JP6731025B2 - Method and apparatus for treating organic wastewater or sludge - Google Patents
Method and apparatus for treating organic wastewater or sludge Download PDFInfo
- Publication number
- JP6731025B2 JP6731025B2 JP2018189407A JP2018189407A JP6731025B2 JP 6731025 B2 JP6731025 B2 JP 6731025B2 JP 2018189407 A JP2018189407 A JP 2018189407A JP 2018189407 A JP2018189407 A JP 2018189407A JP 6731025 B2 JP6731025 B2 JP 6731025B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- map
- organic wastewater
- treatment
- anaerobic treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010802 sludge Substances 0.000 title claims description 322
- 238000000034 method Methods 0.000 title claims description 84
- 239000002351 wastewater Substances 0.000 title claims description 68
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 claims description 329
- 229910052567 struvite Inorganic materials 0.000 claims description 329
- 238000011282 treatment Methods 0.000 claims description 181
- 238000002425 crystallisation Methods 0.000 claims description 108
- 230000008025 crystallization Effects 0.000 claims description 107
- 239000002245 particle Substances 0.000 claims description 104
- 229910052698 phosphorus Inorganic materials 0.000 claims description 88
- 239000011574 phosphorus Substances 0.000 claims description 80
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 79
- 239000007788 liquid Substances 0.000 claims description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 62
- 239000011777 magnesium Substances 0.000 claims description 48
- 239000012141 concentrate Substances 0.000 claims description 25
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 12
- 239000011259 mixed solution Substances 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 238000006114 decarboxylation reaction Methods 0.000 claims description 6
- 239000010815 organic waste Substances 0.000 claims description 4
- 230000008030 elimination Effects 0.000 claims description 2
- 238000003379 elimination reaction Methods 0.000 claims description 2
- 230000029087 digestion Effects 0.000 description 82
- 238000000926 separation method Methods 0.000 description 39
- 238000011084 recovery Methods 0.000 description 38
- 239000000126 substance Substances 0.000 description 25
- 229910001425 magnesium ion Inorganic materials 0.000 description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 20
- 230000008569 process Effects 0.000 description 19
- 238000006243 chemical reaction Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- 239000005416 organic matter Substances 0.000 description 16
- 239000007789 gas Substances 0.000 description 14
- 239000013078 crystal Substances 0.000 description 13
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 11
- 208000005156 Dehydration Diseases 0.000 description 10
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 230000018044 dehydration Effects 0.000 description 10
- 238000006297 dehydration reaction Methods 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000003795 desorption Methods 0.000 description 9
- 150000007524 organic acids Chemical class 0.000 description 8
- 239000010865 sewage Substances 0.000 description 8
- 241000196324 Embryophyta Species 0.000 description 7
- 238000005273 aeration Methods 0.000 description 7
- 239000000701 coagulant Substances 0.000 description 7
- 238000000855 fermentation Methods 0.000 description 7
- 230000004151 fermentation Effects 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 235000005985 organic acids Nutrition 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000003002 pH adjusting agent Substances 0.000 description 4
- 229940085991 phosphate ion Drugs 0.000 description 4
- 238000003672 processing method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 229910000389 calcium phosphate Inorganic materials 0.000 description 3
- 235000011010 calcium phosphates Nutrition 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- -1 phosphorus compound Chemical class 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229910017958 MgNH Inorganic materials 0.000 description 1
- 241000207961 Sesamum Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000005276 aerator Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010800 human waste Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000011369 optimal treatment Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Removal Of Specific Substances (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Sludge (AREA)
Description
本発明は、有機性廃水または汚泥の処理方法及び処理装置に関し、特に、有機性廃水または汚泥中の有機物を嫌気性微生物の働きによって嫌気性処理する設備を含む有機物処理システムにおいて、有機物中のリン成分をリン酸マグネシウムアンモニウム(以下、「MAP」と称す)等のリン化合物として回収することが可能な有機性廃水または汚泥の処理方法及び処理装置に関する。 The present invention relates to a method and an apparatus for treating organic wastewater or sludge, and particularly, in an organic matter treatment system including a facility for anaerobically treating organic matter in organic wastewater or sludge by the action of anaerobic microorganisms, The present invention relates to a method and an apparatus for treating organic wastewater or sludge capable of recovering a component as a phosphorus compound such as magnesium ammonium phosphate (hereinafter referred to as “MAP”).
有機性廃水または汚泥から窒素成分及びリン成分を分離する方法として、有機性廃水または汚泥にマグネシウムイオンなどを添加して、廃水中に含まれるリン、アンモニア及びマグネシウムイオンを反応させてMAPの結晶を成長させ、MAP粒子として分離回収する方法(「MAP処理法」と称する)が知られている。 As a method for separating nitrogen components and phosphorus components from organic wastewater or sludge, magnesium ions or the like are added to the organic wastewater or sludge, and phosphorus, ammonia and magnesium ions contained in the wastewater are reacted to form MAP crystals. A method of growing and separating and collecting as MAP particles (referred to as “MAP processing method”) is known.
このようなMAP処理法は、薬剤使用量、機械動力、熱エネルギーも比較的少なく安価な晶析法であり、リン成分の回収を安定的に行うことが出来る上、回収されるMAPは優れた肥料としての付加価値があるため、資源の有効利用の点からも優れたリン及び窒素の回収兼除去技術である。 Such a MAP treatment method is an inexpensive crystallization method in which the amount of chemicals used, mechanical power, and thermal energy are relatively small, and the phosphorus component can be stably recovered, and the recovered MAP is excellent. Since it has added value as a fertilizer, it is an excellent technology for recovering and removing phosphorus and nitrogen from the viewpoint of effective use of resources.
MAP処理法に関しては、例えば特許文献1において有機性廃水を嫌気性処理する嫌気性消化工程において汚泥中に発生するMAP粒子を液体サイクロンなどによって分離し、該MAP粒子を含むMAP分離濃縮液を得た後、該MAP分離濃縮液にマグネシウムイオンを新たに添加し、溶解しているリン成分との反応によって、該MAP濃縮液に存在するMAP粒子の表面に新たなMAPを積層させてMAP粒子として回収し、MAP粒子回収後のMAP脱離汚泥は脱水して脱水ケーキとして排出させる方法が提案されている。 Regarding the MAP treatment method, for example, in Patent Document 1, MAP particles generated in sludge in the anaerobic digestion step of anaerobically treating organic wastewater are separated by a liquid cyclone or the like to obtain a MAP separation concentrate containing the MAP particles. Then, magnesium ions are newly added to the MAP separation concentrate, and new MAP is laminated on the surface of the MAP particles present in the MAP concentrate by reaction with the dissolved phosphorus component to obtain MAP particles. A method has been proposed in which the MAP desorbed sludge that is recovered and the MAP particles are recovered is dehydrated and discharged as a dehydrated cake.
また、特許文献2では有機性廃水または汚泥を嫌気性処理する嫌気性消化工程において、該嫌気性処理の前段に有機性汚泥を濃縮汚泥と濃縮脱離液に固液分離する工程、該濃縮汚泥のみを嫌気性処理する工程、該嫌気性処理汚泥からMAP粒子を分離する工程、及び該嫌気性処理汚泥を濃縮・脱水処理する工程をそれぞれ有する処理方式において、該嫌気性処理前段濃縮脱離水、該嫌気性処理汚泥から分離した該MAP粒子、該嫌気性処理後濃縮・脱水分離水、及びマグネシウム源を混合することでMAP生成しMAPを分離回収する方法が提案されている。 Further, in Patent Document 2, in an anaerobic digestion step of anaerobically treating organic wastewater or sludge, a step of solid-liquid separation of the organic sludge into a concentrated sludge and a concentrated desorption liquid before the anaerobic treatment, the concentrated sludge Anaerobic treatment, a step of separating MAP particles from the anaerobic-treated sludge, and a step of concentrating and dehydrating the anaerobic-treated sludge, respectively, wherein the anaerobic-treatment pre-stage concentrated desorbed water, A method has been proposed in which the MAP particles separated from the anaerobic-treated sludge, the anaerobic-treated concentrated/dehydrated separated water, and a magnesium source are mixed to produce MAP, and the MAP is separated and recovered.
また、特許文献3では有機性汚泥を固液分離して4−12wt%の濃縮汚泥と濃縮分離液に分離し、該濃縮汚泥を嫌気性消化し、該嫌気性消化汚泥と先の濃縮分離水を混合後、脱水処理を行う方法が提案されている。 Further, in Patent Document 3, the organic sludge is subjected to solid-liquid separation to separate it into a concentrated sludge of 4-12 wt% and a concentrated separated liquid, anaerobically digesting the concentrated sludge, and the anaerobic digested sludge and the previously concentrated separated water. A method of performing dehydration treatment after mixing the above is proposed.
しかしながら、特許文献1〜3のいずれも回収対象となる有機物の嫌気性処理とリン回収をともに効率良く行うための処理に関してはまだ検討の余地がある。 However, in all of Patent Documents 1 to 3, there is still room for studying a process for efficiently performing both the anaerobic treatment of an organic substance to be recovered and phosphorus recovery.
本発明者らはこれまで様々な有機性廃水または汚泥を対象として有機物中の溶解性リン成分をMAP粒子として回収する研究を行ってきたところ、回収対象となる有機物の嫌気性処理とリン回収がともに効率良く行われるプロセスを設計するための基本的な情報となる知見として、以下の(1)〜(5)に示す事項を見出した。なお、これらの知見はいずれも様々なパイロット試験等で定量的に確認された事項である。 The inventors of the present invention have conducted research to recover soluble phosphorus components in organic matter as MAP particles for various organic wastewaters or sludges, and found that anaerobic treatment and phosphorus recovery of organic matter to be recovered The following items (1) to (5) were found as knowledge that serves as basic information for designing a process that is efficiently performed. All of these findings have been confirmed quantitatively by various pilot tests.
(1)下水処理場等で発生する嫌気性消化汚泥中のリンの形態は、水処理系でリン固定用に使用される無機凝集剤の種類と添加率により変化するが、該汚泥中リンの約5〜8割がPO4−P、またはMAPの形態で存在することからこれらのリンを汚泥から回収することにより汚泥中のリンは減少し汚泥固形物排出量が10%以上削減できる場合があること。 (1) The form of phosphorus in anaerobic digested sludge generated in a sewage treatment plant, etc. varies depending on the type and addition rate of the inorganic coagulant used for fixing phosphorus in the water treatment system. Since about 50 to 80% exist in the form of PO 4 -P or MAP, by recovering these phosphorus from the sludge, the phosphorus in the sludge may be reduced and the solid sludge discharge amount may be reduced by 10% or more. To be.
(2)メタン発酵等の嫌気性処理に投入される有機物はある程度までは高濃度化する方が、メタン発酵槽容量が小さくなり滞留日数も10−15日程度と比較的短くでき、ガス発電などに利用可能な余剰メタンガス生成量が投入有機物VSあたりで比較的多くなりメタン発酵効率が良いこと。 (2) If the concentration of organic substances input to anaerobic treatment such as methane fermentation is increased to some extent, the capacity of the methane fermentation tank will be smaller and the retention days will be relatively short, about 10-15 days. The amount of surplus methane gas that can be used for is relatively large per input organic matter VS, and the methane fermentation efficiency is good.
(3)固形物濃度がTS:10〜50g/L程度の高濃度有機性汚泥中においても一定以上の種晶MAP粒子が存在する環境下では嫌気性処理投入溶解性リン成分の8割以上を粒子径10μm以上の比較的大きなMAP粒子として形成することができること。 (3) Even in a high-concentration organic sludge having a solid concentration of TS: 10 to 50 g/L, 80% or more of the anaerobic treatment input soluble phosphorus component is contained in an environment where a certain amount or more of seed crystal MAP particles are present. It can be formed as a relatively large MAP particle having a particle diameter of 10 μm or more.
(4)MAP粒子径が10μm以上のMAP粒子は液体サイクロン等を使用することで汚泥濃度10g/L以上の汚泥中から90%以上の回収率で分離回収することが可能であること。 (4) MAP particles having a MAP particle size of 10 μm or more can be separated and recovered at a recovery rate of 90% or more from sludge having a sludge concentration of 10 g/L or more by using a liquid cyclone or the like.
(5)高濃度消化汚泥と消化槽投入前汚泥の濃縮分離水の混合液は脱水性が比較的良好であること。 (5) The liquid mixture of the concentrated and separated water of the high-concentration digested sludge and the sludge before being put into the digestion tank has relatively good dewatering property.
上記知見に基づいて嫌気性処理とリン回収をより効率化するプロセスを模索する中で、本発明者らが更に鋭意検討したところある課題が浮かび上がった。高濃度消化処理を行う場合、嫌気性消化プロセスに投入する有機物の前処理としての濃縮処理が行われるが、分離された濃縮分離水中に溶解性リン、溶解性Mgが比較的多い場合がある。そのため、嫌気性消化汚泥からのリン回収のみでは、これら嫌気性処理前分離水中の溶解性成分を回収すること、及びそれらを効率良く比較的粒子径の大きいMAP粒子に晶析させて回収することが困難になる場合がある。 Based on the above findings, while searching for a process that makes anaerobic treatment and phosphorus recovery more efficient, the present inventors have made further studies and found a problem. When performing a high-concentration digestion treatment, a concentration treatment is performed as a pretreatment of an organic substance to be fed into the anaerobic digestion process, but soluble phosphorus and soluble Mg may be relatively large in the separated concentrated separated water. Therefore, only by recovering phosphorus from the anaerobic digested sludge, it is possible to recover the soluble components in the pre-anaerobic-treated separated water, and to efficiently crystallize them into MAP particles having a relatively large particle size and recover them. Can be difficult.
汚泥の嫌気性消化処理を行わない、又は行う前の水処理プロセスにおけるリン回収方法としては、嫌気好気法の活用によりリン酸を多く含む分離水等を作成しCa塩を添加してリン酸カルシウム:Ca3(PO4)2として回収する方法や、吸着材によりリン酸を吸着し、リン脱着工程を経て最終的には同様にリン酸カルシウムとして回収する方法等が知られている。 As a phosphorus recovery method in a water treatment process before or without anaerobic digestion treatment of sludge, separated water containing a large amount of phosphoric acid is produced by utilizing the anaerobic aerobic method, and calcium salt is added by adding Ca salt: Known methods include a method of recovering Ca 3 (PO 4 ) 2 and a method of adsorbing phosphoric acid with an adsorbent and finally recovering it as calcium phosphate through a phosphorus desorption process.
しかしながら、嫌気性消化処理前の液体と嫌気性消化処理後汚泥の混合液からのリン回収方式はほとんど報告されていない。その理由は、嫌気性消化を行わない条件下では、反応性も高く、比重も3.14g/cm3と比較的沈降分離しやすいリン酸カルシウム等のCa系沈澱物として分離回収するのが一般的であるが、嫌気性消化を行った後では消化汚泥中に炭酸イオンが多く存在することからCaを添加するとリン酸カルシウムよりも先に炭酸カルシウムが生成し易く効率が悪くなるためである。 However, there is almost no report on the phosphorus recovery method from the mixed liquid of the liquid before the anaerobic digestion treatment and the sludge after the anaerobic digestion treatment. The reason is that under conditions without anaerobic digestion, it is common to separate and collect Ca-based precipitates such as calcium phosphate, which are highly reactive and have a specific gravity of 3.14 g/cm 3, which is relatively easy to precipitate and separate. However, since there are many carbonate ions in the digested sludge after anaerobic digestion, if Ca is added, calcium carbonate tends to be produced earlier than calcium phosphate, resulting in poor efficiency.
嫌気性消化処理を行う場合、嫌気性消化槽に投入される汚泥中の溶解性リン、及び溶解性Mgは消化槽に投入された直後に、約1000mg/L程度のNH4−Nと接触し、さらにpHも急激にアルカリ性領域まで上昇するため、瞬時に微細なMAP粒子が生成される。消化槽内でのMAP生成反応の反応性が各基質成分の溶解度積で決まることは自明ではあるものの、消化槽に投入された直後の槽内の流動条件における汚泥中のMAP溶解度積の変化速度、微細MAP結晶核の新規生成量、及び既存種MAP粒子への付着晶析量等に関しては現時点では依然として不明な部分が多く、これまでどの程度の溶解性リンや溶解性Mgの供給量が消化槽内でどの程度の粒子径のMAP粒子を形成することになるかという研究はほとんど報告されていない。 When performing anaerobic digestion treatment, the soluble phosphorus and soluble Mg in the sludge that is put into the anaerobic digestion tank is contacted with about 1000 mg/L of NH 4 -N immediately after being put into the digestion tank. Furthermore, since the pH also sharply rises to the alkaline range, fine MAP particles are instantly generated. Although it is obvious that the reactivity of the MAP formation reaction in the digestion tank is determined by the solubility product of each substrate component, the rate of change of the MAP solubility product in sludge under the flow conditions in the tank immediately after being introduced into the digestion tank Regarding the amount of newly formed fine MAP crystal nuclei and the amount of crystallization adhering to existing seed MAP particles, there are still many unclear points at the present time. There have been few reports on how much particle size MAP particles will be formed in a tank.
その理由としては、汚泥から直接MAP粒子を回収しようとする取り組みが現時点でまだ少ない事、消化槽内で生成されるMAP粒子の粒子径分布が後段でMAP分離回収する液体サイクロン等のMAP分離性を左右する重要因子となっていくということがまだ広く認識されていない事、そもそも有機性汚泥中に存在する無機性微粒子の種類や形状や物性に関する報告が非常に少ない事等が挙げられる。 The reason for this is that there are still few efforts to recover MAP particles directly from sludge, and the particle size distribution of MAP particles produced in the digestion tank is MAP separation properties such as a liquid cyclone that separates and collects MAP in the latter stage. It has not been widely recognized that it will become an important factor that influences the above, and there are very few reports on the type, shape and physical properties of the inorganic fine particles present in the organic sludge in the first place.
この点に関し、例えば、特許文献1の方式では、嫌気性処理前の汚泥から直接MAP粒子を回収しようとする手法については記載も示唆もされていない。一方、特許文献2の方式では、嫌気性処理する前の汚泥を濃縮分離した濃縮分離水をMAP造粒反応装置へ供給することは一応記載されているが、特許文献2に記載される発明にも、嫌気性処理前の汚泥から直接MAP粒子を回収しようとする手法については記載も示唆もされていない。 In this regard, for example, the method of Patent Document 1 does not describe or suggest a method for directly recovering MAP particles from sludge before anaerobic treatment. On the other hand, in the method of Patent Document 2, it is described that the concentrated separated water obtained by concentrating and separating the sludge before the anaerobic treatment is supplied to the MAP granulation reaction device, but in the invention described in Patent Document 2, However, there is no description or suggestion of a method for directly recovering MAP particles from sludge before anaerobic treatment.
さらに、特許文献2では、MAP造粒反応装置へ供給される晶析対象液は有機性汚泥固形分をほとんど含まない固液分離後のろ液が主体であり、晶析処理水を水処理系である最初沈殿池へ返送している図3の記載からしても、晶析処理水は濁度が低いことは明らかであり、MAP造粒反応装置へ嫌気性消化処理前の汚泥を積極的に供給するという記載は見当たらない。 Further, in Patent Document 2, the liquid to be crystallized to be supplied to the MAP granulation reactor is mainly a filtrate after solid-liquid separation containing almost no organic sludge solids, and the crystallized water is treated in a water treatment system. It is clear from the description of Fig. 3 that is returned to the first settling tank that the crystallization-treated water has low turbidity, and the sludge before anaerobic digestion treatment is positively applied to the MAP granulation reactor. There is no description of supplying to.
また、特許文献2では消化汚泥中に残留するリン酸イオンからのMAP回収方法として消化汚泥の脱水処理後の脱水ろ液をMAP反応槽に供給する方式を採用しているが、この方法では脱水処理時に使用される凝集剤や脱水機洗浄排水により汚泥が希釈されるためMAP反応槽に供給される時点でのろ液中リン酸イオン濃度、及びMgイオン濃度が2/3程度に希釈されることが多く、MAP反応が溶解度積による化学反応であることからリン回収率としては消化汚泥を直接MAP反応槽に供給してリン回収する方法と比較して大幅に低下する場合がある。 Further, in Patent Document 2, as a method for recovering MAP from phosphate ions remaining in the digested sludge, a method of supplying the dehydrated filtrate after the dehydration treatment of the digested sludge to the MAP reaction tank is adopted, but in this method, dehydration is performed. Since the sludge is diluted by the coagulant used in the treatment and the wastewater from the dehydrator washing, the phosphate ion concentration and the Mg ion concentration in the filtrate at the time of being supplied to the MAP reaction tank are diluted to about 2/3. Since the MAP reaction is a chemical reaction due to the solubility product in many cases, the phosphorus recovery rate may be significantly reduced as compared with the method of directly supplying the digested sludge to the MAP reaction tank to recover phosphorus.
また、特許文献3の方式は、汚泥濃度4〜12wt%の汚泥を用いた高効率な高濃度嫌気性消化の例が開示されているだけで、有機物の嫌気性処理とリン回収率の向上をより効率的に両立させる手法については記載も示唆もされていない。 Further, the method of Patent Document 3 only discloses an example of highly efficient high-concentration anaerobic digestion using sludge having a sludge concentration of 4 to 12 wt %, and improves the anaerobic treatment of organic substances and the phosphorus recovery rate. There is no description or suggestion of a more efficient method.
上記課題を鑑み、本発明は、回収対象となる有機物の嫌気性処理とリン回収とをともに効率良く行うことが可能な有機性廃水または汚泥の処理方法及び処理装置を提供する。 In view of the above problems, the present invention provides a method and an apparatus for treating organic wastewater or sludge capable of efficiently performing both anaerobic treatment of an organic substance to be recovered and phosphorus recovery.
本願発明者らは上記課題を解決すべく嫌気性処理工程で生成されるMAP粒子の粒子径を左右する因子に関して、基質濃度、VS濃度、各種共存イオン、温度、pH、ORP、粘性、種晶表面積、流動条件、基質供給方式、有機物分解速度等に関して様々な実験を通じて鋭意研究した結果、嫌気性処理工程へ供給される直前の汚泥中の「リン酸イオン」、及び「Mgイオン」の総量が生成MAP粒子径に影響を及ぼしていることを見出した。 In order to solve the above-mentioned problems, the inventors of the present invention are concerned with factors affecting the particle size of MAP particles produced in an anaerobic treatment step, such as substrate concentration, VS concentration, various coexisting ions, temperature, pH, ORP, viscosity, and seed crystals. As a result of diligent research through various experiments on surface area, flow conditions, substrate supply method, organic matter decomposition rate, etc., the total amount of "phosphate ions" and "Mg ions" in sludge just before being supplied to the anaerobic treatment process It was found that it affects the size of the MAP particles produced.
言い換えれば、供給汚泥中のリン酸イオンとMgイオンが嫌気性処理工程内の定常時のリン酸イオン濃度とMgイオン濃度と比較してそれぞれ大きく、その差が大きいほど微細MAPを形成し易いということであり、この差は定常時の嫌気性処理工程のリン酸とMgの濃度を基準とした比較となるため、必ずしも投入汚泥中のリン酸イオン濃度やMgイオン濃度の値だけで決まるものでは無いというものである。本発明者らはこのΔPO4−P(投入汚泥リン酸−嫌気性処理工程リン酸)とΔS−Mg(投入汚泥Mgイオン−嫌気性処理工程Mgイオン)、及び[ΔPO4−P/投入汚泥T−P]、[ΔS−Mg/投入汚泥T−Mg]等を指標とすることによってより最適な処理プロセスを選択でき、目標リン回収率を達成できることを見出した。 In other words, the phosphate ion and Mg ion in the supplied sludge are respectively larger than the steady-state phosphate ion concentration and Mg ion concentration in the anaerobic treatment step, and the larger the difference, the easier the formation of fine MAP. Since this difference is a comparison based on the concentrations of phosphoric acid and Mg in the anaerobic treatment step during steady state, it is not necessarily determined only by the values of phosphate ion concentration and Mg ion concentration in the input sludge. There is nothing. The present inventors have developed this ΔPO 4 -P (input sludge phosphoric acid-anaerobic treatment step phosphoric acid), ΔS-Mg (input sludge Mg ion-anaerobic treatment step Mg ion), and [ΔPO 4 -P/input sludge. It has been found that a more optimal treatment process can be selected and a target phosphorus recovery rate can be achieved by using T-P], [ΔS-Mg/input sludge T-Mg] and the like as indexes.
ここで仮に消化槽への投入汚泥のPO4−P濃度、S−Mg濃度をそれぞれ[PO4−P−in]、[S−Mg−in]とし、消化槽内定常時完全混合状態の汚泥のPO4−P濃度、S−Mg濃度をそれぞれ[PO4−P−out]、[S−Mg−out]とし、さらに該投入汚泥のT−P濃度、T−Mg濃度をそれぞれ[T−P−in]、[T−Mg−in]とした場合の以下の(1)、(2)式で示される数値をそれぞれL値(P)とL値(Mg)とすると、消化汚泥中の微細MAP率(=微細MAP−P/T−P)に関して図1、図2に示すような相関関係がある。
L値(P)=([PO4−P−in]−[PO4−P−out])/[T−P−in] …(1)
L値(Mg)=([S−Mg−in]−[S−Mg−out])/[T−Mg−in] …(2)
Here, assuming that the PO 4 -P concentration and the S-Mg concentration of the sludge put into the digestion tank are [PO 4 -P-in] and [S-Mg-in] respectively, the The PO 4 -P concentration and the S-Mg concentration are respectively [PO 4 -P-out] and [S-Mg-out], and the TP concentration and the T-Mg concentration of the input sludge are respectively [TP -In], [T-Mg-in], the numerical values shown in the following equations (1) and (2) are L value (P) and L value (Mg), respectively. There is a correlation as shown in FIGS. 1 and 2 regarding the MAP rate (=fine MAP-P/TP).
L value (P) = ([PO 4 -P-in] - [PO 4 -P-out]) / [T-P-in] ... (1)
L value (Mg)=([S-Mg-in]-[S-Mg-out])/[T-Mg-in] (2)
より具体的には、有機性廃水または汚泥を効率的に嫌気性処理およびリン回収する方法として、嫌気性処理工程に供給する汚泥に対して嫌気性処理工程に供給する前に、供給汚泥中の溶解性リン、及び溶解性Mgの量を大幅に軽減するための所定の処置を施し、溶解性リン及び溶解性Mgの嫌気性処理工程への供給量を大幅に軽減した状態で、嫌気性処理を行う。そして、嫌気性処理汚泥及び嫌気性処理工程に直接供給しなかった溶解性リン及び溶解性Mgを含む液をともにMAP晶析リアクターに供給し、液体サイクロン等のMAP分離装置を使用してMAP晶析リアクター内のMAP濃度を所定濃度に維持するようにMAP分離装置とMAP晶析リアクターとの間で循環ラインを形成し、必要に応じて該リアクター内にMg源を供給することで有機性廃水または汚泥に含まれる溶解性リンを軽減しMAP回収量を最大化する方式が好ましい手法の一つであることを見出した。 More specifically, as a method for efficiently anaerobic treatment and phosphorus recovery of organic wastewater or sludge, the sludge to be supplied to the anaerobic treatment step before being supplied to the anaerobic treatment step is treated as The anaerobic treatment is performed in a state in which a predetermined treatment for significantly reducing the amounts of soluble phosphorus and soluble Mg is performed and the supply amount of the soluble phosphorus and soluble Mg to the anaerobic treatment step is significantly reduced. I do. Then, both the anaerobic treated sludge and the liquid containing soluble phosphorus and soluble Mg that were not directly supplied to the anaerobic treatment step are supplied to the MAP crystallization reactor, and the MAP separation device such as a liquid cyclone is used to form the MAP crystal. The organic wastewater is formed by forming a circulation line between the MAP separation device and the MAP crystallization reactor so as to maintain the MAP concentration in the precipitation reactor at a predetermined concentration, and supplying a Mg source into the reactor as necessary. It has also been found that a method of reducing soluble phosphorus contained in sludge and maximizing the amount of MAP recovered is one of the preferable methods.
以上の知見を基礎として完成した本発明の実施の形態に係る有機性廃水又は汚泥の処理方法は、一側面において、有機性廃水または汚泥に対して嫌気性処理を行う工程と、有機性廃水または汚泥中のリン成分をリン酸マグネシウムアンモニウム粒子の形態で回収する工程を含む有機性廃水または汚泥の処理方法であって、有機性廃水または汚泥を濃縮分離せずに嫌気性処理した後の嫌気性処理液体と、嫌気性処理する前段の有機性廃水または汚泥を濃縮分離しない状態でリン酸マグネシウムアンモニウム粒子が存在する液体内で混合し、混合液のpHを調整することによりリン酸マグネシウムアンモニウム粒子を晶析させることと、該リン酸マグネシウムアンモニウム粒子を分離濃縮した後のMAP濃縮液を晶析させる工程に戻すことと、リン酸マグネシウムアンモニウム粒子を分離濃縮した後のMAP脱離汚泥の少なくとも一部を嫌気性処理へ循環返送することを特徴とする有機性廃水または汚泥の処理方法である。 The method for treating organic wastewater or sludge according to the embodiment of the present invention completed on the basis of the above findings, in one aspect, a step of performing an anaerobic treatment on the organic wastewater or sludge, the organic wastewater or A method for treating organic wastewater or sludge, comprising the step of recovering the phosphorus component in sludge in the form of magnesium ammonium phosphate particles, which is anaerobic after anaerobic treatment without concentrating and separating the organic wastewater or sludge. The treatment liquid and the organic wastewater or sludge in the previous stage of anaerobic treatment are mixed in a liquid in which magnesium ammonium phosphate particles are present without being concentrated and separated, and magnesium ammonium phosphate particles are adjusted by adjusting the pH of the mixed liquid. and Rukoto cause crystallization, the by the magnesium ammonium phosphate particles back to step to crystallize the MAP concentrate after separation concentration and, the MAP elimination sludge after separating concentrated magnesium ammonium phosphate particles at least a It is a method for treating organic wastewater or sludge, which is characterized in that the part is recycled to anaerobic treatment .
本発明の実施の形態に係る有機性廃水または汚泥の処理方法は別の一実施態様において、嫌気性処理後の嫌気性処理液体をMAP濃縮液とMAP脱離汚泥とに分離し、MAP濃縮液をMAP晶析リアクターに導入し、MAP脱離汚泥をMAP晶析リアクターの処理系外へ排出することを含む。 In another embodiment of the method for treating organic wastewater or sludge according to the embodiment of the present invention, the anaerobic treated liquid after anaerobic treatment is separated into a MAP concentrate and a MAP desorbed sludge, and a MAP concentrate is obtained. Is introduced into the MAP crystallization reactor, and the MAP desorption sludge is discharged to the outside of the treatment system of the MAP crystallization reactor.
本発明の実施の形態に係る有機性廃水または汚泥の処理方法は別の一実施態様において、有機性廃水または汚泥を嫌気性処理した後の嫌気性処理液体と、嫌気性処理する前段の有機性廃水または汚泥に含まれる溶解性リンまたは溶解性マグネシウムを導入するMAP晶析リアクター内または該MAP晶析リアクターの前段において物理的脱炭酸処理を施す。 In another embodiment of the method for treating organic wastewater or sludge according to the embodiment of the present invention, an anaerobic treatment liquid after anaerobic treatment of the organic wastewater or sludge, and an organic substance before the anaerobic treatment Physical decarboxylation is carried out in the MAP crystallization reactor in which the soluble phosphorus or soluble magnesium contained in the wastewater or sludge is introduced, or in the preceding stage of the MAP crystallization reactor.
本発明の実施の形態に係る有機性廃水または汚泥の処理方法は別の一実施態様において、嫌気性処理する前段の有機性廃水または汚泥に含まれる溶解性リンまたは溶解性マグネシウムを、粒子径10μm以上のリン酸マグネシウムアンモニウム粒子が5g/L以上存在する液体内で混合する。 In another embodiment of the method for treating organic wastewater or sludge according to the embodiment of the present invention, the soluble phosphorus or soluble magnesium contained in the organic wastewater or sludge in the preceding stage of anaerobic treatment is treated with a particle diameter of 10 μm. The above magnesium ammonium phosphate particles are mixed in a liquid containing 5 g/L or more.
本発明の実施の形態に係る有機性廃水または汚泥の処理方法は別の一実施態様において、混合液のpHが6.8以上となるようにpHを調整する。 In another embodiment of the method for treating organic wastewater or sludge according to the embodiment of the present invention, the pH is adjusted so that the pH of the mixed liquid is 6.8 or higher.
本発明は更に別の一側面において、嫌気性処理装置と、嫌気性処理装置において有機性廃水または汚泥を濃縮分離せずに嫌気性処理した後の嫌気性処理液体と、嫌気性処理を行う前段の有機性廃水または汚泥とを濃縮分離しない状態で共に導入し、リン酸マグネシウムアンモニウム粒子が存在する液体内で混合液のpHを調整してリン酸マグネシウムアンモニウム粒子を晶析させるMAP晶析リアクターと、MAP晶析リアクターで得られたMAP晶析処理水からリン酸マグネシウムアンモニウム粒子を分離濃縮し、MAP濃縮液及びMAP脱離汚泥を得るMAP分離装置と、MAP脱離汚泥を嫌気性処理装置へ返送する配管ラインとを備えることを特徴とする有機性廃水または汚泥の処理装置である。 Preceding the present invention in yet another aspect, the anaerobic treatment apparatus, and the anaerobic treatment liquid after the anaerobic treatment without concentration separating the organic wastewater or sludge in the anaerobic treatment apparatus, the anaerobic treatment is performed And a MAP crystallization reactor for co-introducing the organic wastewater or sludge without being concentrated and separated, and adjusting the pH of the mixed solution in the liquid in which the magnesium ammonium phosphate particles are present to crystallize the magnesium ammonium phosphate particles. , MAP separation device for separating and concentrating magnesium ammonium phosphate particles from MAP crystallization treated water obtained in MAP crystallization reactor to obtain MAP concentrated liquid and MAP desorption sludge, and MAP desorption sludge to anaerobic treatment device An apparatus for treating organic wastewater or sludge, which is provided with a piping line for returning.
本発明によれば、回収対象となる有機物の嫌気性処理とリン回収とをともに効率良く行うことが可能な有機性廃水または汚泥の処理方法及び処理装置が提供できる。 According to the present invention, it is possible to provide a method and an apparatus for treating organic wastewater or sludge, which are capable of efficiently performing both anaerobic treatment of an organic substance to be recovered and phosphorus recovery.
以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。 Embodiments of the present invention will be described below with reference to the drawings. The embodiments described below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structures, arrangements, etc. of constituent parts as follows. Not something to do.
本明細書では、水処理系として標準活性汚泥処理を採用し、汚泥処理系として嫌気性消化処理と脱水処理をそれぞれ採用する一般的な下水処理場を一例として説明する。しかしながら、当業者であれば、有機性廃液または有機物を処理する施設として嫌気的処理を組み込む食品系廃水処理、し尿系廃水処理、生ごみや有機廃材系廃水処理等のあらゆる処理プロセスに適応または応用が可能であり、例示する下水処理に限定されるものではないことは勿論である。 In the present specification, a general sewage treatment plant that employs standard activated sludge treatment as a water treatment system and anaerobic digestion treatment and dehydration treatment as sludge treatment systems will be described as an example. However, those skilled in the art can adapt or apply to any treatment process such as food wastewater treatment, human waste wastewater treatment, food waste and organic waste material wastewater treatment that incorporates anaerobic treatment as a facility for treating organic waste liquid or organic matter. However, it is needless to say that the present invention is not limited to the exemplified sewage treatment.
また、本明細書における「微細MAP」とは、液体サイクロン等の分離装置によって汚泥から分離することが困難な粒径10μm以下の微粒子状のMAPを意味し、「粗MAP」とは、液体サイクロン等の分離装置によって汚泥から分離可能な粒径10μm以下の微粒子状のMAPを意味する。「全MAP」とは、上記微細MAPと粗MAPとを合わせたものを意味し、「種晶MAP」とは、粒径は粗MAPサイズを有し、MAP晶析反応を促進させるために予め槽内に一定量充填し流動させておくMAP粒子を意味する。種晶MAPが十分存在すると、MAP反応は種晶MAP表面上で種晶MAPをコーティングする形で晶析するので、反応したPO4−PやS−Mgの成分は粗MAPの粒径サイズのMAPとなり、液体サイクロン等の分離装置で分離回収が可能となる。 Further, in the present specification, "fine MAP" means fine MAP having a particle size of 10 μm or less, which is difficult to separate from sludge by a separation device such as a liquid cyclone, and "coarse MAP" means a liquid cyclone. Means MAP in the form of fine particles having a particle size of 10 μm or less, which can be separated from sludge by a separating device such as. "Total MAP" means a combination of the above-mentioned fine MAP and crude MAP, and "seed crystal MAP" has a grain size of coarse MAP and is previously prepared to accelerate the MAP crystallization reaction. It refers to MAP particles which are filled in a fixed amount in a tank and allowed to flow. When the seed crystal MAP is sufficiently present, the MAP reaction is crystallized in such a manner that the seed crystal MAP is coated on the surface of the seed crystal MAP, and thus the reacted PO 4 -P and S-Mg components have a particle size of the coarse MAP. It becomes MAP and can be separated and collected by a separation device such as a liquid cyclone.
下水処理場に流入する有機成分は、水処理系において最初沈澱池で沈降分離した有機酸を多く含む初沈汚泥と最終沈澱池で沈降分離した活性汚泥性微生物を多く含む余剰汚泥の二種類の汚泥に取り込まれ、これらを混合した混合生汚泥として汚泥処理系へ送られる。この混合生汚泥は汚泥処理系において嫌気性消化処理等により有機物の分解、可燃性ガス回収、脱水処理により減量化、場合によっては乾燥処理、焼却処理により更に減量化を行った後に脱水ケーキ、または焼却灰の形態で場外に搬出されるのが一般的である。これら汚泥減量化工程において分離される分離水は一般的には返流水として水処理系の最初沈澱池等に返送される。 There are two types of organic components that flow into the sewage treatment plant: first sludge that contains a large amount of organic acids that have settled and separated in the first settling tank in the water treatment system, and excess sludge that contains a large amount of activated sludge microorganisms that has settled and separated in the final settling tank. It is taken into the sludge and sent to the sludge treatment system as mixed raw sludge in which these are mixed. This mixed raw sludge decomposes organic substances by anaerobic digestion treatment in a sludge treatment system, recovers combustible gas, reduces the amount by dehydration treatment, and in some cases, performs dehydration treatment after dehydration cake, or after further reduction by incineration treatment, or It is generally carried out in the form of incinerated ash. The separated water separated in these sludge reduction processes is generally returned to the first settling tank of the water treatment system as return water.
嫌気性消化処理に供給される混合生汚泥の溶解成分中には、初沈汚泥由来の有機酸とトレードする形で活性汚泥系微生物が放出したリン酸イオンとマグネシウムイオン、及び初沈汚泥由来のマグネシウムイオンが多く存在する。有機酸はできるだけ嫌気性消化処理に導入してメタン等の可燃ガスとして回収することが望ましいが、リン酸イオンやマグネシウムイオンは嫌気性消化処理に導入されると有機物分解副産物である炭酸イオン(解離すると水酸イオン)とアンモニアイオンによりMAPとして晶析し易くなり消化槽内や後段設備のスケールリスク要因となる。 Among the dissolved components of the mixed raw sludge supplied to the anaerobic digestion process, phosphate ions and magnesium ions released by activated sludge microorganisms in a form of trading with organic acids derived from primary sludge, and primary sludge derived There are many magnesium ions. It is desirable to introduce organic acids into the anaerobic digestion process as much as possible and recover them as combustible gases such as methane, but when phosphate ions and magnesium ions are introduced into the anaerobic digestion process, carbonate ions (dissociation products of organic matter decomposition by dissociation Then, hydroxide ions) and ammonia ions easily crystallize as MAP, which becomes a scale risk factor in the digestion tank and the subsequent equipment.
一般的な下水汚泥の消化槽内の消化汚泥はpHが7.0−7.5程度の弱アルカリ性で、汚泥中にはNH4−Nが600−1200mg/L程度、PO4−Pが50−300mg/L程度、Mgイオンが1.0−30mg/L程度存在する場合が多い。MgNH4・PO4OH・5H2Oの構造式を持つリン酸マグネシウムアンモニウム(MAP)分子は、消化槽内で生成し、Mg律速でMAP生成が抑えられている場合が多く、消化槽内の消化汚泥中に存在するMAP量はMAP−P換算で200−450mg/L程度存在する場合が多い。 The digestion sludge in the digestion tank of general sewage sludge has a weak alkaline pH of about 7.0-7.5, and NH 4 -N is about 600-1200 mg/L and PO 4 -P is about 50 in the sludge. In many cases, about -300 mg/L and Mg ion about 1.0-30 mg/L are present. Magnesium ammonium phosphate (MAP) molecules having the structural formula of MgNH 4 ·PO 4 OH·5H 2 O are produced in the digestion tank, and in many cases, MAP production is suppressed by Mg rate control. The amount of MAP existing in the digested sludge is often about 200-450 mg/L in terms of MAP-P.
また、このMAP粒子は粒子径が0.1μm以下〜1mm以上まで幅広く存在し、液体サイクロン等を使用して消化汚泥11から直接、MAP粒子(比重:1.7)を回収するために必要な粗MAP粒子サイズのMAP粒子存在比率は10〜35%程度である。 The MAP particles have a wide range of particle diameters from 0.1 μm or less to 1 mm or more, and are necessary for recovering the MAP particles (specific gravity: 1.7) directly from the digested sludge 11 using a liquid cyclone or the like. The MAP particle abundance ratio of the coarse MAP particle size is about 10 to 35%.
本発明者らの研究により、消化槽内のこのようなMAP溶解成分のバランスの中に一般的な混合生汚泥が投入されると、混合生汚泥中のPO4−PやMgイオンが消化槽内のpH、NH4−NとのバランスでMAP生成が急速に進行し、消化槽内の混合生汚泥投入部において微細な新規のMAP粒子が大量に生成されることが分かってきた。微細MAP粒子を生成する要因としては、PO4 3-、Mg+、NH4+、OH-等の基質成分以外に、種晶MAP量、種晶粒子径、流動条件等が関係するが、既存の消化槽内の環境ではこの投入汚泥由来のPO4−PやMgイオンが起因となる消化槽内での微細MAP生成を抑制することが困難であることが分かってきた。 According to the research conducted by the present inventors, when a general mixed raw sludge is put into the balance of such MAP-dissolved components in the digester, PO 4 -P and Mg ions in the mixed raw sludge are digested in the digester. It has been found that MAP production rapidly progresses in balance with the pH and NH 4 -N in the interior, and a large amount of fine new MAP particles is produced in the mixed raw sludge charging part in the digestion tank. Factors that generate fine MAP particles include not only substrate components such as PO 4 3− , Mg + , NH 4+ , and OH − , but also seed crystal MAP amount, seed crystal particle diameter, flow conditions, etc. In the environment of the digester, it has been found that it is difficult to suppress the generation of fine MAP in the digester caused by PO 4 -P and Mg ions derived from the input sludge.
既存の消化槽の環境で生成した微細MAPは後段のMAP晶析リアクターに直接導入しても短時間で微細MAP粒子全量を粗MAPレベルに肥大化させることが困難であるため、最終的に消化槽内で生成した微細MAPの多くは最終的に回収できない場合が多い。そこで、発明者らは消化槽内での微細MAP生成にとって最も寄与率の高い、消化槽投入液中の「PO4−PとMgイオン」を消化槽に投入する前に粗MAPとして回収する方法を実証検討していく中で以下の知見を得た。 Even if the fine MAP produced in the environment of the existing digestion tank is directly introduced into the MAP crystallization reactor in the subsequent stage, it is difficult to enlarge the total amount of fine MAP particles to the crude MAP level in a short time, so that the final digestion is performed. In many cases, most of the fine MAP generated in the tank cannot be finally recovered. Therefore, the inventors of the present invention have a method of recovering "PO 4 -P and Mg ions" in the digestion tank charging liquid, which has the highest contribution to the production of fine MAP in the digestion tank, as crude MAP before charging the digestion tank. The following findings were obtained during the empirical examination.
すなわち、この消化槽に供給されるリン酸イオンとMgイオンの各濃度と消化槽内定常時のリン酸イオンとMgイオンの各濃度との落差が大きく、それらの値が投入汚泥のT−P、T−Mgに対して比率が大きいほど、該消化槽内で生成されるMAP粒子の粒径が小さくなり、最終的にはリン回収率が低下することが判明した。 That is, there is a large difference between the respective concentrations of phosphate ions and Mg ions supplied to this digestion tank and the respective concentrations of phosphate ions and Mg ions at the time of steady state in the digestion tank, and those values are TP of the input sludge, It was found that the larger the ratio with respect to T-Mg, the smaller the particle size of MAP particles produced in the digestion tank, and finally the phosphorus recovery rate decreases.
具体的な態様としては、以下に示す第1の実施の形態(参考例)及び第2の実施の形態の二つの方式が利用可能であり、汚泥性状等の諸条件に応じていずれかを選択することが有効である。 As a specific aspect, the following two methods of the first embodiment (reference example) and the second embodiment can be used, and one of them can be selected according to various conditions such as sludge properties. It is effective to do.
(第1の実施の形態:濃縮分離水−消化汚泥混合リン回収方式)
第1の実施の形態に係る有機性廃水または汚泥の処理装置は、図3に示すように、流入水1を処理する最初沈澱池21、曝気槽22、最終沈澱池23を含む水処理系2の処理設備と、最初沈澱池21で得られる初沈汚泥5及び最終沈澱池23で得られる余剰汚泥7を混合して混合生汚泥8とし、混合生汚泥8を処理する汚泥処理系3の処理設備とを備える。
(First embodiment: concentrated separated water-digested sludge mixed phosphorus recovery system)
The organic wastewater or sludge treatment apparatus according to the first embodiment is, as shown in FIG. 3, a water treatment system 2 including a first settling tank 21, an aeration tank 22, and a final settling tank 23 for processing inflow water 1. Of the first settling basin 21 and the excess sludge 7 obtained in the final settling basin 23 to form mixed raw sludge 8 and the sludge treatment system 3 for treating the mixed raw sludge 8 And equipment.
最初沈澱池21では、流入水1から有機酸を多く含む初沈汚泥5と流出水4とに分離される。流出水4は曝気槽22において活性汚泥微生物と共に好気処理が行われ、活性汚泥を含む活性汚泥混合液6が得られる。活性汚泥混合液は、最終沈澱池23において固液分離されて余剰汚泥7と処理水が得られる。 In the first settling basin 21, the inflow water 1 is separated into the first settled sludge 5 containing a large amount of organic acid and the outflow water 4. The effluent 4 is subjected to aerobic treatment together with the activated sludge microorganisms in the aeration tank 22 to obtain an activated sludge mixed solution 6 containing the activated sludge. The activated sludge mixed liquid is subjected to solid-liquid separation in the final settling tank 23 to obtain surplus sludge 7 and treated water.
最終沈澱池23で沈降分離した活性汚泥性微生物を多く含む余剰汚泥7と初沈汚泥5は、混合槽31において混合され、混合生汚泥8が得られる。混合槽31で得られた混合生汚泥8は、濃縮装置32に供給され、濃縮装置32において凝集剤などが添加されることにより、後段の消化槽33による嫌気性処理に適した汚泥濃度に濃縮処理されて濃縮汚泥9と濃縮分離水10とに分離される。 The surplus sludge 7 containing a large amount of activated sludge microorganisms settled and separated in the final settling tank 23 and the initial sludge 5 are mixed in a mixing tank 31 to obtain a mixed raw sludge 8. The mixed raw sludge 8 obtained in the mixing tank 31 is supplied to a concentrating device 32, and a coagulant or the like is added in the concentrating device 32 to concentrate the sludge to a concentration suitable for anaerobic treatment by a digestion tank 33 in a subsequent stage. The treated sludge is separated into concentrated sludge 9 and concentrated separated water 10.
濃縮装置32において濃縮汚泥は典型的には汚泥(TS)濃度2wt%以上、より典型的には4〜12wt%、更に典型的には7〜10wt%程度に濃縮される。濃縮装置32で混合生汚泥8を濃縮して高濃度化することにより、後段の消化槽33に投入される汚泥の体積を小さくすることができるため消化槽33を小型化することができる。濃縮分離水10の一部は最初沈澱池21へ返送することができる。濃縮分離水10の他の一部は配管ラインを介してMAP晶析リアクター34へ供給される。また、濃縮分離水10のリン酸、Mg、有機酸などの成分量によっては全量を最初沈澱池21に返送しても良いし、全量をMAP晶析リアクター34に供給しても良い。 In the concentrator 32, the concentrated sludge is typically concentrated to a sludge (TS) concentration of 2 wt% or more, more typically 4 to 12 wt%, and even more typically 7 to 10 wt%. By concentrating the mixed raw sludge 8 with the concentrating device 32 to increase the concentration thereof, the volume of the sludge that is put into the digestion tank 33 in the subsequent stage can be reduced, so that the digestion tank 33 can be downsized. Part of the concentrated separated water 10 can be returned to the sedimentation tank 21 first. Another part of the concentrated separated water 10 is supplied to the MAP crystallization reactor 34 via a pipeline. Depending on the amounts of phosphoric acid, Mg, organic acids, etc. in the concentrated separated water 10, the whole amount may be returned to the precipitation tank 21 first, or the whole amount may be supplied to the MAP crystallization reactor 34.
濃縮汚泥9は消化槽33に投入され、消化槽33において濃縮汚泥9に対する嫌気性処理が行われて嫌気性消化液体(消化汚泥11)が得られる。本明細書において「嫌気性処理」とは、主に絶対嫌気性微生物によるメタン発酵もしくはメタン発酵を主体とする処理を意味する。消化汚泥11の一部又は全部は消化槽33内から引き抜かれ、MAP晶析リアクター34へ導入される。 The concentrated sludge 9 is put into the digestion tank 33, and the anaerobic treatment is performed on the concentrated sludge 9 in the digestion tank 33 to obtain an anaerobic digestion liquid (digestion sludge 11). In the present specification, "anaerobic treatment" means methane fermentation mainly by absolutely anaerobic microorganisms or a treatment mainly composed of methane fermentation. A part or all of the digested sludge 11 is extracted from the digestion tank 33 and introduced into the MAP crystallization reactor 34.
MAP晶析リアクター34は、粒子径10μm以上のリン酸マグネシウムアンモニウム粒子が少なくとも5g/L存在する液体内で混合液のpHが6.8以上となるようにpHを調整してリン酸マグネシウムアンモニウム粒子を晶析させる装置である。 The MAP crystallization reactor 34 adjusts the pH of the mixed solution to 6.8 or more in a liquid containing at least 5 g/L of magnesium ammonium phosphate particles having a particle size of 10 μm or more, and adjusts the pH of the magnesium ammonium phosphate particles. Is a device for crystallizing.
図示を省略するが、MAP晶析リアクター34は、晶析対象液のpHを調整するためのpH調整機構、リアクター内のMAP粒子の濃度を調節するための粒子濃度調節機構、必要に応じてMgイオンを供給するためのMg供給機構を備えている。MAP晶析リアクター34には、濃縮装置32で得られた濃縮分離水10と消化汚泥11との混合液が導入され、MAP晶析リアクター34内においてはMAP粒子の晶析反応が進行する。MAP晶析リアクター34で処理されたMAP晶析処理水12は、MAP晶析リアクター34の外部へ排出され、MAP分離装置35へ導入される。 Although not shown, the MAP crystallization reactor 34 includes a pH adjusting mechanism for adjusting the pH of the liquid to be crystallized, a particle concentration adjusting mechanism for adjusting the concentration of MAP particles in the reactor, and Mg as necessary. It has a Mg supply mechanism for supplying ions. The mixed liquid of the concentrated separated water 10 and the digested sludge 11 obtained in the concentrator 32 is introduced into the MAP crystallization reactor 34, and the crystallization reaction of MAP particles proceeds in the MAP crystallization reactor 34. The MAP crystallization treated water 12 that has been treated in the MAP crystallization reactor 34 is discharged to the outside of the MAP crystallization reactor 34 and introduced into the MAP separation device 35.
MAP分離装置35は、MAP晶析リアクター34で得られたMAP晶析処理水12からリン酸マグネシウムアンモニウム粒子を分離、回収するための装置であり、例えば、液体サイクロン等が好適に用いられる。 The MAP separation device 35 is a device for separating and recovering magnesium ammonium phosphate particles from the MAP crystallization-treated water 12 obtained in the MAP crystallization reactor 34, and for example, a liquid cyclone or the like is preferably used.
MAP分離装置35においては、粗MAP粒子が分離濃縮されたMAP濃縮液14と粗MAP粒子が取り除かれたMAP脱離汚泥13とが得られる。粗MAP粒子が分離濃縮されたMAP濃縮液14は、汚泥処理系3の設備の一つであるMAP晶析リアクター34とMAP分離装置35との間に設けられた配管ラインを介してMAP晶析リアクター34内へ循環返送されるとともに、一部が回収MAPとして系外に排出され、洗浄、乾燥後種々の用途に利用される。 In the MAP separation device 35, a MAP concentrated liquid 14 in which the crude MAP particles are separated and concentrated and a MAP desorbed sludge 13 in which the crude MAP particles are removed are obtained. The MAP concentrate 14 obtained by separating and concentrating the crude MAP particles is subjected to MAP crystallization through a pipe line provided between the MAP crystallization reactor 34 and the MAP separator 35, which are one of the facilities of the sludge treatment system 3. While being circulated back into the reactor 34, a part of it is discharged outside the system as a recovery MAP, and is used for various purposes after cleaning and drying.
このように、配管ラインを通じてMAP分離装置35で得られた粗MAP粒子が分離濃縮MAP濃縮液14を返送することにより、MAP晶析リアクター34内のMAP濃度を所定濃度に安定的に維持することができるため、MAP晶析リアクター34内のMAPの晶析反応を安定的に進行させることができる。MAP分離装置35で得られたMAP脱離汚泥13は、脱水装置36に導入され、脱水装置36において脱水処理が行われ、脱水ケーキが得られる。 In this way, the crude MAP particles obtained by the MAP separation device 35 are returned through the pipeline to the separated concentrated MAP concentrated liquid 14 to stably maintain the MAP concentration in the MAP crystallization reactor 34 at a predetermined concentration. Therefore, the MAP crystallization reaction in the MAP crystallization reactor 34 can be stably advanced. The MAP desorbed sludge 13 obtained by the MAP separating device 35 is introduced into a dehydrating device 36, and is dehydrated in the dehydrating device 36 to obtain a dehydrated cake.
上述の図3に示す処理装置を用いて、第1の実施の形態に係る有機性廃水または汚泥の処理方法を実施することができる。すなわち、第1の実施の形態に係る処理方法は、有機性廃水または汚泥に対して嫌気性処理を行う工程と、有機性廃水または汚泥中のリン成分をリン酸マグネシウムアンモニウム粒子の形態で回収する工程を含む処理方法である。 Using the treatment apparatus shown in FIG. 3 described above, the method for treating organic wastewater or sludge according to the first embodiment can be implemented. That is, the treatment method according to the first embodiment includes a step of performing anaerobic treatment on organic wastewater or sludge, and recovering phosphorus components in the organic wastewater or sludge in the form of magnesium ammonium phosphate particles. It is a processing method including steps.
本方法は、有機性廃水または汚泥を含む混合生汚泥8を消化槽33において嫌気性処理した後の嫌気性処理液体(消化汚泥11)と、嫌気性処理する前段の混合生汚泥8に含まれる溶解性リンまたは溶解性マグネシウムを、好適には粒子径10μm以上のリン酸マグネシウムアンモニウム粒子が5g/L以上存在する液体を収容したMAP晶析リアクター34内で混合し、混合液のpHが好適には6.8以上となるように、更に好ましくはpH7.1〜7.8にpHを調整することによりリン酸マグネシウムアンモニウム粒子を晶析させ、晶析したリン酸マグネシウムアンモニウム粒子をMAP分離装置35において分離濃縮した後のMAP濃縮液14をMAP晶析リアクター34に戻し、MAP脱離汚泥13を脱水装置36に送ることを含む。MAP濃縮液14の一部からはMAPが回収される。 This method is included in the anaerobic treated liquid (digested sludge 11) after anaerobically treating the mixed raw sludge 8 containing organic wastewater or sludge in the digestion tank 33, and the mixed raw sludge 8 in the preceding stage for anaerobic treatment. Soluble phosphorus or soluble magnesium is preferably mixed in a MAP crystallization reactor 34 containing a liquid containing 5 g/L or more of magnesium ammonium phosphate particles having a particle size of 10 μm or more, and the pH of the mixed solution is preferably adjusted. Is more preferably 6.8 or more, more preferably by adjusting the pH to 7.1 to 7.8 to crystallize the magnesium ammonium phosphate particles, and crystallize the magnesium ammonium phosphate particles crystallized by the MAP separation device 35. The process includes returning the MAP concentrate 14 separated and concentrated in (1) to the MAP crystallization reactor 34, and sending the MAP desorbed sludge 13 to the dehydrator 36. MAP is recovered from a part of the MAP concentrated liquid 14.
嫌気性処理を行う前段の有機性廃水または汚泥、即ち混合生汚泥8は、濃縮装置32において固液分離して濃縮汚泥9と濃縮分離水10とに分離する工程を含むことが好ましい。濃縮汚泥9は嫌気性処理工程に導入し、濃縮分離水10と嫌気性処理後の嫌気性処理液体である消化汚泥11は共に、MAP晶析リアクター34に導入することが好ましい。これにより、嫌気性処理工程に供給される汚泥中の溶解性リンおよび溶解性マグネシウムの量を嫌気性処理工程にその汚泥が供給される前に予め低減させることができるため、嫌気性処理工程において生成されるその後の晶析反応に寄与しにくい微細なMAPの生成を抑え、汚泥中の溶解性リンを回収MAPとしてより回収しやすい形態に制御することができる。 It is preferable that the organic wastewater or sludge in the first stage for performing the anaerobic treatment, that is, the mixed raw sludge 8 includes a step of performing solid-liquid separation in the concentrating device 32 to separate into concentrated sludge 9 and concentrated separated water 10. It is preferable that the concentrated sludge 9 is introduced into the anaerobic treatment step, and the concentrated separated water 10 and the digested sludge 11 which is the anaerobic treated liquid after the anaerobic treatment are both introduced into the MAP crystallization reactor 34. Thereby, since the amount of soluble phosphorus and soluble magnesium in the sludge supplied to the anaerobic treatment step can be reduced in advance before the sludge is supplied to the anaerobic treatment step, in the anaerobic treatment step It is possible to suppress the generation of fine MAP that is less likely to contribute to the subsequent crystallization reaction that is generated, and control the soluble phosphorus in the sludge to a form that is more easily recovered as recovered MAP.
このように、第1の実施の形態に係る有機性廃水または汚泥の処理装置及び処理方法によれば、嫌気性処理の対象となる溶解性有機物が比較的少ない混合生汚泥8を処理する場合であっても、濃縮装置32において混合生汚泥8を消化槽33における嫌気性処理に適切な汚泥濃度に濃縮することができるため、小型の消化槽33においてより多くの有用性ガスを効率的に発生させることができる。 As described above, according to the apparatus and method for treating organic wastewater or sludge according to the first embodiment, it is possible to treat the mixed raw sludge 8 that has a relatively small amount of soluble organic matter that is the target of the anaerobic treatment. Even if there is, since the mixed raw sludge 8 can be concentrated in the concentration device 32 to a sludge concentration suitable for anaerobic treatment in the digestion tank 33, more useful gas is efficiently generated in the small digestion tank 33. Can be made.
さらに、濃縮装置32で得られる濃縮分離水と消化槽33から排出される消化汚泥11とをMAP晶析リアクター34へ導入し、晶析反応を進行させることで、従来は水処理系2へと供給されていた溶解性リン及び溶解性マグネシウムを汚泥処理系におけるMAPの晶析反応に利用することが可能となり、MAP分離装置35で回収されるリンの回収率をより向上させることが可能となる。 Further, the concentrated and separated water obtained by the concentrator 32 and the digested sludge 11 discharged from the digestion tank 33 are introduced into the MAP crystallization reactor 34, and the crystallization reaction is allowed to proceed, so that the conventional water treatment system 2 is obtained. The supplied soluble phosphorus and soluble magnesium can be used for the MAP crystallization reaction in the sludge treatment system, and the recovery rate of phosphorus recovered by the MAP separation device 35 can be further improved. ..
さらに、MAP分離装置35から排出されるMAP濃縮液14を必要に応じてMAP晶析リアクター34へ循環返送させることにより、MAP晶析リアクター34内のMAP濃度を粗MAP粒子の晶析に好適な所定濃度に維持することができ、さらに必要に応じてMAP晶析リアクター34内にMg源を供給することで、MAP晶析リアクター34内における晶析反応をより安定的に進行させることができるため、安定したリン回収率が得られるようになる。Mg源の供給量は具体的にはMAP晶析リアクター34内に供給されるPO4−Pとのモル比としての「Mg/P比」ベースで0.5〜1.3の範囲内になるようにMg源を供給することが微細MAP生成防止、コスト軽減、及び後段のスケール防止の観点からも望ましい。 Furthermore, the MAP concentrated liquid 14 discharged from the MAP separation device 35 is circulated back to the MAP crystallization reactor 34 as necessary, so that the MAP concentration in the MAP crystallization reactor 34 is suitable for crystallization of crude MAP particles. Since it can be maintained at a predetermined concentration, and by further supplying a Mg source into the MAP crystallization reactor 34 as necessary, the crystallization reaction in the MAP crystallization reactor 34 can proceed more stably. The stable phosphorus recovery rate can be obtained. The supply amount of the Mg source is specifically in the range of 0.5 to 1.3 based on the “Mg/P ratio” as a molar ratio with PO 4 -P supplied into the MAP crystallization reactor 34. It is desirable to supply the Mg source as described above from the viewpoints of preventing the generation of fine MAP, reducing the cost, and preventing scale in the subsequent stage.
さらに、第1の実施の形態によれば、混合生汚泥8に含まれる溶解性リンまたは溶解性マグネシウムを最大限に利用して、MAP晶析リアクター34内でより多くのMAP粒子を晶析させることができる。そのため、図6及び図7に示すような従来法では存在していたMAP粒子の多くが、本実施形態の脱水ケーキ中には除去されているため、脱水ケーキとしての固形物の排出量を小さくすることができる。その結果、ケーキ処分コストも大幅に軽減できる。 Further, according to the first embodiment, the soluble phosphorus or soluble magnesium contained in the mixed raw sludge 8 is maximally utilized to crystallize more MAP particles in the MAP crystallization reactor 34. be able to. Therefore, most of the MAP particles that existed in the conventional method as shown in FIG. 6 and FIG. 7 are removed in the dehydrated cake of the present embodiment, and the discharge amount of solid matter as the dehydrated cake is small. can do. As a result, cake disposal costs can be significantly reduced.
また、脱水処理により分離された脱水分離水は従来法よりもPO4−PとMgイオンが大幅に軽減していることから、脱水分離水を返流水として水処理系2に戻しても水処理系2でのリン負荷増加率は従来法と比較して小さくすることができる。 In addition, since PO 4 -P and Mg ions in the dehydrated separated water separated by the dehydration treatment are greatly reduced as compared with the conventional method, even if the dehydrated separated water is returned to the water treatment system 2 as return water, water treatment is performed. The phosphorus load increase rate in system 2 can be made smaller than that in the conventional method.
第1の実施の形態に係る有機性廃水または汚泥の処理装置及び処理方法は、混合生汚泥8中の溶解性有機物が比較的少ない場合に特に好適に適応できる。その際、混合生汚泥8を濃縮分離する際に、濃縮汚泥9になるべく有機物が多く濃縮され、且つ溶解性リンと溶解性マグネシウムの濃度をできるだけ少なくなるように、初沈汚泥5と余剰汚泥7を混合する前後における撹拌条件や曝気条件を適正に調整することも有効である。 The apparatus and method for treating organic wastewater or sludge according to the first embodiment can be particularly suitably applied when the soluble organic matter in the mixed raw sludge 8 is relatively small. At that time, when the mixed raw sludge 8 is concentrated and separated, the organic sludge is concentrated as much as possible to the concentrated sludge 9, and the concentrations of the soluble phosphorus and the soluble magnesium are reduced as much as possible. It is also effective to properly adjust the stirring conditions and aeration conditions before and after mixing the.
以下に限定されるものではないが、例えば、MAP晶析リアクター34に導入する消化汚泥11の1日当たりの供給量を1Qとした場合、濃縮分離水10を0.5〜2.0Qとすることが好ましく、一実施態様では、消化汚泥11の1日当たりの供給量を0.3Qとした場合に濃縮分離水10を0.7Qとすることで、より効率的な処理を行うことができる。 Although not limited to the following, for example, when the daily supply amount of the digested sludge 11 introduced into the MAP crystallization reactor 34 is 1Q, the concentrated separated water 10 should be 0.5 to 2.0Q. In one embodiment, when the daily supply amount of the digested sludge 11 is 0.3Q, the concentrated separated water 10 is 0.7Q, so that more efficient treatment can be performed.
(第2の実施の形態:混合生汚泥の嫌気性処理前リン回収方式)
第2の実施の形態に係る有機性廃水または汚泥の処理装置は、図4に示すように、混合生汚泥8を消化槽33へ供給する前に、MAP晶析リアクター34へ供給する点が、第1の実施の形態に係る有機性廃水または汚泥の処理装置と異なる。
(Second embodiment: phosphorus recovery method before anaerobic treatment of mixed raw sludge)
In the organic wastewater or sludge treatment device according to the second embodiment, as shown in FIG. 4, the point of supplying the mixed raw sludge 8 to the MAP crystallization reactor 34 before supplying it to the digestion tank 33 is: It is different from the organic wastewater or sludge treatment device according to the first embodiment.
即ち、第2の実施の形態に係る有機性廃水または汚泥の処理装置は、嫌気性処理を行う消化槽33と、嫌気性処理を行う前段の混合生汚泥8と消化槽33で得られる消化汚泥11の少なくとも一部とを共に導入し、リン酸マグネシウムアンモニウム粒子を晶析させるMAP晶析リアクター34と、MAP晶析リアクター34で得られたMAP晶析処理水17からリン酸マグネシウムアンモニウム粒子を濃縮分離するMAP分離装置35と、MAP分離装置35においてリン酸マグネシウムアンモニウム粒子を分離濃縮した後のMAP濃縮液14をMAP晶析リアクター34に循環させるかまたは一部系外に排出して回収し、MAP脱離汚泥16を汚泥処理系3の消化槽33へと返送する配管ラインとを備える。 That is, the organic wastewater or sludge treatment device according to the second embodiment is a digestive sludge obtained in the digestion tank 33 that performs anaerobic treatment, the mixed raw sludge 8 in the previous stage that performs anaerobic treatment, and the digestion tank 33. MAP crystallization reactor 34 for introducing at least a part of 11 together to crystallize magnesium ammonium phosphate particles, and magnesium ammonium phosphate particles concentrated from MAP crystallization treated water 17 obtained in MAP crystallization reactor 34 The MAP separating device 35 to be separated, and the MAP concentrated liquid 14 after separating and concentrating the magnesium ammonium phosphate particles in the MAP separating device 35 is circulated to the MAP crystallization reactor 34 or partially discharged out of the system to be recovered, A pipe line for returning the MAP desorbed sludge 16 to the digestion tank 33 of the sludge treatment system 3 is provided.
MAP晶析リアクター34で回収すべき混合生汚泥8中のターゲットの成分はリン酸イオンとMgイオンであることから、なるべく混合生汚泥8の全量を対象とすることが望ましく、少なくとも混合生汚泥8の50%以上を、MAP晶析リアクター34に導入することが好ましい。但し、混合生汚泥8中には髪の毛、トイレットペーパー残査、ゴマ等の植物種子系残査等、比較的粒径の大きい固形物がある程度含まれる場合があり、これらは後段のMAP分離装置での目詰まりの原因となる場合もある。よって、沈降分離装置または分離スクリーン等を用いてそれら比較的粒径の大きい固形物を主体とした汚泥の一部を消化槽33に直接投入しても良いし、MAP脱離汚泥16と混合して消化槽33へ供給させても良く、それにより消化槽33における有機物の分解効率及びメタンガス等の有用性ガスの生成効率を向上させることができ効果的である。 Since the target components in the mixed raw sludge 8 to be recovered by the MAP crystallization reactor 34 are phosphate ions and Mg ions, it is desirable to target the total amount of the mixed raw sludge 8 as much as possible, and at least the mixed raw sludge 8 It is preferable to introduce 50% or more of the above into the MAP crystallization reactor 34. However, the mixed raw sludge 8 may contain a certain amount of solid matter having a relatively large particle size such as hair, toilet paper residue, plant seed residue such as sesame seeds, etc. It may also cause clogging. Therefore, a part of the sludge mainly composed of solids having a relatively large particle size may be directly charged into the digestion tank 33 by using a sedimentation separation device or a separation screen, or may be mixed with the MAP desorption sludge 16. The gas may be supplied to the digestion tank 33, which effectively improves the decomposition efficiency of organic substances and the generation efficiency of useful gas such as methane gas in the digestion tank 33.
なお、分離スクリーン等を使用する場合の開口径またはスクリーン幅は0.25mm〜5mm程度が望ましい。ただし、この沈澱分離装置または分離スクリーン等を使用する場合は凝集剤を使用しない物理的な分離方法で行う方が良く、前述の第1の実施の形態において凝集剤を使用する濃縮方法を採用した場合よりも、比較的薬品コストの軽減効果が望める。 The opening diameter or screen width when using a separation screen or the like is preferably about 0.25 mm to 5 mm. However, when using this precipitation separator or separation screen, it is better to use a physical separation method that does not use a coagulant, and the concentration method that uses a coagulant was adopted in the first embodiment described above. Compared to the case, it can be expected that the effect of reducing chemical costs will be relatively low.
消化槽33で処理された消化汚泥11は、液体サイクロン等のMAP分離装置37へ供給されてMAP粒子が分離濃縮され、MAP濃縮液15とMAP脱離汚泥13とに分離される。MAP濃縮液15は混合槽31からの混合生汚泥8とともにMAP晶析リアクター34へ導入される。MAP脱離汚泥13は配管ラインを介して脱水装置36へ導入され、脱水装置36において脱水処理が行われて脱水ケーキが生成される。 The digested sludge 11 processed in the digestion tank 33 is supplied to a MAP separation device 37 such as a hydrocyclone to separate and concentrate MAP particles, and the MAP concentrated liquid 15 and the MAP desorbed sludge 13 are separated. The MAP concentrate 15 is introduced into the MAP crystallization reactor 34 together with the mixed raw sludge 8 from the mixing tank 31. The MAP desorbed sludge 13 is introduced into the dehydrating device 36 via a pipeline, and is dehydrated in the dehydrating device 36 to produce a dehydrated cake.
MAP晶析リアクター34内では、粒子径10μm以上のリン酸マグネシウムアンモニウム粒子が少なくとも5g/L以上存在する液体内で混合液のpHが6.8以上となるようにpHが調整されてMAP粒子の晶析反応が進行する。MAP晶析リアクター34で処理されたMAP晶析処理水17は、液体サイクロン等のMAP分離装置35へ導入され、サイクロン分離によってMAP粒子が分離される。MAP粒子回収後に得られるMAP濃縮液14はMAP晶析リアクター34へ循環返送され、一部が回収される。 In the MAP crystallization reactor 34, the pH is adjusted so that the pH of the mixed solution is 6.8 or more in a liquid containing at least 5 g/L or more of magnesium ammonium phosphate particles having a particle size of 10 μm or more, and The crystallization reaction proceeds. The MAP crystallization-treated water 17 processed in the MAP crystallization reactor 34 is introduced into a MAP separation device 35 such as a liquid cyclone, and MAP particles are separated by the cyclone separation. The MAP concentrated liquid 14 obtained after collecting the MAP particles is circulated back to the MAP crystallization reactor 34, and a part thereof is collected.
MAP脱離汚泥16は、配管ラインを介して消化槽33への投入汚泥として利用される。なお、図示していないが、MAP濃縮液14の一部を種晶MAPとして必要に応じて消化槽33へ供給する配管ラインが設けられていても構わない。 The MAP desorbed sludge 16 is used as a sludge to be input to the digestion tank 33 via a piping line. Although not shown, a pipe line may be provided to supply a part of the MAP concentrate 14 as seed crystal MAP to the digestion tank 33 as needed.
上述の図4に示す処理装置を用いて、第2の実施の形態に係る有機性廃水または汚泥の処理方法を実施することができる。すなわち、第2の実施の形態に係る処理方法は、混合生汚泥8と、消化槽33から得られる消化汚泥11の少なくとも一部とを共に、MAP晶析リアクター34に導入し、MAP晶析リアクター34内で晶析したMAP粒子を分離濃縮した後のMAP濃縮液14またはMAP脱離汚泥16の少なくとも一部を消化槽33における嫌気性処理に循環返送することを含む。 The method for treating organic wastewater or sludge according to the second embodiment can be implemented using the treatment apparatus shown in FIG. That is, in the treatment method according to the second embodiment, the mixed raw sludge 8 and at least a part of the digested sludge 11 obtained from the digestion tank 33 are both introduced into the MAP crystallization reactor 34, and the MAP crystallization reactor is introduced. At least a part of the MAP concentrated liquid 14 or the MAP desorbed sludge 16 after separating and concentrating the MAP particles crystallized in 34 is recycled to the anaerobic treatment in the digestion tank 33.
第2の実施の形態に係る有機性廃水または汚泥の処理方法は、更に、消化汚泥11をMAP分離装置37においてMAP濃縮液15とMAP脱離汚泥13とに分離し、MAP濃縮液15をMAP晶析リアクター34に導入し、MAP脱離汚泥13をMAP晶析リアクター34の処理系外である脱水装置36へと排出することを含むことができる。また、消化汚泥11に存在する粗MAP量が十分に少ない場合、例えば100mg−P/L以下程度で、且つ処理施設サイドの要望等がある場合はMAP分離装置37を省略して、消化汚泥11の所定量をMAP晶析リアクター34に導入し、かつ別の所定量を脱水装置36へと送る装置で代用することも可能である。 In the method for treating organic wastewater or sludge according to the second embodiment, the digested sludge 11 is further separated into the MAP concentrate 15 and the MAP desorbed sludge 13 in the MAP separator 37, and the MAP concentrate 15 is separated from the MAP concentrate 15. It may be introduced into the crystallization reactor 34 and discharging the MAP desorbed sludge 13 to the dehydrator 36 which is outside the treatment system of the MAP crystallization reactor 34. When the amount of crude MAP existing in the digested sludge 11 is sufficiently small, for example, about 100 mg-P/L or less, and when there is a request from the treatment facility side, the MAP separation device 37 is omitted and the digested sludge 11 is omitted. It is also possible to substitute a predetermined amount of the above into the MAP crystallization reactor 34 and send another predetermined amount to the dehydrator 36.
また、消化汚泥11に存在するPO4−Pが必要以上に大きい場合、例えば50mg−P/L以上程度で、且つ処理施設サイドの要望等がある場合は、MAP晶析リアクター34とは別のもう一つのMAP晶析リアクター(図示せず)を設けて、脱水装置36へ送る汚泥からPO4−Pを除去しMAPとして回収することも有効である場合がある。 In addition, when the PO 4 -P existing in the digested sludge 11 is unnecessarily large, for example, about 50 mg-P/L or more, and when there is a request from the processing facility side, etc., it is different from the MAP crystallization reactor 34. It may be effective to provide another MAP crystallization reactor (not shown) to remove PO 4 -P from the sludge sent to the dehydrator 36 and recover it as MAP.
嫌気性処理の本来の目的である「有機物の分解率最大化及びそれに付随して発生するCH4等の有用性ガス回収量最大化」という観点と、有機物からのリン回収効率化を両立するためには、嫌気性処理工程に導入する物質中にはできるだけ有機物を残し、溶解性リン及び溶解性Mgは除去することが望ましい。 To achieve both of the original purpose of anaerobic treatment, "maximizing the decomposition rate of organic matter and maximizing the amount of useful gas such as CH 4 that is generated accompanying it, and recovering useful gas," and improving the efficiency of phosphorus recovery from organic matter. In particular, it is desirable to leave as much organic matter as possible in the substance introduced into the anaerobic treatment step and remove soluble phosphorus and soluble Mg.
第2の実施の形態に係る有機性廃水または汚泥の処理装置及び処理方法によれば、混合生汚泥8を嫌気性処理する前に直接、MAP晶析リアクター34に供給し、MAP晶析リアクター34内で混合生汚泥8中の溶解性リン及び溶解性マグネシウムをMAP粒子に晶析化して分離し、MAP粒子を分離した後のMAP脱離汚泥13を消化槽33へ供給することにより、嫌気性処理をより効率的に行えるとともに、リンの回収率を同時に向上させることが可能となる。 According to the organic wastewater or sludge treatment apparatus and treatment method of the second embodiment, the mixed raw sludge 8 is directly supplied to the MAP crystallization reactor 34 before the anaerobic treatment, and the MAP crystallization reactor 34 is supplied. Soluble phosphorus and soluble magnesium in the mixed raw sludge 8 are crystallized into MAP particles and separated, and the MAP desorbed sludge 13 after separating the MAP particles is supplied to the digestion tank 33, thereby anaerobic The treatment can be performed more efficiently, and at the same time, the phosphorus recovery rate can be improved.
MAP晶析リアクター34で晶析反応をより安定的に進行させるためにはpHを6.8以上、更には7.1〜7.8のアルカリ領域とすることが望ましい。一方で、一般的な下水の混合生汚泥8は、pHが4.5〜6.5程度の弱酸性であるため、図4に示す処理装置のように、混合生汚泥8をMAP晶析リアクター34へ導入することによって、MAP晶析リアクター34へ供給すべきpH調整剤の添加量が多くなる場合がある。 In order to allow the crystallization reaction to proceed more stably in the MAP crystallization reactor 34, the pH is preferably set to 6.8 or higher, and more preferably in the alkaline range of 7.1 to 7.8. On the other hand, since the mixed raw sludge 8 of general sewage has a weak acidity of about 4.5 to 6.5, the mixed raw sludge 8 is treated with a MAP crystallization reactor like the treatment device shown in FIG. By introducing into the MAP crystallization reactor 34, the amount of the pH adjusting agent to be added may increase.
第2の実施の形態に係る処理装置においては、消化汚泥11の少なくとも一部をアルカリ剤、NH4、PO4−P、及びMAP種晶の供給剤として利用するために、混合生汚泥8の供給と同時に消化汚泥11をMAP晶析リアクター34に導入し消化汚泥11の供給量を適宜調整することによって、MAP晶析リアクター34へ供給すべき薬剤の添加量を低減させることができる。汚泥性状により異なるため以下は例示であるが、例えば、混合生汚泥8を一日当たり1Q程度添加する場合、MAP濃縮液15の一日当たりの供給量を0.5〜3Qとすることで、MAP濃縮液15の一日当たりの供給量を2Qとする場合、混合生汚泥8を1Q程度添加することで、MAP晶析リアクター34へ供給する薬剤の供給量を少なくしながらより多くのMAPを回収することができる。 In the treatment apparatus according to the second embodiment, in order to utilize at least a part of the digested sludge 11 as an alkaline agent, NH 4 , PO 4 -P, and MAP seed crystal supply agent, the mixed raw sludge 8 is mixed. By introducing the digested sludge 11 into the MAP crystallization reactor 34 at the same time as the supply and appropriately adjusting the supply amount of the digested sludge 11, the amount of the chemical to be supplied to the MAP crystallization reactor 34 can be reduced. The following is an example because it depends on the sludge property. For example, when the mixed raw sludge 8 is added at about 1Q per day, the MAP concentrate 15 is supplied at 0.5 to 3Q per day to concentrate the MAP. When the daily supply amount of the liquid 15 is set to 2Q, by adding the mixed raw sludge 8 in about 1Q, more MAP can be recovered while reducing the supply amount of the chemical supplied to the MAP crystallization reactor 34. You can
混合生汚泥8と消化汚泥11のMAP晶析リアクター34への供給量の比率はそれぞれの汚泥性状によって異なるが、MAP晶析リアクター34内のMAP晶析環境としてpH:6.7〜7.6、Mgイオン濃度:0.1〜60mg/L、粗MAP粒子濃度:7〜70g/Lの範囲となるように、混合生汚泥8と消化汚泥11の2種類の汚泥ブレンド比、Mg系薬剤添加量、該リアクター内曝気量、MAP引き抜き量等を調整することが望ましい。 The ratio of the amounts of the mixed raw sludge 8 and the digested sludge 11 supplied to the MAP crystallization reactor 34 varies depending on the sludge properties, but the MAP crystallization environment in the MAP crystallization reactor 34 has a pH of 6.7 to 7.6. , Mg ion concentration: 0.1 to 60 mg/L, crude MAP particle concentration: 7 to 70 g/L, two types of sludge blend ratio of mixed raw sludge 8 and digested sludge 11, Mg-based chemical addition It is desirable to adjust the amount, the aeration amount in the reactor, the MAP extraction amount, and the like.
また、MAP晶析リアクター34に導入する混合生汚泥8と消化汚泥11は、MAP晶析リアクター34内に導入する前段で一部先に混合しておいても良い場合がある。消化汚泥11中の一部微細MAPは弱酸性の混合生汚泥と先に接触することで溶解させることができ、これによりMAP晶析リアクター34へのPO4−P及びS−Mg負荷量を増大させ、リン回収率を向上することができる。 In some cases, the mixed raw sludge 8 and the digested sludge 11 to be introduced into the MAP crystallization reactor 34 may be partially mixed before being introduced into the MAP crystallization reactor 34. Part of the fine MAP in the digested sludge 11 can be dissolved by coming into contact with the weakly acidic mixed raw sludge first, which increases the PO 4 -P and S-Mg load on the MAP crystallization reactor 34. Therefore, the phosphorus recovery rate can be improved.
消化汚泥11のMAP晶析リアクター34への供給に際しては、一旦MAP分離装置37で消化汚泥11からMAPを回収して、MAP濃縮液15とMAP脱離汚泥13とに分離し、MAP濃縮液15の方をMAP晶析リアクター34に導入し、MAP脱離汚泥13の方を系外に排出し脱水処理等を行う方法がリン回収率及び脱水ケーキの排出量低減の観点からはより効率的で好ましい。 When the digested sludge 11 is supplied to the MAP crystallization reactor 34, MAP is once collected from the digested sludge 11 by the MAP separation device 37 and separated into a MAP concentrate 15 and a MAP desorbed sludge 13, and a MAP concentrate 15 It is more efficient from the viewpoint of reducing the phosphorus recovery rate and the amount of dehydrated cake discharged that the MAP desorbed sludge 13 is discharged to the outside of the system for dehydration treatment by introducing this into the MAP crystallization reactor 34. preferable.
MAP晶析リアクター34を経由して嫌気性処理工程に導入されたMAP脱離汚泥16は、消化槽33内の嫌気性微生物により有機物が分解され、同時に分解代謝物としてPO4−P、S−Mg、NH4−Nが増加し、嫌気性処理工程内でMAP粒子が生成される。しかし、嫌気性処理工程内のこれらMAP基質成分濃度は、特にPO4−P、S−Mgの汚泥流入部等での急激な濃度変動が少ないことから消化槽33内におけるMAP晶析反応は比較的低濃度でゆっくりと進行し、比較的大きなMAP粒子を形成することが分かっている。すなわち、従来法では嫌気性処理工程で大量に発生していた微細MAPの生成が、本願発明では抑制されているために、リン回収率としては飛躍的に向上する。 In the MAP desorbed sludge 16 introduced into the anaerobic treatment step via the MAP crystallization reactor 34, organic substances are decomposed by the anaerobic microorganisms in the digestion tank 33, and at the same time, PO 4 -P, S- are decomposed metabolites. Mg and NH 4 —N increase, and MAP particles are generated in the anaerobic treatment process. However, the concentration of these MAP substrate components in the anaerobic treatment step does not change abruptly, particularly in the sludge inflow part of PO 4 -P and S-Mg. It has been found to proceed slowly at relatively low concentrations to form relatively large MAP particles. That is, since the production of fine MAP, which was generated in a large amount in the anaerobic treatment step in the conventional method, is suppressed in the present invention, the phosphorus recovery rate is dramatically improved.
(変形例)
混合生汚泥8を嫌気性処理した後の消化汚泥11と、濃縮分離水10または濃縮してない状態の混合生汚泥8とを共にMAP晶析リアクター34へ供給する前に混合し、消化汚泥11と濃縮分離水10または濃縮してない状態の混合生汚泥8に対して物理的脱炭酸処理を行うことが好ましい場合がある。このため、図5に示すように、消化槽33とMAP晶析リアクター34との間、あるいはMAP晶析リアクター34内に物理的脱炭酸処理装置38が設けられていてもよい。
(Modification)
The digested sludge 11 after anaerobic treatment of the mixed raw sludge 8 and the concentrated separated water 10 or the mixed raw sludge 8 in an unconcentrated state are mixed together before being supplied to the MAP crystallization reactor 34, and the digested sludge 11 is mixed. In some cases, it may be preferable to perform a physical decarbonation treatment on the concentrated separated water 10 or the mixed raw sludge 8 that is not concentrated. Therefore, as shown in FIG. 5, a physical decarboxylation treatment device 38 may be provided between the digestion tank 33 and the MAP crystallization reactor 34 or in the MAP crystallization reactor 34.
物理的脱炭酸処理装置38としては、曝気装置や機械撹拌装置等を用いることができる。図5に示す処理装置によれば、物理的脱炭酸処理装置38において消化汚泥11と濃縮分離水10または濃縮してない状態の混合生汚泥8とに対して物理的脱炭酸処理を行うことによって、pHが上昇するためpH調整剤の使用量を軽減できるとともに、脱炭酸により上昇したpH環境下においてMAP晶析がより進行した後の後段のプロセスにおいてスケールリスクが軽減できる。加えてMAP晶析リアクター34におけるMAP粒子の回収率を高めることができるとともに、脱水ケーキの生成量を少なくすることができる。 As the physical decarbonation device 38, an aeration device, a mechanical stirring device, or the like can be used. According to the treatment apparatus shown in FIG. 5, the physical decarbonation treatment apparatus 38 performs the physical decarbonation treatment on the digested sludge 11 and the concentrated separated water 10 or the mixed raw sludge 8 in the unconcentrated state. In addition, since the pH increases, the amount of the pH adjuster used can be reduced, and the scale risk can be reduced in the subsequent process after the MAP crystallization further progresses in the pH environment increased by decarboxylation. In addition, the recovery rate of MAP particles in the MAP crystallization reactor 34 can be increased, and the amount of dehydrated cake produced can be reduced.
図示を省略しているが、物理的脱炭酸処理装置38は、図4のMAP分離装置37の後段且つMAP晶析リアクター34の前段に配置し、MAP濃縮液15と混合生汚泥8とを脱炭酸処理するようにすることも勿論可能である。 Although illustration is omitted, the physical decarbonation device 38 is arranged in the latter stage of the MAP separation device 37 and in the former stage of the MAP crystallization reactor 34 in FIG. 4 to remove the MAP concentrate 15 and the mixed raw sludge 8. Of course, it is also possible to carry out carbonic acid treatment.
下水処理場等の処理施設において嫌気性処理工程に導入される有機性汚泥は、水処理系2における運転方式の違い等により汚泥性状が大きく異なり、それにより汚泥中に存在する有機酸、溶解性リン、溶解性Mgの量は様々である。 The organic sludge that is introduced into the anaerobic treatment process in a treatment facility such as a sewage treatment plant has greatly different sludge properties due to the difference in the operation method in the water treatment system 2, etc. The amounts of phosphorus and soluble Mg are various.
一概には言えない場合もあるが、例えば下水処理場において嫌気性消化槽に導入される汚泥が、初沈汚泥比率が活性汚泥由来余剰汚泥比率よりも大きい場合、その汚泥は有機酸含有率が比較的高く、逆に活性汚泥由来余剰汚泥の比率が大きい場合は溶解性リン、溶解性マグネシウムが比較的高い。汚泥が前者の場合、嫌気性処理投入汚泥を濃縮分離して濃縮分離水を嫌気性処理に導入しないプロセスでは濃縮分離水の有機酸からのCH4ガス回収が見込めないためにガス回収としては不利になる。汚泥が後者の場合は、嫌気性処理投入汚泥を濃縮分離して濃縮分離水を嫌気性処理に導入しないプロセスでもCH4ガス回収としてはほとんど影響が無く、逆に高濃度メタン発酵が可能となりメタン発酵槽のコンパクト化が可能となり有効である。このように、嫌気性工程に導入する汚泥性状によって、第1の実施の形態、第2の実施の形態及び変形例のいずれかの方式を選択することが好ましい。 Although there are cases where it cannot be said unequivocally, for example, when the sludge introduced into the anaerobic digestion tank at a sewage treatment plant has a ratio of initial sludge to be greater than the ratio of activated sludge-derived excess sludge, the sludge has an organic acid content rate. When the ratio of activated sludge-derived excess sludge is relatively high, soluble phosphorus and soluble magnesium are relatively high. When the sludge is the former, it is not possible to recover CH 4 gas from the organic acid of the concentrated separation water in a process in which the sludge that has been anaerobically treated is concentrated and separated and the concentrated separation water is not introduced into the anaerobic treatment. become. In the case of the latter sludge, even a process in which the anaerobic treatment input sludge is concentrated and separated and the concentrated separation water is not introduced into the anaerobic treatment has almost no effect as CH 4 gas recovery, and conversely high-concentration methane fermentation becomes possible. The fermentation tank can be made compact, which is effective. As described above, it is preferable to select one of the methods of the first embodiment, the second embodiment, and the modified example depending on the sludge property introduced into the anaerobic process.
以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。 Hereinafter, examples of the present invention will be shown together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention.
下水処理場の水処理系で発生した初沈汚泥、余剰汚泥を用いて、複数の運転条件に切り替えられるパイロットプラントを使用してリン回収を行った。混合生汚泥の嫌気性消化設備としては全て35℃中温消化を採用し、消化槽水理学的滞留日数は25日とし、MAP分離装置は全て液体サイクロンを使用し、各流量バランスに応じて液体サイクロンのアンダーとオーバーの口径は適宜調節した。液体サイクロン投入液に粒径10mm以上の夾雑物が存在する場合は篩で除去し該除去物をサイクロンオーバー液に混合した。 Phosphorus was recovered using a pilot plant that can switch to multiple operating conditions, using the first settling sludge and surplus sludge generated in the water treatment system of the sewage treatment plant. All of the anaerobic digestion equipment for mixed raw sludge adopts medium temperature digestion at 35°C, the digestion tank has a hydraulic retention time of 25 days, and the MAP separation device uses a liquid cyclone for all the hydrocyclone according to each flow balance. The caliber of under and over was adjusted appropriately. If the liquid cyclone charging liquid contained impurities having a particle size of 10 mm or more, they were removed by a sieve, and the removed substances were mixed with the cyclone over liquid.
実施例1(参考例)は、図3に示す構成のパイロットプラントに基づいて運転した場合を示し、実施例1のみ他の比較例1等の消化槽の1/3の容量の消化槽を採用し、消化槽への投入汚泥は混合生汚泥に対して対固形物当たり凝集剤を0.2%添加して汚泥濃度を3倍にした状態で消化槽に投入する方式とした。実施例2は、図4に示す構成のパイロットプラントに基づいて運転した場合を示し、流量バランスとしては種々の条件より13MAP脱離汚泥:15MAP濃縮液:8混合生汚泥=2:3:2となるように設定した。実施例3は、図4に示す構成のパイロットプラントが備えるMAP晶析リアクターにエアリフト循環型曝気装置を付加して脱炭酸処理を行った場合を示す。
Example 1 (reference example) shows the case of operating based on the pilot plant having the configuration shown in FIG. 3, and only Example 1 employs a digestion tank having a capacity of 1/3 of that of other Comparative Examples 1 and the like. Then, the sludge to be put into the digestion tank was introduced into the digestion tank in a state where the concentration of sludge was tripled by adding 0.2% of a flocculant to solid matter to the mixed raw sludge. Example 2 shows the case of operating based on the pilot plant having the configuration shown in FIG. 4, and 13 MAP desorption sludge: 15 MAP concentrated liquid: 8 mixed raw sludge = 2:3:2 from various conditions as the flow rate balance. It was set to be. Example 3 shows a case where decarbonation treatment was performed by adding an air lift circulation type aerator to the MAP crystallization reactor provided in the pilot plant configured as shown in FIG.
比較例1は、図7に示す構成のパイロットプラントに基づいて運転した場合を示し、比較例2は図7に示す構成のパイロットプラントにおいて混合生汚泥の初沈汚泥と余剰汚泥の混合比を変更して運転した場合を示す。 Comparative Example 1 shows the case of operating based on the pilot plant having the structure shown in FIG. 7, and Comparative Example 2 changes the mixing ratio of the first set sludge of the mixed raw sludge and the excess sludge in the pilot plant having the structure shown in FIG. 7. The following shows the case of driving.
運転条件の詳細を表1に示し、比較例1のリン回収率、回収リン当たりの使用薬剤コスト、プラント動力、プラント設置面積、余剰メタンガス回収量、排出固形量(脱水ケーキ重量)をそれぞれ100とした場合の各実施例及び各比較例の比較結果を表2に示す。なお、リン回収当たりの使用薬剤コストはMAPを晶析させるためのMg源、pH調整剤、及び混合生汚泥を濃縮する場合にはその際に使用する凝集剤を含めたコストとした。 The details of the operating conditions are shown in Table 1, and the phosphorus recovery rate of Comparative Example 1, the cost of the used chemical agent per recovered phosphorus, the plant power, the plant installation area, the surplus methane gas recovery amount, and the discharged solid amount (dehydrated cake weight) are 100 and 100, respectively. Table 2 shows the comparison results of each example and each comparative example in the case of performing. The cost of the chemicals used per recovery of phosphorus was the cost including the Mg source for crystallizing MAP, the pH adjuster, and the coagulant used when concentrating the mixed raw sludge.
実施例1〜3のいずれも、混合生汚泥に対して嫌気性処理を行い、その後脱水処理を行った比較例1に比べて、リン回収率を高くすることができた。また、実施例1〜3のいずれも、比較例1に比べて回収したリン当たりの使用薬剤コストを低減することができた。また、排出固形物量に関しても、比較例1では排出ケーキ中に固形物として含まれていたMAP粒子を実施例1〜3では分離回収していることから大幅に削減することが可能で処分コスト軽減効果があった。 In all of Examples 1 to 3, the phosphorus recovery rate could be increased as compared with Comparative Example 1 in which the mixed raw sludge was subjected to anaerobic treatment and then dehydrated. In addition, in all of Examples 1 to 3, the cost of the chemical agent used per recovered phosphorus could be reduced as compared with Comparative Example 1. Further, regarding the amount of discharged solid matter, since the MAP particles contained in the discharged cake as a solid matter in Comparative Example 1 are separated and collected in Examples 1 to 3, it is possible to significantly reduce the amount of solid waste. It was effective.
さらに、実施例1では、混合生汚泥を濃縮処理した濃縮汚泥を用いて嫌気性処理を行ったため、消化槽の大きさを小さくすることができ、これによりプラント設置面積も小さくすることができた。特に消化槽が1/3となることから、該消化槽の加温処理のためのボイラー使用分の回収CH4が大幅に削減することから、発電に使用できる余剰CH4が100→105に増加した。リン回収に関しては、想定どおりに消化槽内での微細MAP率が80%→55%大幅に低下し、その分粗MAP化率が上昇したことからリン回収率が増加した。消化槽に投入する混合生汚泥を3倍に濃縮するために使用した凝集剤コスト分が比較例1よりも余分にかかったが、リン回収量が1.3倍に増加したことで回収リンあたりの薬品コストとしては比較例1よりも小さくなった。 Furthermore, in Example 1, since the anaerobic treatment was performed using the concentrated sludge obtained by concentrating the mixed raw sludge, the size of the digestion tank could be reduced, and the plant installation area could also be reduced. .. In particular, since the digestion tank becomes 1/3, the recovery CH 4 of the boiler used for heating treatment of the digestion tank is greatly reduced, and the surplus CH 4 that can be used for power generation is increased from 100 to 105. did. Regarding phosphorus recovery, as expected, the fine MAP ratio in the digestion tank was drastically decreased from 80% to 55%, and the crude MAP conversion ratio was correspondingly increased, so the phosphorus recovery ratio was increased. Although the cost of the flocculant used for concentrating the mixed raw sludge to be put into the digestion tank 3 times was more than that in Comparative Example 1, the amount of phosphorus recovered increased 1.3 times, and The chemical cost was less than that of Comparative Example 1.
比較例2、実施例2、3は混合生汚泥の初沈汚泥と余剰汚泥の比率が8:2であり、初沈汚泥由来の有機物が多いことから、実施例1の方式を採用してしまうと混合生汚泥の濃縮処理において分離する濃縮分離水中の有機酸等の有機物からCH4ガスを回収できなくなる。そのため混合生汚泥の濃縮処理は行わず、通常サイズの消化槽を用いたが、活性汚泥処理等での微生物分解処理を受けていない初沈汚泥由来の有機物が多いことから消化槽での余剰ガス回収量はやや増加した。また、理由は定かではないが、MAP晶析においては余剰汚泥由来のリンの方が、初沈汚泥由来のリンよりもやや粗MAP化しやすい傾向がある事から比較例1と2はプラントとしては同一のものであるが、リン回収率は比較例2の方がやや小さかった。 In Comparative Example 2 and Examples 2 and 3, the ratio of the initial sludge to the excess sludge of the mixed raw sludge is 8:2, and the organic matter derived from the initial sludge is large, so the method of Example 1 is adopted. CH 4 gas cannot be recovered from organic substances such as organic acids in the concentrated separation water separated in the concentration treatment of the mixed raw sludge. Therefore, we did not concentrate the mixed raw sludge and used a normal size digestion tank.However, since there are many organic substances derived from the first settled sludge that has not been subjected to microbial decomposition treatment such as activated sludge treatment, excess gas in the digestion tank is used. Recovery volume increased slightly. Further, although the reason is not clear, Comparative Examples 1 and 2 are not suitable as a plant in the MAP crystallization because phosphorus derived from excess sludge tends to be slightly coarser than the phosphorus derived from initial settled sludge. Although the same, the phosphorus recovery rate was slightly smaller in Comparative Example 2.
実施例2では、消化槽に投入される混合生汚泥から溶解性リン及び溶解性Mgを大幅に軽減した後で投入していることから、消化槽内での微細MAP生成率は80%→45%まで低下し、その分粗MAPとして後段で回収できたことからリン回収率は大幅に上昇した。また、回収リンあたり使用薬剤コストとしては、実施例1で使用した混合生汚泥の濃縮処理用凝集剤の使用が無かったことから実施例1と比較しても大幅に薬剤コストが軽減した。 In Example 2, since the soluble phosphorus and the soluble Mg were drastically reduced from the mixed raw sludge to be introduced into the digester, the mixture was introduced before the fine MAP production rate in the digester was 80%→45. %, and the phosphorus recovery rate was significantly increased since the crude MAP could be recovered in the latter stage. As for the cost of chemicals used per recovered phosphorus, the cost of chemicals was significantly reduced compared to Example 1 because the coagulant for concentration treatment of the mixed raw sludge used in Example 1 was not used.
実施例3では曝気による脱炭酸効果でpH調整剤の使用量が軽減でき、リン回収率、薬品コストともに実施例2よりも改善した。実施例2,3のプラント動力、及びプラント設置面積に関しては、比較例2よりも装置点数が増えた分やや増加したものの、その差は大きくなかった。 In Example 3, the amount of the pH adjuster used could be reduced by the decarboxylation effect by aeration, and both the phosphorus recovery rate and the chemical cost were improved compared to Example 2. Regarding the plant power and the plant installation area of Examples 2 and 3, although the number of devices increased slightly compared to Comparative Example 2, the differences were not large.
混合生汚泥又は濃縮分離液をMAP晶析リアクターへ供給していない比較例1、2では、MAP晶析リアクターにおける薬剤の添加量が多くなるとともに、消化槽において回収されるMAP粒子の生成に寄与しない微細なMAP粒子が消化槽内で生成されてしまったため、リン回収率及び回収リン当たりの薬剤コストが実施例1〜3に比べて低下した。 In Comparative Examples 1 and 2 in which the mixed raw sludge or the concentrated separated liquid was not supplied to the MAP crystallization reactor, the amount of the chemicals added in the MAP crystallization reactor increased, and it contributed to the generation of MAP particles recovered in the digestion tank. Since fine MAP particles that were not produced were generated in the digestion tank, the phosphorus recovery rate and the drug cost per recovered phosphorus were lower than in Examples 1-3.
1…流入水
2…水処理系
3…汚泥処理系
4…流出水
5…初沈汚泥
6…活性汚泥混合液
7…余剰汚泥
8…混合生汚泥
9…濃縮汚泥
10…濃縮分離水
11…消化汚泥
12…MAP晶析処理水
13…MAP脱離汚泥
14…MAP濃縮液
15…MAP濃縮液
16…MAP脱離汚泥
17…MAP晶析処理水
21…最初沈澱池
22…曝気槽
23…最終沈澱池
31…混合槽
32…濃縮装置
33…消化槽
34…MAP晶析リアクター
35…MAP分離装置
36…脱水装置
37…MAP分離装置
38…物理的脱炭酸処理装置
1... Influent water 2... Water treatment system 3... Sludge treatment system 4... Outflow water 5... Initial sludge 6... Activated sludge mixture 7... Excess sludge 8... Mixed raw sludge 9... Concentrated sludge 10... Concentrated separated water 11... Digestion Sludge 12... MAP crystallization treated water 13... MAP desorption sludge 14... MAP concentrate 15... MAP concentrate 16... MAP desorption sludge 17... MAP crystallization treated water 21... First settling tank 22... Aeration tank 23... Final settling Pond 31... Mixing tank 32... Concentrator 33... Digestion tank 34... MAP crystallization reactor 35... MAP separation device 36... Dehydration device 37... MAP separation device 38... Physical decarboxylation treatment device
Claims (7)
前記有機性廃水または汚泥を濃縮分離せずに前記嫌気性処理した後の嫌気性処理液体と、前記嫌気性処理する前段の前記有機性廃水または汚泥を濃縮分離しない状態でリン酸マグネシウムアンモニウム粒子が存在する液体内で混合し、前記混合液のpHを調整することによりリン酸マグネシウムアンモニウム粒子を晶析させることと、該リン酸マグネシウムアンモニウム粒子を分離濃縮した後のMAP濃縮液を前記晶析させる工程に戻すことと、リン酸マグネシウムアンモニウム粒子を分離濃縮した後のMAP脱離汚泥の少なくとも一部を前記嫌気性処理へ循環返送することを特徴とする有機性廃水または汚泥の処理方法。 A method for treating organic wastewater or sludge, comprising a step of anaerobically treating the organic wastewater or sludge, and a step of recovering the phosphorus component in the organic wastewater or sludge in the form of magnesium ammonium phosphate particles. hand,
An anaerobic treatment liquid after the anaerobic treatment without concentrating and separating the organic wastewater or sludge, and magnesium ammonium phosphate particles in a state where the organic wastewater or sludge in the preceding stage of the anaerobic treatment is not concentrated and separated. were mixed in a liquid that is present, the the Rukoto to crystallize the magnesium ammonium phosphate particles, the MAP concentrate after separating concentrating the magnesium ammonium phosphate particles crystallization by adjusting the pH of the mixed solution The method for treating organic wastewater or sludge, which comprises returning to the step of allowing the treatment, and circulating and returning at least a part of the MAP desorbed sludge after separating and concentrating the magnesium ammonium phosphate particles to the anaerobic treatment.
前記嫌気性処理装置において有機性廃水または汚泥を濃縮分離せずに嫌気性処理した後の嫌気性処理液体と、前記嫌気性処理を行う前段の前記有機性廃水または汚泥とを濃縮分離しない状態で共に導入し、リン酸マグネシウムアンモニウム粒子が存在する液体内で混合液のpHを調整して前記リン酸マグネシウムアンモニウム粒子を晶析させるMAP晶析リアクターと、
前記MAP晶析リアクターで得られたMAP晶析処理水から前記リン酸マグネシウムアンモニウム粒子を分離濃縮し、MAP濃縮液及びMAP脱離汚泥を得るMAP分離装置と、
前記MAP脱離汚泥を前記嫌気性処理装置へ返送する配管ラインと
を備えることを特徴とする有機性廃水または汚泥の処理装置。 And anaerobic processing apparatus,
In the anaerobic treatment apparatus, the anaerobic treatment liquid after anaerobic treatment without concentrating and separating the organic wastewater or sludge, and the organic wastewater or sludge in the previous stage of performing the anaerobic treatment is not concentrated and separated. A MAP crystallization reactor which is introduced together and crystallizes the magnesium ammonium phosphate particles by adjusting the pH of the mixed solution in a liquid in which the magnesium ammonium phosphate particles are present,
A MAP separating device for separating and concentrating the magnesium ammonium phosphate particles from the MAP crystallization treated water obtained in the MAP crystallization reactor to obtain a MAP concentrate and a MAP desorbed sludge;
A pipe line for returning the MAP desorbed sludge to the anaerobic treatment device, and a treatment device for organic wastewater or sludge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018189407A JP6731025B2 (en) | 2018-10-04 | 2018-10-04 | Method and apparatus for treating organic wastewater or sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018189407A JP6731025B2 (en) | 2018-10-04 | 2018-10-04 | Method and apparatus for treating organic wastewater or sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020054984A JP2020054984A (en) | 2020-04-09 |
JP6731025B2 true JP6731025B2 (en) | 2020-07-29 |
Family
ID=70105859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018189407A Active JP6731025B2 (en) | 2018-10-04 | 2018-10-04 | Method and apparatus for treating organic wastewater or sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6731025B2 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4376539B2 (en) * | 2002-04-18 | 2009-12-02 | 株式会社荏原製作所 | Method and apparatus for treating organic wastewater or sludge |
JP4007584B2 (en) * | 2002-06-07 | 2007-11-14 | 株式会社荏原製作所 | Method and apparatus for recovering phosphorus and nitrogen |
JP4216569B2 (en) * | 2002-11-11 | 2009-01-28 | 株式会社荏原製作所 | Organic wastewater and sludge treatment method and treatment equipment |
JP4743627B2 (en) * | 2006-06-30 | 2011-08-10 | 水ing株式会社 | Water or sludge treatment equipment containing ions in liquid |
JP2013119080A (en) * | 2011-12-09 | 2013-06-17 | Kobelco Eco-Solutions Co Ltd | Treatment method and treatment apparatus for phosphorus-containing wastewater |
-
2018
- 2018-10-04 JP JP2018189407A patent/JP6731025B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2020054984A (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101304396B1 (en) | Waste activated sludge phosphorus and magnesium stripping process and struvite production system | |
EP3392208B1 (en) | Bioreactor for treating sewage, sewage treatment system comprising the same and method of treating sewage | |
RU2547491C2 (en) | Purification of effluents and installation to this end | |
WO2005049511A1 (en) | Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor | |
KR101462033B1 (en) | Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery | |
CN113165927B (en) | Improved phosphorus recovery process and apparatus | |
JP4376539B2 (en) | Method and apparatus for treating organic wastewater or sludge | |
JP4642635B2 (en) | High concentration organic waste liquid treatment method and apparatus | |
JP3844347B2 (en) | Method and apparatus for removing and recovering phosphorus from organic wastewater | |
US10604433B2 (en) | Emancipative waste activated sludge stripping to remove internal phosphorus (“eWASSTRIP”) | |
KR101861072B1 (en) | Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery | |
JP6731025B2 (en) | Method and apparatus for treating organic wastewater or sludge | |
JP2004160304A (en) | Method and equipment for treating organic waste water and sludge | |
JP5530703B2 (en) | Phosphorus recovery method | |
JP4010733B2 (en) | Organic wastewater treatment method and apparatus | |
KR20190001090A (en) | Bio-reactor for sewage treatment and sewage treatment system comprising the same | |
JP4570608B2 (en) | Organic wastewater treatment method and apparatus | |
CN115947509A (en) | Sewage and sludge co-treatment process and system based on sludge component separation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191002 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191002 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191002 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191010 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200703 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6731025 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |