-state imaging device
EP1598873A1 (en) * 2004-05-17 2005-11-23 Samsung Electronics Co., Ltd. CMOS image sensor and method of fabrication thereof
US8053855B2 (en) 2004-05-17 2011-11-08 Samsung Electronics Co., Ltd. CMOS image sensor for photosensitivity and brightness ratio
KR100689885B1 (en) 2004-05-17 2007-03-09 삼성전자주식회사 The CMOS image sensor for improving the photo sensitivity and and method thereof
US9209327B2 (en) 2004-07-26 2015-12-08 Heptagon Micro Optics Pte. Ltd. Solid-state photodetector pixel and photodetecting method
US7897928B2 (en) 2004-07-26 2011-03-01 Mesa Imaging Ag Solid-state photodetector pixel and photodetecting method
WO2006010284A1 (en) * 2004-07-26 2006-02-02 Csem Centre Suisse D'electronique Et De Microtechnique Sa Solid-state photodetector pixel and photodetecting method
US8252614B2 (en) 2004-09-03 2012-08-28 Canon Kabushiki Kaisha Solid-state image sensor and imaging system
JP2006093687A (en) * 2004-09-23 2006-04-06 Samsung Electronics Co Ltd Image sensor and its manufacturing method
JP2006156611A (en) * 2004-11-29 2006-06-15 Canon Inc Solid-state imaging device and image pick-up system
US7705905B2 (en) 2005-01-13 2010-04-27 Stmicroelectronics S.A. Image sensor
FR2880732A1 (en) * 2005-01-13 2006-07-14 St Microelectronics Sa IMAGE SENSOR
JP2011238949A (en) * 2005-02-04 2011-11-24 Canon Inc Imaging device
US8383440B2 (en) 2005-02-24 2013-02-26 Taiwan Semiconductor Manufacturing Company, Ltd. Light shield for CMOS imager
US7935994B2 (en) 2005-02-24 2011-05-03 Taiwan Semiconductor Manufacturing Company, Ltd. Light shield for CMOS imager
JP2007080918A (en) * 2005-09-12 2007-03-29 Seiko Epson Corp Solid state image sensor
KR100728647B1 (en) * 2005-11-30 2007-06-14 매그나칩 반도체 유한회사 Image Sensor and Manufacturing Method thereof
JP2008010544A (en) * 2006-06-28 2008-01-17 Renesas Technology Corp Solid-state image pickup element
JP2008108917A (en) * 2006-10-25 2008-05-08 Sony Corp Solid-state imaging device and electronic apparatus
JP2013102173A (en) * 2007-03-09 2013-05-23 Tai Hyuk Nam Image sensor with pixel wiring to reflect light
JP2008244269A (en) * 2007-03-28 2008-10-09 Sanyo Electric Co Ltd Semiconductor device
JP2008270615A (en) * 2007-04-23 2008-11-06 Oki Electric Ind Co Ltd Semiconductor device, light measuring apparatus, light detector, and manufacturing method of semiconductor device
US8436407B2 (en) 2007-07-20 2013-05-07 Canon Kabushiki Kaisha Photoelectric conversion device and imaging system using photoelectric conversion device
JP2009027004A (en) * 2007-07-20 2009-02-05 Canon Inc Photoelectric conversion device and imaging system using photoelectric conversion device
TWI467789B (en) * 2007-11-01 2015-01-01 Insiava Pty Ltd Optoelectronic device with light directing arrangement and method of forming the arrangement
US8729582B2 (en) 2007-11-01 2014-05-20 Insiava (Pty) Limited Optoelectronic device with light directing arrangement and method of forming the arrangement
JP2011503842A (en) * 2007-11-01 2011-01-27 インシアヴァ (ピーテーワイ) リミテッド Optoelectronic device having a light guiding mechanism and method for forming the mechanism
US8969112B2 (en) 2007-11-01 2015-03-03 Insiava (Pty) Limited Optoelectronic device with light directing arrangement and method of forming the arrangement
JP2009239053A (en) * 2008-03-27 2009-10-15 Texas Instr Japan Ltd Semiconductor device
JP2010073808A (en) * 2008-09-17 2010-04-02 Oki Semiconductor Co Ltd Illuminance sensor and manufacturing method therefor
JP2011129780A (en) * 2009-12-18 2011-06-30 Toshiba Corp Solid-state image pickup device
JP2011203247A (en) * 2010-03-05 2011-10-13 Seiko Epson Corp Optical sensor and electronic apparatus
US9546906B2 (en) 2010-03-29 2017-01-17 Seiko Epson Corporation Spectrum sensor and angle restriction filter
WO2012073491A1 (en) * 2010-11-29 2012-06-07 株式会社ニコン Imaging element and imaging device
US9532033B2 (en) 2010-11-29 2016-12-27 Nikon Corporation Image sensor and imaging device
JP2012151367A (en) * 2011-01-20 2012-08-09 Canon Inc Image pickup element and image pickup device
JP2012189931A (en) * 2011-03-14 2012-10-04 Seiko Epson Corp Spectral sensor and angle restriction filter
JP2012194054A (en) * 2011-03-16 2012-10-11 Seiko Epson Corp Optical sensor and electronic apparatus
JP2012194055A (en) * 2011-03-16 2012-10-11 Seiko Epson Corp Optical sensor and electronic apparatus
US9163984B2 (en) 2011-03-17 2015-10-20 Seiko Epson Corporation Spectroscopic sensor and angle limiting filter
JP2012194438A (en) * 2011-03-17 2012-10-11 Seiko Epson Corp Spectroscopic sensor and angle limiting filter
CN102680094B (en) * 2011-03-17 2015-12-16 精工爱普生株式会社 Spectroscopic sensor and angle limits light filter
US9709715B2 (en) 2011-03-17 2017-07-18 Seiko Epson Corporation Spectroscopic sensor and angle limiting filter
CN102680094A (en) * 2011-03-17 2012-09-19 精工爱普生株式会社 Spectroscopic sensor and angle limiting filter
JP2012009881A (en) * 2011-08-12 2012-01-12 Canon Inc Solid imaging device and imaging system
JP2013156325A (en) * 2012-01-27 2013-08-15 Seiko Epson Corp Spectroscopic sensor and angle limit filter
JP2013145917A (en) * 2013-04-08 2013-07-25 Canon Inc Solid-state image pickup device and imaging system
US9842875B2 (en) 2013-08-05 2017-12-12 Apple Inc. Image sensor with buried light shield and vertical gate
JP2016534557A (en) * 2013-08-05 2016-11-04 アップル インコーポレイテッド Image sensor with embedded light shield and vertical gate
CN108550599B (en) * 2013-08-05 2022-08-23 苹果公司 Image sensor with buried light shield and vertical gate
CN108550599A (en) * 2013-08-05 2018-09-18 苹果公司 With the imaging sensor for burying light shield and vertical gate
JP2016096323A (en) * 2014-11-13 2016-05-26 采▲ぎょく▼科技股▲ふん▼有限公司VisEra Technologies Company Limited Image sensor
US9825078B2 (en) 2014-11-13 2017-11-21 Visera Technologies Company Limited Camera device having an image sensor comprising a conductive layer and a reflection layer stacked together to form a light pipe structure accommodating a filter unit
US11362223B2 (en) 2015-01-16 2022-06-14 Personal Genomics, Inc. Method for manufacturing an optical sensor
EP3045896B1 (en) * 2015-01-16 2023-06-07 Personal Genomics, Inc. Optical sensor with light-guiding feature
JP2016029374A (en) * 2015-08-31 2016-03-03 セイコーエプソン株式会社 Spectroscopic sensor and angle restriction filter
JP2016178341A (en) * 2016-06-15 2016-10-06 キヤノン株式会社 Imaging element and imaging device
US10431617B2 (en) 2017-02-28 2019-10-01 Canon Kabushiki Kaisha Photoelectric conversion device and apparatus
JP2018142681A (en) * 2017-02-28 2018-09-13 キヤノン株式会社 Photoelectric conversion device, electronic apparatus, and transportation equipment
CN108511472B (en) * 2017-02-28 2023-05-26 佳能株式会社 Photoelectric conversion apparatus and device
CN108511472A (en) * 2017-02-28 2018-09-07 佳能株式会社 Photoelectric conversion device and device
JP2020027887A (en) * 2018-08-13 2020-02-20 株式会社東芝 Solid-state imaging apparatus
CN110828491A (en) * 2018-08-13 2020-02-21 株式会社东芝 Solid-state imaging device
JP7544602B2 (en) 2018-12-27 2024-09-03 ソニーセミコンダクタソリューションズ株式会社 Image sensor

Also Published As

Publication number Publication date
JP3827909B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP3827909B2 (en) Solid-state imaging device and manufacturing method thereof
US11705470B2 (en) Image sensor scheme for optical and electrical improvement
US8772072B2 (en) Backside illuminated image sensor
US8211740B2 (en) Solid state imaging device having wirings with diffusion prevention film
US8169011B2 (en) Image sensor and method of manufacturing the same
US8710563B2 (en) Image sensor and method for fabricating the same
KR20190062128A (en) Image sensor with pad structure
US20230387163A1 (en) Method for forming light pipe structure with high quantum efficiency
US9871072B2 (en) Photoelectric conversion device, image pickup system, and method for manufacturing photoelectric conversion device
CN1860613B (en) Solid-state image pickup device and manufacturing method of the same
US11705474B2 (en) Metal reflector grounding for noise reduction in light detector
KR100938951B1 (en) Backside illuminated image sensor and method for manufacturing the same
JP3824446B2 (en) Method for manufacturing solid-state imaging device
JP3762673B2 (en) Solid-state imaging device and manufacturing method thereof
US20240355860A1 (en) Etch block structure for deep trench isolation recess containment
TWI839112B (en) Optical structure and method for manufacturing the same
US20230317758A1 (en) Isolation structures in image sensors
JP2005191480A (en) Manufacturing method of solid-state imaging device
US20230352508A1 (en) Image sensor structure for crosstalk reduction
JP4700928B2 (en) Manufacturing method of solid-state imaging device
KR20240156958A (en) Etch block structure for deep trench isolation recess containment
KR100608329B1 (en) Method for manufacturing image sensor
JP2006108572A (en) Solid-state imaging element and its manufacturing method
KR20080097713A (en) Image sensor and method for manufacturing thereof
JP2006100367A (en) Solid state imaging device and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees