JP2001267080A - Light emission element - Google Patents

Light emission element

Info

Publication number
JP2001267080A
JP2001267080A JP2000372543A JP2000372543A JP2001267080A JP 2001267080 A JP2001267080 A JP 2001267080A JP 2000372543 A JP2000372543 A JP 2000372543A JP 2000372543 A JP2000372543 A JP 2000372543A JP 2001267080 A JP2001267080 A JP 2001267080A
Authority
JP
Japan
Prior art keywords
group
light emitting
derivatives
light
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000372543A
Other languages
Japanese (ja)
Other versions
JP4876311B2 (en
JP2001267080A5 (en
Inventor
Takeshi Tominaga
剛 富永
Akira Makiyama
暁 槙山
Toru Kohama
亨 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2000372543A priority Critical patent/JP4876311B2/en
Publication of JP2001267080A publication Critical patent/JP2001267080A/en
Publication of JP2001267080A5 publication Critical patent/JP2001267080A5/ja
Application granted granted Critical
Publication of JP4876311B2 publication Critical patent/JP4876311B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a light emission element which has high luminescence efficiency and is excellent in color purity with high luminosity. SOLUTION: In a light emission element which has a luminescence substance existing between a positive pole and a negative pole, and emits light by electric energy, the element is the light emission element containing the organic fluorescent substance which has phenanthroline skeleton expressed with a formula (1). In the formula, R1-R8 which can be same with, or different from one another, are chosen from following substances; hydrogen, alkyl group, cycloalkyl group, aralkyl group, alkenyl group, cycloalkenyl group, alkynil group, hydroxyl group, mercapto group, alkoxy group, alkyl-thio group, arylether group, arylthioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkine, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group, and siroxanyl group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電気エネルギーを
光に変換できる素子であって、表示素子、フラットパネ
ルディスプレイ、バックライト、照明、インテリア、標
識、看板、電子写真機、光信号発生器などの分野に利用
可能な発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element capable of converting electric energy into light, and relates to a display element, a flat panel display, a backlight, lighting, an interior, a sign, a sign, an electrophotographic device, an optical signal generator, and the like. The present invention relates to a light emitting element that can be used in the field of (1).

【0002】[0002]

【従来の技術】陰極から注入された電子と陽極から注入
された正孔が両極に挟まれた有機蛍光体内で再結合する
際に発光するという有機積層薄膜発光素子の研究が近年
活発に行われている。この素子は、薄型、低駆動電圧下
での高輝度発光、蛍光材料を選ぶことによる多色発光が
特徴であり注目を集めている。
2. Description of the Related Art In recent years, studies have been actively conducted on organic laminated thin-film light emitting devices in which electrons injected from a cathode and holes injected from an anode emit light when they recombine in an organic phosphor sandwiched between both electrodes. ing. This device has attracted attention because it is thin, emits light with high luminance under a low driving voltage, and emits multicolor light by selecting a fluorescent material.

【0003】この研究は、コダック社のC.W.Tan
gらが有機積層薄膜素子が高輝度に発光することを示し
て以来(Appl.Phys.Lett.51(12)
21,p.913,1987)、多くの研究機関が検討
を行っている。コダック社の研究グループが提示した有
機積層薄膜発光素子の代表的な構成は、ITOガラス基
板上に正孔輸送性のジアミン化合物、発光層である8−
ヒドロキシキノリンアルミニウム、そして陰極としてM
g:Agを順次設けたものであり、10V程度の駆動電
圧で1000cd/m2の緑色発光が可能であった。
[0003] This study was carried out by Kodak Corporation. W. Tan
g. et al. showed that the organic laminated thin film element emits light with high luminance (Appl. Phys. Lett. 51 (12)
21, p. 913, 1987), and many research institutions are conducting studies. A typical configuration of an organic laminated thin film light emitting device presented by a research group of Kodak Company is a diamine compound having a hole transporting property and a light emitting layer on an ITO glass substrate.
Aluminum hydroxyquinoline and M as cathode
g: Ag was sequentially provided, and green light emission of 1000 cd / m 2 was possible at a driving voltage of about 10 V.

【0004】発光層はホスト材料のみで構成されたり、
ホスト材料にゲスト材料をドーピングして構成される。
発光材料は三原色揃うことが求められているが、これま
では緑色発光材料の研究が最も進んでいる。現在は赤色
発光材料と青色発光材料において、特性向上を目指して
鋭意研究がなされている。特に青色発光材料において高
輝度で色純度の良い発光の得られるものが望まれてい
る。
[0004] The light emitting layer is composed of only a host material,
A host material is doped with a guest material.
The light emitting material is required to have three primary colors, but the research on the green light emitting material has been most advanced so far. At present, intensive studies have been made on red light emitting materials and blue light emitting materials with the aim of improving the characteristics. In particular, a blue light-emitting material that can emit light with high luminance and good color purity is desired.

【0005】ホスト材料としては、前述のトリス(8−
キノリノラト)アルミニウムを始めとするキノリノール
誘導体の金属錯体、ベンズオキサゾール誘導体、スチル
ベン誘導体、ベンズチアゾール誘導体、チアジアゾール
誘導体、チオフェン誘導体、テトラフェニルブタジエン
誘導体、シクロペンタジエン誘導体、オキサジアゾール
誘導体、オキサジアゾール誘導体金属錯体、ベンズアゾ
ール誘導体金属錯体などがあげられる。
As the host material, the above-mentioned tris (8-
Metal complexes of quinolinol derivatives including quinolinolato) aluminum, benzoxazole derivatives, stilbene derivatives, benzothiazole derivatives, thiadiazole derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, oxadiazole derivatives, oxadiazole derivative metal complexes And benzazole derivative metal complexes.

【0006】青色発光ホスト材料においては、比較的良
い性能が得られている例として、キノリノール誘導体と
異なる配位子を組み合わせた金属錯体(特開平5−21
4332号公報)や、ビススチリルベンゼン誘導体(特
開平4−117485号公報)などがあげられるが、特
に色純度が充分ではない。また、フェナントロリン骨格
を有する例として特開平7−82551公報があげら
れ、高融点化による耐久性の向上を謳っているが、融点
に関する記載はない。さらにフェナントロリン骨格は平
面構造であり結晶性が高く、アモルファス薄膜を維持す
るの困難であるが、これを回避する手段も講じていな
い。
As an example of a blue light-emitting host material having relatively good performance, a metal complex obtained by combining a quinolinol derivative with a different ligand (Japanese Patent Laid-Open No. 5-21)
No. 4332) and bisstyrylbenzene derivatives (JP-A-4-117485), but the color purity is not particularly sufficient. Japanese Patent Application Laid-Open No. 7-82551 discloses an example having a phenanthroline skeleton, which claims to improve durability by increasing the melting point, but does not describe the melting point. Further, the phenanthroline skeleton has a planar structure and high crystallinity, and it is difficult to maintain an amorphous thin film. However, no measures have been taken to avoid this.

【0007】一方、ゲスト材料としてのドーパント材料
には、レーザー色素として有用であることが知られてい
る、7−ジメチルアミノ−4−メチルクマリンを始めと
するクマリン誘導体、ペリレン、ピレン、アントラセン
などの縮合芳香環誘導体、スチルベン誘導体、オリゴフ
ェニレン誘導体、フラン誘導体、キノロン誘導体、オキ
サゾール誘導体、オキサジアゾール誘導体などが知られ
ている。
On the other hand, as a dopant material as a guest material, coumarin derivatives such as 7-dimethylamino-4-methylcoumarin, perylene, pyrene and anthracene, which are known to be useful as laser dyes, are known. Fused aromatic ring derivatives, stilbene derivatives, oligophenylene derivatives, furan derivatives, quinolone derivatives, oxazole derivatives, oxadiazole derivatives and the like are known.

【0008】この有機積層薄膜発光素子の構成について
は、上記の陽極/正孔輸送層/発光層/陰極の他に、電
子輸送層を適宜設けたものが知られている。正孔輸送層
とは陽極より注入された正孔を発光層に輸送する機能を
有し、一方の電子輸送層は陰極より注入された電子を発
光層に輸送する。これらの層を発光層と両極の間に挿入
することにより、発光効率、耐久性が向上することが知
られている。これらを用いた素子構成の例として、陽極
/正孔輸送層/発光層/電子輸送層/陰極、陽極/発光
層/電子輸送層/陰極などが挙げられ、各層に適した有
機化合物の研究が正孔輸送材料を中心に行われている。
With respect to the structure of this organic layered thin film light emitting device, it is known that an electron transport layer is appropriately provided in addition to the above anode / hole transport layer / light emitting layer / cathode. The hole transporting layer has a function of transporting holes injected from the anode to the light emitting layer, and one electron transporting layer transports electrons injected from the cathode to the light emitting layer. It is known that luminous efficiency and durability are improved by inserting these layers between the light emitting layer and both electrodes. Examples of device configurations using these are anode / hole transport layer / light-emitting layer / electron transport layer / cathode, anode / light-emitting layer / electron transport layer / cathode, and research on organic compounds suitable for each layer. It is performed mainly on hole transport materials.

【0009】[0009]

【発明が解決しようとする課題】しかし、従来技術に用
いられる発光材料(ホスト材料、ドーパント材料)に
は、発光効率が低く消費電力が高いものや、耐久性が低
く素子寿命の短いものが多かった。また、フルカラーデ
ィスプレイとして赤色、緑色、青色の三原色発光が求め
られているが、赤色、青色発光においては、発光波長を
満足させるものは少なく、発光ピークの幅も広く色純度
が良いものは少ない。中でも青色発光において、耐久性
に優れ十分な輝度と色純度特性を示すものが必要とされ
ている。
However, many light-emitting materials (host materials and dopant materials) used in the prior art have low light-emitting efficiency and high power consumption, and have low durability and short element life. Was. In addition, red, green, and blue light emission of three primary colors is required as a full-color display. However, in red and blue light emission, few light emission wavelengths are satisfied, and few light emission peaks have a wide emission peak width and good color purity. In particular, for blue light emission, a material having excellent durability and sufficient luminance and color purity characteristics is required.

【0010】また従来、正孔輸送材料に比べて電子輸送
材料はあまり研究されておらず、数少ない既存材料を用
いても、発光材料と相互作用を起こす、もしくは電子輸
送材料自体の発光が混在する等の理由で所望の発光色が
得られなかったり、高効率発光が得られるものの耐久性
が短い等の問題があった。例えば、特開平5−3314
59号公報には特定のフェナントロリン誘導体を電子輸
送材料に用いているが、高効率発光を示すものの、長時
間の通電により結晶化し、耐久性が著しく短い問題があ
る。また、発光効率および耐久性に比較的良い特性を示
すものとして、キノリノール金属錯体やベンゾキノリノ
ール金属錯体があるが、これらはこの材料自身に高い青
緑〜黄色での発光能力があるために、電子輸送材料とし
て用いた際に、これらの材料自身の発光が混在して色純
度が悪化する恐れがある。
Conventionally, electron transport materials have not been studied much more than hole transport materials, and even if a few existing materials are used, they interact with a light emitting material or light emission of the electron transport material itself is mixed. For this reason, there has been a problem that a desired luminescent color cannot be obtained, and high efficiency luminescence can be obtained but durability is short. For example, JP-A-5-3314
Japanese Patent No. 59 uses a specific phenanthroline derivative as an electron transporting material. However, although it exhibits high efficiency light emission, it has a problem that it is crystallized by a long-time energization and its durability is extremely short. In addition, quinolinol metal complexes and benzoquinolinol metal complexes exhibit relatively good properties in terms of luminous efficiency and durability. When used as a transport material, the luminescence of these materials themselves may be mixed and the color purity may be degraded.

【0011】本発明は、かかる従来技術の問題を解決
し、発光効率が高く、高輝度で色純度に優れた発光素子
を提供することを目的とするものである。
An object of the present invention is to solve the problems of the prior art and to provide a light emitting device having high luminous efficiency, high luminance and excellent color purity.

【0012】[0012]

【課題を解決するための手段】本発明は、正極と負極の
間に発光物質が存在し、電気エネルギーにより発光する
素子であって、該素子が下記一般式(1)で表されるフ
ェナントロリン骨格を有する有機蛍光体を含むことを特
徴とする発光素子である。
SUMMARY OF THE INVENTION The present invention relates to an element which emits light by electric energy, in which a light emitting substance is present between a positive electrode and a negative electrode, wherein the element has a phenanthroline skeleton represented by the following general formula (1). A light-emitting element comprising an organic phosphor having:

【0013】[0013]

【化3】 Embedded image

【0014】ここでR1〜R8はそれぞれ同じでも異なっ
ていてもよく、水素、アルキル基、シクロアルキル基、
アラルキル基、アルケニル基、シクロアルケニル基、ア
ルキニル基、水酸基、メルカプト基、アルコキシ基、ア
ルキルチオ基、アリールエーテル基、アリールチオエー
テル基、アリール基、複素環基、ハロゲン、ハロアルカ
ン、ハロアルケン、ハロアルキン、シアノ基、アルデヒ
ド基、カルボニル基、カルボキシル基、エステル基、カ
ルバモイル基、アミノ基、ニトロ基、シリル基、シロキ
サニル基の中から選ばれる。但し、その内の少なくとも
1つはそれ自身が三次元的立体構造を有するか、フェナ
ントロリン骨格とのあるいは隣接置換基との立体反発に
より、三次元的立体構造を有するものである。
Here, R 1 to R 8 may be the same or different, and may be hydrogen, an alkyl group, a cycloalkyl group,
Aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, It is selected from aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group and siloxanyl group. However, at least one of them has a three-dimensional structure by itself, or has a three-dimensional structure by steric repulsion with a phenanthroline skeleton or with an adjacent substituent.

【0015】[0015]

【発明の実施の形態】本発明において正極は、光を取り
出すために透明であれば酸化錫、酸化インジウム、酸化
錫インジウム(ITO)などの導電性金属酸化物、ある
いは金、銀、クロムなどの金属、ヨウ化銅、硫化銅など
の無機導電性物質、ポリチオフェン、ポリピロール、ポ
リアニリンなどの導電性ポリマなど特に限定されるもの
でないが、ITOガラスやネサガラスを用いることが特
に望ましい。透明電極の抵抗は素子の発光に十分な電流
が供給できればよいので限定されないが、素子の消費電
力の観点からは低抵抗であることが望ましい。例えば3
00Ω/□以下のITO基板であれば素子電極として機
能するが、現在では10Ω/□程度の基板の供給も可能
になっていることから、低抵抗品を使用することが特に
望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ
事ができるが、通常100〜300nmの間で用いられ
ることが多い。また、ガラス基板はソーダライムガラ
ス、無アルカリガラスなどが用いられ、また厚みも機械
的強度を保つのに十分な厚みがあればよいので、0.5
mm以上あれば十分である。ガラスの材質については、
ガラスからの溶出イオンが少ない方がよいので無アルカ
リガラスの方が好ましいが、SiO2 などのバリアコー
トを施したソーダライムガラスも市販されているのでこ
れを使用できる。ITO膜形成方法は、電子線ビーム
法、スパッタリング法、化学反応法など特に制限を受け
るものではない。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a positive electrode is made of a conductive metal oxide such as tin oxide, indium oxide, indium tin oxide (ITO) or a metal such as gold, silver or chromium if it is transparent to extract light. Although not particularly limited, such as metals, inorganic conductive substances such as copper iodide and copper sulfide, and conductive polymers such as polythiophene, polypyrrole, and polyaniline, it is particularly preferable to use ITO glass or Nesa glass. The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but is preferably low from the viewpoint of power consumption of the element. For example, 3
Although an ITO substrate having a resistance of 00 Ω / □ or less functions as an element electrode, a substrate having a resistance of about 10 Ω / □ can be supplied at present. The thickness of the ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of usually 100 to 300 nm. Further, the glass substrate is made of soda lime glass, non-alkali glass, or the like, and the thickness only needs to be sufficient to maintain the mechanical strength.
mm or more is sufficient. For the glass material,
Alkali-free glass is preferred because less ions elute from the glass is preferred, but soda-lime glass with a barrier coat such as SiO 2 is also commercially available and can be used. The method of forming the ITO film is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.

【0016】本発明において陰極は、電子を本有機物層
に効率良く注入できる物質であれば特に限定されない
が、一般に白金、金、銀、銅、鉄、錫、亜鉛、アルミニ
ウム、インジウム、クロム、リチウム、ナトリウム、カ
リウム、カルシウム、マグネシウムなどがあげられる
が、電子注入効率をあげて素子特性を向上させるために
はリチウム、ナトリウム、カリウム、カルシウム、マグ
ネシウムまたはこれら低仕事関数金属を含む合金が有効
である。しかし、これらの低仕事関数金属は、一般に大
気中で不安定であることが多く、例えば、有機層に微量
のリチウムやマグネシウム(真空蒸着の膜厚計表示で1
nm以下)をドーピングして安定性の高い電極を使用す
る方法が好ましい例として挙げることができるが、フッ
化リチウムのような無機塩の使用も可能であることから
特にこれらに限定されるものではない。更に電極保護の
ために白金、金、銀、銅、鉄、錫、アルミニウム、イン
ジウムなどの金属、またはこれら金属を用いた合金、そ
してシリカ、チタニア、窒化ケイ素などの無機物、ポリ
ビニルアルコール、塩化ビニル、炭化水素系高分子など
を積層することが好ましい例として挙げられる。これら
の電極の作製法も抵抗加熱、電子線ビーム、スパッタリ
ング、イオンプレーティング、コーティングなど導通を
取ることができれば特に制限されない。
In the present invention, the cathode is not particularly limited as long as it can efficiently inject electrons into the organic material layer. Generally, platinum, gold, silver, copper, iron, tin, zinc, aluminum, indium, chromium, lithium , Sodium, potassium, calcium, magnesium, etc., and lithium, sodium, potassium, calcium, magnesium or an alloy containing these low work function metals is effective in improving the device characteristics by increasing the electron injection efficiency. . However, these low work function metals are generally unstable in the air in many cases. For example, a very small amount of lithium or magnesium is added to an organic layer (1 or less in a vacuum deposition film thickness meter).
The following method can be cited as a preferable example in which an electrode having a high stability is used by doping (e.g., nm or less). However, the use of an inorganic salt such as lithium fluoride is also possible. Absent. Furthermore, for electrode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, and inorganic substances such as silica, titania and silicon nitride, polyvinyl alcohol, vinyl chloride, It is preferable to laminate a hydrocarbon polymer or the like. The method for producing these electrodes is not particularly limited, as long as electrical conduction such as resistance heating, electron beam, sputtering, ion plating, and coating can be achieved.

【0017】本発明において発光物質の構成は、1)正
孔輸送層/発光層、2)正孔輸送層/発光層/電子輸送
層、3)発光層/電子輸送層、そして、4)以上の組合
わせ物質を一層に混合した形態のいずれであってもよ
い。即ち、素子構成としては、上記1)〜3)の多層積
層構造の他に4)のように発光材料単独または発光材料
と正孔輸送材料や電子輸送材料を含む層を一層設けるだ
けでもよい。さらに、本発明における発光物質は自ら発
光するもの、その発光を助けるもののいずれにも該当
し、発光に関与している化合物、層などを指すものであ
る。
In the present invention, the structure of the luminescent material is 1) a hole transport layer / a light emitting layer, 2) a hole transport layer / a light emitting layer / an electron transport layer, 3) a light emitting layer / an electron transport layer, and 4) May be in any form in which a combination of the above substances is mixed. That is, as the element configuration, in addition to the multilayer laminated structure of the above 1) to 3), a single layer of a luminescent material alone or a layer containing a luminescent material and a hole transporting material or an electron transporting material may be provided as in 4). Further, the luminescent substance in the present invention corresponds to both a substance which emits light by itself and a substance which assists the light emission, and refers to a compound, a layer, or the like involved in light emission.

【0018】本発明において正孔輸送層は正孔輸送性物
質単独または二種類以上の物質を積層、混合するか正孔
輸送性物質と高分子結着剤の混合物により形成される。
正孔輸送性物質としては電界を与えられた電極間におい
て正極からの正孔を効率良く輸送することが必要で、正
孔注入効率が高く、注入された正孔を効率良く輸送する
ことが望ましい。そのためにはイオン化ポテンシャルが
小さく、しかも正孔移動度が大きく、さらに安定性に優
れ、トラップとなる不純物が製造時および使用時に発生
しにくい物質であることが要求される。このような条件
を満たす物質として、特に限定されるものではないが、
N,N’−ジフェニル−N,N’−ジ(3−メチルフェ
ニル)−4,4’−ジフェニル−1,1’−ジアミン、
N,N’−ジナフチル−N,N’−ジフェニル−4,
4’−ジフェニル−1,1’−ジアミンなどのトリフェ
ニルアミン類、ビス(N−アリルカルバゾール)または
ビス(N−アルキルカルバゾール)類、ピラゾリン誘導
体、スチルベン系化合物、ヒドラゾン系化合物、オキサ
ジアゾール誘導体やフタロシアニン誘導体、ポルフィリ
ン誘導体に代表される複素環化合物、ポリマー系では前
記単量体を側鎖に有するポリカーボネートやスチレン誘
導体、ポリビニルカルバゾール、ポリシランなどが好ま
しいが、素子作製に必要な薄膜を形成し、正極から正孔
が注入できて、さらに正孔を輸送できる化合物であれば
特に限定されるものではない。
In the present invention, the hole transporting layer is formed of a hole transporting substance alone or a mixture of two or more substances or a mixture of a hole transporting substance and a polymer binder.
As a hole transporting substance, it is necessary to efficiently transport holes from the positive electrode between electrodes to which an electric field is applied, and it is desirable to have a high hole injection efficiency and to efficiently transport injected holes. . For that purpose, it is required that the ionization potential be small, the hole mobility be large, the stability be further improved, and impurities serving as traps be hardly generated during production and use. The substance satisfying such conditions is not particularly limited,
N, N′-diphenyl-N, N′-di (3-methylphenyl) -4,4′-diphenyl-1,1′-diamine;
N, N'-dinaphthyl-N, N'-diphenyl-4,
Triphenylamines such as 4'-diphenyl-1,1'-diamine, bis (N-allylcarbazole) or bis (N-alkylcarbazole), pyrazoline derivatives, stilbene compounds, hydrazone compounds, oxadiazole derivatives And a phthalocyanine derivative, a heterocyclic compound represented by a porphyrin derivative, in a polymer system, a polycarbonate or a styrene derivative having the monomer in a side chain, polyvinyl carbazole, polysilane and the like are preferable, but a thin film necessary for element production is formed. The compound is not particularly limited as long as it is a compound capable of injecting holes from the positive electrode and further transporting holes.

【0019】本発明における発光材料はホスト材料のみ
でも、ホスト材料とドーパント材料の組み合わせでも、
いずれであってもよい。また、ドーパント材料はホスト
材料の全体に含まれていても、部分的に含まれていて
も、いずれであってもよい。ドーパント材料は積層され
ていても、分散されていても、いずれであってもよい。
In the present invention, the luminescent material may be a host material alone or a combination of a host material and a dopant material.
Any of them may be used. In addition, the dopant material may be included in the entire host material, partially, or may be included. The dopant material may be stacked, dispersed, or the like.

【0020】本発明において発光材料は、下記一般式
(1)あるいは、下記一般式(2)で表されるフェナン
トロリン骨格を有する有機蛍光体を含む。
In the present invention, the light emitting material includes an organic phosphor having a phenanthroline skeleton represented by the following general formula (1) or (2).

【0021】[0021]

【化4】 Embedded image

【0022】ここでR1〜R8はそれぞれ同じでも異なっ
ていてもよく、水素、アルキル基、シクロアルキル基、
アラルキル基、アルケニル基、シクロアルケニル基、ア
ルキニル基、水酸基、メルカプト基、アルコキシ基、ア
ルキルチオ基、アリールエーテル基、アリールチオエー
テル基、アリール基、複素環基、ハロゲン、ハロアルカ
ン、ハロアルケン、ハロアルキン、シアノ基、アルデヒ
ド基、カルボニル基、カルボキシル基、エステル基、カ
ルバモイル基、アミノ基、ニトロ基、シリル基、シロキ
サニル基の中から選ばれる。但し、その内の少なくとも
1つはそれ自身が三次元的立体構造を有するか、フェナ
ントロリン骨格とのあるいは隣接置換基との立体反発に
より、三次元的立体構造を有するものである。
Here, R 1 to R 8 may be the same or different, and include hydrogen, an alkyl group, a cycloalkyl group,
Aralkyl group, alkenyl group, cycloalkenyl group, alkynyl group, hydroxyl group, mercapto group, alkoxy group, alkylthio group, aryl ether group, arylthioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, It is selected from aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, silyl group and siloxanyl group. However, at least one of them has a three-dimensional structure by itself, or has a three-dimensional structure by steric repulsion with a phenanthroline skeleton or with an adjacent substituent.

【0023】[0023]

【化5】 Embedded image

【0024】ここでR9〜R16はそれぞれ同じでも異な
っていてもよく、水素、アルキル基、シクロアルキル
基、アラルキル基、アルケニル基、シクロアルケニル
基、アルキニル基、水酸基、メルカプト基、アルコキシ
基、アルキルチオ基、アリールエーテル基、アリールチ
オエーテル基、アリール基、複素環基、ハロゲン、ハロ
アルカン、ハロアルケン、ハロアルキン、シアノ基、ア
ルデヒド基、カルボニル基、カルボキシル基、エステル
基、カルバモイル基、アミノ基、ニトロ基、シリル基、
シロキサニル基の中から選ばれる。但し、R9〜R16
内の少なくとも1つは連結に用いられる。nは2以上の
自然数を表す。X1は単結合、あるいは複数のフェナン
トロリン骨格を連結する連結ユニットである。
Here, R 9 to R 16 may be the same or different from each other, and include hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a mercapto group, an alkoxy group, Alkylthio group, arylether group, arylthioether group, aryl group, heterocyclic group, halogen, haloalkane, haloalkene, haloalkyne, cyano group, aldehyde group, carbonyl group, carboxyl group, ester group, carbamoyl group, amino group, nitro group, Silyl group,
It is selected from siloxanyl groups. However, at least one of R 9 to R 16 is used for connection. n represents a natural number of 2 or more. X 1 is a single bond or a linking unit for linking a plurality of phenanthroline skeletons.

【0025】これらの置換基の内、アルキル基とは例え
ばメチル基、エチル基、プロピル基、ブチル基などの飽
和脂肪族炭化水素基を示し、これは無置換でも置換され
ていてもかまわない。また、シクロアルキル基とは例え
ばシクロプロピル、シクロヘキシル、ノルボルニル、ア
ダマンチルなどの飽和脂環式炭化水素基を示し、これは
無置換でも置換されていてもかまわない。また、アラル
キル基とは例えばベンジル基、フェニルエチル基などの
脂肪族炭化水素を介した芳香族炭化水素基を示し、脂肪
族炭化水素と芳香族炭化水素はいずれも無置換でも置換
されていてもかまわない。また、アルケニル基とは例え
ばビニル基、アリル基、ブタジエニル基などの二重結合
を含む不飽和脂肪族炭化水素基を示し、これは無置換で
も置換されていてもかまわない。また、シクロアルケニ
ル基とは例えばシクロペンテニル基、シクロペンタジエ
ニル基、シクロヘキセン基などの二重結合を含む不飽和
脂環式炭化水素基を示し、これは無置換でも置換されて
いてもかまわない。また、アルキニル基とは例えばアセ
チレニル基などの三重結合を含む不飽和脂肪族炭化水素
基を示し、これは無置換でも置換されていてもかまわな
い。また、アルコキシ基とは例えばメトキシ基などのエ
ーテル結合を介した脂肪族炭化水素基を示し、脂肪族炭
化水素基は無置換でも置換されていてもかまわない。ま
た、アルキルチオ基とはアルコキシ基のエーテル結合の
酸素原子が硫黄原子に置換されたものである。また、ア
リールエーテル基とは例えばフェノキシ基などのエーテ
ル結合を介した芳香族炭化水素基を示し、芳香族炭化水
素基は無置換でも置換されていてもかまわない。また、
アリールチオエーテル基とはアリールエーテル基のエー
テル結合の酸素原子が硫黄原子に置換されたものであ
る。また、アリール基とは例えばフェニル基、ナフチル
基、ビフェニル基、フェナントリル基、ターフェニル
基、ピレニル基などの芳香族炭化水素基を示し、これは
無置換でも置換されていてもかまわない。また、複素環
基とは例えばフリル基、チエニル基、オキサゾリル基、
ピリジル基、キノリル基、カルバゾリル基などの炭素以
外の原子を有する環状構造基を示し、これは無置換でも
置換されていてもかまわない。ハロゲンとはフッ素、塩
素、臭素、ヨウ素を示す。ハロアルカン、ハロアルケ
ン、ハロアルキンとは例えばトリフルオロメチル基など
の、前述のアルキル基、アルケニル基、アルキニル基の
一部あるいは全部が、前述のハロゲンで置換されたもの
を示し、残りの部分は無置換でも置換されていてもかま
わない。アルデヒド基、カルボニル基、エステル基、カ
ルバモイル基、アミノ基には脂肪族炭化水素、脂環式炭
化水素、芳香族炭化水素、複素環などで置換されたもの
も含み、さらに脂肪族炭化水素、脂環式炭化水素、芳香
族炭化水素、複素環は無置換でも置換されていてもかま
わない。シリル基とは例えばトリメチルシリル基などの
ケイ素化合物基を示し、これは無置換でも置換されてい
てもかまわない。シロキサニル基とは例えばトリメチル
シロキサニル基などのエーテル結合を介したケイ素化合
物基を示し、これは無置換でも置換されていてもかまわ
ない。また、隣接置換基との間に環構造を形成しても構
わない。形成される環構造は無置換でも置換されていて
もかまわない。
Among these substituents, the alkyl group refers to a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, a propyl group, and a butyl group, which may be unsubstituted or substituted. The cycloalkyl group is, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, and adamantyl, which may be unsubstituted or substituted. The aralkyl group refers to an aromatic hydrocarbon group via an aliphatic hydrocarbon such as a benzyl group and a phenylethyl group, and the aliphatic hydrocarbon and the aromatic hydrocarbon may be unsubstituted or substituted. I don't care. The alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group and a butadienyl group, which may be unsubstituted or substituted. The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, and a cyclohexene group, which may be unsubstituted or substituted. . The alkynyl group means an unsaturated aliphatic hydrocarbon group containing a triple bond such as an acetylenyl group, which may be unsubstituted or substituted. The alkoxy group refers to an aliphatic hydrocarbon group via an ether bond such as a methoxy group, and the aliphatic hydrocarbon group may be unsubstituted or substituted. The alkylthio group is obtained by substituting the oxygen atom of the ether bond of the alkoxy group with a sulfur atom. Further, the aryl ether group refers to an aromatic hydrocarbon group via an ether bond such as a phenoxy group, and the aromatic hydrocarbon group may be unsubstituted or substituted. Also,
The arylthioether group is a group in which an oxygen atom of an ether bond of the arylether group is substituted with a sulfur atom. The aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a naphthyl group, a biphenyl group, a phenanthryl group, a terphenyl group, and a pyrenyl group, which may be unsubstituted or substituted. Further, the heterocyclic group is, for example, a furyl group, a thienyl group, an oxazolyl group,
It represents a cyclic structural group having an atom other than carbon, such as a pyridyl group, a quinolyl group, and a carbazolyl group, which may be unsubstituted or substituted. Halogen refers to fluorine, chlorine, bromine and iodine. Haloalkanes, haloalkenes, and haloalkynes are those in which some or all of the aforementioned alkyl, alkenyl, and alkynyl groups, such as trifluoromethyl, have been substituted with the aforementioned halogens, and the rest are unsubstituted. It may be replaced. Aldehyde groups, carbonyl groups, ester groups, carbamoyl groups, and amino groups include those substituted with aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, heterocycles, and the like. The cyclic hydrocarbon, aromatic hydrocarbon and heterocyclic ring may be unsubstituted or substituted. The silyl group means a silicon compound group such as a trimethylsilyl group, which may be unsubstituted or substituted. The siloxanyl group refers to a silicon compound group via an ether bond such as a trimethylsiloxanyl group, which may be unsubstituted or substituted. Further, a ring structure may be formed between adjacent substituents. The ring structure formed may be unsubstituted or substituted.

【0026】置換基自身が三次元的立体構造を有すると
は、例えばt−ブチル基、アダマンチル基、ノルボルニ
ル基などの、二次元的平面構造でない、かさだかい立体
構造を示し、無置換でも置換されていても構わない。ま
た、フェナントロリン骨格とのあるいは隣接置換基との
立体反発により、三次元的立体構造をもたらす置換基と
は、α−ナフチル基、フェナンスレン基、メシチル基な
どの、置換基自身は平面構造だとしても、その置換基と
フェナントロリン骨格、あるいはその置換基と隣接置換
基との立体反発により、置換基平面がフェナントロリン
骨格平面と異なる平面にあることを示す。これらは分子
模型や計算機化学などを用いて考察することが出来る。
The substituent itself having a three-dimensional structure refers to a bulky three-dimensional structure that is not a two-dimensional planar structure such as a t-butyl group, an adamantyl group or a norbornyl group. It may be done. Further, a substituent that provides a three-dimensional steric structure by steric repulsion with the phenanthroline skeleton or with an adjacent substituent means that the substituent itself has a planar structure, such as an α-naphthyl group, a phenanthrene group, and a mesityl group. This indicates that the plane of the substituent is on a plane different from the plane of the phenanthroline skeleton due to steric repulsion between the substituent and the phenanthroline skeleton or between the substituent and the adjacent substituent. These can be considered using a molecular model or computer chemistry.

【0027】置換基自身が三次元的立体構造を有する
か、フェナントロリン骨格とのあるいは隣接置換基との
立体反発により、三次元的立体構造をもたらすことによ
って、フェナントロリン骨格を含む有機蛍光体は平面性
が低く結晶化が起こりにくくなり、良好なアモルファス
薄膜状態を維持することが出来る。
The organic phosphor containing a phenanthroline skeleton has a three-dimensional structure by itself having a three-dimensional structure or by providing a three-dimensional structure by steric repulsion with a phenanthroline skeleton or with an adjacent substituent. And crystallization hardly occurs, and a good amorphous thin film state can be maintained.

【0028】また、複数のフェナントロリン骨格を連結
することによって、フェナントロリン骨格を含む有機蛍
光体は高分子量化してガラス転移温度が上昇し、やはり
結晶化が起こりにくくなり、良好なアモルファス薄膜状
態を維持することが出来る。
Further, by linking a plurality of phenanthroline skeletons, the organic phosphor containing the phenanthroline skeleton becomes high in molecular weight and the glass transition temperature rises, so that crystallization hardly occurs, and a good amorphous thin film state is maintained. I can do it.

【0029】本発明における一般式(1)のフェナント
ロリン骨格を有する有機蛍光体の中では、フェナントロ
リン骨格の2、4、7、9位に置換基を導入することが
さらに好適である。これらの置換基については、上述し
たものと同様である。
In the organic phosphor having a phenanthroline skeleton represented by the general formula (1) in the present invention, it is more preferable to introduce a substituent at the 2, 4, 7, 9-position of the phenanthroline skeleton. These substituents are the same as those described above.

【0030】上記のフェナントロリン骨格を有する有機
蛍光体として、具体的には下記のような構造があげられ
る。
Specific examples of the above-mentioned organic phosphor having a phenanthroline skeleton include the following structures.

【0031】[0031]

【化6】 Embedded image

【0032】[0032]

【化7】 Embedded image

【0033】[0033]

【化8】 Embedded image

【0034】[0034]

【化9】 Embedded image

【0035】フェナントロリン骨格を有する有機蛍光体
はドーパント材料として用いてもかまわないが、優れた
電子輸送能を有することから、ホスト材料として好適に
用いられる。
An organic phosphor having a phenanthroline skeleton may be used as a dopant material, but is preferably used as a host material because of its excellent electron transporting ability.

【0036】発光材料のホスト材料はフェナントロリン
骨格を有する有機蛍光体一種のみに限る必要はなく、複
数のフェナントロリン骨格を有する有機蛍光体を混合し
て用いたり、既知のホスト材料の一種類以上をフェナン
トロリン骨格を有する有機蛍光体と混合して用いてもよ
い。既知のホスト材料としては特に限定されるものでは
ないが、以前から発光体として知られていたアントラセ
ン、フェナンスレン、ピレン、ペリレン、クリセンなど
の縮合環誘導体、トリス(8−キノリノラト)アルミニ
ウムを始めとするキノリノール誘導体の金属錯体、ベン
ズオキサゾール誘導体、スチルベン誘導体、ベンズチア
ゾール誘導体、チアジアゾール誘導体、チオフェン誘導
体、テトラフェニルブタジエン誘導体、シクロペンタジ
エン誘導体、オキサジアゾール誘導体、ビススチリルア
ントラセン誘導体やジスチリルベンゼン誘導体などのビ
ススチリル誘導体、キノリノール誘導体と異なる配位子
を組み合わせた金属錯体、オキサジアゾール誘導体金属
錯体、ベンズアゾール誘導体金属錯体、クマリン誘導
体、ピロロピリジン誘導体、ペリノン誘導体、チアジア
ゾロピリジン誘導体、ポリマー系では、ポリフェニレン
ビニレン誘導体、ポリパラフェニレン誘導体、そして、
ポリチオフェン誘導体などが使用できる。
The host material of the light-emitting material is not limited to one kind of organic phosphor having a phenanthroline skeleton. A plurality of organic phosphors having a phenanthroline skeleton may be used as a mixture. You may mix and use with the organic fluorescent substance which has a skeleton. Examples of the known host material include, but are not particularly limited to, tris (8-quinolinolato) aluminum, a condensed ring derivative such as anthracene, phenanthrene, pyrene, perylene, and chrysene, which has been known as a light emitter before. Metal complexes of quinolinol derivatives, benzoxazole derivatives, stilbene derivatives, benzothiazole derivatives, thiadiazole derivatives, thiophene derivatives, tetraphenylbutadiene derivatives, cyclopentadiene derivatives, oxadiazole derivatives, bisstyryl derivatives such as bisstyrylanthracene derivatives and distyrylbenzene derivatives Complex, oxadiazole derivative metal complex, benzazole derivative metal complex, coumarin derivative, pyrrolopyridine derivative , Perinone derivatives, thiadiazolopyridine derivatives, the polymer system, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and,
Polythiophene derivatives and the like can be used.

【0037】発光材料に添加するドーパント材料は、特
に限定されるものではないが、具体的には従来から知ら
れている、フェナンスレン、アントラセン、ピレン、テ
トラセン、ペンタセン、ペリレン、ナフトピレン、ジベ
ンゾピレン、ルブレンなどの縮合環誘導体、ベンズオキ
サゾール誘導体、ベンズチアゾール誘導体、ベンズイミ
ダゾール誘導体、ベンズトリアゾール誘導体、オキサゾ
ール誘導体、オキサジアゾール誘導体、チアゾール誘導
体、イミダゾール誘導体、チアジアゾール誘導体、トリ
アゾール誘導体、ピラゾリン誘導体、スチルベン誘導
体、チオフェン誘導体、テトラフェニルブタジエン誘導
体、シクロペンタジエン誘導体、ビススチリルアントラ
セン誘導体やジスチリルベンゼン誘導体などのビススチ
リル誘導体、ジアザインダセン誘導体、フラン誘導体、
ベンゾフラン誘導体、フェニルイソベンゾフラン、ジメ
シチルイソベンゾフラン、ジ(2−メチルフェニル)イ
ソベンゾフラン、ジ(2−トリフルオロメチルフェニ
ル)イソベンゾフラン、フェニルイソベンゾフランなど
のイソベンゾフラン誘導体、ジベンゾフラン誘導体、7
−ジアルキルアミノクマリン誘導体、7−ピペリジノク
マリン誘導体、7−ヒドロキシクマリン誘導体、7−メ
トキシクマリン誘導体、7−アセトキシクマリン誘導
体、3−ベンズチアゾリルクマリン誘導体、3−ベンズ
イミダゾリルクマリン誘導体、3−ベンズオキサゾリル
クマリン誘導体などのクマリン誘導体、ジシアノメチレ
ンピラン誘導体、ジシアノメチレンチオピラン誘導体、
ポリメチン誘導体、シアニン誘導体、オキソベンズアン
スラセン誘導体、キサンテン誘導体、ローダミン誘導
体、フルオレセイン誘導体、ピリリウム誘導体、カルボ
スチリル誘導体、アクリジン誘導体、ビス(スチリル)
ベンゼン誘導体、オキサジン誘導体、フェニレンオキサ
イド誘導体、キナクリドン誘導体、キナゾリン誘導体、
ピロロピリジン誘導体、フロピリジン誘導体、1,2,
5−チアジアゾロピレン誘導体、ペリノン誘導体、ピロ
ロピロール誘導体、スクアリリウム誘導体、ビオラント
ロン誘導体、フェナジン誘導体、アクリドン誘導体、ジ
アザフラビン誘導体などがそのまま使用できるが、特に
イソベンゾフラン誘導体が好適に用いられる。
The dopant material to be added to the light emitting material is not particularly limited. Specifically, phenanthrene, anthracene, pyrene, tetracene, pentacene, perylene, naphthopyrene, dibenzopyrene, and rubrene are conventionally known. Condensed ring derivatives such as benzoxazole derivatives, benzothiazole derivatives, benzimidazole derivatives, benzotriazole derivatives, oxazole derivatives, oxadiazole derivatives, thiazole derivatives, imidazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazoline derivatives, stilbene derivatives, thiophene derivatives , Bisphenylyl derivatives such as tetraphenylbutadiene derivatives, cyclopentadiene derivatives, bisstyrylanthracene derivatives and distyrylbenzene derivatives, diaza Ndasen derivatives, furan derivatives,
Benzofuran derivatives, phenylisobenzofuran, dimesitylisobenzofuran, di (2-methylphenyl) isobenzofuran, di (2-trifluoromethylphenyl) isobenzofuran, isobenzofuran derivatives such as phenylisobenzofuran, dibenzofuran derivatives, 7
-Dialkylaminocoumarin derivative, 7-piperidinocoumarin derivative, 7-hydroxycoumarin derivative, 7-methoxycoumarin derivative, 7-acetoxycoumarin derivative, 3-benzthiazolyl coumarin derivative, 3-benzimidazolyl coumarin derivative, 3- Coumarin derivatives such as benzoxazolyl coumarin derivatives, dicyanomethylenepyran derivatives, dicyanomethylenethiopyran derivatives,
Polymethine derivatives, cyanine derivatives, oxobenzanthracene derivatives, xanthene derivatives, rhodamine derivatives, fluorescein derivatives, pyrylium derivatives, carbostyril derivatives, acridine derivatives, bis (styryl)
Benzene derivatives, oxazine derivatives, phenylene oxide derivatives, quinacridone derivatives, quinazoline derivatives,
Pyrrolopyridine derivatives, furopyridine derivatives, 1,2,2
A 5-thiadiazolopyrene derivative, a perinone derivative, a pyrrolopyrrole derivative, a squarylium derivative, a biolanthrone derivative, a phenazine derivative, an acridone derivative, a diazaflavin derivative, and the like can be used as they are, but an isobenzofuran derivative is particularly preferably used.

【0038】本発明において電子輸送性材料は、電界を
与えられた電極間において負極からの電子を効率良く輸
送することが必要で、電子注入効率が高く、注入された
電子を効率良く輸送することが望ましい。そのためには
電子親和力が大きく、しかも電子移動度が大きく、さら
に安定性に優れ、トラップとなる不純物が製造時および
使用時に発生しにくい物質であることが要求される。
In the present invention, the electron-transporting material needs to efficiently transport electrons from the negative electrode between the electrodes to which an electric field is applied, has a high electron injection efficiency, and efficiently transports the injected electrons. Is desirable. For this purpose, it is required that the material has a high electron affinity, a high electron mobility, a high stability, and a small amount of impurities serving as traps during production and use.

【0039】しかしながら、正孔と電子の輸送バランス
を考えた場合に、正極からの正孔が再結合せずに負極側
へ流れるのを効率よく阻止できる役割を主に果たす場合
には、電子輸送能力がそれ程高くなくても、発光効率を
向上させる効果は電子輸送能力が高い材料と同等に有す
る。したがって、本発明における電子輸送層は、正孔の
移動を効率よく阻止できる正孔阻止層も同義のものとし
て含まれる。
However, considering the transport balance between holes and electrons, when the role of mainly preventing the holes from the positive electrode from flowing to the negative electrode side without recombination is to play an important role, the electron transport Even if the ability is not so high, the effect of improving the luminous efficiency is equivalent to a material having a high electron transport ability. Therefore, the electron transport layer in the present invention includes a hole blocking layer capable of efficiently blocking the movement of holes as the same thing.

【0040】このような条件を満たす物質として、本発
明におけるフェナントロリン骨格を有する有機蛍光体を
挙げることができる。長時間にわたって安定な発光を得
るには、熱的安定性や薄膜形成性に優れた材料が望ま
れ、フェナントロリン骨格を有する有機蛍光体の中で
も、置換基自身が三次元的立体構造を有するか、フェナ
ントロリン骨格とのあるいは隣接置換基との立体反発に
より三次元的立体構造を有するもの、あるいは複数のフ
ェナントロリン骨格を連結したものが好ましい。さら
に、複数のフェナントロリン骨格を連結する場合、連結
ユニット中に共役結合、置換もしくは無置換の芳香族炭
化水素、置換もしくは無置換の芳香複素環を含んでいる
化合物がより好ましい。上記のフェナントロリン骨格を
有する有機蛍光体の具体例としては前記具体例(化番号
6〜9)のような構造があげられるが、これに限定され
るものではない。
As a substance satisfying such conditions, the organic phosphor having a phenanthroline skeleton according to the present invention can be mentioned. In order to obtain stable light emission over a long period of time, a material having excellent thermal stability and thin film forming properties is desired. Among organic phosphors having a phenanthroline skeleton, whether the substituent itself has a three-dimensional structure, Those having a three-dimensional steric structure due to steric repulsion with a phenanthroline skeleton or with an adjacent substituent, or those having a plurality of phenanthroline skeletons linked are preferred. Further, when a plurality of phenanthroline skeletons are connected, a compound containing a conjugated bond, a substituted or unsubstituted aromatic hydrocarbon, or a substituted or unsubstituted aromatic heterocycle in a connection unit is more preferable. Specific examples of the organic phosphor having a phenanthroline skeleton include structures as in the above specific examples (Formula Nos. 6 to 9), but are not limited thereto.

【0041】電子輸送材料はフェナントロリン骨格を有
する有機蛍光体一種のみに限る必要はなく、複数の前記
化合物を混合して用いたり、既知の電子輸送材料の一種
類以上を前記化合物と混合して用いてもよい。既知の電
子輸送材料としては特に限定されるものではないが、8
−ヒドロキシキノリンアルミニウムに代表されるキノリ
ノール誘導体金属錯体、ベンゾキノリン金属錯体、トロ
ポロン金属錯体、フラボノール金属錯体、ペリレン誘導
体、ペリノン誘導体、ナフタレン、クマリン誘導体、オ
キサジアゾール誘導体、アルダジン誘導体、ビススチリ
ル誘導体、ピラジン誘導体、フェナントロリン誘導体、
キノリン誘導体、ベンズイミダゾール誘導体、トリアゾ
ール誘導体、キノキサリン誘導体、ベンゾキノリン誘導
体、などがあるが特に限定されるものではない。これら
の電子輸送材料は単独でも用いられるが、異なる電子輸
送材料と積層または混合して使用しても構わない。
The electron transporting material need not be limited to one kind of organic phosphor having a phenanthroline skeleton. A plurality of the above compounds may be used as a mixture, or one or more known electron transporting materials may be used as a mixture with the above compound. You may. The known electron transporting material is not particularly limited.
Quinolinol derivative metal complex represented by -hydroxyquinoline aluminum, benzoquinoline metal complex, tropolone metal complex, flavonol metal complex, perylene derivative, perinone derivative, naphthalene, coumarin derivative, oxadiazole derivative, aldazine derivative, bisstyryl derivative, pyrazine derivative , A phenanthroline derivative,
There are quinoline derivatives, benzimidazole derivatives, triazole derivatives, quinoxaline derivatives, benzoquinoline derivatives, and the like, but are not particularly limited. These electron transporting materials may be used alone or may be laminated or mixed with different electron transporting materials.

【0042】以上の正孔輸送層、発光層、電子輸送層に
用いられる材料は単独で各層を形成することができる
が、高分子結着剤としてポリ塩化ビニル、ポリカーボネ
ート、ポリスチレン、ポリ(N−ビニルカルバゾー
ル)、ポリメチルメタクリレート、ポリブチルメタクリ
レート、ポリエステル、ポリスルフォン、ポリフェニレ
ンオキサイド、ポリブタジエン、炭化水素樹脂、ケトン
樹脂、フェノキシ樹脂、ポリサルフォン、ポリアミド、
エチルセルロース、酢酸ビニル、ABS樹脂、ポリウレ
タン樹脂などの溶剤可溶性樹脂や、フェノール樹脂、キ
シレン樹脂、石油樹脂、ユリア樹脂、メラミン樹脂、不
飽和ポリエステル樹脂、アルキド樹脂、エポキシ樹脂、
シリコーン樹脂などの硬化性樹脂などに分散させて用い
ることも可能である。
The materials used for the above-described hole transporting layer, light emitting layer and electron transporting layer can be used alone to form the respective layers. As the polymer binder, polyvinyl chloride, polycarbonate, polystyrene, poly (N- Vinyl carbazole), polymethyl methacrylate, polybutyl methacrylate, polyester, polysulfone, polyphenylene oxide, polybutadiene, hydrocarbon resin, ketone resin, phenoxy resin, polysulfone, polyamide,
Solvent-soluble resins such as ethyl cellulose, vinyl acetate, ABS resin, polyurethane resin, phenolic resin, xylene resin, petroleum resin, urea resin, melamine resin, unsaturated polyester resin, alkyd resin, epoxy resin,
It is also possible to use the resin dispersed in a curable resin such as a silicone resin.

【0043】本発明において発光物質の形成方法は、抵
抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積
層法、コーティング法など特に限定されるものではない
が、通常は、抵抗加熱蒸着、電子ビーム蒸着が特性面で
好ましい。層の厚みは、発光物質の抵抗値にもよるので
限定することはできないが、1〜1000nmの間から
選ばれる。
In the present invention, the method for forming the luminescent material is not particularly limited, such as resistance heating evaporation, electron beam evaporation, sputtering, molecular lamination, and coating method. It is preferable in terms of characteristics. The thickness of the layer depends on the resistance of the luminescent material and cannot be limited, but is selected from the range of 1 to 1000 nm.

【0044】本発明において電気エネルギーとは主に直
流電流を指すが、パルス電流や交流電流を用いることも
可能である。電流値および電圧値は特に制限はないが、
素子の消費電力、寿命を考慮するとできるだけ低いエネ
ルギーで最大の輝度が得られるようにするべきである。
In the present invention, the electric energy mainly refers to a direct current, but it is also possible to use a pulse current or an alternating current. The current value and voltage value are not particularly limited,
In consideration of the power consumption and the life of the device, the maximum luminance should be obtained with the lowest possible energy.

【0045】本発明においてマトリクスとは、表示のた
めの画素が格子状に配置されたものをいい、画素の集合
で文字や画像を表示する。画素の形状、サイズは用途に
よって決まる。例えばパソコン、モニター、テレビの画
像および文字表示には、通常一辺が300μm以下の四
角形の画素が用いられるし、表示パネルのような大型デ
ィスプレイの場合は、一辺がmmオーダーの画素を用い
ることになる。モノクロ表示の場合は、同じ色の画素を
配列すればよいが、カラー表示の場合には、赤、赤、
緑、青の画素を並べて表示させる。この場合、典型的に
はデルタタイプとストライプタイプがある。そして、こ
のマトリクスの駆動方法としては、線順次駆動方法やア
クティブマトリックスのどちらでもよい。線順次駆動の
方が構造が簡単であるという利点があるが、動作特性を
考慮した場合、アクティブマトリックスの方が優れる場
合があるので、これも用途によって使い分けることが必
要である。
In the present invention, a matrix refers to a matrix in which pixels for display are arranged in a lattice pattern, and displays a character or an image by a set of pixels. The shape and size of the pixel depend on the application. For example, a square pixel having a side of 300 μm or less is usually used for displaying images and characters on a personal computer, a monitor, and a television. In the case of a large display such as a display panel, a pixel having a side of mm order is used. . For monochrome display, pixels of the same color may be arranged, but for color display, red, red,
Green and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix may be driven by either a line-sequential driving method or an active matrix. The line-sequential driving has the advantage that the structure is simpler. However, in consideration of the operation characteristics, the active matrix is sometimes superior, and therefore it is necessary to use the same depending on the application.

【0046】本発明においてセグメントタイプとは、予
め決められた情報を表示するようにパターンを形成し、
決められた領域を発光させることになる。例えば、デジ
タル時計や温度計における時刻や温度表示、オーディオ
機器や電磁調理器などの動作状態表示、自動車のパネル
表示などがあげられる。そして、前記マトリクス表示と
セグメント表示は同じパネルの中に共存していてもよ
い。
In the present invention, the segment type refers to a pattern formed so as to display predetermined information,
Light is emitted from the determined area. For example, there are a time display and a temperature display on a digital clock or a thermometer, an operation state display of an audio device, an electromagnetic cooker, or the like, and a panel display of an automobile. The matrix display and the segment display may coexist in the same panel.

【0047】本発明においてバックライトとは、主に自
発光しない表示装置の視認性を向上させる目的に使用さ
れ、液晶表示装置、時計、オーディオ機器、自動車パネ
ル、表示板、標識などに使用される。特に液晶表示装
置、中でも薄型化が課題となっているパソコン用途のバ
ックライトとしては、従来方式のものが蛍光灯や導光板
からなっているため薄型化が困難であることを考えると
本発明におけるバックライトは、薄型、軽量が特徴にな
る。
In the present invention, the backlight is mainly used for improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. . In particular, as a backlight for a liquid crystal display device, especially a personal computer application in which thinning is an issue, considering that it is difficult to reduce the thickness because the conventional type is made of a fluorescent lamp or a light guide plate, the present invention The backlight is thin and lightweight.

【0048】[0048]

【実施例】以下、実施例および比較例をあげて本発明を
説明するが、本発明はこれらの例によって限定されるも
のではない。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0049】実施例1 ITO透明導電膜を150nm堆積させたガラス基板
(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を
30×40mmに切断、エッチングを行った。得られた
基板をアセトン、”セミコクリン56”(フルウチ化学
(株)製)で各々15分間超音波洗浄してから、超純水
で洗浄した。続いてイソプロピルアルコールで15分間
超音波洗浄してから熱メタノールに15分間浸漬させて
乾燥させた。この基板を素子を作製する直前に1時間U
V−オゾン処理し、真空蒸着装置内に設置して、装置内
の真空度が5×10-5Pa以下になるまで排気した。抵
抗加熱法によって、まず正孔輸送材料として4,4’−
ビス(N−(m−トリル)−N−フェニルアミノ)ビフ
ェニルを100nm蒸着した。次に発光材料として、
2,9−ジ(フェニルビニル)−4,7−ジフェニル−
1,10−フェナントロリンを50nmの厚さに積層し
た。次に電子輸送材料として、2−(4−t−ブチルフ
ェニル)−5−(4−ビフェニルイル)−1,3,4−
オキサジアゾールを100nmの厚さに積層した。次に
リチウムを0.5nm有機層にドーピングした後、アル
ミニウムを200nm蒸着して陰極とし、5×5mm角
の素子を作製した。ここで言う膜厚は水晶発振式膜厚モ
ニター表示値である。この発光素子からは、良好な発光
が得られた。 実施例2 発光材料として2,9−ジ(1−ナフチル)−4,7−
ジフェニル−1,10−フェナントロリンを用いた他は
実施例1と全く同様にして発光素子を作製した。この発
光素子からは良好な発光が得られた。
Example 1 A glass substrate (available from Asahi Glass Co., Ltd., 15 Ω / □, electron beam deposited) on which an ITO transparent conductive film was deposited to a thickness of 150 nm was cut into a size of 30 × 40 mm and etched. The obtained substrate was subjected to ultrasonic cleaning with acetone and "Semicocrine 56" (manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes, and then with ultrapure water. Subsequently, the substrate was subjected to ultrasonic cleaning with isopropyl alcohol for 15 minutes, immersed in hot methanol for 15 minutes, and dried. Immediately before this element is fabricated,
V-ozone treatment was performed, the apparatus was set in a vacuum evaporation apparatus, and the apparatus was evacuated until the degree of vacuum in the apparatus became 5 × 10 −5 Pa or less. By the resistance heating method, 4,4'-
Bis (N- (m-tolyl) -N-phenylamino) biphenyl was deposited to a thickness of 100 nm. Next, as a luminescent material,
2,9-di (phenylvinyl) -4,7-diphenyl-
1,10-phenanthroline was laminated to a thickness of 50 nm. Next, as an electron transport material, 2- (4-t-butylphenyl) -5- (4-biphenylyl) -1,3,4-
Oxadiazole was laminated to a thickness of 100 nm. Next, after doping the organic layer with lithium to a thickness of 0.5 nm, aluminum was vapor-deposited to a thickness of 200 nm to form a cathode, thereby producing a 5 × 5 mm square device. The film thickness referred to here is a value indicated by a crystal oscillation type film thickness monitor. Good light emission was obtained from this light emitting device. Example 2 As a light emitting material, 2,9-di (1-naphthyl) -4,7-
A light emitting device was manufactured in exactly the same manner as in Example 1 except that diphenyl-1,10-phenanthroline was used. Good light emission was obtained from this light emitting device.

【0050】実施例3 発光材料として2,9−ジ(1−(2−メチルナフチ
ル))−1,10−フェナントロリンを用いた他は実施
例1と全く同様にして発光素子を作製した。この発光素
子からは良好な発光が得られた。
Example 3 A light emitting device was manufactured in the same manner as in Example 1 except that 2,9-di (1- (2-methylnaphthyl))-1,10-phenanthroline was used as a light emitting material. Good light emission was obtained from this light emitting device.

【0051】実施例4 発光材料として2,9−ジ(2,4,6−トリメチルフ
ェニル)−1,10−フェナントロリンを用いた他は実
施例1と全く同様にして発光素子を作製した。この発光
素子からは良好な発光が得られた。
Example 4 A light emitting device was manufactured in exactly the same manner as in Example 1 except that 2,9-di (2,4,6-trimethylphenyl) -1,10-phenanthroline was used as a light emitting material. Good light emission was obtained from this light emitting device.

【0052】実施例5 発光材料として2,9−ジ(4−tブチルフェニル)−
1,10−フェナントロリンを用いた他は実施例1と全
く同様にして発光素子を作製した。この発光素子からは
良好な発光が得られた。
Example 5 2,9-di (4-tbutylphenyl)-as a light emitting material
A light emitting device was manufactured in exactly the same manner as in Example 1 except that 1,10-phenanthroline was used. Good light emission was obtained from this light emitting device.

【0053】実施例6 各有機層を蒸着するまでの工程は実施例1と同様に行っ
た。抵抗加熱法によって、まず正孔輸送材料として4,
4’−ビス(N−(m−トリル)−N−フェニルアミ
ノ)ビフェニルを150nm蒸着し、2,9−ジ(フェ
ニルビニル)−4,7−ジフェニル−1,10−フェナ
ントロリンを50nmの厚さに蒸着した。次に電子輸送
材料として、2−(4−t−ブチルフェニル)−5−
(4−ビフェニルイル)−1,3,4−オキサジアゾー
ルを100nmの厚さに積層した。次にリチウムを0.
5nm有機層にドーピングした後、アルミニウムを20
0nm蒸着して5×5mm角の素子を作製した。ここで
いう膜厚は水晶発振式膜厚モニター表示値である。この
発光素子を真空セル内で1mAパルス駆動(Duty比
1/60、パルス時の電流値60mA)させたところ、
発光が確認された。
Example 6 The steps up to the deposition of each organic layer were performed in the same manner as in Example 1. First, as a hole transport material, 4,
4′-bis (N- (m-tolyl) -N-phenylamino) biphenyl is deposited to a thickness of 150 nm, and 2,9-di (phenylvinyl) -4,7-diphenyl-1,10-phenanthroline is deposited to a thickness of 50 nm. Was deposited. Next, as an electron transporting material, 2- (4-t-butylphenyl) -5-
(4-Biphenylyl) -1,3,4-oxadiazole was laminated to a thickness of 100 nm. Next, lithium was added to 0.
After doping the 5 nm organic layer, aluminum
An element having a size of 5 × 5 mm was formed by vapor deposition of 0 nm. The film thickness here is a value indicated by a crystal oscillation type film thickness monitor. When the light-emitting element was driven in a vacuum cell by a 1 mA pulse (duty ratio 1/60, current value at the time of pulse 60 mA),
Light emission was confirmed.

【0054】実施例7 ITO透明導電膜を150nm堆積させたガラス基板
(旭硝子(株)製、15Ω/□、電子ビーム蒸着品)を
30×40mmに切断、フォトリソグラフィ法によって
300μmピッチ(残り幅270μm)×32本のストラ
イプ状にパターン加工した。ITOストライプの長辺方
向片側は外部との電気的接続を容易にするために1.2
7mmピッチ(開口部幅800μm)まで広げてある。
得られた基板をアセトン、”セミコクリン”56で各々
15分間超音波洗浄してから、超純水で洗浄した。続い
てイソプロピルアルコールで15分間超音波洗浄してか
ら熱メタノールに15分間浸漬させて乾燥させた。この
基板を素子を作製する直前に1時間UV−オゾン処理
し、真空蒸着装置内に設置して、装置内の真空度が5×
10-4Pa以下になるまで排気した。抵抗加熱法によっ
て、まず正孔輸送材料として4,4’−ビス(N−(m
−トリル)−N−フェニルアミノ)ビフェニルを150
nm蒸着し、2,9−ジ(フェニルビニル)−4,7−
ジフェニル−1,10−フェナントロリンを50nmの
厚さに蒸着した。次に電子輸送材料として、2−(4−
t−ブチルフェニル)−5−(4−ビフェニルイル)−
1,3,4−オキサジアゾールを100nmの厚さに積
層した。ここで言う膜厚は水晶発振式膜厚モニター表示
値である。次に厚さ50μmのコバール板にウエットエ
ッチングによって16本の250μmの開口部(残り幅
50μm、300μmピッチに相当)を設けたマスクを、
真空中でITOストライプに直交するようにマスク交換
し、マスクとITO基板が密着するように裏面から磁石
で固定した。そしてリチウムを0.5nm有機層にドー
ピングした後、アルミニウムを200nm蒸着して32
×16ドットマトリクス素子を作製した。本素子をマト
リクス駆動させたところ、クロストークなく文字表示で
きた。
Example 7 A glass substrate (15 Ω / □, manufactured by Asahi Glass Co., Ltd., electron beam deposited) on which an ITO transparent conductive film was deposited to a thickness of 150 nm was cut into 30 × 40 mm, and 300 μm pitch (remaining width 270 μm) was obtained by photolithography. ) X 32 stripes were patterned. One side of the ITO stripe in the long side direction is 1.2 in order to facilitate electrical connection with the outside.
It is expanded to a pitch of 7 mm (opening width 800 μm).
The obtained substrate was subjected to ultrasonic cleaning with acetone and "Semicocline" 56 for 15 minutes each, and then with ultrapure water. Subsequently, the substrate was subjected to ultrasonic cleaning with isopropyl alcohol for 15 minutes, immersed in hot methanol for 15 minutes, and dried. This substrate was subjected to UV-ozone treatment for 1 hour immediately before the device was manufactured, and was placed in a vacuum evaporation apparatus, and the degree of vacuum in the apparatus was 5 ×.
Evacuation was performed until the pressure became 10 −4 Pa or less. First, 4,4′-bis (N- (m
-Tolyl) -N-phenylamino) biphenyl to 150
2,9-di (phenylvinyl) -4,7-
Diphenyl-1,10-phenanthroline was deposited to a thickness of 50 nm. Next, 2- (4-
t-butylphenyl) -5- (4-biphenylyl)-
1,3,4-oxadiazole was laminated to a thickness of 100 nm. The film thickness referred to here is a value indicated by a crystal oscillation type film thickness monitor. Next, a mask having 16 openings of 250 μm (corresponding to a remaining width of 50 μm and a pitch of 300 μm) provided by wet etching on a Kovar plate having a thickness of 50 μm was used.
The mask was exchanged in a vacuum so as to be orthogonal to the ITO stripe, and the magnet and the ITO substrate were fixed from the back surface so that the mask and the ITO substrate were in close contact with each other. After doping the organic layer with lithium by 0.5 nm, aluminum is vapor-deposited by 200 nm to form
A × 16 dot matrix element was manufactured. When this device was driven in a matrix, characters could be displayed without crosstalk.

【0055】実施例8 各有機層を蒸着するまでの工程は実施例1と同様に行っ
た。抵抗加熱法によって、まず第一の正孔注入輸送材料
として銅フタロシアニン(CuPc)を10nm蒸着
し、引き続いて第二の正孔輸送材料としてN,N’−ジ
フェニル−N,N’−ビス(1−ナフチル)−1,1’
−ジフェニル−4,4’−ジアミン(α−NPD)を5
0nm積層した。さらに、引き続いて発光材料としてト
リス(8−キノリノラト)アルミニウム(III)(Al
q3)を15nmの厚さに、ついで電子輸送材料として
下記に示すETL1を35nmの厚さに積層した。引き
続いてリチウムを0.2nmドーピングし、最後にアル
ミニウムを150nm蒸着して陰極とし、5×5mm角
の素子を作製した。この発光素子からは、10Vの印加
電圧で、発光ピーク波長が536nmのAlq3に基づ
く緑色発光が得られ、発光輝度は4000cd/m2
発光効率は2.0cd/Aであった。また、この発光素
子の通電後500時間経過後の初期輝度保持率は80%
であり、均質な発光面を維持していた。
Example 8 The steps up to the deposition of each organic layer were performed in the same manner as in Example 1. First, copper phthalocyanine (CuPc) is deposited to a thickness of 10 nm as a first hole injecting and transporting material by a resistance heating method, and subsequently, N, N′-diphenyl-N, N′-bis (1) is used as a second hole injecting and transporting material. -Naphthyl) -1,1 '
-Diphenyl-4,4'-diamine (α-NPD)
0 nm was laminated. Further, subsequently, tris (8-quinolinolato) aluminum (III) (Al
q3) was laminated to a thickness of 15 nm, and then ETL1 shown below as an electron transporting material was laminated to a thickness of 35 nm. Subsequently, lithium was doped to a thickness of 0.2 nm, and finally aluminum was deposited to a thickness of 150 nm to form a cathode, thereby producing a 5 × 5 mm square device. This light-emitting element emits green light based on Alq3 having an emission peak wavelength of 536 nm at an applied voltage of 10 V, and has a light emission luminance of 4000 cd / m 2 ,
The luminous efficiency was 2.0 cd / A. The initial luminance retention rate of the light-emitting element after 500 hours from energization was 80%.
And a uniform light emitting surface was maintained.

【0056】[0056]

【化10】 Embedded image

【0057】比較例1 電子輸送材料として2,9−ジメチル−4,7−ジフェ
ニル−1,10−フェナントロリンを用いた以外は実施
例8と全く同様にして発光素子を作製した。この発光素
子からは、10Vの印加電圧で、発光ピーク波長が53
6mのAlq3に基づく緑色発光が得られ、発光輝度は
3500cd/m2、発光効率は1.8cd/Aであっ
た。しかしながら、この発光素子の通電後500時間経
過後の初期輝度保持率は50%以下であり、発光面には
ムラが見られた。
Comparative Example 1 A light emitting device was produced in the same manner as in Example 8, except that 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline was used as the electron transporting material. From this light-emitting element, at an applied voltage of 10 V, the emission peak wavelength becomes 53
Green light emission based on 6 m of Alq3 was obtained, light emission luminance was 3500 cd / m 2 , and light emission efficiency was 1.8 cd / A. However, the initial luminance retention rate of this light-emitting element after 500 hours from energization was 50% or less, and unevenness was observed on the light-emitting surface.

【0058】実施例9 電子輸送材料として下記に示すETL2を用いた以外は
実施例8と全く同様にして発光素子を作製した。この発
光素子からは、10Vの印加電圧で、発光ピーク波長が
536nmのAlq3に基づく緑色発光が得られ、発光
輝度は3800cd/m2、発光効率は1.9cd/A
であった。また、この発光素子の通電後500時間経過
後の初期輝度保持率は80%であり、均質な発光面を維
持していた。
Example 9 A light emitting device was manufactured in the same manner as in Example 8, except that ETL2 shown below was used as the electron transporting material. The light-emitting element emits green light based on Alq3 having an emission peak wavelength of 536 nm at an applied voltage of 10 V, an emission luminance of 3800 cd / m 2 , and an emission efficiency of 1.9 cd / A.
Met. The light-emitting element had an initial luminance retention rate of 500% after 500 hours from the current supply, and maintained a uniform light-emitting surface.

【0059】[0059]

【化11】 Embedded image

【0060】実施例10 発光層部分をホスト材料としてトリス(5,7−ジフェ
ニル−8−キノリノラト)アルミニウム(III)、ドー
パント材料として4,4−ジフルオロ−1,3,5,7
−テトラフェニル−4−ボラ−3a,4a−ジアザ−イ
ンダセンを用いて、ドーパントが1.0wt%になるよ
うに15nmの厚さに共蒸着した以外は実施例8と全く
同様にして発光素子を作製した。この発光素子からは、
10Vの印加電圧で発光ピーク波長615nmのドーパ
ント材料に基づく赤色発光が得られた。
Example 10 Tris (5,7-diphenyl-8-quinolinolato) aluminum (III) was used as the host material for the light emitting layer portion, and 4,4-difluoro-1,3,5,7 as the dopant material.
A light emitting device was manufactured in the same manner as in Example 8, except that -tetraphenyl-4-bora-3a, 4a-diaza-indacene was co-evaporated to a thickness of 15 nm so that the dopant was 1.0 wt%. Produced. From this light emitting element,
At an applied voltage of 10 V, red light emission based on a dopant material having a light emission peak wavelength of 615 nm was obtained.

【0061】比較例2 電子輸送材料としてAlq3を用いる以外は実施例10
と全く同様にして発光素子を作製した。この発光素子か
らは、10Vの印加電圧で赤色発光は得られず、615
nmの発光ピーク波長と共に535nmの付近にショル
ダーピークを有する橙色発光となった。
Comparative Example 2 Example 10 except that Alq3 was used as the electron transporting material.
A light-emitting element was manufactured in exactly the same manner as described above. This light-emitting element did not emit red light at an applied voltage of 10 V,
It became orange light emission having a shoulder peak near 535 nm together with the emission peak wavelength of nm.

【0062】[0062]

【発明の効果】本発明は、発光効率が高く、色純度に優
れた、発光素子を提供できるものである。
According to the present invention, it is possible to provide a light emitting device having high luminous efficiency and excellent color purity.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K007 AB02 AB03 AB04 AB17 BA06 CA01 CB01 DA00 DB03 EB00 FA01 5C094 AA10 AA15 AA22 AA60 BA27 CA14 CA19 EA05 EB02 FB01 HA03 HA05 HA06 HA08  ────────────────────────────────────────────────── ─── Continued on the front page F term (reference) 3K007 AB02 AB03 AB04 AB17 BA06 CA01 CB01 DA00 DB03 EB00 FA01 5C094 AA10 AA15 AA22 AA60 BA27 CA14 CA19 EA05 EB02 FB01 HA03 HA05 HA06 HA08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】正極と負極の間に発光物質が存在し、電気
エネルギーにより発光する素子であって、該素子が下記
一般式(1)で表されるフェナントロリン骨格を有する
有機蛍光体を含むことを特徴とする発光素子。 【化1】 (ここでR1〜R8はそれぞれ同じでも異なっていてもよ
く、水素、アルキル基、シクロアルキル基、アラルキル
基、アルケニル基、シクロアルケニル基、アルキニル
基、水酸基、メルカプト基、アルコキシ基、アルキルチ
オ基、アリールエーテル基、アリールチオエーテル基、
アリール基、複素環基、ハロゲン、ハロアルカン、ハロ
アルケン、ハロアルキン、シアノ基、アルデヒド基、カ
ルボニル基、カルボキシル基、エステル基、カルバモイ
ル基、アミノ基、ニトロ基、シリル基、シロキサニル基
の中から選ばれる。但し、その内の少なくとも1つはそ
れ自身が三次元的立体構造を有するか、フェナントロリ
ン骨格とのあるいは隣接置換基との立体反発により、三
次元的立体構造を有するものである。)
1. An element which emits light by electric energy in which a light emitting substance is present between a positive electrode and a negative electrode, wherein the element contains an organic phosphor having a phenanthroline skeleton represented by the following general formula (1). A light emitting element characterized by the above-mentioned. Embedded image (Where R 1 to R 8 may be the same or different and each represents a hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a mercapto group, an alkoxy group, an alkylthio group , Aryl ether group, aryl thioether group,
It is selected from an aryl group, a heterocyclic group, a halogen, a haloalkane, a haloalkene, a haloalkyne, a cyano group, an aldehyde group, a carbonyl group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group, and a siloxanyl group. However, at least one of them has a three-dimensional structure by itself, or has a three-dimensional structure by steric repulsion with a phenanthroline skeleton or with an adjacent substituent. )
【請求項2】正極と負極の間に発光物質が存在し、電気
エネルギーにより発光する素子であって、該素子が下記
一般式(2)で表されるフェナントロリン骨格を有する
有機蛍光体を含むことを特徴とする請求項1記載の発光
素子。 【化2】 (ここでR9〜R16はそれぞれ同じでも異なっていても
よく、水素、アルキル基、シクロアルキル基、アラルキ
ル基、アルケニル基、シクロアルケニル基、アルキニル
基、水酸基、メルカプト基、アルコキシ基、アルキルチ
オ基、アリールエーテル基、アリールチオエーテル基、
アリール基、複素環基、ハロゲン、ハロアルカン、ハロ
アルケン、ハロアルキン、シアノ基、アルデヒド基、カ
ルボニル基、カルボキシル基、エステル基、カルバモイ
ル基、アミノ基、ニトロ基、シリル基、シロキサニル基
の中から選ばれる。但し、R9〜R16の内の少なくとも
1つは連結に用いられる。nは2以上の自然数を表す。
1は単結合、あるいは複数のフェナントロリン骨格を
連結する連結ユニットである。)
2. A device in which a luminescent substance is present between a positive electrode and a negative electrode and emits light by electric energy, wherein the device includes an organic phosphor having a phenanthroline skeleton represented by the following general formula (2). The light emitting device according to claim 1, wherein: Embedded image (Where R 9 to R 16 may be the same or different and each represents a hydrogen, an alkyl group, a cycloalkyl group, an aralkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, a hydroxyl group, a mercapto group, an alkoxy group, an alkylthio group , Aryl ether group, aryl thioether group,
It is selected from an aryl group, a heterocyclic group, a halogen, a haloalkane, a haloalkene, a haloalkyne, a cyano group, an aldehyde group, a carbonyl group, a carboxyl group, an ester group, a carbamoyl group, an amino group, a nitro group, a silyl group, and a siloxanyl group. However, at least one of R 9 to R 16 is used for connection. n represents a natural number of 2 or more.
X 1 is a single bond or a linking unit for linking a plurality of phenanthroline skeletons. )
【請求項3】一般式(1)のフェナントロリン骨格にお
いて、R1、R3、R 6、R8の少なくとも1つはそれ自身
が三次元的立体構造を有するか、フェナントロリン骨格
とのあるいは隣接置換基との立体反発により、三次元的
立体構造を有することを特徴とする請求項1記載の発光
素子。
3. A phenanthroline skeleton represented by the general formula (1)
And R1, RThree, R 6, R8At least one of is itself
Has a three-dimensional structure, or has a phenanthroline skeleton
3D by steric repulsion with
The light emission according to claim 1, wherein the light emission has a three-dimensional structure.
element.
【請求項4】該有機蛍光体が発光材料であることを特徴
とする請求項1または2記載の発光素子。
4. The light emitting device according to claim 1, wherein said organic phosphor is a light emitting material.
【請求項5】該有機蛍光体が電子輸送材料であることを
特徴とする請求項1または2記載の発光素子。
5. The light emitting device according to claim 1, wherein said organic phosphor is an electron transporting material.
【請求項6】マトリクスおよび/またはセグメント方式
によって表示するディスプレイであることを特徴とする
請求項1または2記載の発光素子。
6. The light emitting device according to claim 1, wherein the light emitting device is a display for displaying in a matrix and / or a segment system.
JP2000372543A 2000-01-14 2000-12-07 Light emitting element Expired - Lifetime JP4876311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372543A JP4876311B2 (en) 2000-01-14 2000-12-07 Light emitting element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000006933 2000-01-14
JP2000006933 2000-01-14
JP2000-6933 2000-01-14
JP2000372543A JP4876311B2 (en) 2000-01-14 2000-12-07 Light emitting element

Publications (3)

Publication Number Publication Date
JP2001267080A true JP2001267080A (en) 2001-09-28
JP2001267080A5 JP2001267080A5 (en) 2007-11-29
JP4876311B2 JP4876311B2 (en) 2012-02-15

Family

ID=26583579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372543A Expired - Lifetime JP4876311B2 (en) 2000-01-14 2000-12-07 Light emitting element

Country Status (1)

Country Link
JP (1) JP4876311B2 (en)

Cited By (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1341403A1 (en) * 2000-11-24 2003-09-03 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
WO2004005288A2 (en) * 2002-07-10 2004-01-15 E.I. Du Pont De Nemours And Company Charge transport compositions comprising fluorinated phenanthroline derivatives
US6713781B1 (en) 2002-12-04 2004-03-30 Canon Kabushiki Kaisha Organic light-emitting device having phenanthroline-fused phenazine
WO2004026870A1 (en) * 2002-09-19 2004-04-01 Canon Kabushiki Kaisha Phenanthroline compound and organic light emitting device using same
WO2004110106A1 (en) * 2003-06-04 2004-12-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
JP2006045211A (en) * 2004-07-07 2006-02-16 Semiconductor Energy Lab Co Ltd Phenanthroline derivative and light-emitting element and light- emitting device using the same
WO2006021982A1 (en) * 2004-08-23 2006-03-02 Toray Industries, Inc. Material for luminescent element and luminescent element
JP2006241053A (en) * 2005-03-02 2006-09-14 Chemiprokasei Kaisha Ltd 1,10-phenanthroline derivative, method for producing the same and organic electroluminescent device comprising the same
US20070037983A1 (en) * 2005-08-11 2007-02-15 Semiconductor Energy Laboratory Co., Ltd. Phenanthroline derivative compound
US7179542B2 (en) 2003-05-20 2007-02-20 Canon Kabushiki Kaisha Thiazole- and imidazole-fused phenanthroline molecules in organic light-emitting devices
JP2007157753A (en) * 2004-12-01 2007-06-21 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device and electronic apparatus
JP2008141217A (en) * 2002-03-11 2008-06-19 Tdk Corp Organic el element
JP2008222624A (en) * 2007-03-12 2008-09-25 Chemiprokasei Kaisha Ltd Novel 1,10-phenanethroline derivative, electron-transporting material, electron-injecting material, and organoelectroluminescent element comprising the same
EP1993154A1 (en) 2007-05-16 2008-11-19 Yamagata Promotional Organization for Industrial Technology Electron transporting materials and organic light-emitting devices therewith
US7517596B2 (en) 2004-11-29 2009-04-14 Canon Kabushiki Kaisha Phenanthroline compound and light-emitting device
WO2009081857A1 (en) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP2009194403A (en) * 2009-06-04 2009-08-27 Semiconductor Energy Lab Co Ltd Electroluminescence device
US20100060152A1 (en) * 2006-12-22 2010-03-11 Merck Patent Gmbh Phenanthroline compounds and electroluminescent devices using the same
US7834346B2 (en) 2005-08-05 2010-11-16 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
US7833634B2 (en) 2005-06-21 2010-11-16 Canon Kabushiki Kaisha 1,8-naphthyridine compound and organic light-emitting device using the same
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
CN102127073A (en) * 2010-11-26 2011-07-20 深圳大学 Star-shaped compound taking phenanthroline as core and luminescent device comprising same
WO2011091946A1 (en) 2010-01-30 2011-08-04 Merck Patent Gmbh Organic electroluminescent device comprising an integrated layer for colour conversion
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011137922A1 (en) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulations and electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
US8076009B2 (en) 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
US8088500B2 (en) 2008-11-12 2012-01-03 Global Oled Technology Llc OLED device with fluoranthene electron injection materials
WO2012013272A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Quantum dots and hosts
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
JP2012102142A (en) * 2012-01-20 2012-05-31 Idemitsu Kosan Co Ltd Nitrogen-containing heterocyclic derivative and organic electroluminescent element using the same
JP2012513679A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electronic devices containing phenanthroline derivatives
WO2012084114A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012124642A1 (en) 2011-03-14 2012-09-20 出光興産株式会社 Organic electroluminescent element
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
US8278651B2 (en) 2008-12-22 2012-10-02 E I Du Pont De Nemours And Company Electronic device including 1,7-phenanthroline derivative
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2012176674A1 (en) * 2011-06-23 2012-12-27 東レ株式会社 Light-emitting element
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
US8420229B2 (en) 2007-10-26 2013-04-16 Global OLED Technologies LLC OLED device with certain fluoranthene light-emitting dopants
US8431242B2 (en) 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
WO2013060411A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, methods for producing same, and use of same in electronic devices
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
US8748013B2 (en) 2003-03-20 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Electroluminescent device
US8795855B2 (en) 2007-01-30 2014-08-05 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
US9040170B2 (en) 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
US9126943B2 (en) 2010-01-15 2015-09-08 Idemitsu Kosan Co., Ltd. Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same
US9209426B2 (en) 2013-08-09 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
US9515278B2 (en) 2013-08-09 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
CN106380468A (en) * 2014-05-30 2017-02-08 浙江工业大学 Phenanthroline derivative and preparation method and application thereof
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
WO2017157783A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Receptacle comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
US10153449B2 (en) 2014-10-16 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022202782A1 (en) * 2021-03-26 2022-09-29 東レ株式会社 Organic el display device, and method for manufacturing same
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
WO2024126635A1 (en) 2022-12-16 2024-06-20 Merck Patent Gmbh Formulation of an organic functional material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7931975B2 (en) 2008-11-07 2011-04-26 Global Oled Technology Llc Electroluminescent device containing a flouranthene compound

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331459A (en) * 1992-04-03 1993-12-14 Pioneer Electron Corp Organic electroluminescent element
JPH1079297A (en) * 1996-07-09 1998-03-24 Sony Corp Electroluminescent element
JP2001110572A (en) * 1999-08-04 2001-04-20 Toyota Central Res & Dev Lab Inc Field light emitting element
JP2001131174A (en) * 1999-11-02 2001-05-15 Sony Corp Bathophenanthroline compound and its production method
JP2001135482A (en) * 1999-11-02 2001-05-18 Sony Corp Organic electric-field light-emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331459A (en) * 1992-04-03 1993-12-14 Pioneer Electron Corp Organic electroluminescent element
JPH1079297A (en) * 1996-07-09 1998-03-24 Sony Corp Electroluminescent element
JP2001110572A (en) * 1999-08-04 2001-04-20 Toyota Central Res & Dev Lab Inc Field light emitting element
JP2001131174A (en) * 1999-11-02 2001-05-15 Sony Corp Bathophenanthroline compound and its production method
JP2001135482A (en) * 1999-11-02 2001-05-18 Sony Corp Organic electric-field light-emitting element

Cited By (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318966B2 (en) * 2000-11-24 2008-01-15 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
EP1341403B1 (en) * 2000-11-24 2016-05-11 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
EP1341403A1 (en) * 2000-11-24 2003-09-03 Toray Industries, Inc. Luminescent element material and luminescent element comprising the same
JP2008141217A (en) * 2002-03-11 2008-06-19 Tdk Corp Organic el element
US8287769B2 (en) 2002-07-10 2012-10-16 E I Du Pont De Nemours And Company Charge transport compositions and electronic devices made with such compositions
WO2004005288A2 (en) * 2002-07-10 2004-01-15 E.I. Du Pont De Nemours And Company Charge transport compositions comprising fluorinated phenanthroline derivatives
WO2004005288A3 (en) * 2002-07-10 2004-06-24 Du Pont Charge transport compositions comprising fluorinated phenanthroline derivatives
US8293139B2 (en) 2002-07-10 2012-10-23 E I Du Pont De Nemours And Company Charge transport compositions and electronic devices made with such compositions
US8529796B2 (en) 2002-07-10 2013-09-10 E I Du Pont De Nemours And Company Charge transport compositions and electronic devices made with such compositions
WO2004026870A1 (en) * 2002-09-19 2004-04-01 Canon Kabushiki Kaisha Phenanthroline compound and organic light emitting device using same
US7982213B2 (en) 2002-09-19 2011-07-19 Canon Kabushiki Kaisha Phenanthroline compound and organic light emitting device using same
US7550594B2 (en) 2002-09-19 2009-06-23 Canon Kabushiki Kaisha Phenanthroline compound and organic light emitting device using same
US6713781B1 (en) 2002-12-04 2004-03-30 Canon Kabushiki Kaisha Organic light-emitting device having phenanthroline-fused phenazine
US8748013B2 (en) 2003-03-20 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Electroluminescent device
US7179542B2 (en) 2003-05-20 2007-02-20 Canon Kabushiki Kaisha Thiazole- and imidazole-fused phenanthroline molecules in organic light-emitting devices
US7800299B2 (en) 2003-06-04 2010-09-21 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
WO2004110106A1 (en) * 2003-06-04 2004-12-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
US7659659B2 (en) 2003-06-04 2010-02-09 Idemitsu Kosan Co., Ltd. Organic electroluminescent device and display using same
JP2006045211A (en) * 2004-07-07 2006-02-16 Semiconductor Energy Lab Co Ltd Phenanthroline derivative and light-emitting element and light- emitting device using the same
KR101148460B1 (en) 2004-08-23 2012-05-23 도레이 카부시키가이샤 Material for Luminescent Element and Luminescent Element
WO2006021982A1 (en) * 2004-08-23 2006-03-02 Toray Industries, Inc. Material for luminescent element and luminescent element
US8114529B2 (en) 2004-08-23 2012-02-14 Daisuke Kitazawa Material for lighting emitting device and light emitting device
US9040170B2 (en) 2004-09-20 2015-05-26 Global Oled Technology Llc Electroluminescent device with quinazoline complex emitter
US7517596B2 (en) 2004-11-29 2009-04-14 Canon Kabushiki Kaisha Phenanthroline compound and light-emitting device
JP2007157753A (en) * 2004-12-01 2007-06-21 Semiconductor Energy Lab Co Ltd Light emitting element, light emitting device and electronic apparatus
JP2006241053A (en) * 2005-03-02 2006-09-14 Chemiprokasei Kaisha Ltd 1,10-phenanthroline derivative, method for producing the same and organic electroluminescent device comprising the same
US7833634B2 (en) 2005-06-21 2010-11-16 Canon Kabushiki Kaisha 1,8-naphthyridine compound and organic light-emitting device using the same
US7834346B2 (en) 2005-08-05 2010-11-16 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescence device making use of the same
JP2007045780A (en) * 2005-08-11 2007-02-22 Semiconductor Energy Lab Co Ltd Phenanthroline derivative compound, its manufacturing method and electron transporting material, light emitting device, light emitter and electronic equipment utilizing the same
US20070037983A1 (en) * 2005-08-11 2007-02-15 Semiconductor Energy Laboratory Co., Ltd. Phenanthroline derivative compound
US9666826B2 (en) 2005-11-30 2017-05-30 Global Oled Technology Llc Electroluminescent device including an anthracene derivative
US8642188B2 (en) * 2006-12-22 2014-02-04 Merck Patent Gmbh Phenanthroline compounds and electroluminescent devices using the same
US20100060152A1 (en) * 2006-12-22 2010-03-11 Merck Patent Gmbh Phenanthroline compounds and electroluminescent devices using the same
US9620721B2 (en) 2007-01-30 2017-04-11 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
US8795855B2 (en) 2007-01-30 2014-08-05 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
JP2008222624A (en) * 2007-03-12 2008-09-25 Chemiprokasei Kaisha Ltd Novel 1,10-phenanethroline derivative, electron-transporting material, electron-injecting material, and organoelectroluminescent element comprising the same
EP1993154A1 (en) 2007-05-16 2008-11-19 Yamagata Promotional Organization for Industrial Technology Electron transporting materials and organic light-emitting devices therewith
US8420229B2 (en) 2007-10-26 2013-04-16 Global OLED Technologies LLC OLED device with certain fluoranthene light-emitting dopants
US8431242B2 (en) 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
US8076009B2 (en) 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
WO2009081857A1 (en) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US8088500B2 (en) 2008-11-12 2012-01-03 Global Oled Technology Llc OLED device with fluoranthene electron injection materials
US8309731B2 (en) 2008-12-22 2012-11-13 E I Du Pont De Nemours And Company Electronic device including phenanthroline derivative
JP2012513679A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electronic devices containing phenanthroline derivatives
US8436341B2 (en) 2008-12-22 2013-05-07 E I Du Pont De Nemours And Company Electronic device including phenanthroline derivative
US8278651B2 (en) 2008-12-22 2012-10-02 E I Du Pont De Nemours And Company Electronic device including 1,7-phenanthroline derivative
JP2009194403A (en) * 2009-06-04 2009-08-27 Semiconductor Energy Lab Co Ltd Electroluminescence device
WO2011015265A2 (en) 2009-08-04 2011-02-10 Merck Patent Gmbh Electronic devices comprising multi cyclic hydrocarbons
WO2011032686A1 (en) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulas for producing electronic devices
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
WO2011076326A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent functional surfactants
WO2011076323A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Formulations comprising phase-separated functional materials
WO2011076314A1 (en) 2009-12-22 2011-06-30 Merck Patent Gmbh Electroluminescent formulations
US9126943B2 (en) 2010-01-15 2015-09-08 Idemitsu Kosan Co., Ltd. Nitrogenated heterocyclic ring derivative and organic electroluminescent element comprising same
DE102010006280A1 (en) 2010-01-30 2011-08-04 Merck Patent GmbH, 64293 color conversion
WO2011091946A1 (en) 2010-01-30 2011-08-04 Merck Patent Gmbh Organic electroluminescent device comprising an integrated layer for colour conversion
WO2011110277A1 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Fibers in therapy and cosmetics
WO2011110275A2 (en) 2010-03-11 2011-09-15 Merck Patent Gmbh Radiative fibers
WO2011137922A1 (en) 2010-05-03 2011-11-10 Merck Patent Gmbh Formulations and electronic devices
WO2011147522A1 (en) 2010-05-27 2011-12-01 Merck Patent Gmbh Compositions comprising quantum dots
EP3309236A1 (en) 2010-05-27 2018-04-18 Merck Patent GmbH Compositions comprising quantum dots
WO2012013270A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Nanocrystals in devices
WO2012013272A1 (en) 2010-07-26 2012-02-02 Merck Patent Gmbh Quantum dots and hosts
CN102127073A (en) * 2010-11-26 2011-07-20 深圳大学 Star-shaped compound taking phenanthroline as core and luminescent device comprising same
CN102127073B (en) * 2010-11-26 2014-07-23 深圳大学 Star-shaped compound taking phenanthroline as core and luminescent device comprising same
WO2012084114A1 (en) 2010-12-23 2012-06-28 Merck Patent Gmbh Organic electroluminescent device
WO2012110178A1 (en) 2011-02-14 2012-08-23 Merck Patent Gmbh Device and method for treatment of cells and cell tissue
WO2012124642A1 (en) 2011-03-14 2012-09-20 出光興産株式会社 Organic electroluminescent element
WO2012126566A1 (en) 2011-03-24 2012-09-27 Merck Patent Gmbh Organic ionic functional materials
WO2012152366A1 (en) 2011-05-12 2012-11-15 Merck Patent Gmbh Organic ionic compounds, compositions and electronic devices
WO2012163464A1 (en) 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2012176674A1 (en) * 2011-06-23 2012-12-27 東レ株式会社 Light-emitting element
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2013060411A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, methods for producing same, and use of same in electronic devices
DE102011117422A1 (en) 2011-10-28 2013-05-02 Merck Patent Gmbh Hyperbranched polymers, process for their preparation and their use in electronic devices
JP2012102142A (en) * 2012-01-20 2012-05-31 Idemitsu Kosan Co Ltd Nitrogen-containing heterocyclic derivative and organic electroluminescent element using the same
WO2015014427A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electro-optical device and the use thereof
WO2015014429A1 (en) 2013-07-29 2015-02-05 Merck Patent Gmbh Electroluminescence device
US9515278B2 (en) 2013-08-09 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US9209426B2 (en) 2013-08-09 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US9966574B2 (en) 2013-08-09 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US9780338B2 (en) 2013-08-09 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
US9401483B2 (en) 2013-08-09 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device
CN106380468A (en) * 2014-05-30 2017-02-08 浙江工业大学 Phenanthroline derivative and preparation method and application thereof
WO2016034262A1 (en) 2014-09-05 2016-03-10 Merck Patent Gmbh Formulations and electronic devices
US10153449B2 (en) 2014-10-16 2018-12-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
WO2016107663A1 (en) 2014-12-30 2016-07-07 Merck Patent Gmbh Formulations and electronic devices
WO2016155866A1 (en) 2015-03-30 2016-10-06 Merck Patent Gmbh Formulation of an organic functional material comprising a siloxane solvent
EP3581633A1 (en) 2015-06-12 2019-12-18 Merck Patent GmbH Esters containing non-aromatic cycles as solvents for oled formulations
WO2016198141A1 (en) 2015-06-12 2016-12-15 Merck Patent Gmbh Esters containing non-aromatic cycles as solvents for oled formulations
WO2017036572A1 (en) 2015-08-28 2017-03-09 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
WO2017097391A1 (en) 2015-12-10 2017-06-15 Merck Patent Gmbh Formulations containing ketones comprising non-aromatic cycles
WO2017102048A1 (en) 2015-12-15 2017-06-22 Merck Patent Gmbh Esters containing aromatic groups as solvents for organic electronic formulations
EP4084109A1 (en) 2015-12-15 2022-11-02 Merck Patent GmbH Esters containing aromatic groups as solvents for organic electronic formulations
WO2017102052A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a solid solvent
WO2017102049A1 (en) 2015-12-16 2017-06-22 Merck Patent Gmbh Formulations containing a mixture of at least two different solvents
WO2017140404A1 (en) 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
DE102016003104A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Container comprising a formulation containing at least one organic semiconductor
WO2017157783A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Receptacle comprising a formulation containing at least one organic semiconductor
WO2017216129A1 (en) 2016-06-16 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2017216128A1 (en) 2016-06-17 2017-12-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018001928A1 (en) 2016-06-28 2018-01-04 Merck Patent Gmbh Formulation of an organic functional material
WO2018024719A1 (en) 2016-08-04 2018-02-08 Merck Patent Gmbh Formulation of an organic functional material
WO2018077660A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018077662A1 (en) 2016-10-31 2018-05-03 Merck Patent Gmbh Formulation of an organic functional material
WO2018104202A1 (en) 2016-12-06 2018-06-14 Merck Patent Gmbh Preparation process for an electronic device
WO2018108760A1 (en) 2016-12-13 2018-06-21 Merck Patent Gmbh Formulation of an organic functional material
WO2018114883A1 (en) 2016-12-22 2018-06-28 Merck Patent Gmbh Mixtures comprising at least two organofunctional compounds
WO2018138318A1 (en) 2017-01-30 2018-08-02 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2018178136A1 (en) 2017-03-31 2018-10-04 Merck Patent Gmbh Printing method for an organic light emitting diode (oled)
WO2019016184A1 (en) 2017-07-18 2019-01-24 Merck Patent Gmbh Formulation of an organic functional material
WO2019115573A1 (en) 2017-12-15 2019-06-20 Merck Patent Gmbh Formulation of an organic functional material
WO2019162483A1 (en) 2018-02-26 2019-08-29 Merck Patent Gmbh Formulation of an organic functional material
WO2019238782A1 (en) 2018-06-15 2019-12-19 Merck Patent Gmbh Formulation of an organic functional material
WO2020064582A1 (en) 2018-09-24 2020-04-02 Merck Patent Gmbh Method for the production of a granular material
WO2020094538A1 (en) 2018-11-06 2020-05-14 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2021213917A1 (en) 2020-04-21 2021-10-28 Merck Patent Gmbh Emulsions comprising organic functional materials
WO2021259824A1 (en) 2020-06-23 2021-12-30 Merck Patent Gmbh Method for producing a mixture
WO2022122607A1 (en) 2020-12-08 2022-06-16 Merck Patent Gmbh An ink system and a method for inkjet printing
WO2022202782A1 (en) * 2021-03-26 2022-09-29 東レ株式会社 Organic el display device, and method for manufacturing same
WO2022243403A1 (en) 2021-05-21 2022-11-24 Merck Patent Gmbh Method for the continuous purification of at least one functional material and device for the continuous purification of at least one functional material
WO2023012084A1 (en) 2021-08-02 2023-02-09 Merck Patent Gmbh A printing method by combining inks
WO2023057327A1 (en) 2021-10-05 2023-04-13 Merck Patent Gmbh Method for forming an organic element of an electronic device
WO2023237458A1 (en) 2022-06-07 2023-12-14 Merck Patent Gmbh Method of printing a functional layer of an electronic device by combining inks
WO2024126635A1 (en) 2022-12-16 2024-06-20 Merck Patent Gmbh Formulation of an organic functional material

Also Published As

Publication number Publication date
JP4876311B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
JP4876311B2 (en) Light emitting element
JP4876333B2 (en) Light emitting element
JP4725056B2 (en) Light emitting device material and light emitting device
JP4843889B2 (en) Light emitting element
JP2002063988A (en) Light emitting element
JP2002015871A (en) Luminescent element
JP2001006877A5 (en)
JP2003133075A (en) Luminescent element
JP2001023777A (en) Luminescent element
JP2004204140A (en) Material for light-emitting element and light-emitting element using the same
JP2001057292A (en) Luminescent element
JP2006073581A5 (en)
JP2001196182A (en) Luminous element
JP2001332384A (en) Light emitting element
JP4590678B2 (en) Light emitting element
JP2003109767A (en) Light emitting element
JP4729776B2 (en) Light emitting element
JP2001307884A (en) Electoluminiscent element
JP2000323278A (en) Light emitter
JP2001291590A5 (en)
JP2000299186A5 (en)
JP2001250689A (en) Light emission element
JP2001297881A (en) Light emission element
JP2004203828A (en) Phosphine oxide compound, material for light-emitting element obtained by using the same, and light-emitting element
JP2002008866A (en) Light element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R151 Written notification of patent or utility model registration

Ref document number: 4876311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

EXPY Cancellation because of completion of term