JP2001252689A - Treatment method for organic waste water and apparatus therefor - Google Patents

Treatment method for organic waste water and apparatus therefor

Info

Publication number
JP2001252689A
JP2001252689A JP2000065254A JP2000065254A JP2001252689A JP 2001252689 A JP2001252689 A JP 2001252689A JP 2000065254 A JP2000065254 A JP 2000065254A JP 2000065254 A JP2000065254 A JP 2000065254A JP 2001252689 A JP2001252689 A JP 2001252689A
Authority
JP
Japan
Prior art keywords
treatment
organic wastewater
nitrogen
tank
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000065254A
Other languages
Japanese (ja)
Other versions
JP4010733B2 (en
Inventor
Takao Hagino
隆生 萩野
Akira Watanabe
昭 渡辺
Yoshiharu Iriuchijima
義治 入内嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000065254A priority Critical patent/JP4010733B2/en
Publication of JP2001252689A publication Critical patent/JP2001252689A/en
Application granted granted Critical
Publication of JP4010733B2 publication Critical patent/JP4010733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing the consumption of chemicals in an MPA treatment method which removes phosphor and nitrogen as ammonium magnesium phosphate crystal from waste water which contains high concentration organic material, phosphor and nitrogen, and for drastically improving the efficiency of removal of nitrogen and phosphor. SOLUTION: This treatment method of organic waste water incorporates a process (1) in which phosphor and nitrogen in the waste water is made to a form of ammonium magnesium phosphate and taken out the same outside the system and, therein, is characterized in that a vacuum treatment process (2) in which the waste water which contains phosphor and nitrogen is subjected to vacuum treatment prior to the process (1). The treatment apparatus of organic waste water in which the organic waste water is biologically treated is provided with a ammonium magnesium phosphate reaction tank passing through a vacuum treatment device in the treatment course of the organic waste water of the treated water thereof.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水処理場や各種
廃水処理施設等において有機性排水を処理する方法及び
装置に係わり、更に詳しくは、し尿や浄化槽汚泥の消化
脱離液、汚泥の消化液、化学工場排水などの高濃度の有
機物、リン及び窒素を含有する有機性排水から、リン等
をリン酸マグネシウムアンモニウム結晶として除去する
処理において、薬剤の使用量を軽減化するとともに、窒
素及びリンの除去効率を大幅に改善する処理方法及び処
理装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating organic wastewater in a sewage treatment plant and various wastewater treatment facilities, and more particularly, to a digestion / desorption solution of human waste and septic tank sludge, and digestion of sludge. In the treatment of removing phosphorus and the like as magnesium ammonium phosphate crystals from organic wastewater containing high concentrations of organic matter, phosphorus and nitrogen such as liquids and wastewater from chemical factories, the amount of chemicals used is reduced and nitrogen and phosphorus are removed. TECHNICAL FIELD The present invention relates to a processing method and a processing apparatus for greatly improving the removal efficiency of methane.

【0002】[0002]

【従来の技術】従来の一般的な脱窒、脱リンの同時処理
方法としては、嫌気無酸素好気法などの生物学的処理方
法や、嫌気好気法、凝集沈殿法、アルミナ吸着法等を組
み合わせた方法が多い。また、近年、し尿処理や下水処
理の工程で発生する返流水や嫌気性消化脱離液等を対象
として排水中のリン及び窒素をリン酸マグネシウムアン
モニウム(MAP)結晶として除去するMAP処理法等
も試みられている。
2. Description of the Related Art Conventional general methods for simultaneous denitrification and phosphorus removal include biological treatment methods such as an anaerobic anoxic aerobic method, an anaerobic aerobic method, a coagulation sedimentation method, and an alumina adsorption method. Are often combined. In addition, in recent years, MAP treatment methods for removing phosphorus and nitrogen in wastewater as magnesium ammonium phosphate (MAP) crystals for return water or anaerobic digestion / desorbed liquid generated in the process of human waste treatment or sewage treatment have been proposed. Attempted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の処理方法の内、嫌気無酸素好気法は、水質の変化や季
節変動に伴う外部環境の変化により、処理性能が安定し
ない等の問題があり、嫌気好気法と凝集沈殿法等を組み
合わせた方法は、処理工程が煩雑な上に薬品代をはじめ
とするランニングコストが大きい等の問題があった。M
AP処理法は、先の2法に比べて運転操作の煩雑さは少
なく、特にリンの回収を安定的に行える上、回収される
MAPは優れた肥料としての付加価値があり、資源の有
効利用の点からも優れたリン及び窒素の除去技術といえ
る。しかし、MAP法の場合も、pH調整剤としての水
酸化ナトリウムや添加剤として塩化マグネシウム等の薬
品コストがかかる他、比較的SS濃度が小さい(300
0mg/リットル程度)場合においてのみ、正リン酸態
リン濃度を約6〜7割程度除去することができる。つま
り、高濃度の汚泥中に含まれる微細なMAP粒子はほと
んど回収されず、汚泥とともに処分されるだけで、窒素
とリンの回収技術としては問題があった。
However, of these treatment methods, the anaerobic anoxic aerobic method has a problem that the treatment performance is not stable due to a change in the water environment or an external environment due to seasonal fluctuation. The method combining the anaerobic-aerobic method and the coagulation-sedimentation method has the problems that the processing steps are complicated and that the running cost including the cost of chemicals is large. M
In the AP treatment method, the operation is less complicated than the above two methods. In particular, the recovery of phosphorus can be performed stably, and the recovered MAP has an added value as an excellent fertilizer, and the effective use of resources. Therefore, it can be said that this is an excellent technology for removing phosphorus and nitrogen. However, also in the case of the MAP method, chemical costs such as sodium hydroxide as a pH adjuster and magnesium chloride as an additive are required, and the SS concentration is relatively low (300%).
Only about 0 mg / liter), about 60 to 70% of the concentration of orthophosphate phosphorus can be removed. That is, the fine MAP particles contained in the high-concentration sludge are hardly collected, and are merely disposed together with the sludge. Thus, there is a problem as a technology for recovering nitrogen and phosphorus.

【0004】本発明は、上述した従来技術の問題点を解
決することを目的とする。すなわち、本発明は有機性排
水処理システムの中で、特に有機物、窒素、リンを含有
する有機性排水、例えばし尿や浄化槽汚泥の消化脱離
液、汚泥の消化液、化学工場排水などの高濃度の有機
物、リン及び窒素を含有する排水から、リン酸マグネシ
ウムアンモニウム結晶として除去するMAP処理法にお
いて、薬剤の使用量を軽減化するとともに、窒素及びリ
ンの除去効率を大幅に改善する処理方法及び装置を課題
とするものである。
An object of the present invention is to solve the above-mentioned problems of the prior art. That is, the present invention relates to an organic wastewater treatment system, particularly an organic wastewater containing organic matter, nitrogen and phosphorus, for example, a high concentration of an organic wastewater, a digestion and desorption solution of human waste and a septic tank sludge, a digestion solution of sludge, and a chemical factory wastewater. MAP treatment for removing magnesium ammonium phosphate crystals from wastewater containing organic matter, phosphorus and nitrogen, which reduces the amount of chemicals used and greatly improves nitrogen and phosphorus removal efficiency Is the subject.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記課題
を解決するために鋭意検討を行い、有機性排水中のリン
及び窒素をリン酸マグネシウムアンモニウム結晶として
除去するMAP処理工程に加えて減圧処理工程を付加す
ることにより、薬剤の使用量の低減とともに、窒素及び
リンの除去効率が大幅に向上することを知見し、本発明
を完成するに至った。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above-mentioned problems, and in addition to the MAP treatment step of removing phosphorus and nitrogen in organic waste water as magnesium ammonium phosphate crystals. The present inventors have found that the addition of the decompression treatment step significantly reduces nitrogen and phosphorus removal efficiency as well as the amount of drug used, and has completed the present invention.

【0006】すなわち、本発明は、下記の有機性排水の
処理方法及びその装置により、上記課題を解決した。 (1)有機性排水を処理する方法であって、該排水中の
リン及び窒素をリン酸マグネシウムアンモニウムの形態
にして系外に取り出す工程(1)を組み入れている処理
方法において、前記工程(1)の前にリン及び窒素を含
有する該排水を減圧処理する減圧処理工程(2)を組み
込むことを特徴とする有機性排水の処理方法。 (2)有機性排水を生物反応槽で処理し、その生物反応
槽において発生した汚泥を嫌気性醗酵工程に導入し、嫌
気性醗酵工程の途中または終了後生成した消化汚泥中の
リン及び窒素を、リン酸マグネシウムアンモニウムの形
態にして系外に取り出す工程(1)を組み入れている処
理方法において、前記工程(1)の前又はその後にリン
及び窒素を含有する該消化汚泥を減圧処理する減圧処理
工程(2)を組み込むことを特徴とする有機性排水の処
理方法。 (3)有機性排水を生物学的に処理する排水処理装置に
おいて、有機性排水、または、その処理水についての処
理経路に、減圧処理装置を経るリン酸マグネシウムアン
モニウム反応槽を設けることを特徴とする有機性排水の
処理装置。
That is, the present invention has solved the above-mentioned problems by the following organic wastewater treatment method and apparatus. (1) A method for treating organic wastewater, which comprises the step (1) of taking out phosphorus and nitrogen in the wastewater in the form of magnesium ammonium phosphate and taking it out of the system. )) A method of treating organic wastewater, which comprises a step (2) of reducing the pressure of the wastewater containing phosphorus and nitrogen before the step (b). (2) Organic wastewater is treated in a biological reaction tank, sludge generated in the biological reaction tank is introduced into an anaerobic fermentation step, and phosphorus and nitrogen in digested sludge generated during or after the anaerobic fermentation step are removed. A step (1) in which the digested sludge containing phosphorus and nitrogen is subjected to a reduced pressure treatment before or after the step (1) in a treatment method incorporating a step (1) of taking out the system in the form of magnesium ammonium phosphate. A method for treating organic wastewater, comprising the step (2). (3) In a wastewater treatment device for biologically treating organic wastewater, a magnesium ammonium phosphate reaction tank passing through a reduced-pressure treatment device is provided in a treatment route for the organic wastewater or the treated water. Organic wastewater treatment equipment.

【0007】(4)有機性排水を生物学的に処理する排
水処理装置において、有機性排水を生物学的に処理する
生物反応槽からの汚泥についての処理経路に、減圧処理
装置を経るリン酸マグネシウムアンモニウム反応槽を設
けるか、又はリン酸マグネシウムアンモニウム反応槽を
経る減圧装置を設けるかを特徴とする有機性排水の処理
装置。 (5)有機性排水を生物学的に処理する排水処理装置に
おいて、有機性排水を流入水として供給する被処理水流
入管と接続し、脱水装置への濃縮汚泥配送管を設けた最
初固液分離槽と、その分離水排出側に脱水装置への濃縮
汚泥配送管を設けた中間分離槽、次いで生物反応槽、更
に嫌気性醗酵槽への濃縮汚泥配送管を設けた最終固液分
離槽と、前記脱水装置のケーキ排出側に前記嫌気性醗酵
槽へのエネルギー回収手段を設置したケーキ燃焼装置
と、メタンガス回収装置を設けた嫌気性醗酵槽の排出側
に可逆反応的に作用するリン酸マグネシウムアンモニウ
ム反応槽、更に減圧処理装置を具備している、または、
メタンガス回収装置を設けた嫌気性醗酵槽の排出側に可
逆反応的に作用する減圧処理装置、更にリン酸マグネシ
ウムアンモニウム反応槽を具備していることを特徴とす
る有機性排水の処理装置。
(4) In a wastewater treatment apparatus for biologically treating organic wastewater, phosphoric acid passing through a reduced-pressure treatment apparatus is provided in a treatment path for sludge from a biological reaction tank for biologically treating organic wastewater. An organic wastewater treatment apparatus, comprising: a magnesium ammonium reaction tank; or a decompression device passing through a magnesium ammonium phosphate reaction tank. (5) In a wastewater treatment apparatus for biologically treating organic wastewater, first solid-liquid separation is provided, which is connected to an inflow pipe for treated water that supplies organic wastewater as inflow water and has a concentrated sludge delivery pipe to a dehydration apparatus. A tank and an intermediate separation tank provided with a concentrated sludge delivery pipe to a dewatering device on the separated water discharge side, then a biological reaction tank, and a final solid-liquid separation tank further provided with a concentrated sludge delivery pipe to an anaerobic fermentation tank, A cake combustion device provided with energy recovery means for the anaerobic fermenter on the cake discharge side of the dehydrator, and magnesium ammonium phosphate acting reversibly on the discharge side of the anaerobic fermenter provided with a methane gas recovery device A reaction tank, further comprising a reduced pressure processing device, or
An apparatus for treating organic waste water, comprising: a decompression treatment device that acts reversibly on the discharge side of an anaerobic fermentation tank provided with a methane gas recovery device; and a magnesium ammonium phosphate reaction tank.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を作用
とあわせて説明する。上記課題を解決する方法として、
本発明では以下に図1及び図2に示す基本処理フローか
らなる有機性排水の処理方法を提案する。すなわち、有
機性排水を処理する方法であって、該排水中のリン及び
窒素をリン酸マグネシウムアンモニウムの形態にして系
外に取り出す工程(1)(「MAP処理工程」という)
を組み入れている方法において、リン及び窒素を含有す
る排水を減圧処理する工程(2)を組み込むことで、対
象液中に溶存する炭酸や硫化水素等の成分を気相に排出
することにより、対象液中のpHを高めることになる。
その結果、従来対象液にpH調整剤として比較的多量に
添加する必要のあった水酸化ナトリウムなどの薬剤の添
加量を軽減することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below together with the operation. As a method to solve the above problems,
The present invention proposes a method for treating organic wastewater comprising a basic treatment flow shown in FIGS. That is, a method for treating an organic wastewater, in which phosphorus and nitrogen in the wastewater are taken out of the system in the form of magnesium ammonium phosphate (1) (referred to as "MAP treatment step")
By incorporating the step (2) of decompressing the wastewater containing phosphorus and nitrogen into the target liquid by discharging the components such as carbon dioxide and hydrogen sulfide dissolved in the target liquid into the gas phase, This will increase the pH in the solution.
As a result, it is possible to reduce the amount of a drug such as sodium hydroxide that has conventionally been required to be added in a relatively large amount as a pH adjuster to the target liquid.

【0009】図1において、有機性排水を流入SS固液
分離槽1に導入して固形分を沈殿させ、その上澄み水を
膜分離手段を備えた中間分離槽6(これは場合によって
は設けなくてもよい)へ送り、沈殿した汚泥又はその濃
縮汚泥は脱水装置10へ送る。中間分離槽6で分離した
分離水は、生物反応槽3へ送り、そこで例えば活性汚泥
法で好気性生物反応を行わせて処理し、微生物固液分離
槽5で汚泥を沈殿分離して清浄化された処理水として流
出する。この処理方法において、微生物固液分離槽5で
沈殿分離された汚泥は濃縮汚泥31として系外に出され
るが、この濃縮汚泥31はリン及び窒素をより高度に濃
縮されたものとなっているので、これからリン及び窒素
をリン酸マグネシウムアンモニウムの形態にして得るこ
とができれば有価物の回収ができる。
In FIG. 1, an organic waste water is introduced into an inflow SS solid-liquid separation tank 1 to precipitate solids, and the supernatant water is transferred to an intermediate separation tank 6 provided with a membrane separation means (this may not be provided in some cases). The sludge that has settled or the concentrated sludge is sent to the dewatering device 10. The separated water separated in the intermediate separation tank 6 is sent to the biological reaction tank 3, where the separated water is subjected to an aerobic biological reaction by, for example, an activated sludge process, and the sludge is precipitated and separated in the microbial solid-liquid separation tank 5 for purification. Runs off as treated water. In this treatment method, the sludge settled and separated in the microorganism solid-liquid separation tank 5 is discharged out of the system as a concentrated sludge 31. Since the concentrated sludge 31 is one in which phosphorus and nitrogen are more highly concentrated. If phosphorus and nitrogen can be obtained in the form of magnesium ammonium phosphate, valuable resources can be recovered.

【0010】そこで、この濃縮汚泥31を嫌気性発酵槽
4に入れて嫌気性発酵工程を行わせると、有機物が分解
してメタンガスが発生し、有機物の量が減少した消化汚
泥41が得られる。そこでは、数百〜数千のアンモニア
態窒素及び正リン酸態リンを含有し、Mアルカリ成分や
硫化水素の高い含有率を持つ消化汚泥を生成される。そ
の消化汚泥41または消化工程途中の汚泥42の全部ま
たは一部を減圧装置2に送り、減圧処理を行う。消化汚
泥41、消化途中汚泥42は、減圧下の条件下にすると
液から炭酸ガスや硫化水素、及び遊離アンモニアが放出
され、それに伴って水酸イオン分が増加する。この液を
MAP第1槽21に送り、Mg源としてのMgCl2
を添加すると、水酸化ナトリウム等のpH調整剤を添加
しない、または少量添加するだけでMAP生成反応が進
行する。MAP第1槽21は、MAP粒子を形成する機
能とMAP粒子を系外に分離する機能を兼ね備えてい
る。MAP第1槽21を経た消化汚泥43は、嫌気性発
酵槽4に戻されて、再び嫌気性発酵工程を経る。消化汚
泥43は、減圧装置2とMAP槽21を経る間に、液中
の炭酸ガス、硫化水素、遊離アンモニア、正リン酸態リ
ン、水酸イオン、アンモニウムイオン等の嫌気性発酵の
活性を低下させる物質が減少している上、汚泥中の微生
物の一部が減圧処理によるダメージを受けて分解されや
すい形態となっていることから、他の微生物の分解対象
となり消化汚泥43は、汚泥41、42と比較して嫌気
性発酵工程が進行し易く、嫌気性発酵槽4の有機物の分
解率を向上させる。
Then, when the concentrated sludge 31 is put into the anaerobic fermenter 4 and the anaerobic fermentation step is performed, organic matter is decomposed to generate methane gas, and the digested sludge 41 having a reduced amount of organic matter is obtained. There, it produces digested sludge containing hundreds to thousands of ammonium nitrogen and orthophosphate phosphorus and having a high content of M alkaline components and hydrogen sulfide. All or a part of the digested sludge 41 or the sludge 42 in the course of the digestion process is sent to the decompression device 2 to perform a decompression process. When the digested sludge 41 and the digestive sludge 42 are subjected to reduced pressure, carbon dioxide gas, hydrogen sulfide, and free ammonia are released from the liquid, and the amount of hydroxyl ions increases accordingly. When this solution is sent to the MAP first tank 21 and MgCl 2 or the like as a Mg source is added, the MAP generation reaction proceeds only by adding a small amount of a pH adjuster such as sodium hydroxide or the like. The MAP first tank 21 has both a function of forming MAP particles and a function of separating MAP particles out of the system. The digested sludge 43 that has passed through the MAP first tank 21 is returned to the anaerobic fermenter 4 and undergoes the anaerobic fermentation process again. The digested sludge 43 reduces the activity of anaerobic fermentation such as carbon dioxide gas, hydrogen sulfide, free ammonia, orthophosphate phosphorus, hydroxyl ion, ammonium ion, etc. in the liquid while passing through the decompression device 2 and the MAP tank 21. Since the substances to be reduced are reduced and some of the microorganisms in the sludge are in a form easily damaged by the decompression treatment and decomposed, the digested sludge 43 to be decomposed by other microorganisms, the sludge 41, The anaerobic fermentation process is more likely to proceed than in the case of No. 42, and the decomposition rate of organic matter in the anaerobic fermenter 4 is improved.

【0011】このように、汚泥は嫌気性発酵槽4、減圧
装置2、MAP第1槽を循環することにより、発酵によ
る分解率を高くすることができ、分解された炭素分はメ
タンガスに、窒素分、リン分はMAPに、それぞれ有用
な形態で回収される。さらにMAP第1槽から嫌気性発
酵槽4に戻して循環させてもよい。この場合の嫌気性発
酵槽4、減圧装置2、MAP第1槽はこの順序に限定さ
れなくてもよく、汚泥の性状によっては例えば嫌気性発
酵槽4、MAP第1槽、減圧装置2の順に循環する場合
も有効である。さらに減圧装置2から嫌気性発酵槽4に
戻して循環させてもよい。また、この一連の工程におい
て汚泥中に析出したMAP粒子の多くはMAP第1槽に
おいて回収されるが、嫌気発酵槽の有機物分解レベルに
よっては、汚泥中に正リン酸態リンやアンモニア態窒素
が依然高濃度で存在する場合がある。そのため、MAP
粒子を取り除かれた後の消化汚泥41は、高分子凝集剤
等で凝集した後に脱水処理し、その脱水ろ液をMAP第
2槽、Mg源としてのMgCl2 等と、水酸化ナトリウ
ム等のpH調整剤を添加することにより脱水ろ液中の正
リン酸態リンとアンモニア態窒素をMAP粒子として回
収することができる。
As described above, the sludge can be circulated through the anaerobic fermenter 4, the decompression device 2, and the first MAP tank to increase the decomposition rate by fermentation. And the phosphorus content are collected by the MAP in useful forms, respectively. Further, the MAP may be returned from the first tank to the anaerobic fermenter 4 and circulated. In this case, the anaerobic fermenter 4, the decompressor 2, and the MAP first tank need not be limited to this order. Depending on the properties of the sludge, for example, the anaerobic fermenter 4, the MAP first tank, and the depressurizer 2 are arranged in this order. It is also effective when circulating. Further, the pressure may be returned from the decompression device 2 to the anaerobic fermenter 4 and circulated. In addition, most of the MAP particles precipitated in the sludge in this series of steps are collected in the MAP first tank, but depending on the organic matter decomposition level in the anaerobic fermenter, orthophosphorous phosphorus and ammonium nitrogen are contained in the sludge. May still be present at high concentrations. Therefore, MAP
The digested sludge 41 from which the particles have been removed is subjected to a dehydration treatment after being agglomerated with a polymer coagulant or the like, and the dehydrated filtrate is subjected to MAP second tank, MgCl 2 or the like as a Mg source, and pH of sodium hydroxide or the like. By adding a regulator, orthophosphorus phosphorus and ammonia nitrogen in the dehydrated filtrate can be recovered as MAP particles.

【0012】減圧装置2に於ける減圧の条件としては、
減圧の程度が大きい程、炭酸ガスや硫化水素の放出量が
多くなり、効果的ではあるが、減圧のための動力が大き
くなる。適切な減圧の程度としては80〜360hpa
sが好ましい。一方、脱水装置10に入った濃縮汚泥1
1及び濃縮汚泥61は脱水され、脱水汚泥はケーキ燃焼
装置7に送られ、そこで燃焼し、エネルギー回収手段8
により嫌気性醗酵槽4を加温して嫌気性醗酵が助長する
ようにすると効果的である。さらに、嫌気性醗酵槽4で
発生するメタンガスはメタンガス回収手段9により回収
して、それを別に燃焼させ、その燃焼熱で嫌気性醗酵槽
4を加温するようにすることができる。
The conditions for decompression in the decompression device 2 include:
The greater the degree of pressure reduction, the greater the amount of carbon dioxide gas and hydrogen sulfide released, and although effective, the greater the power for pressure reduction. An appropriate degree of reduced pressure is 80 to 360 hpa
s is preferred. On the other hand, the concentrated sludge 1
1 and the concentrated sludge 61 are dewatered, and the dewatered sludge is sent to the cake combustion device 7 where it is burned and energy recovery means 8
It is effective to heat the anaerobic fermenter 4 to promote anaerobic fermentation. Furthermore, the methane gas generated in the anaerobic fermenter 4 can be recovered by the methane gas recovery means 9 and burned separately, and the anaerobic fermenter 4 can be heated by the combustion heat.

【0013】このように、生物反応槽3において発生し
た汚泥の一部を嫌気性醗酵工程4に導入し、嫌気性醗酵
工程の途中または終了後の消化汚泥41に対して減圧処
理を行う工程(2)と、MAP処理工程(1)を組み入
れることにより、数百〜数千のアンモニア態窒素及び正
リン酸態リンを含有し、炭酸や硫化水素の高い含有率を
持つ消化汚泥を生成させつつ、脱炭酸や脱硫化水素によ
る水酸化イオンの増加に伴い、MAP生成の進行が促進
され易くなるとともに、MAP粒子回収後の汚泥を嫌気
性発酵槽に戻すことで、嫌気性発酵反応が促進される。
As described above, a part of the sludge generated in the biological reaction tank 3 is introduced into the anaerobic fermentation step 4, and the digested sludge 41 is reduced in pressure during or after the anaerobic fermentation step ( By incorporating 2) and the MAP treatment step (1), it is possible to produce digested sludge containing hundreds to thousands of ammonium nitrogen and orthophosphate phosphorus and having a high content of carbonic acid and hydrogen sulfide. With the increase of hydroxyl ions due to decarboxylation and dehydrogen sulfide, the progress of MAP generation is facilitated, and the anaerobic fermentation reaction is promoted by returning the sludge after MAP particle recovery to the anaerobic fermenter. You.

【0014】また、減圧処理工程(2)としては特開平
7−136406号公報に開示されているような脱気装
置(以後、薄膜真空脱気装置と称する)を使用すること
が望ましい。すなわち、真空容器内で回転する有底のふ
るい体の遠心力により対象液体を加速して対象液体を該
真空容器内の壁面に衝突させ、対象液体中の気体を除去
する方式の連続脱気装置を採用する方法を採用すること
により、減圧処理による脱炭酸や脱硫化水素の効果を大
幅に増すことが可能となる。また、減圧処理工程はMA
P処理工程の前後いずれであってもよい。更に、図1に
示すように嫌気性醗酵工程とMAP処理工程と減圧処理
工程を繰り返し行ってもよい。すなわち、嫌気性発酵工
程、MAP処理工程、減圧処理工程間の循環はそれぞれ
往復させることもできる。図2は、図1の汚泥処理系の
ものを排水処理系に応用したもので汚泥系のものと同様
の作用効果が得られた。図2では、排水又は生物処理水
12を減圧処理槽2で処理後、MAP反応槽23でMA
P処理する。この際、MAP反応槽23より減圧処理槽
2に対し循環させてもよい。MAP反応槽23で処理し
た水はMAP処理水14として、生成物はMAP生成物
15として排水される。
It is desirable to use a deaerator (hereinafter, referred to as a thin-film vacuum deaerator) as disclosed in Japanese Patent Application Laid-Open No. Hei 7-136406 for the pressure reduction step (2). That is, a continuous deaeration device of a type in which the target liquid is accelerated by the centrifugal force of a bottomed sieve body rotating in the vacuum vessel and the target liquid collides with a wall surface in the vacuum vessel to remove gas in the target liquid. By employing the method of (1), it is possible to greatly increase the effect of decarboxylation and dehydrogen sulfide by reduced pressure treatment. In addition, the decompression process is performed by MA
It may be before or after the P treatment step. Further, as shown in FIG. 1, the anaerobic fermentation step, the MAP treatment step, and the reduced pressure treatment step may be repeatedly performed. That is, the circulation between the anaerobic fermentation step, the MAP treatment step, and the reduced pressure treatment step can be reciprocated, respectively. FIG. 2 shows an example in which the sludge treatment system of FIG. 1 is applied to a wastewater treatment system, and the same operation and effect as those of the sludge treatment system were obtained. In FIG. 2, after treating the wastewater or biologically treated water 12 in the reduced pressure treatment tank 2,
P processing is performed. At this time, it may be circulated from the MAP reaction tank 23 to the reduced pressure processing tank 2. The water treated in the MAP reaction tank 23 is discharged as MAP treated water 14 and the product is discharged as MAP product 15.

【0015】[0015]

【実施例】次に、本発明を実際に組み込んだ実験プラン
トの運転結果の一例について詳細に説明する。図1に実
験プラントのフローを示す。 実施例1 すなわち、本発明では、流入SS固液分離槽1、活性汚
泥が浮遊する生物反応槽3、微生物固液分離槽5を含む
有機性排水処理システムにおいて、流入SS固液分離槽
1において分離した初沈汚泥の濃縮汚泥11、すなわち
脱水性が比較的良く、高カロリーで、窒素とリンの含有
率が低いSS成分を、脱水装置10により脱水処理する
ことにより、排水処理系から多量の有機成分を取り除
き、脱水ケーキをケーキ燃焼装置7において燃焼する。
また、微生物固液分離槽5において分離した余剰汚泥ま
たはその濃縮汚泥31、すなわち脱水性が比較的悪く、
低カロリーで、窒素とリンの含有率が高い成分を、嫌気
性醗酵槽4において消化し、嫌気性醗酵工程で生成する
消化汚泥41、すなわち高濃度の窒素、リン及びアルカ
リ成分を含有する成分からリン酸マグネシウムアンモニ
ウムの形態でリンと窒素を回収する。
Next, an example of operation results of an experimental plant in which the present invention is actually incorporated will be described in detail. FIG. 1 shows the flow of the experimental plant. Example 1 That is, in the present invention, in an organic wastewater treatment system including an inflow SS solid-liquid separation tank 1, a biological reaction tank 3 in which activated sludge floats, and a microorganism solid-liquid separation tank 5, in the inflow SS solid-liquid separation tank 1, The concentrated sludge 11 of the separated primary settled sludge, that is, the SS component having relatively good dehydration property, high calorie, and low nitrogen and phosphorus content, is subjected to dehydration treatment by the dehydration device 10 so that a large amount of wastewater is discharged from the wastewater treatment system. The organic component is removed, and the dehydrated cake is burned in the cake burning device 7.
In addition, surplus sludge separated in the microbial solid-liquid separation tank 5 or its concentrated sludge 31, that is, relatively poor dehydration,
A low-calorie, high nitrogen and phosphorus content component is digested in the anaerobic fermenter 4 and digested sludge 41 produced in the anaerobic fermentation process, that is, from components containing high concentrations of nitrogen, phosphorus and alkali components Phosphorus and nitrogen are recovered in the form of magnesium ammonium phosphate.

【0016】その際、有機性排水が活性汚泥が浮遊する
生物反応槽3に流入する工程の前に、流入SS固液分離
槽1の分離水中に残存する懸濁成分を分離する中間固液
分離槽6を設け、かつ、中間固液分離槽6において分離
した中間汚泥またはその濃縮汚泥61を、脱水装置10
により脱水する工程を含むことにより、カロリーが高
く、脱水性の良いSS性有機物を脱水し、脱水ケーキと
して排出することで水処理系外に分離する。
At this time, before the step of flowing the organic wastewater into the biological reaction tank 3 in which the activated sludge floats, an intermediate solid-liquid separation for separating suspended components remaining in the separated water of the inflow SS solid-liquid separation tank 1 is performed. The tank 6 is provided, and the intermediate sludge or the concentrated sludge 61 separated in the intermediate solid-liquid separation tank 6 is supplied to the dewatering device 10.
The dewatering process includes a step of dehydrating the SS organic matter having a high calorie and a good dehydration property, and discharging the dehydrated cake to separate it from the water treatment system.

【0017】更に、脱水装置10により脱水処理した初
沈汚泥またはその濃縮汚泥11、または中間汚泥または
その濃縮汚泥61の脱水ケーキを燃焼させるケーキ燃焼
装置7、ケーキ燃焼装置7において発生するエネルギー
を回収する燃焼エネルギー回収手段8、嫌気性醗酵槽4
で生成するメタンガス等を回収するメタンガス回収手段
9などの手段を利用することにより、プラントのエネル
ギー消費量の軽減化を効率的に行う。
Further, a cake burning device 7 for burning the dewatered cake of the primary sludge or the concentrated sludge 11 dehydrated by the dewatering device 10 or the intermediate sludge or the concentrated sludge 61 thereof, and recovering energy generated in the cake burning device 7. Burning energy recovery means 8, anaerobic fermenter 4
By using means such as the methane gas recovery means 9 for recovering the methane gas and the like generated in the above, the energy consumption of the plant can be efficiently reduced.

【0018】その上に、MAP第1槽21の後に、生物
反応槽3において発生した汚泥の一部を嫌気性醗酵槽4
に導入し、嫌気性醗酵工程の途中または終了後の消化汚
泥41に薄膜真空脱気装置を減圧装置2として使用する
ことにより、脱炭酸や脱硫化水素による水酸化イオンの
増加を行い、MAP生成の進行を促進する。MAP粒子
回収後の汚泥は嫌気性発酵槽に戻した。MAP第1槽で
は、0.5mm以上に成長したMAP粒子を、比重比を
利用して系外に取出す機構を組み込んだ。また嫌気性発
酵槽4から排出される消化汚泥は脱水装置10により脱
水し、脱水ケーキは、ケーキ燃焼装置7により燃焼し、
脱水ろ液はMAP第2槽により再び窒素とリンを回収し
た。対象水は、下水処理場に流入する汚水を利用した。
Further, after the MAP first tank 21, a part of the sludge generated in the biological reaction tank 3 is transferred to the anaerobic fermentation tank 4.
In the digested sludge 41 during or after the anaerobic fermentation process, the thin film vacuum deaerator is used as the depressurizer 2 to increase the number of hydroxide ions due to decarboxylation or dehydrogen sulfide, thereby producing MAP. Promote the progress of The sludge after the MAP particle recovery was returned to the anaerobic fermenter. In the first MAP tank, a mechanism for taking out the MAP particles grown to 0.5 mm or more out of the system using the specific gravity ratio was incorporated. The digested sludge discharged from the anaerobic fermenter 4 is dewatered by the dewatering device 10, and the dewatered cake is burned by the cake burning device 7,
The dehydrated filtrate recovered nitrogen and phosphorus again by the MAP second tank. The target water used was sewage flowing into a sewage treatment plant.

【0019】図1に示す実施例では、水質がBOD20
0mg/リットル、SS180mg/リットル、流量が
900m3 /日の流入水に対し、処理水の水質がBOD
20mg/リットル、SS10mg/リットルであっ
た。また、流入SS固液分離槽1からの濃縮汚泥11と
中間分離槽6からの濃縮汚泥61を混合したものは、S
S30g/リットル、流量が3.5m3 /日であった。
これを脱水装置10で脱水した汚泥ケーキは含水率68
%、240kg/日であった。また、この時MAP反応
槽21で得られたMAPは14kg/日(MgNH4
4 ・6H2 Oとして)であった。MAP第1槽21に
添加するpH調整剤であるNaOHの量は0.2kg/
日であり、減圧がないMAP処理のみの場合の3.0k
g/日に対して約93%以上削減できた。MAP第2槽
に添加するpH調整剤であるNaOHの量は1.1kg
/日であった。また、嫌気性発酵槽の有機物の消化率
は、MAP処理のみの場合が45%に対して本発明では
85%であり、消化汚泥中の窒素、リンからのMAPと
しての回収率は、MAP処理のみの場合がそれぞれ4
%、32%に対して本発明ではそれぞれ12%、84%
であり、本発明の回収率が高かった。
In the embodiment shown in FIG.
0mg / liter, SS180mg / liter, inflow of 900m 3 / day, treated water quality is BOD
It was 20 mg / liter and SS 10 mg / liter. The mixture of the concentrated sludge 11 from the inflow SS solid-liquid separation tank 1 and the concentrated sludge 61 from the intermediate separation tank 6 is S
S: 30 g / liter, flow rate: 3.5 m 3 / day.
The sludge cake dewatered by the dewatering device 10 has a water content of 68
%, 240 kg / day. At this time, the MAP obtained in the MAP reactor 21 was 14 kg / day (MgNH 4 P
O 4 · 6H was 2 as O). The amount of NaOH which is a pH adjuster added to the MAP first tank 21 is 0.2 kg /
3.0k for only MAP processing without decompression
g / day was reduced by about 93% or more. The amount of NaOH which is a pH adjuster added to the MAP second tank is 1.1 kg.
/ Day. The digestibility of organic matter in the anaerobic fermenter is 85% in the present invention, compared to 45% in the case of MAP treatment alone, and the recovery rate of MAP from nitrogen and phosphorus in digested sludge is MAP treatment. Only 4 each
% And 32% in the present invention, respectively.
And the recovery rate of the present invention was high.

【0020】実施例2 また、図2に示すように、MAP処理を組み込んだ有機
性排水の処理システムの中のMAP反応槽に対するプロ
セス水に対して、減圧処理槽において減圧処理を行うこ
とにより、MAP生成効率は高まる。第1表にA工場排
水の排水処理システムにおけるMAP反応槽に流入する
流入水に対してMAP処理を施した場合と施さない場合
の処理水質とMAP生成量の比率を示す。表に示すよう
に、既存のMAP処理施設では、Mg添加剤、及びアル
カリ剤を十分添加しているにもかかわらず、処理対象の
リン、及び窒素をそれぞれ9.8mg/リットル、41
0mg/リットルまでしか処理することができなかった
のに対し、本発明のフローの減圧処理工程をMAP処理
工程の前段に行うことにより、Mg添加剤、及びアルカ
リ剤を既存設備より少なくしているにもかかわらず、処
理水中のリン、及び窒素はそれぞれ2.1mg/リット
ル、330mg/リットルまで低下しており、省薬品
量、高効率除去を可能にした。NH3 −Nの濃度が化学
量論的なマスバランスと食い違う点に関しては、減圧処
理とアルカリ処理の併用によるアンモニアストリッピン
グによる減少が生じている可能性があるが、現時点にお
いては明確にわかっていない。
Example 2 As shown in FIG. 2, the process water for the MAP reaction tank in the organic wastewater treatment system incorporating the MAP treatment is subjected to a decompression treatment in a decompression treatment tank. The MAP generation efficiency increases. Table 1 shows the ratio of the quality of the treated water to the amount of MAP generated when the MAP treatment is performed on the inflow water flowing into the MAP reaction tank in the wastewater treatment system for the wastewater of the A factory. As shown in the table, in the existing MAP treatment facility, although the Mg additive and the alkaline agent were sufficiently added, the phosphorus and nitrogen to be treated were 9.8 mg / liter and 41 mg, respectively.
In contrast to processing up to 0 mg / liter, the reduced pressure treatment step of the flow of the present invention is performed before the MAP treatment step, thereby reducing the amount of Mg additive and alkali agent compared to existing equipment. Nevertheless, the amounts of phosphorus and nitrogen in the treated water were reduced to 2.1 mg / liter and 330 mg / liter, respectively, enabling chemical saving and highly efficient removal. Regarding the point where the concentration of NH 3 —N differs from the stoichiometric mass balance, there is a possibility that ammonia stripping may occur due to the combined use of the reduced pressure treatment and the alkali treatment, but it is clearly known at this time. Absent.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【発明の効果】本発明によれば、有機性排水処理システ
ムの中で、特に有機物、窒素、リンを含有する排水、例
えばし尿や浄化槽汚泥の消化脱離液、汚泥の消化液、化
学工場排水などの高濃度の有機物、リン及び窒素を含有
する排水から、リン酸マグネシウムアンモニウム結晶と
して除去するMAP処理法において、薬剤の使用量を低
減化するとともに、窒素、及びリンの除去効率を大幅に
改善することができた。
According to the present invention, in an organic wastewater treatment system, in particular, wastewater containing organic matter, nitrogen, and phosphorus, for example, digestion and desorbent of human waste and septic tank sludge, digestion of sludge, and chemical factory wastewater In the MAP treatment method for removing magnesium ammonium phosphate crystals from wastewater containing high concentrations of organic substances such as phosphorus and nitrogen, etc., the amount of chemicals used is reduced and the efficiency of nitrogen and phosphorus removal is greatly improved. We were able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性排水の処理方法を示すブロック
図である。
FIG. 1 is a block diagram showing a method for treating organic wastewater of the present invention.

【図2】本発明における、MAP反応槽に対するプロセ
ス水に対して、減圧処理槽において減圧処理を行う処理
方法のブロック図を示す。
FIG. 2 is a block diagram of a processing method of performing depressurization processing in a decompression processing tank on process water for a MAP reaction tank in the present invention.

【符号の説明】[Explanation of symbols]

1 流入SS固液分離槽 2 減圧装置 3 生物反応槽 4 嫌気性醗酵槽 5 微生物固液分離槽 6 中間分離槽 7 ケーキ燃焼装置 8 エネルギー回収手段 9 メタンガス回収手段 10 脱水装置 11 濃縮汚泥 12 排水 13 減圧処理水 14 MAP処理水 15 MAP生成物 21 MAP第1槽 22 MAP第2槽 23 MAP反応槽 31 濃縮汚泥 41、42、43 消化汚泥 61 濃縮汚泥 DESCRIPTION OF SYMBOLS 1 Inflow SS solid-liquid separation tank 2 Decompression device 3 Biological reaction tank 4 Anaerobic fermentation tank 5 Microorganism solid-liquid separation tank 6 Intermediate separation tank 7 Cake combustion device 8 Energy recovery means 9 Methane gas recovery means 10 Dehydration device 11 Condensed sludge 12 Drainage 13 Reduced pressure treatment water 14 MAP treatment water 15 MAP product 21 MAP first tank 22 MAP second tank 23 MAP reaction tank 31 concentrated sludge 41, 42, 43 digested sludge 61 concentrated sludge

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/58 C02F 1/58 P 3/28 3/28 Z 11/00 11/00 J (72)発明者 入内嶋 義治 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D011 AA16 AB02 AD03 AD06 4D037 AA11 AB01 AB02 AB12 AB15 BA23 BB01 BB07 CA02 CA07 CA08 CA14 4D038 AA08 AB29 AB44 AB48 BA04 BB03 BB19 4D040 AA01 AA12 AA27 AA61 BB14 BB33 BB52 BB73 BB91 4D059 AA05 AA19 BA12 BE00 BE42 BK15 CA06 CA07 CC01 CC10 DA09 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C02F 1/58 C02F 1/58 P 3/28 3/28 Z 11/00 11/00 J (72) Inventor Iruchijima Yoshiharu 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in EBARA CORPORATION (Reference) 4D011 AA16 AB02 AD03 AD06 4D037 AA11 AB01 AB02 AB12 AB15 BA23 BB01 BB07 CA02 CA07 CA08 CA14 4D038 AA08 AB29 AB44 AB48 BA04 BB03 ABB19 4040 AA12 AA27 AA61 BB14 BB33 BB52 BB73 BB91 4D059 AA05 AA19 BA12 BE00 BE42 BK15 CA06 CA07 CC01 CC10 DA09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機性排水を処理する方法であって、該
排水中のリン及び窒素をリン酸マグネシウムアンモニウ
ムの形態にして系外に取り出す工程(1)を組み入れて
いる処理方法において、前記工程(1)の前にリン及び
窒素を含有する該排水を減圧処理する減圧処理工程
(2)を組み込むことを特徴とする有機性排水の処理方
法。
1. A method for treating an organic wastewater, which comprises a step (1) of taking out phosphorus and nitrogen in the wastewater in the form of magnesium ammonium phosphate and taking them out of the system. A method for treating organic wastewater, comprising, before (1), a step (2) of reducing the pressure of the wastewater containing phosphorus and nitrogen.
【請求項2】 有機性排水を生物反応槽で処理し、その
生物反応槽において発生した汚泥を嫌気性醗酵工程に導
入し、嫌気性醗酵工程の途中または終了後生成した消化
汚泥中のリン及び窒素を、リン酸マグネシウムアンモニ
ウムの形態にして系外に取り出す工程(1)を組み入れ
ている処理方法において、前記工程(1)の前又はその
後にリン及び窒素を含有する該消化汚泥を減圧処理する
減圧処理工程(2)を組み込むことを特徴とする有機性
排水の処理方法。
2. An organic wastewater is treated in a biological reaction tank, sludge generated in the biological reaction tank is introduced into an anaerobic fermentation step, and phosphorus in digested sludge generated during or after the anaerobic fermentation step is removed. In a treatment method incorporating step (1) of removing nitrogen out of the system in the form of magnesium ammonium phosphate, the digested sludge containing phosphorus and nitrogen is subjected to reduced pressure treatment before or after the step (1). A method for treating organic wastewater, comprising the step of reducing pressure (2).
【請求項3】 有機性排水を生物学的に処理する排水処
理装置において、有機性排水、または、その処理水につ
いての処理経路に、減圧処理装置を経るリン酸マグネシ
ウムアンモニウム反応槽を設けることを特徴とする有機
性排水の処理装置。
3. A wastewater treatment apparatus for biologically treating organic wastewater, wherein a magnesium ammonium phosphate reaction tank passing through a reduced pressure treatment device is provided in a treatment path for the organic wastewater or the treated water. Organic wastewater treatment equipment.
【請求項4】 有機性排水を生物学的に処理する排水処
理装置において、有機性排水を生物学的に処理する生物
反応槽からの汚泥についての処理経路に、減圧処理装置
を経るリン酸マグネシウムアンモニウム反応槽を設ける
か、又はリン酸マグネシウムアンモニウム反応槽を経る
減圧装置を設けるかを特徴とする有機性排水の処理装
置。
4. A wastewater treatment device for biologically treating organic wastewater, wherein a treatment path for sludge from a biological reaction tank for biologically treating organic wastewater is provided with magnesium phosphate passing through a reduced-pressure treatment device. An organic wastewater treatment apparatus, comprising: an ammonium reaction tank; or a decompression device passing through a magnesium ammonium phosphate reaction tank.
【請求項5】 有機性排水を生物学的に処理する排水処
理装置において、有機性排水を流入水として供給する被
処理水流入管と接続し、脱水装置への濃縮汚泥配送管を
設けた最初固液分離槽と、その分離水排出側に脱水装置
への濃縮汚泥配送管を設けた中間分離槽、次いで生物反
応槽、更に嫌気性醗酵槽への濃縮汚泥配送管を設けた最
終固液分離槽と、前記脱水装置のケーキ排出側に前記嫌
気性醗酵槽へのエネルギー回収手段を設置したケーキ燃
焼装置と、メタンガス回収装置を設けた嫌気性醗酵槽の
排出側に可逆反応的に作用するリン酸マグネシウムアン
モニウム反応槽、更に減圧処理装置を具備している、ま
たは、メタンガス回収装置を設けた嫌気性醗酵槽の排出
側に可逆反応的に作用する減圧処理装置、更にリン酸マ
グネシウムアンモニウム反応槽を具備していることを特
徴とする有機性排水の処理装置。
5. A wastewater treatment apparatus for biologically treating an organic wastewater, wherein the wastewater treatment apparatus is connected to a treated water inflow pipe for supplying the organic wastewater as inflow water, and is provided with a concentrated sludge delivery pipe to the dewatering apparatus. A liquid separation tank, an intermediate separation tank provided with a concentrated sludge delivery pipe to a dehydration device on the separated water discharge side, a biological reaction tank, and a final solid-liquid separation tank further provided with a concentrated sludge delivery pipe to an anaerobic fermentation tank And a cake combustion device provided with an energy recovery means for the anaerobic fermenter on the cake discharge side of the dehydrator, and phosphoric acid acting reversibly on the discharge side of the anaerobic fermenter provided with a methane gas recovery device. A magnesium ammonium reaction tank, a vacuum processing apparatus further provided with a vacuum processing apparatus, or a vacuum processing apparatus which acts reversibly on the discharge side of an anaerobic fermentation tank provided with a methane gas recovery apparatus; An organic wastewater treatment device, comprising an organic reaction tank.
JP2000065254A 2000-03-09 2000-03-09 Organic wastewater treatment method and apparatus Expired - Fee Related JP4010733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000065254A JP4010733B2 (en) 2000-03-09 2000-03-09 Organic wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000065254A JP4010733B2 (en) 2000-03-09 2000-03-09 Organic wastewater treatment method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006339818A Division JP4570608B2 (en) 2006-12-18 2006-12-18 Organic wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2001252689A true JP2001252689A (en) 2001-09-18
JP4010733B2 JP4010733B2 (en) 2007-11-21

Family

ID=18584817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000065254A Expired - Fee Related JP4010733B2 (en) 2000-03-09 2000-03-09 Organic wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4010733B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122799A (en) * 2004-10-28 2006-05-18 Ebara Corp Method and apparatus for treating organic waste
CN103482824A (en) * 2013-09-18 2014-01-01 西安建筑科技大学 Method and device for quickly recycling nitrogen and phosphorus nutrient substances in urine
CN105540816A (en) * 2015-12-15 2016-05-04 浙江工业大学 Method for treating dye waste water by using CoFe2O4/OMC composite material for activation of persulfate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122799A (en) * 2004-10-28 2006-05-18 Ebara Corp Method and apparatus for treating organic waste
CN103482824A (en) * 2013-09-18 2014-01-01 西安建筑科技大学 Method and device for quickly recycling nitrogen and phosphorus nutrient substances in urine
CN105540816A (en) * 2015-12-15 2016-05-04 浙江工业大学 Method for treating dye waste water by using CoFe2O4/OMC composite material for activation of persulfate
CN105540816B (en) * 2015-12-15 2018-06-12 浙江工业大学 Utilize CoFe2O4The method of/OMC composite materials activation persulfate processing waste water from dyestuff

Also Published As

Publication number Publication date
JP4010733B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
JP4516025B2 (en) Method and apparatus for producing / recovering magnesium ammonium phosphate
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP3570888B2 (en) Waste treatment method
JPH09108690A (en) Treatment of phosphorus containing sewage
JP2004501739A (en) Wastewater treatment method with additional sludge treatment by ozone treatment and plant thereof
JP4376539B2 (en) Method and apparatus for treating organic wastewater or sludge
JP3442205B2 (en) Treatment method for phosphorus-containing wastewater
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP4007584B2 (en) Method and apparatus for recovering phosphorus and nitrogen
JP3664398B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP6873821B2 (en) Sludge treatment system and sludge treatment method
JP2001252689A (en) Treatment method for organic waste water and apparatus therefor
JP3970163B2 (en) Organic waste treatment method and apparatus
JP2003300095A (en) Method and apparatus for sewage treatment
JP2002316192A (en) Method and apparatus for treating organic foul water
JP4335065B2 (en) Organic wastewater or sludge treatment method and apparatus
JP4570608B2 (en) Organic wastewater treatment method and apparatus
JP3198674B2 (en) Method and apparatus for treating wastewater containing organic nitrogen
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP3961246B2 (en) Method and apparatus for treating organic wastewater
JP2002316191A (en) Method and apparatus for treating organic foul water
JP6731025B2 (en) Method and apparatus for treating organic wastewater or sludge
JP2006247578A (en) Method for treating organic waste water or organic sludge, and apparatus
JP2003260435A (en) Apparatus and method for treating nitrogen-containing organic waste

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4010733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees