JP2001261426A - Far infrared ray radiating ceramic - Google Patents

Far infrared ray radiating ceramic

Info

Publication number
JP2001261426A
JP2001261426A JP2000080817A JP2000080817A JP2001261426A JP 2001261426 A JP2001261426 A JP 2001261426A JP 2000080817 A JP2000080817 A JP 2000080817A JP 2000080817 A JP2000080817 A JP 2000080817A JP 2001261426 A JP2001261426 A JP 2001261426A
Authority
JP
Japan
Prior art keywords
ceramic
water
far
weight
infrared ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000080817A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tazoe
弘幸 田添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIWA CERAMIC KK
General Co Ltd
Gen Co Ltd
Original Assignee
DAIWA CERAMIC KK
General Co Ltd
Gen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIWA CERAMIC KK, General Co Ltd, Gen Co Ltd filed Critical DAIWA CERAMIC KK
Priority to JP2000080817A priority Critical patent/JP2001261426A/en
Publication of JP2001261426A publication Critical patent/JP2001261426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a far infrared ray radiating ceramic having a far infrared ray effect and combined functions such as antibacterial on, deodorizing on of antioxidation actions and excellent in moldability and durability. SOLUTION: This ceramic is obtained by using 20-30 wt.% pulverized siliceous stone (biotite monzonite porphyry) and 15-25 wt.% zeolite as principal materials, kneading 45-65 wt.% clay and water with the principal materials, molding the resultant mixture into an optional shape and firing it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、遠赤外線を放射す
ると共に、抗菌、脱臭、浄化、酸化防止の機能を有する
セラミックに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic which emits far-infrared rays and has antibacterial, deodorizing, purifying and antioxidant functions.

【0002】[0002]

【従来の技術】天然に産出する麦飯石と呼ばれる深成岩
の一種である黒雲母モンゾナイト斑岩が、遠赤外線を多
量に放出することが知られている。麦飯石は、シリカ
(SiO)を主成分とし、二酸化ナトリウム、アルミナ
等を含んでおり、従来からこの麦飯石の遠赤外線効果の
ひとつである水の活性化及び浄化作用を利用した浄水器
の濾過材などが提案されている。
2. Description of the Related Art It is known that biotite monzonite porphyry, which is a kind of plutonic rock called malite, which naturally occurs, emits a large amount of far-infrared rays. Barite has silica (SiO) as a main component and contains sodium dioxide, alumina and the like. Filtration of a water purifier using the activation and purification of water, which is one of the far-infrared effects of this barite, has been conventionally performed. Materials have been proposed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、麦飯石
の上記のような遠赤外線放射効果に加えて、抗菌、脱
臭、浄化、酸化防止等の複合的な機能を有する遠赤外線
放射物は未だ実用に供されていない。また、このような
遠赤外線放射物を、例えば冷蔵庫の脱臭剤や浄水器の濾
過材などの様々な分野に用いる場合、各種用途に適した
形状に成形する必要がある。その際、成形の容易さは無
論のこと、耐磨耗性や耐熱性に優れていることが要求さ
れる。本発明は、上述の問題を解決するもので、遠赤外
線効果を有すると共に、抗菌、脱臭、浄化、酸化防止等
の複合的な機能を有し、且つ成形性及び耐久性に優れた
遠赤外線セラミックを提供するものである。
However, far-infrared radiating substances having a combined function of antibacterial, deodorizing, purifying, antioxidant, etc., in addition to the above-mentioned far-infrared radiating effect of barley stone, are still in practical use. Not offered. Further, when such a far-infrared radiant is used in various fields such as a deodorant for a refrigerator and a filter material for a water purifier, it is necessary to form the far-infrared radiant into a shape suitable for various uses. At that time, it is required to have excellent abrasion resistance and heat resistance, not to mention ease of molding. The present invention solves the above-mentioned problems, and has a far-infrared effect, has a complex function of antibacterial, deodorizing, purifying, antioxidant, etc., and is excellent in moldability and durability. Is provided.

【0004】[0004]

【課題を解決するための手段】このため本発明のセラミ
ック成形体は、粉砕した麦飯石(黒雲母モンゾナイト斑
岩)20〜30重量%及びゼオライト15〜25重量%
を主材とし、粘土45〜65重量%と水とを前記主材と
混練した後、焼成して成ることを第1の特徴とする。
For this purpose, the ceramic molded product of the present invention comprises 20 to 30% by weight of crushed malite (biotite monzonite porphyry) and 15 to 25% by weight of zeolite.
The main feature is that 45 to 65% by weight of clay and water are kneaded with the main material and then fired.

【0005】また、本発明のセラミック成形体は、粉砕
した麦飯石(黒雲母モンゾナイト斑岩)20〜30重量
%及びゼオライト15〜25重量%を主材とすると共
に、Feを2重量%、MnOを6重量%、Co
Oを1重量%及びCuOを1重量%を混合材として、前
記主材に添加混入したことを第2の特徴とする。
[0005] The ceramic molded body of the present invention contains 20 to 30% by weight of ground barite (biotite monzonite porphyry) and 15 to 25% by weight of zeolite as a main component, and 2 % by weight of Fe 2 O 3. %, MnO 2 at 6% by weight, Co
A second feature is that 1% by weight of O and 1% by weight of CuO are mixed and added to the main material.

【0006】麦飯石は、シリカを主成分とする珪酸塩水
和鉱物で、二酸化ナトリウム、アルミナ等を含み、ナト
リウムイオンはカルシウムイオン、マグネシウムなどの
陽イオンと交換され易いため、硬水を軟化させる作用が
あり、浄水器の濾過材として使用されることが多い。
Barley stone is a hydrated silicate mineral containing silica as a main component and contains sodium dioxide, alumina and the like. Since sodium ions are easily exchanged with cations such as calcium ions and magnesium, they have an effect of softening hard water. Yes, it is often used as a filter for water purifiers.

【0007】また、ゼオライトと呼ばれるアルミニウム
を含む珪酸塩水和鉱物は、わが国では沸石などと呼ば
れ、古くから硬水の軟化に用いられている珪酸質のイオ
ン交換性をもつ物質のひとつであり、その孔隙に富む構
造上、脱臭剤、脱水乾燥剤として使用されてきた。
[0007] A hydrated silicate mineral containing aluminum, called zeolite, is called zeolite in Japan and is one of silicic ion-exchangeable substances that have long been used for softening hard water. Due to its porous structure, it has been used as a deodorant and a dehydrating / drying agent.

【0008】[0008]

【発明の実施の形態】麦飯石の主成分であるシリカは、
高い遠赤外線放射機能を有すると共に、ブドウ状球菌や
大腸菌に対する抗菌作用を有し、また硫化水素やアンモ
ニアに対する脱臭作用を有する。
BEST MODE FOR CARRYING OUT THE INVENTION
It has a high far-infrared radiation function, has an antibacterial effect on staphylococci and Escherichia coli, and has a deodorizing effect on hydrogen sulfide and ammonia.

【0009】本発明者は、前記観点から、遠赤外線放射
性、抗菌性及び脱臭性において優れている麦飯石及び脱
臭剤として優れているゼオライトを主材として採用し、
これら2つの主材につなぎ材としての粘土を混入するこ
とにより、成形が容易になり、そして、これを焼成する
ことにより、耐磨耗性や耐熱性に優れた遠赤外線放射特
性を有すると共に、抗菌、脱臭、浄化、酸化防止機能等
の複合的な機能に優れた遠赤外線放射セラミックの成形
体を得た。
From the above viewpoint, the present inventor has adopted, as main materials, malt stone which is excellent in far-infrared radiation, antibacterial property and deodorizing property and zeolite which is excellent as a deodorant,
By mixing clay as a linking material into these two main materials, molding is facilitated, and by firing this, it has far-infrared radiation characteristics with excellent wear resistance and heat resistance, A molded article of far-infrared radiation ceramic having excellent composite functions such as antibacterial, deodorizing, purifying and antioxidant functions was obtained.

【0010】以下、本発明の遠赤外線放射セラミックの
製造方法について詳細に説明する。本発明のセラミック
成形体の主材及び混合材となる麦飯石及びゼオライト、
各種混合材であるFe、MnO、CoO及びC
uOは微粉末を使用する必要がある。そしてこれら主材
及び混合材を混合すると、各物質の比重等の物理特性が
それぞれ異なると共に、微粉末であるため凝集化(所
謂、ダマが形成)していまい均一に混合することは容易
ではない。
Hereinafter, the method for producing the far-infrared radiation ceramic of the present invention will be described in detail. Barley stone and zeolite as the main material and the mixed material of the ceramic molded body of the present invention,
Fe 2 O 3 , MnO 2 , CoO and C
uO requires the use of fine powder. When the main material and the mixed material are mixed, the physical properties such as the specific gravity of each substance are different from each other, and since they are fine powders, agglomeration (so-called lumps are formed) and uniform mixing is not easy. .

【0011】そこで、主材とつなぎ材である粘土及び混
合材となる各物質を所定の混合率によりボールミル(攪
拌機)投入して水を加えて混合攪拌した後、その混合物
をフィルタープレスを通し脱水する。そして更に、脱水
した混合物を真空式土練機に入れて混練するという手段
を採用することにより主材及び混合材となる各物質が均
一に混合され、且つ所望する形状に自由に成形できる粘
土状のセラミック混合体(以下、セラミック生地とい
う)を製造することができる。
Therefore, the main material, the clay serving as the connecting material, and each material serving as the mixing material are charged into a ball mill (stirring machine) at a predetermined mixing ratio, water is added, and the mixture is stirred. The mixture is then dewatered through a filter press. I do. Further, by adopting a means in which the dehydrated mixture is put into a vacuum-type kneading machine and kneaded, the main material and the respective materials serving as the mixing material are uniformly mixed, and a clay-like material that can be freely formed into a desired shape. (Hereinafter referred to as “ceramic dough”).

【0012】そして、このセラミック生地を、円盤状、
矩形板状あるいは球状等の所望の形状に成形して電気炉
(焼成機)により焼成して本発明の遠赤外線放射セラミ
ック成形体1(図1参照)とするのである。
[0012] Then, this ceramic cloth is disc-shaped,
It is formed into a desired shape such as a rectangular plate or a sphere, and fired by an electric furnace (sintering machine) to obtain a far-infrared radiation ceramic molded body 1 of the present invention (see FIG. 1).

【0013】尚、本発明のセラミック生地は、粉砕した
麦飯石(黒雲母モンゾナイト斑岩)20〜30重量%及
びゼオライト15〜25重量%を主材とし、粘土45〜
65重量%と水とを前記主材と混練することを基本とす
るが、Fe、MnO、CoO及びCuOを加え
ることで、硬度及び耐熱性を更に高めることができ、高
温の食油中でも充分な耐熱性を有するセラミック成形体
が得られる。
The ceramic dough according to the present invention is composed mainly of 20 to 30% by weight of crushed barite (biotite monzonite porphyry) and 15 to 25% by weight of zeolite and clay of 45 to 25% by weight.
Basically, 65% by weight and water are kneaded with the main material, but by adding Fe 2 O 3 , MnO 2 , CoO and CuO, the hardness and heat resistance can be further increased, and high-temperature edible oil Among them, a ceramic molded body having sufficient heat resistance can be obtained.

【0014】本発明の遠赤外線放射セラミックによる抗
菌作用は、大腸菌、ブドウ状球菌等の微生物の表層は陰
イオンであって、そのため中性域(pH7.0〜7.
5)でしか生息が不可能であるが、遠赤外線放射によっ
て陽イオンが発生されるので、陰イオンである菌体の表
層が、この陽イオンによって破壊されると同時に、菌体
のタンパク質が変性して呼吸困難となって死滅するので
ある。
The antibacterial effect of the far-infrared radiation ceramic of the present invention is as follows. The surface layer of microorganisms such as Escherichia coli and staphylococci is anions, and therefore has a neutral region (pH 7.0 to 7.0).
Although it is impossible to inhabit in only 5), since cations are generated by far-infrared radiation, the surface layer of the cells, which are anions, is destroyed by the cations, and at the same time, the protein of the cells is denatured. It becomes difficult to breathe and dies.

【0015】また、アンモニア及び硫化水素等に対する
セラミック成形体の脱臭のしくみは、物理的又は化学的
吸着作用ではなく、遠赤外線放射に基く分解作用であ
り、活性炭のような多孔質吸着物質のように飽和状態に
ならないので、脱臭力が半永久的に持続する。
The mechanism of deodorization of the ceramic molded body with respect to ammonia and hydrogen sulfide is not a physical or chemical adsorption action, but a decomposition action based on far-infrared radiation, and is similar to a porous adsorbent such as activated carbon. Since it does not become saturated, the deodorizing power lasts semi-permanently.

【0016】本発明に係る遠赤外線放射セラミックのト
リメチルアミンに対する吸着能力試験を行なった。試験
方法は、1リットルのテドラーバックに20gの本発明
セラミックの粉末と40ppmのトリメチルアミンを入
れ、一定時間後の残存濃度を検知管法で測定した。検知
管としては、株式会社ガステック社製造の(NO180
R・NH2)を使用した。その結果を表1に示す。
A test on the adsorption ability of the far-infrared radiation ceramic according to the present invention to trimethylamine was conducted. In the test method, 20 g of the ceramic powder of the present invention and 40 ppm of trimethylamine were placed in a 1-liter Tedlar bag, and the residual concentration after a certain period of time was measured by a detector tube method. As the detection tube, (NO180 manufactured by Gastech Co., Ltd.)
R.NH2) was used. Table 1 shows the results.

【0017】[0017]

【表1】 [Table 1]

【0018】表1から明らかなように、空試験では変化
のなかった40ppm含まれていたトリメチルアミン
は、遠赤外線放射セラミックを入れることにより30分
後には5ppmに減少した。
As is apparent from Table 1, trimethylamine contained at 40 ppm which was not changed in the blank test was reduced to 5 ppm after 30 minutes by adding the far infrared radiation ceramic.

【0019】同様にして硫化水素に対する吸着能力試験
を行なった。試験方法は、1リットルの容器中に19.
8gのセラミックボールと、11.2ppmの硫化水素
を入れ定時間経過後の残留硫化水素濃度を測定した。結
果を表2に示す。
Similarly, an adsorption ability test for hydrogen sulfide was conducted. The test was performed in a 1-liter container.
8 g of a ceramic ball and 11.2 ppm of hydrogen sulfide were charged, and the concentration of residual hydrogen sulfide was measured after a certain period of time. Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】表2から明らかなように、当初11.2p
pmあった硫化水素は、6時間後には3.8ppmに減
少し、更に24時間後には0.8ppmと、ほとんどが
セラミックボールによって分解されたことが判る。
As apparent from Table 2, the initial 11.2p
The amount of hydrogen sulfide which was pm decreased to 3.8 ppm after 6 hours, and was 0.8 ppm after 24 hours, indicating that most of the hydrogen sulfide was decomposed by the ceramic balls.

【0022】尚、本発明のセラミック成形体の溶出試験
を行なったところ、重金属、ヒ素(As)、鉛(P
b)、カドミウム(Cd)等の有害物質はいずれも検出
されなかった。
When the ceramic molded body of the present invention was subjected to an elution test, it was found that heavy metals, arsenic (As), lead (P
No harmful substances such as b) and cadmium (Cd) were detected.

【0023】本発明の遠赤外線放射セラミックは、基本
的には球状あるいは円盤状や矩形板状に形成した成形体
として使用する。例えば、炊飯器に入れて使用すると、
長時間黄ばみのない美味しいご飯を炊くことができる。
また、食用油の酸化防止、冷蔵庫やポットの脱臭剤とし
て使用することができる。
The far-infrared radiation ceramic of the present invention is basically used as a molded article formed in a spherical, disk-like or rectangular plate shape. For example, when used in a rice cooker,
You can cook delicious rice without yellowing for a long time.
Further, it can be used as an antioxidant for edible oil and as a deodorant for refrigerators and pots.

【0024】また、一旦球状あるいは板状に固形化した
ものを粒状あるいは粉状に粉砕して土壌改良剤や家畜糞
尿の脱臭剤として使用することもできる。更に、粒状あ
るいは粉状にしたものを床下に散布したり、壁材に混入
して使用し家屋の除湿脱臭を図る建築用資材とすること
もできる。
[0024] Further, those once solidified into a sphere or a plate can be ground into a granule or a powder and used as a soil conditioner or a deodorant for livestock manure. Further, it can also be used as a building material for spraying the granulated or powdered material under the floor or mixing it with the wall material to use for dehumidifying and deodorizing the house.

【0025】次に、浄水に使用するセラミックボールの
製造例を下記に示す。
Next, an example of manufacturing a ceramic ball used for water purification will be described below.

【実施例】麦飯石粉末1.25kgに1.25kgのゼ
オライト粉末及び粘土2.5kgを混入し、さらに常温
の水を20リットル注いで混練した後、フィルタープレ
ス用いて脱水しペースト状のセラミック生地を得た。こ
のセラミック生地から直径12〜14mmで4g程度の
球形核を約1000個製造し乾燥させておく、残りのセ
ラミック生地を乾燥させた後、再度粉砕して粉末とし水
を混合して泥状にした。
EXAMPLE 1.25 kg of zeolite powder and 2.5 kg of clay were mixed with 1.25 kg of barley stone powder, and 20 liters of room temperature water were added and kneaded, followed by dehydration using a filter press and paste-like ceramic dough. I got Approximately 1000 spherical nuclei of about 4 g having a diameter of 12 to 14 mm are produced from this ceramic dough and dried, and the remaining ceramic dough is dried and then pulverized again to be powdered and mixed with water to make a muddy state. .

【0026】前記球形核を平坦なトレイに並べ、そのト
レイに泥状物を注ぎ、球状核を転がしながらその周囲に
泥状物を付着させ、暫く自然乾燥した後、同じ操作をさ
らに数回繰り返した。出来上がった直径約15mm程度
の球状体を乾燥炉に入れて完全に乾燥した後、乾燥した
球状体を陶器成形用電気窯に入れて1100℃の温度で
30分間焼成してセラミックボールを得た。
The spherical nuclei are arranged on a flat tray, and the mud is poured into the tray. The mud is adhered to the periphery while rolling the spherical nuclei, and after being air-dried for a while, the same operation is repeated several times. Was. The completed spherical body having a diameter of about 15 mm was placed in a drying furnace and completely dried, and then the dried spherical body was placed in an electric kiln for pottery molding and fired at 1100 ° C. for 30 minutes to obtain a ceramic ball.

【0027】次に、このセラミックボールを濾過材とし
て使用した活水器について説明する。図2に示すよう
に、上水管あるいは排水管の途中に取付けられる活水器
の本体ケース3は長円筒形に形成され、本体ケース3の
上部及び下部には、それぞれ流入口4及び流出口5が設
けられており、内部にセラミックボール2が充填されて
いる。
Next, a water activating device using the ceramic ball as a filtering material will be described. As shown in FIG. 2, the main case 3 of the water activating device attached in the middle of the water pipe or the drain pipe is formed in a long cylindrical shape. And a ceramic ball 2 is filled therein.

【0028】上水あるいは廃水(以下、水という)は、
この活水器を通過することによりイオン化学的に水質が
向上する。すなわち、活水器を通過する水は、セラミッ
クボール2を通過することによって、電離反応が促進さ
れてヒドロキシイオンを多く生じ、水の界面はPH7.
0〜8.0の弱アルカリ性になる。このため、ヒドロキ
シルイオンの多い水の界面でカルシウム、シリカ等が析
出して作る結晶は、イオンの方向性で生ずる界面活性作
用を受ける。その結果、析出した結晶の形は付着性の少
ない鱗片状になり、これにより配管内壁にスケール等が
生成することが防止される。
Water or wastewater (hereinafter referred to as water)
The water quality is improved ionically by passing through the water activating device. That is, when the water passing through the water activating device passes through the ceramic ball 2, the ionization reaction is promoted to generate a large amount of hydroxy ions, and the water interface is at pH 7.0.
It becomes weakly alkaline of 0 to 8.0. For this reason, crystals formed by precipitation of calcium, silica, and the like at the interface of water with a large amount of hydroxyl ions are subjected to a surface-active action generated in the direction of ions. As a result, the form of the precipitated crystals becomes flakes with little adhesion, thereby preventing scale or the like from being formed on the inner wall of the pipe.

【0029】また、セラミックボール2が遠赤外線放射
を呈することから、藻類アメーバの発生を抑制する。こ
れは活水器の本体ケース3はステンレスにより作製され
ているため、永久微小電極の機能をなす麦飯石を含むセ
ラミックボール2によるイオン電離作用と、電導性且つ
耐腐食性のステンレスによるイオン誘導作用が相まっ
て、水に対して穏やかな界面活性作用を促進させる。す
なわち、水の分子間で電離反応を促進させ、クラスター
を小さく活性化させる。活性化された水はヒドロキシル
イオンを多く造り界面活性作用を発揮する。
Since the ceramic ball 2 emits far-infrared radiation, the occurrence of algae amoeba is suppressed. Since the main body case 3 of the water activating device is made of stainless steel, the ionization effect of the ceramic ball 2 containing barley stone serving as a permanent microelectrode and the ion induction effect of the conductive and corrosion-resistant stainless steel are obtained. Together, they promote a mild surface-active effect on water. That is, the ionization reaction is promoted between the water molecules, and the clusters are activated small. The activated water produces a large amount of hydroxyl ions and exerts a surface-active action.

【0030】すなわち、水は活水器内のセラミックボー
ル2を通過する際にヒドロキシイオンを多く生じるの
で、水の界面はPH7.0〜8.0の弱アルカリ性にな
る。そのため、界面活性効果により水質劣化が防止さ
れ、配管水路系でのスケール付着やスライム沈殿による
障害が解消する。また、金属成分の不動態化を維持して
固体表面を洗浄するので、レジオネラ菌等の微生物の発
生が抑制される。
That is, when water passes through the ceramic balls 2 in the water activating device, a large amount of hydroxy ions are generated, so that the interface of the water becomes weakly alkaline with a pH of 7.0 to 8.0. Therefore, deterioration of water quality is prevented by the surface active effect, and problems due to scale adhesion and slime precipitation in the pipe waterway system are eliminated. Further, since the solid surface is washed while the passivation of the metal component is maintained, the generation of microorganisms such as Legionella bacteria is suppressed.

【0031】[0031]

【発明の効果】以上のように本発明によれば、遠赤外線
効果を有すると共に、抗菌、脱臭、浄化、酸化防止等の
複合的な機能を有し、且つ成形性及び耐久性に優れた遠
赤外線セラミックを得ることができる。
As described above, according to the present invention, not only has a far-infrared effect, but also a complex function such as antibacterial, deodorizing, purifying, and antioxidant, and is excellent in moldability and durability. An infrared ceramic can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る遠赤外線セラミックの成形体の一
実施例を示す斜視図である。
FIG. 1 is a perspective view showing one embodiment of a molded product of far-infrared ceramic according to the present invention.

【図2】本発明に係るセラミックボールを使用した活水
器を示す一部破断斜視図である。
FIG. 2 is a partially cutaway perspective view showing a water activating device using a ceramic ball according to the present invention.

【符号の説明】[Explanation of symbols]

1 遠赤外線放射セラミック成形体 2 セラミックボール 3 活水器の本体ケース 4 流入口 5 流出口 DESCRIPTION OF SYMBOLS 1 Far infrared radiation ceramic molded body 2 Ceramic ball 3 Main body case of water activating device 4 Inlet 5 Outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】粉砕した麦飯石(黒雲母モンゾナイト斑
岩)20〜30重量%及びゼオライト15〜25重量%
を主材とし、粘土45〜65重量%と水とを前記主材と
混練した後、焼成して成ることを特徴とする遠赤外線放
射セラミック。
(1) 20-30% by weight of ground barley stone (biotite monzonite porphyry) and 15-25% by weight of zeolite
A far-infrared radiating ceramic comprising 45 to 65% by weight of clay and water mixed with the main material, followed by firing.
【請求項2】粉砕した麦飯石(黒雲母モンゾナイト斑
岩)20〜30重量%及びゼオライト15〜25重量%
を主材とすると共に、Feを2重量%、MnO
を6重量%、CoOを1重量%及びCuOを1重量%を
混合材として、前記主材に添加混入したことを特徴とす
る請求項1記載の遠赤外線放射セラミック。
2. 20 to 30% by weight of ground barite (biotite monzonite porphyry) and 15 to 25% by weight of zeolite.
And 2% by weight of Fe 2 O 3 and MnO 2
The far-infrared radiation ceramic according to claim 1, wherein 6 wt%, 1 wt% of CoO and 1 wt% of CuO are mixed and added to the main material.
JP2000080817A 2000-03-22 2000-03-22 Far infrared ray radiating ceramic Pending JP2001261426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000080817A JP2001261426A (en) 2000-03-22 2000-03-22 Far infrared ray radiating ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000080817A JP2001261426A (en) 2000-03-22 2000-03-22 Far infrared ray radiating ceramic

Publications (1)

Publication Number Publication Date
JP2001261426A true JP2001261426A (en) 2001-09-26

Family

ID=18597861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000080817A Pending JP2001261426A (en) 2000-03-22 2000-03-22 Far infrared ray radiating ceramic

Country Status (1)

Country Link
JP (1) JP2001261426A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030079373A (en) * 2002-04-03 2003-10-10 반석제로파 주식회사 The far infra red ray emissive deodorant ceramics and a method for its preparation
WO2005108680A1 (en) * 2004-05-12 2005-11-17 Azumagumi Co., Ltd. Water control structure, concrete block for water control construction, and method of water control construction therewith
JP2006122026A (en) * 2004-10-25 2006-05-18 Nos:Kk Plant raising method using combined active functional water
KR100812393B1 (en) 2007-03-16 2008-03-11 주식회사 일현종합건설 Ceramic having waterpurifying ability and curbing microorganism growth
WO2008136134A1 (en) * 2007-04-24 2008-11-13 Environmental Science Co., Ltd. Method of treating animal feces
JP2010022207A (en) * 2008-07-15 2010-02-04 Fumiyoshi Yoshioka Auxiliary substance for rice cooking
CN114620995A (en) * 2022-03-16 2022-06-14 杭州良渚黑陶文化科技有限公司 Black pottery product firing process and firing equipment thereof
CN116023116A (en) * 2021-10-27 2023-04-28 江苏得一健材料科技有限公司 Coating-containing ceramic tablet for preparing alkalescent active water

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030079373A (en) * 2002-04-03 2003-10-10 반석제로파 주식회사 The far infra red ray emissive deodorant ceramics and a method for its preparation
WO2005108680A1 (en) * 2004-05-12 2005-11-17 Azumagumi Co., Ltd. Water control structure, concrete block for water control construction, and method of water control construction therewith
JP2006122026A (en) * 2004-10-25 2006-05-18 Nos:Kk Plant raising method using combined active functional water
KR100812393B1 (en) 2007-03-16 2008-03-11 주식회사 일현종합건설 Ceramic having waterpurifying ability and curbing microorganism growth
WO2008136134A1 (en) * 2007-04-24 2008-11-13 Environmental Science Co., Ltd. Method of treating animal feces
JP2010022207A (en) * 2008-07-15 2010-02-04 Fumiyoshi Yoshioka Auxiliary substance for rice cooking
CN116023116A (en) * 2021-10-27 2023-04-28 江苏得一健材料科技有限公司 Coating-containing ceramic tablet for preparing alkalescent active water
CN114620995A (en) * 2022-03-16 2022-06-14 杭州良渚黑陶文化科技有限公司 Black pottery product firing process and firing equipment thereof
CN114620995B (en) * 2022-03-16 2023-02-07 杭州良渚黑陶文化科技有限公司 Black pottery product firing process and firing equipment thereof

Similar Documents

Publication Publication Date Title
Kara et al. Metakaolin based geopolymer as an effective adsorbent for adsorption of zinc (II) and nickel (II) ions from aqueous solutions
Vhahangwele et al. The potential of ball-milled South African bentonite clay for attenuation of heavy metals from acidic wastewaters: Simultaneous sorption of Co2+, Cu2+, Ni2+, Pb2+, and Zn2+ ions
CN101306343B (en) Method for preparing water body dephosphorized granule adsorbent using attapulgite clay
Meski et al. Synthesis of hydroxyapatite from mussel shells for effective adsorption of aqueous Cd (II)
Wang et al. Investigation on the adsorption of phosphorus by Fe-loaded ceramic adsorbent
Jorfi et al. Adsorption of Cr (VI) by natural clinoptilolite zeolite from aqueous solutions: isotherms and kinetics
JP2001261426A (en) Far infrared ray radiating ceramic
Gogoi et al. Removal of fluoride from water by locally available sand modified with a coating of iron oxides
EP3505239A1 (en) Sorbents from iron-rich and aluminium-rich starting materials
KR100393267B1 (en) Staircase type waste water disposal system and adsorbent for purification of livestock waste water
Wang et al. Removal of nitrate from constructed wetland in winter in high-latitude areas with modified hydrophyte biochars
CN105152258B (en) One kind load Fe2+The method that bromate in water removal is removed with β FeOOH red mud porcelain granule
JP3160705B2 (en) Method for preparing fired tourmaline-containing ceramics having enhanced water pH increasing properties and metal ion adsorption properties
JP3794003B2 (en) Phosphate ion-adsorbing filter medium and production method
JP3695845B2 (en) Water purification material
Park et al. Pyrophyllite clay for bacteriophage MS2 removal in the presence of fluoride
JPS6242736A (en) Production of adsorbent consisting essentially of natural zeolite mineral
KR100506329B1 (en) Material for water-treating and water-treating apparatus
Mehta et al. Bio-adsorbent hydroxyapatite for drinking water defluoridation: column performance modelling studies
KR100863755B1 (en) Composition comprising gadolinium oxide and water filtering method using the same
JP2002104887A (en) Ceramics, device for water quality concerting, method of manufacturing ceramics
KR20010088719A (en) Bio Ceramics omitted
JPH0739887A (en) Ceramic based water activating material and production thereof
CN106517544A (en) Mineralized ceramic, production method thereof, and application of ceramic in water treatment
RU2735839C1 (en) Method of producing sorbent for purification of waste water from nickel ions