JP2001254116A - Method of producing low nitrogen steel - Google Patents

Method of producing low nitrogen steel

Info

Publication number
JP2001254116A
JP2001254116A JP2000066713A JP2000066713A JP2001254116A JP 2001254116 A JP2001254116 A JP 2001254116A JP 2000066713 A JP2000066713 A JP 2000066713A JP 2000066713 A JP2000066713 A JP 2000066713A JP 2001254116 A JP2001254116 A JP 2001254116A
Authority
JP
Japan
Prior art keywords
converter
volume
furnace
ratio
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000066713A
Other languages
Japanese (ja)
Inventor
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000066713A priority Critical patent/JP2001254116A/en
Publication of JP2001254116A publication Critical patent/JP2001254116A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a producing method of low nitrogen steel, by which the invasion of air into a furnace developed at the blowing end stage in a converter, can easily be prevented. SOLUTION: (1) In a decarburizing refining which top-blows oxygen and bottom-blows any one or more kinds among Ar, CO, CO2 and hydrocarbon gas, a ratio (Q/V) of the bottom-blown gas flowing rate Q (m3 (normal state)/s) and the volume V (m3) in the converter is regulated to >=0.002 (1/s). (2) Further, this ratio (Q/V) is regulated to <=0.02 (1/s). (3) The volume V in the converter is calculated with the following equation by using the volume Vo (m3) in an iron shell. V=0.48V0+5.15.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低窒素鋼の溶製方
法に関し、特に上底吹き転炉における空気中の窒素の溶
鋼への混入を防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for smelting low-nitrogen steel, and more particularly to a method for preventing nitrogen in air from being mixed into molten steel in an upper-bottom blow converter.

【0002】[0002]

【従来の技術】厚板では鋼の靱性を高めることが求めら
れている。また、加工用薄板では加工性の観点から降伏
強度が低く、延びの高いものが求められている。さら
に、時間の経過とともに延性が劣化する時効を抑制す
る、いわゆる耐時効性を確保することも求められてい
る。以上のような機械的特性を満足させるために鋼中の
窒素濃度を低減することが求められている。
2. Description of the Related Art For thick plates, it is required to increase the toughness of steel. Further, from the viewpoint of workability, thin sheets for processing are required to have low yield strength and high elongation. Further, it is also required to secure so-called aging resistance, which suppresses aging in which ductility deteriorates with the passage of time. In order to satisfy the above mechanical properties, it is required to reduce the nitrogen concentration in steel.

【0003】一方、通常の高炉法による鋼の製造方法は
以下の通りである。高炉から出銑された溶銑をトピード
カーあるいは溶銑鍋に収容し、そのままあるいは別の溶
銑処理用容器に移し替えて脱燐、脱硫または脱珪などの
溶銑予備処理を行う方法が従来から行われている。この
溶銑予備処理では、溶銑中に各種精錬剤の添加を行い、
ガス攪拌または機械攪拌が行われている。
On the other hand, a method for producing steel by a normal blast furnace method is as follows. Conventionally, hot metal from a blast furnace is stored in a torpedo car or hot metal ladle and transferred to another hot metal processing vessel as it is or for pretreatment of hot metal such as dephosphorization, desulfurization or desiliconization. . In this hot metal pretreatment, various refining agents are added to the hot metal,
Gas or mechanical agitation is taking place.

【0004】これらの溶銑予備処理を行った後、溶鋼は
転炉に装入され、酸素ガスにより脱炭精錬が行われる。
転炉吹錬終了後に、粗脱炭された溶鋼は取鍋へ出鋼され
二次精錬装置にて成分調整や真空精錬が行われた後、連
続鋳造機で鋳片となる。得られた鋳片はそれぞれの用途
にしたがって圧延や熱処理などが施される。溶鋼中の窒
素は転炉吹錬中に急速に低下するが、吹錬後期には脱炭
速度が低下して炉内発生ガス流量が極端に小さくなるた
めに、炉内へ進入する空気量が増大し、その結果吹錬末
期での溶鋼中の[N]濃度の上昇が生じていた。
[0004] After performing these hot metal pretreatments, the molten steel is charged into a converter and decarburized and refined with oxygen gas.
After the completion of converter blowing, the molten steel that has been roughly decarburized is tapped into a ladle, subjected to component adjustment and vacuum refining in a secondary refining device, and then turned into slabs in a continuous casting machine. The obtained slab is subjected to rolling, heat treatment, and the like according to each use. Nitrogen in molten steel decreases rapidly during converter blowing, but in the latter stage of blowing, the decarburization rate decreases and the flow rate of gas generated in the furnace becomes extremely small. As a result, the concentration of [N] in the molten steel at the end of blowing increased.

【0005】[0005]

【発明が解決しようとする課題】この方策として特開平
8−92621号公報には、溶鋼中の[C]濃度、酸素
供給速度に応じて転炉の炉口断面積を調整する方法が提
案されている。
As a countermeasure, Japanese Patent Laying-Open No. 8-92621 proposes a method for adjusting the cross-sectional area of the furnace port of a converter according to the [C] concentration in molten steel and the oxygen supply rate. ing.

【0006】しかし、同公報に開示された炉口断面積を
吹錬中に変更することは設備上、きわめて困難であり、
実現性に乏しい。したがって、本発明の目的は、転炉吹
錬末期に生じる炉内への空気侵入を容易に防止できる例
えば20ppm 以下の低窒素鋼の溶製方法を提供すること
にある。
However, it is extremely difficult to change the furnace port cross-sectional area disclosed in the publication during blowing, because of the equipment.
Poor feasibility. Therefore, an object of the present invention is to provide a method for melting low nitrogen steel of, for example, 20 ppm or less, which can easily prevent air from entering the furnace at the end of converter blowing.

【0007】[0007]

【課題を解決するための手段】発明者らは転炉での空気
進入を防止する条件を探査し、下記の知見を得た。 (A)転炉吹錬で供給される酸素は、吹錬末期にはかな
りの部分が溶鋼と反応してFeO、Fe2 3 、P2
5 、MnOなどの酸化物を形成し、消費されるため、空
気進入の防止するガスとしての機能を果たすことが困難
となる。そのため、空気の進入を防止する酸素ガス以外
のガス種を添加する必要がある。
The present inventors have searched for conditions for preventing air from entering the converter and have obtained the following findings. (A) At the end of blowing, a large part of the oxygen supplied by converter blowing is reacted with molten steel, and FeO, Fe 2 O 3 , P 2 O
5. Since oxides such as MnO are formed and consumed, it becomes difficult to function as a gas for preventing air from entering. Therefore, it is necessary to add a gas species other than the oxygen gas that prevents the entry of air.

【0008】(B)小型試験炉や大きさの異なる転炉で
調査したところ、空気進入防止のための臨界ガス流量
は、炉内容積V(レンガ張りの状態での容積)(m3 ) に
依存することがわかった。すなわち、炉内体積が大きい
ほど空気進入防止のために必要とされるガス流量が大き
くなることがわかった。
(B) Investigation was conducted in a small test furnace and converters of different sizes, and the critical gas flow rate for preventing air from entering was found to be the furnace volume V (volume in a bricked state) (m 3 ). It turned out to depend. That is, it was found that the larger the furnace volume, the larger the gas flow required to prevent air from entering.

【0009】なお、厳密に言えば、処理する溶鋼量によ
って有効な炉内容積は変化するが、一般に溶鋼体積は炉
内容積に対して小さいので無視しても問題ない。 (C)炉内容積V当たりの底吹きのArガス流量Qを指
標にとり、転炉吹錬を行い吹錬後に取鍋に出鋼した溶鋼
中の[N]濃度(ppm )を比較した。
Strictly speaking, the effective furnace volume varies depending on the amount of molten steel to be treated. However, since the molten steel volume is generally smaller than the furnace volume, it can be safely ignored. (C) Using the flow rate Q of the bottom blown Ar gas per furnace volume V as an index, the converter was blown and the [N] concentration (ppm) in the molten steel discharged into the ladle after blowing was compared.

【0010】図1はその試験結果を示す。なお、図中の
スピッティング指数は、サブランス孔からスピッティン
グ採取棒を転炉炉口上部に入れ、これに付着した地金量
を測定し、比(Q/V)が0.0005(1/s)の条
件での地金量を基準にした指数である。
FIG. 1 shows the test results. In addition, the spitting index in the figure is obtained by inserting a spitting sampling rod from the sublance hole into the upper part of the converter furnace mouth, measuring the amount of metal adhering to the spout sampling rod, and obtaining a ratio (Q / V) of 0.0005 (1/1). This is an index based on the amount of bullion under the condition of s).

【0011】同図に示すように、出鋼後の溶鋼中の
[N]濃度は、比(Q/V)が0.002(1/s)以
上を越えると急激に低下した。これは、比(Q/V)が
0.002(1/s)未満では炉内容積をパージするた
めのガス量が少なく、炉内への空気進入を防止できなか
ったためと推定できる。
As shown in the figure, the [N] concentration in the molten steel after tapping sharply decreased when the ratio (Q / V) exceeded 0.002 (1 / s) or more. This can be presumed to be because if the ratio (Q / V) is less than 0.002 (1 / s), the amount of gas for purging the furnace volume is small, and air entry into the furnace could not be prevented.

【0012】なお、ガス種としてArガスの他にCO2
ガスおよび炭化水素ガスのC3 8を用いた試験を行っ
たが、図1と同様の結果が得られた。また、比(Q/
V)が0.02(1/s)を越えると、底吹きガス流量
の増大によってスピッティング(溶鋼飛散)量が増大し
た。スピッティング量が増大すると鉄歩留まりが低下し
たり、炉口地金付きが増大して地金取り作業等により生
産性を悪化させるなどの問題を生じ好ましくない。
[0012] In addition to the Ar gas, CO 2
A test using C 3 H 8 as a gas and a hydrocarbon gas was performed, and the same result as that in FIG. 1 was obtained. In addition, the ratio (Q /
When V) exceeded 0.02 (1 / s), the amount of spitting (scattered molten steel) increased due to an increase in the flow rate of the bottom blown gas. An increase in the amount of spitting is not preferable because iron yield decreases, and there is a problem in that productivity increases due to metal staking operations due to an increase in furnace slab ingots.

【0013】本発明は、以上の知見に基づいてなされた
もので、その要旨は、下記のとおりである。 (1)上底吹き転炉で酸素を上吹きし、Ar、CO、C
2 および炭化水素ガスのいずれか1種以上を底吹きす
る脱炭精錬において、底吹きガス流量Q(m 3 (標準状
態)/s)と転炉内容積V(m 3 )との比(Q/V)を
0.002(1/s)以上とすることを特徴とする低窒
素鋼の溶製方法。 (2)前記比(Q/V)が0.02(1/s)以下であ
ることを特徴とする上記(1)に記載の低窒素鋼の溶製
方法。 (3)前記転炉内容積Vを鉄皮内容積Vo(m 3 )を用
いて下記(1)式で計算することを特徴とする上記
(1)または(2)に記載の低窒素鋼の溶製方法。
The present invention has been made based on the above findings, and the gist thereof is as follows. (1) Oxygen is blown upward in a top-bottom blow converter, and Ar, CO, C
In decarburization refining in which one or more of O 2 and hydrocarbon gas are blown in the bottom, the ratio of the bottom blown gas flow rate Q (m 3 (standard state) / s) to the converter internal volume V (m 3 ) ( Q / V) is 0.002 (1 / s) or more. (2) The method for producing low-nitrogen steel according to (1), wherein the ratio (Q / V) is 0.02 (1 / s) or less. (3) The low-nitrogen steel according to (1) or (2), wherein the converter internal volume V is calculated by the following equation (1) using the steel shell internal volume Vo (m 3 ). Melting method.

【0014】 V=0.48×Vo +5.15−−−−(1)V = 0.48 × Vo + 5.15 (1)

【0015】[0015]

【発明の実施の形態】本発明法では、高炉から運搬され
た溶銑をそのまま/あるいは/脱硅、脱りん、脱硫など
の溶銑処理を行った後、上底吹き転炉に溶銑を装入し吹
錬を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the method of the present invention, hot metal conveyed from a blast furnace is subjected to hot metal treatment such as desiliconization, dephosphorization, desulfurization or the like, and then the hot metal is charged into an upper-bottom blow converter. Perform blowing.

【0016】転炉の場合、転炉に溶銑やスクラップなど
の原料を装入後、溶鋼上部に設けた上吹きランス/ある
いは/底吹き羽口から酸素を供給して吹錬を行い、底吹
き羽口からAr、CO、CO2 および炭化水素のいずれ
か1種以上を底吹きする。
In the case of a converter, after charging raw materials such as hot metal and scrap into the converter, oxygen is supplied from a top blowing lance and / or a bottom blowing tuyere provided above the molten steel to perform blowing and bottom blowing. Any one or more of Ar, CO, CO 2 and hydrocarbons are blown down from the tuyere.

【0017】炭化水素は、例えばCH4 、C2 6
3 8 、C4 10 などを単独あるいは混合して用い
ることができる。ここで、ガス流量はAr、CO、CO
2 の各ガスを使用する場合は、そのままの添加流量を指
し、炭化水素を使用する場合は、炭化水素分解後の流量
を指す。すなわちCH4 は2倍のH2 として、C2
6 は3倍のH2 として流量を換算する。
Hydrocarbons include, for example, CH 4 , C 2 H 6 ,
C 3 H 8 , C 4 H 10 and the like can be used alone or as a mixture. Here, gas flow rates are Ar, CO, CO
When each of the gases 2 is used, the flow rate indicates the added flow rate as it is, and when a hydrocarbon is used, the flow rate after the hydrocarbon decomposition is indicated. That is, CH 4 is doubled as H 2 and C 2 H
6 converts the flow rate of 3 times the H 2.

【0018】耐火物を内張りした上底吹き転炉の内容積
は、超音波、マイクロ波等を利用して炉内のプロフィー
ルを測定することができる。しかし、測定のために多大
な時間をかけるのは生産性の低下をもたらすため、精錬
炉の鉄皮内容積Vo(m 3 )から炉内容積をV(m 3
を簡便に推定する方法を提案する。すなわち、種々の大
きさの転炉の情報を元に回帰分析を行って下記式の関係
を得た。
The internal volume of the top and bottom blown converter with a refractory lining can be measured by a profile in the furnace using ultrasonic waves, microwaves or the like. However, taking a long time for the measurement causes a decrease in productivity. Therefore, the internal volume of the furnace from the internal volume Vo (m 3 ) of the refining furnace to the internal volume of the furnace V (m 3 )
We propose a simple estimation method. That is, regression analysis was performed on the basis of information on converters of various sizes to obtain a relationship represented by the following equation.

【0019】 V=0.48×Vo +5.15−−−−(1) なお、鉄皮内容積Voは、下記のように定義される。す
なわち、鉄皮内容積Voとは、精錬炉の外殻鉄板と精錬
炉の開口面とで囲まれた領域の体積である。
V = 0.48 × Vo + 5.15 --- (1) The steel inner volume Vo is defined as follows. That is, the iron shell inner volume Vo is the volume of a region surrounded by the outer iron plate of the refining furnace and the opening surface of the refining furnace.

【0020】[0020]

【実施例】250質量ton 転炉に溶銑を装入し、造滓剤
を添加して上吹きランスから酸素を吹き付け、底吹き羽
口から攪拌ガスを流して溶鋼中の[C]濃度:0.05
%まで吹錬を行った。装入した溶銑は高炉から出銑した
ものをトピードカーへ受けて、そのままあるいは予備処
理ステーションにて、脱珪、脱燐、脱硫したものを用い
た。転炉への装入溶銑成分は、[Si]:<0.01
%、[P]:0.012%、[S]:0.003%とし
た。上吹き酸素は水冷ラバールランスを用いて全量上吹
きし、底吹きは二重管羽口を用いて内管に炭化水素(C
3 8 )、外管にArを用いた。
EXAMPLE A molten iron was charged into a 250 mass ton converter, a slag forming agent was added, oxygen was blown from a top blowing lance, and a stirring gas was flowed from a bottom blowing tuyere to obtain a [C] concentration of 0 in molten steel. .05
% Was blown. The charged hot metal was supplied from a blast furnace, received in a topped car, and used as it was or desiliconized, dephosphorized and desulfurized in a pretreatment station. The hot metal component charged to the converter is [Si]: <0.01
%, [P]: 0.012%, and [S]: 0.003%. The top-blown oxygen is blown all over using a water-cooled Laval lance, and the bottom-blown is a hydrocarbon (C
3 H 8 ), and Ar was used for the outer tube.

【0021】表1に試験結果を示す。なお、V(m 3
は前記(1)式を用いて算出し、C 3 8 流量を調整し
て比(Q/V)を制御した。
Table 1 shows the test results. Note that V (mThree)
Is calculated using the above equation (1), and C ThreeH8Adjust the flow rate
To control the ratio (Q / V).

【0022】[0022]

【表1】 同表に示すように、比(Q/V)が0.002(1/
s)未満の比較例では溶鋼中の[N]濃度が25ppm 以
上と高く低窒素鋼溶製はできなかった。
[Table 1] As shown in the table, the ratio (Q / V) was 0.002 (1 /
In Comparative Examples less than s), the [N] concentration in the molten steel was as high as 25 ppm or more, and low-nitrogen steel could not be produced.

【0023】溶鋼中の[N]濃度が20ppm 以下の低窒
素鋼を溶製するためには、比(Q/V)を本発明例に示
すように、0.002(1/s)以上とすることが必要
であった。
In order to smelt low-nitrogen steel having a [N] concentration of 20 ppm or less in molten steel, the ratio (Q / V) must be not less than 0.002 (1 / s) as shown in the examples of the present invention. It was necessary to do.

【0024】[0024]

【発明の効果】本発明により、転炉吹錬末期に生じる炉
内への空気侵入を容易に防止できるため、低窒素鋼、例
えば20ppm 、好ましくは10ppm 以下の低窒素鋼を容
易に溶製できる。
According to the present invention, since air intrusion into the furnace at the end of the converter blowing can be easily prevented, low-nitrogen steel, for example, low-nitrogen steel of 20 ppm or less, preferably 10 ppm or less can be easily melted. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】溶鋼中の[N]濃度およびスピッティング指数
と比(Q/V)との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the [N] concentration in molten steel, the spitting index, and the ratio (Q / V).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き転炉で酸素を上吹きし、Ar、
CO、CO2 および炭化水素ガスのいずれか1種以上を
底吹きする脱炭精錬において、底吹きガス流量Q(m 3
(標準状態)/s)と転炉内容積V(m 3 )との比(Q/
V)を0.002(1/s)以上とすることを特徴とす
る低窒素鋼の溶製方法。
1. A top-blowing converter in which oxygen is blown upward, and Ar,
In the decarburization refining in which one or more of CO, CO 2 and hydrocarbon gas are blown in the bottom, the flow rate of the bottom blown gas Q (m 3
(Standard state) / s) and the ratio between the rolling furnace volume V (m 3) (Q /
V) is 0.002 (1 / s) or more, the method for melting low-nitrogen steel.
【請求項2】 前記比(Q/V)が0.02(1/s)
以下であることを特徴とする請求項1に記載の低窒素鋼
の溶製方法
2. The ratio (Q / V) is 0.02 (1 / s).
The method for melting low-nitrogen steel according to claim 1, wherein:
【請求項3】 前記転炉内容積Vを鉄皮内容積Vo(m
3 )を用いて下記(1)式で計算することを特徴とする
請求項1または2に記載の低窒素鋼の溶製方法。 V=0.48×Vo +5.15−−−−(1)
3. The converter inner volume V is changed to a steel shell inner volume Vo (m
The method according to claim 1 or 2, wherein the calculation is performed by the following equation (1) using ( 3 ). V = 0.48 × Vo + 5.15 (1)
JP2000066713A 2000-03-10 2000-03-10 Method of producing low nitrogen steel Pending JP2001254116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000066713A JP2001254116A (en) 2000-03-10 2000-03-10 Method of producing low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000066713A JP2001254116A (en) 2000-03-10 2000-03-10 Method of producing low nitrogen steel

Publications (1)

Publication Number Publication Date
JP2001254116A true JP2001254116A (en) 2001-09-18

Family

ID=18586029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000066713A Pending JP2001254116A (en) 2000-03-10 2000-03-10 Method of producing low nitrogen steel

Country Status (1)

Country Link
JP (1) JP2001254116A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898273A (en) * 2014-04-22 2014-07-02 北京科技大学 Control method for prolonging service life of bottom blowing air brick of electric-arc furnace
CN109234489A (en) * 2018-10-26 2019-01-18 山东钢铁集团日照有限公司 The control method of catch carbon stage nitrogen increased amount is reduced when a kind of converter smelting mild steel
CN110106304A (en) * 2019-04-23 2019-08-09 邯郸钢铁集团有限责任公司 The converter smelting method of ultralow nitrogen IF steel
CN110218833A (en) * 2019-06-28 2019-09-10 中天钢铁集团有限公司 The dynamic control method of nitrogen argon switching point during a kind of bottom-blowing of converter
CN112522468A (en) * 2020-11-30 2021-03-19 攀钢集团攀枝花钢铁研究院有限公司 Bottom blowing CO of converter2Method for extracting vanadium
CN112662834A (en) * 2020-11-30 2021-04-16 攀钢集团攀枝花钢铁研究院有限公司 Asymmetric bottom blowing CO of converter2Method for extracting vanadium
CN112680559A (en) * 2020-11-30 2021-04-20 攀钢集团攀枝花钢铁研究院有限公司 Step bottom blowing CO for converter2Method for extracting vanadium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898273A (en) * 2014-04-22 2014-07-02 北京科技大学 Control method for prolonging service life of bottom blowing air brick of electric-arc furnace
CN109234489A (en) * 2018-10-26 2019-01-18 山东钢铁集团日照有限公司 The control method of catch carbon stage nitrogen increased amount is reduced when a kind of converter smelting mild steel
CN110106304A (en) * 2019-04-23 2019-08-09 邯郸钢铁集团有限责任公司 The converter smelting method of ultralow nitrogen IF steel
CN110218833A (en) * 2019-06-28 2019-09-10 中天钢铁集团有限公司 The dynamic control method of nitrogen argon switching point during a kind of bottom-blowing of converter
CN112522468A (en) * 2020-11-30 2021-03-19 攀钢集团攀枝花钢铁研究院有限公司 Bottom blowing CO of converter2Method for extracting vanadium
CN112662834A (en) * 2020-11-30 2021-04-16 攀钢集团攀枝花钢铁研究院有限公司 Asymmetric bottom blowing CO of converter2Method for extracting vanadium
CN112680559A (en) * 2020-11-30 2021-04-20 攀钢集团攀枝花钢铁研究院有限公司 Step bottom blowing CO for converter2Method for extracting vanadium

Similar Documents

Publication Publication Date Title
EP3620542B1 (en) Converter operation monitoring method and converter operation method
RU2761852C1 (en) Method for slag release during production of steel with ultra-low phosphorus content and method for production of steel with ultra-low phosphorus content
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
JP2001254116A (en) Method of producing low nitrogen steel
JPH09217110A (en) Method for melting extra-low sulfur steel
JP4311097B2 (en) Method for preventing slag flow in converter
JP2004277830A (en) Steelmaking method in converter
JP2002012908A (en) Method for smelting nitrogen-containing steel
JP3719056B2 (en) Method for producing ultra-low carbon steel with excellent cleanability
JPH08311519A (en) Steelmaking method using converter
KR900002710B1 (en) Rapid decarburiztion steel making process
US4334922A (en) Process for metal-bath refining
JP4183524B2 (en) Manufacturing method of high cleanliness steel
KR101119022B1 (en) Electric steel sheet and refining method for electric steel sheet
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
EP0097971B1 (en) Method for producing low hydrogen content in steels produced by subsurface pneumatic refining
JP3668172B2 (en) Hot metal refining method
JP2842185B2 (en) Method for producing molten stainless steel by smelting reduction
JPH08199218A (en) Converter process recycling decarburized slag
JPH01252753A (en) Method for refining of stainless steel mother molten metal, arrangement of tuyere at bottom of reactor for refining and bottom tuyere
JP3899555B2 (en) Manufacturing method of high purity steel
WO2020110392A1 (en) Steel production method and method for reducing slag basicity
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel
JPH11217618A (en) Method for refining stainless steel in converter

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060523