JP2001251079A - Method for producing heat sink using heat pipe and method for producing heat pipe - Google Patents

Method for producing heat sink using heat pipe and method for producing heat pipe

Info

Publication number
JP2001251079A
JP2001251079A JP2000058119A JP2000058119A JP2001251079A JP 2001251079 A JP2001251079 A JP 2001251079A JP 2000058119 A JP2000058119 A JP 2000058119A JP 2000058119 A JP2000058119 A JP 2000058119A JP 2001251079 A JP2001251079 A JP 2001251079A
Authority
JP
Japan
Prior art keywords
heat pipe
heat
heat sink
flat
fan motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000058119A
Other languages
Japanese (ja)
Inventor
Yoshio Ishida
良夫 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2000058119A priority Critical patent/JP2001251079A/en
Publication of JP2001251079A publication Critical patent/JP2001251079A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat sink, with which the function of a heat pipe is not damaged together, either, although reducing a bending R so as to sufficiently secure the attaching dimension of a fin or component to be located at the terminal part of a container. SOLUTION: Concerning a heat sink 100 using a flat heat pipe 10 in a three- dimensionally twisted and turned structure, a heat receiving part is constituted at one terminal of the heat pipe 20, a radiating fin 30 is bonded to the other terminal by heat, a heat sink 200 and a fan motor 50 are provided while bonding the radiating fin to the other terminal by heat, and the cross-sectional area of the radiating fin 30 can be made almost equal with the blowout port of the fan motor 50 as well. Besides, the air channels of the radiating fin 30 and the fan motor 50 can be partially integrated as well. Further, the three- dimensionally returned height of the heat pipe 10 can be made almost equal with the height of the radiating fin 30 as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、ヒートパイプを
用いたヒートシンクに関するものであり、特に限られた
体積で構成しなければならない高性能ヒートシンクへの
応用に最適なヒートシンクに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat sink using a heat pipe, and more particularly to a heat sink most suitable for application to a high-performance heat sink which must be formed in a limited volume.

【0002】[0002]

【従来の技術】近年、パソコンに代表されるデジタル電
子通信機器の高性能化で、高性能のヒートシンクが要求
されるようになり、それらに用いられるヒートパイプの
直径も、従来の3mm程度のものから熱輸送量の大きい5
〜10mmなどの太いものが必要となってきた。
2. Description of the Related Art In recent years, the performance of digital electronic communication devices such as personal computers has increased, and high-performance heat sinks have been required. The diameter of a heat pipe used for such heat sinks is about 3 mm. 5 with large heat transport from
Thick ones such as 10 to 10 mm have become necessary.

【0003】しかしヒートシンクを設置するための体積
は限られたものであり、放熱効率を良くするためには放
熱フィン周辺の空間を多くする必要から、ヒートシンク
全体は従来より小さく仕上げる必要が生じてきている。
However, the volume for installing the heat sink is limited, and it is necessary to increase the space around the radiation fins in order to improve the heat radiation efficiency. I have.

【0004】このために本出願人らは、特開平11-17377
7、特開平11-183069などにより、上記太い径のヒートパ
イプを1mm程度の厚さに扁平化して蒸気通路を小さくし
ても、十分な性能を維持出来るヒートパイプを開発し、
ヒートシンクへ使用することが提案されている。
[0004] For this purpose, the present applicants have disclosed Japanese Patent Application Laid-Open No. 11-17377.
7, According to JP-A-11-183069, etc., developed a heat pipe that can maintain sufficient performance even if the heat pipe with the large diameter is flattened to a thickness of about 1 mm and the steam passage is reduced,
It has been proposed for use in heat sinks.

【0005】[0005]

【発明が解決しようとする課題】しかしながら上述した
従来技術では、高さ方向に対しては優れた効果が期待で
きたが、水平方向へ曲げて熱移動したい時の対応が十分
では無かった。すなわち、従来例とする図6に示すよう
に、ヒートパイプコンテナの曲げRを小さくすると、当
該曲げ部分に座屈や、当該コンテナ内部に構成したウイ
ックの移動などにより、熱輸送量の低下が生じるので、
当該コンテナの曲げRを小さくできないことから、ヒー
トパイプに取り付けるフィン群の取付寸法が十分に得ら
れないことや、曲げR部近傍に他の部品配置が出来ない
などの不都合があった。
However, in the above-mentioned prior art, an excellent effect could be expected in the height direction, but there was not enough correspondence when bending in the horizontal direction and performing heat transfer were desired. That is, as shown in FIG. 6, which is a conventional example, when the bending R of the heat pipe container is reduced, the heat transport amount decreases due to buckling of the bent portion or movement of the wick formed inside the container. So
Since the bending R of the container cannot be reduced, there have been inconveniences such as insufficient mounting dimensions of the fin group to be mounted on the heat pipe, and disposition of other components near the bending R portion.

【0006】本発明はこのような課題に鑑み、コンテナ
端部に配置するフィンや部品等の取り付け寸法を十分に
確保できる如く曲げRを小さくするが、ヒートパイプの
機能も併せて損なわないヒートシンクを提供することを
目的とする。
In view of the above problem, the present invention reduces the bending radius R so as to secure sufficient dimensions for mounting fins and components disposed at the end of the container. However, a heat sink that does not impair the function of the heat pipe is also provided. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明においては、立体的にねじり折り返した構造
の扁平状ヒートパイプを用いたヒートシンクとする。当
該ヒートパイプの一端に受熱部を構成し、他端に放熱フ
ィンを熱接合してもよいし、前記他端には放熱フィンを
熱接合したヒートシンクとファンモータを有し、上記放
熱フィンの断面積をファンモータの吹き出し口と略同一
にしてもよい。また上記放熱フィンとファンモータ風洞
の一部を一体化してもよい。また、ヒートパイプの立体
的に折り返した折り返し高さは、放熱フィンの高さと略
同一としてもよい。
According to the present invention, there is provided a heat sink using a flat heat pipe having a three-dimensionally twisted and folded structure. A heat receiving portion may be formed at one end of the heat pipe, and a radiating fin may be thermally bonded to the other end, or a heat sink and a fan motor having the radiating fin thermally bonded to the other end may be provided. The area may be substantially the same as the outlet of the fan motor. Further, the radiation fin and a part of the fan motor wind tunnel may be integrated. The three-dimensionally folded height of the heat pipe may be substantially the same as the height of the radiation fins.

【0008】ヒートパイプの製造方法においては、扁平
状のヒートパイプの曲げ加工を施す曲げ部分をねじり角
を合わせて僅かに曲げてヒートパイプの内部の作動液を
曲げ部分に寄せた後、ヒートパイプ内部の作動液を凍結
させて当該内部の容積を氷で固定し最終形状に変形成形
を行うヒートパイプの製造方法としたり、扁平状のヒー
トパイプの少なくとも一部を立体的にねじり折り返した
ヒートパイプにおいて、当該扁平直状のヒートパイプ全
体を加熱し当該ヒートパイプ内部の作動液全体が蒸気化
して内部圧力を外気圧以上に十分に高めた状態で、当該
ヒートパイプの扁平度を増加させると共に最終形状に変
形成形を行うヒートパイプの製造方法とする。
In the method of manufacturing a heat pipe, a bent portion of the flat heat pipe to be bent is slightly bent with a twist angle so as to bring the hydraulic fluid inside the heat pipe to the bent portion. A method of manufacturing a heat pipe in which the internal working fluid is frozen to fix the internal volume with ice and deformed and formed into a final shape, or a heat pipe in which at least a part of a flat heat pipe is three-dimensionally twisted and folded. In the state where the entire flat heat pipe is heated and the entire working fluid inside the heat pipe is vaporized and the internal pressure is sufficiently increased to an external pressure or more, the flatness of the heat pipe is increased and the final pressure is increased. This is a method for manufacturing a heat pipe that is deformed into a shape.

【0009】[0009]

【発明の実施の形態】扁平状ヒートパイプの扁平化率に
比例して、厚さ方向の曲げの自由度が向上することに着
目し、扁平状ヒートパイプを立体的にねじり折り返した
構造をとることにより、自由度の高い小型のヒートシン
クを構成し得る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Focusing on the fact that the degree of freedom in bending in the thickness direction is improved in proportion to the flattening ratio of a flat heat pipe, the flat heat pipe has a three-dimensionally torsionally folded structure. Thus, a small heat sink having a high degree of freedom can be configured.

【0010】因みに、立体的にねじり折り返し上面視で
は、曲げR部が無い任意の角度の曲げ対応が可能で有
り、正面視の高さは扁平状ヒートパイプの厚さにより変
わり、厚さ1mmのヒートパイプでは数mmまで可能とな
る。
By the way, when viewed from the top in a three-dimensionally torsion-folded manner, it is possible to bend at an arbitrary angle without a bend R, and the height in a front view varies according to the thickness of the flat heat pipe. Heat pipes can be up to several mm.

【0011】また、ヒートシンクの具体的構成は、立体
的にねじり折り返した構造の扁平状ヒートパイプの一端
に受熱部を構成し、他端に放熱フィンを熱接合したヒー
トシンクとする。
A specific configuration of the heat sink is a heat sink in which a heat receiving portion is formed at one end of a flat heat pipe having a three-dimensionally twisted and folded structure, and a radiation fin is thermally joined to the other end.

【0012】さらに、他の構成では、立体的にねじり折
り返した構造の扁平状ヒートパイプの一端に受熱部を構
成し、他端に放熱フィンを熱接合したヒートシンクとフ
ァンモータを有し、上記放熱フィンの断面積をファンモ
ータの吹き出し口と略同一にしたヒートシンクとする。
Further, in another configuration, a heat sink and a fan motor having a heat receiving portion at one end of a flat heat pipe having a three-dimensionally twisted and folded structure and a heat radiating fin at the other end are provided. The heat sink has a fin having substantially the same cross-sectional area as the outlet of the fan motor.

【0013】そして、立体的にねじり折り返した構造の
扁平状ヒートパイプの一端に受熱部を構成し、他端に放
熱フィンを熱接合したヒートシンクとファンモータを有
し、上記放熱フィンとファンモータ風洞の一部を一体化
したヒートシンクとすることにより、放熱効率の高いも
のとすることができる。
[0013] A heat sink and a fan motor having a heat receiving portion formed at one end of a flat heat pipe having a three-dimensionally twisted and folded structure and a heat radiating fin at the other end are provided. By forming a part of the heat sink, the heat radiation efficiency can be increased.

【0014】なお、上述のヒートパイプの立体的に折り
返した折り返し高さは、放熱フィンの高さと略同一とす
ることによりよりコンパクトなヒートシンクを構成でき
る。
It is to be noted that a more compact heat sink can be formed by making the above-mentioned three-dimensionally folded height of the heat pipe substantially the same as the height of the radiation fins.

【0015】[0015]

【実施例】図1(a)と(b)は、この発明の第1の実施例と
するヒートパイプを用いたヒートシンクの実施例であ
り、図1(a)は斜視図、図1(b)は側面図である。当該図
1において、ヒートパイプ10は扁平状で略L字状に立
体的にねじり折り返されており、当該ヒートパイプ10
の一端には、受熱プレート20が、また、この多端には
放熱フィン群30が熱接合されて基本的なヒートシンク
100を構成している。当該ヒートシンク100は、熱
伝導の良好なアルミニュームなどの金属板40の上に、
前記ヒートパイプ10の受熱プレート20を接合した一
端が面接合されるように熱接合され、多端の放熱フィン
群30の一面もまた金属板40に熱接合されている。さ
らに、上記L字状ヒートシンク100のコーナー部に位
置するように上部に穴あきカバー53を備える扁平状の
方向性ファンモータ50が、吹き出し口を放熱フィン群
30に対向して取り付けられており、冷却モジュール構
造のヒートシンク200を構成している。
1 (a) and 1 (b) show an embodiment of a heat sink using a heat pipe according to a first embodiment of the present invention. FIG. 1 (a) is a perspective view and FIG. ) Is a side view. In FIG. 1, the heat pipe 10 is flat and substantially three-dimensionally twisted and folded in an L-shape.
A heat receiving plate 20 is heat-bonded to one end of the heat sink, and a radiating fin group 30 is heat-bonded to the multi-ends to form a basic heat sink 100. The heat sink 100 is provided on a metal plate 40 made of aluminum or the like having good heat conductivity.
One end of the heat pipe 10 to which the heat receiving plate 20 is joined is thermally joined so as to be surface joined, and one surface of the multi-end radiating fin group 30 is also thermally joined to the metal plate 40. Further, a flat directional fan motor 50 having a perforated cover 53 at the top so as to be located at a corner portion of the L-shaped heat sink 100 is attached with the outlet facing the radiating fin group 30, The heat sink 200 has a cooling module structure.

【0016】図2は、上記ヒートシンク100の構成図
を示したものであり、次のとおり構成されている。すな
わち前述したように、ヒートパイプ10は前記略L字状
に立体的に折り返した扁平状のヒートパイプ10であ
り、この一端に受熱プレート20が配置される。当該受
熱プレート20は、ダイキャストまたは押し出し工法で
成型され、前記ヒートパイプ10の一端との接続部分に
溝21を構成し、当該溝21により前記ヒートパイプ1
0の一端に勘合されている。また、上記ヒートパイプ1
0の多端には、厚さ0.3mm程度のアルミニュームなどの
熱伝導の良好な薄板をコ字状に成形すると同時に、扁平
状のヒートパイプ10の断面に相当した孔31とこの孔
31の少なくとも長辺に折り返し部32有する放熱フィ
ン33が複数枚圧入挿入されて、L字状ヒートシンク1
00を構成している。よって、当該フィン群30は、コ
字状の底辺を金属板40に熱接合され、開口部の一方が
ファンモータ50の吹き出し口51に対向している。
FIG. 2 shows a configuration diagram of the heat sink 100, which is configured as follows. That is, as described above, the heat pipe 10 is a flat heat pipe 10 which is folded back in a substantially L-shape in three dimensions, and the heat receiving plate 20 is disposed at one end of the heat pipe 10. The heat receiving plate 20 is formed by a die casting or extrusion method, and forms a groove 21 at a connection portion with one end of the heat pipe 10, and the heat pipe 1 is formed by the groove 21.
It is fitted to one end of zero. In addition, the heat pipe 1
At the multi-end of 0, a thin plate having good heat conduction such as aluminum having a thickness of about 0.3 mm is formed into a U-shape, and at the same time, a hole 31 corresponding to the cross section of the flat heat pipe 10 and at least the hole 31 are formed. A plurality of heat-dissipating fins 33 having folded portions 32 on the long sides are press-fitted and inserted into the L-shaped heat sink 1.
00. Therefore, the fin group 30 has its U-shaped bottom thermally bonded to the metal plate 40, and one of the openings faces the outlet 51 of the fan motor 50.

【0017】上記ヒートシンク200の動作は、熱源に
当接された受熱プレート20の熱は、扁平状ヒートパイ
プ10と金属板40そして放熱フィン群30により均熱
分散され、ファンモータ50の駆動により、冷却空気を
吸い込み口52から取り入れ、吹き出し口51から排気
することにより、厚さの薄いヒートパイプ10と放熱フ
ィン群30からなる通風抵抗の少ない熱交換部を効率よ
く冷却し、受熱プレート20を冷却して温度上昇を防止
する。
The operation of the heat sink 200 is as follows. The heat of the heat receiving plate 20 in contact with the heat source is evenly distributed by the flat heat pipe 10, the metal plate 40 and the radiating fin group 30. By taking in the cooling air from the suction port 52 and exhausting the air from the blowing port 51, the heat exchange part having a small ventilation resistance, which is composed of the thin heat pipe 10 and the radiating fin group 30, is efficiently cooled, and the heat receiving plate 20 is cooled. To prevent temperature rise.

【0018】図3は、この発明の第2の実施例であり、
全体構成は図1の第1の実施例と変わらないが、図1の
ファンモータ50の吸い込み口52を構成する穴あきカ
バー53を熱伝導に優れた金属板とすると同時に放熱フ
ィン群30をオーバーラップする長さのカバー54に置
き換え、風洞の一部を構成して吹き出し口51からの空
気漏れを防止すると同時に、放熱寄与面積を拡大したも
のである。
FIG. 3 shows a second embodiment of the present invention.
Although the overall configuration is the same as that of the first embodiment shown in FIG. 1, the perforated cover 53 constituting the suction port 52 of the fan motor 50 shown in FIG. The cover 54 is replaced by a cover 54 having a length to be wrapped, and a part of the wind tunnel is formed to prevent air leakage from the outlet 51 and to increase a heat radiation contributing area.

【0019】ここで、立体ねじり折り返した構造の扁平
状ヒートパイプ10を造る方法を説明する。直径6mm程
度の銅やアルミニュームなどの管状コンテナの内部に、
ウイックとなるグルーブ溝を構成したり編組線やメッシ
ュあるいはファイバー束などを固定するなどした後に、
当該コンテナ内部を減圧して水や代替えフロンなどの作
動液を所定量注入し、上記コンテナ両端を封止して一般
的な丸状ヒートパイプを完成する。次に、上記丸状ヒー
トパイプを1〜2mmの厚さに成形して直状扁平状ヒート
パイプに成形する。
Here, a method of manufacturing the flat heat pipe 10 having a three-dimensionally twisted and folded structure will be described. Inside a tubular container such as copper or aluminum with a diameter of about 6 mm,
After configuring the groove groove to be a wick, fixing braided wire, mesh or fiber bundle, etc.,
The inside of the container is depressurized and a predetermined amount of a working fluid such as water or CFC substitute is injected, and both ends of the container are sealed to complete a general round heat pipe. Next, the round heat pipe is formed into a thickness of 1 to 2 mm to form a straight flat heat pipe.

【0020】そして、扁平したヒートパイプの厚さを固
定して曲げる時には、曲げ部分11をねじり角を合わせ
て僅かに曲げてヒートパイプ10の内部の作動液を曲げ
部分に寄せた後、作動液を凍結させて内容積を氷で固定
し最終形状に変形成形を行う。
When the flat heat pipe is bent with the thickness fixed, the bent portion 11 is slightly bent at the same torsion angle to bring the hydraulic fluid inside the heat pipe 10 to the bent portion. Is frozen, the inner volume is fixed with ice, and the final shape is deformed.

【0021】また、扁平したヒートパイプの厚さを変更
してよい時には、扁平直状ヒートパイプ全体を加熱する
ことにより、作動液全体が蒸気化して内部圧力を外気圧
以上に十分に高めた状態で、厚さ2mmのものを1.5mmあ
るいはそれ以上に扁平化すると同時に、最終形状に変形
成形できる。
Further, when the thickness of the flat heat pipe may be changed, the entire working fluid is vaporized by heating the entire flat heat pipe, so that the internal pressure is sufficiently increased to the external pressure or more. Thus, a material having a thickness of 2 mm can be flattened to 1.5 mm or more, and can be deformed and formed into a final shape.

【0022】これらの工法により得られる立体ねじり構
造の扁平状ヒートパイプ10を示す図4(a)の平面図の
角度θは任意に設定できるが、図4(b)の側面図のねじ
り高さhの最小値は、扁平状ヒートパイプ10の最終厚
さに比例するが、上記凍結させた工法では数mmまで小さ
く出来る。
The angle θ in the plan view of FIG. 4A showing the flat heat pipe 10 having a three-dimensional torsion structure obtained by these methods can be set arbitrarily, but the torsion height in the side view of FIG. The minimum value of h is proportional to the final thickness of the flat heat pipe 10, but can be reduced to several mm by the above-mentioned frozen method.

【0023】図5は、この発明の第3の実施例であり、
図5(a)は斜視図、図5(b)は側面図であり、前述の第1
の実施例との違いは、立体的にねじり折り返し部分11
を2箇所有することである。当該実施例の2箇所の折り
返し高さhは必ずしも同一にする必要は無く、必要に応
じて選択される。
FIG. 5 shows a third embodiment of the present invention.
FIG. 5A is a perspective view, and FIG. 5B is a side view.
The difference from this embodiment is that the three-dimensionally twisted folded portion 11
In two places. The folded heights h at the two locations in this embodiment need not necessarily be the same, and are selected as needed.

【0024】上述の第1と第2の実施例では、金属板4
0やファンモータ50を用いているが、取付面方向は限
定されるものでは無いし、放熱フィン群30の大きさに
よっては必ずしも必要では無く、また金属板40を用い
る場合は受熱プレート20は必ずしも必要では無い。
In the first and second embodiments, the metal plate 4
0 or the fan motor 50 is used, but the mounting surface direction is not limited, and is not always necessary depending on the size of the radiating fin group 30, and when the metal plate 40 is used, the heat receiving plate 20 is not necessarily required. Not necessary.

【0025】さらに放熱フィン群30は、通常のアルミ
ニュームの押し出しフィンやダイキャストフィンおよび
コルゲートフィンなど汎用の種々フィンが用いられる事
は勿論、ファンモータ50を使用する時には特別なフィ
ンを用いることなく、ファンモータハウジング全体をダ
イキャストなどの金属などで構成し、当該ハウジングに
ヒートパイプ10を熱接合することで放熱フィンを代用
できる。
Further, as the radiating fin group 30, various general-purpose fins such as ordinary aluminum extrusion fins, die-cast fins and corrugated fins are used, and when the fan motor 50 is used, no special fins are used. The entire fan motor housing is made of metal such as die-cast, and the heat pipe 10 is thermally bonded to the housing, so that the radiation fins can be substituted.

【0026】[0026]

【発明の効果】以上、詳述したように、本発明によれ
ば、ヒートパイプのコンテナ座屈や、コンテナ内部に構
成したウイックの移動がなく、熱抵抗値が悪くなる事の
少ない曲げ角度の自在なヒートパイプが得られることか
ら、ヒートパイプに取り付けるフィン群の取付寸法を自
在に設定できると同時に、周辺部品配置の自由度が大幅
に向上するヒートシンクを提供できる。
As described in detail above, according to the present invention, there is no buckling of the heat pipe in the container or the movement of the wick formed inside the container, and the bending angle of the heat resistance value is hardly deteriorated. Since a flexible heat pipe can be obtained, it is possible to provide a heat sink in which the mounting dimensions of the fin group to be mounted on the heat pipe can be freely set and the degree of freedom in arranging peripheral components is greatly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例とするヒートシンクの構
成図を示す
FIG. 1 shows a configuration diagram of a heat sink according to a first embodiment of the present invention.

【図2】図1のヒートパイプ部分を展開した構成図を示
FIG. 2 shows a configuration diagram in which a heat pipe portion of FIG. 1 is developed.

【図3】本発明の第2の実施例とするヒートシンクの側
面図を示す
FIG. 3 shows a side view of a heat sink according to a second embodiment of the present invention.

【図4】立体ねじり折り返した構造の扁平状ヒートパイ
プを示す
FIG. 4 shows a flat heat pipe having a three-dimensional torsion folded structure.

【図5】本発明の第3の実施例とするヒートパイプを示
FIG. 5 shows a heat pipe according to a third embodiment of the present invention.

【図6】従来のヒートパイプを曲げた構成図を示すFIG. 6 shows a configuration diagram in which a conventional heat pipe is bent.

【符号の説明】[Explanation of symbols]

図において同一符号は同一、または相当部分を示す。 10 ヒートパイプ 11 曲げ部分 20 受熱プレート 21 溝 30 放熱フィン群 31 孔 32 折り返し部 33 放熱フィン 40 金属板 50 ファンモータ 51 吹き出し口 52 吸い込み口 53 穴あきカバー 54 カバー 100 ヒートシンク 200 ヒートシンク In the drawings, the same reference numerals indicate the same or corresponding parts. REFERENCE SIGNS LIST 10 heat pipe 11 bent portion 20 heat receiving plate 21 groove 30 radiating fin group 31 hole 32 folded portion 33 radiating fin 40 metal plate 50 fan motor 51 outlet 52 suction port 53 perforated cover 54 cover 100 heat sink 200 heat sink

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】立体的にねじり折り返した構造の扁平状ヒ
ートパイプを用いたヒートシンク。
1. A heat sink using a flat heat pipe having a three-dimensionally twisted and folded structure.
【請求項2】立体的にねじり折り返した構造の扁平状ヒ
ートパイプの一端に受熱部を構成し、他端に放熱フィン
を熱接合したヒートパイプを用いたヒートシンク。
2. A heat sink using a heat pipe in which a heat receiving portion is formed at one end of a flat heat pipe having a three-dimensionally twisted and folded structure, and heat radiation fins are thermally bonded to the other end.
【請求項3】立体的にねじり折り返した構造の扁平状ヒ
ートパイプの一端に受熱部を構成し、他端に放熱フィン
を熱接合したヒートシンクとファンモータを有し、上記
放熱フィンの断面積をファンモータの吹き出し口と略同
一にしたヒートパイプを用いたヒートシンク。
3. A flat heat pipe having a three-dimensionally twisted and folded structure having a heat receiving portion at one end and a heat sink and a fan motor having heat radiating fins thermally bonded at the other end. A heat sink using a heat pipe that is almost the same as the outlet of the fan motor.
【請求項4】立体的にねじり折り返した構造の扁平状ヒ
ートパイプの一端に受熱部を構成し、他端に放熱フィン
を熱接合したヒートシンクとファンモータを有し、上記
放熱フィンとファンモータ風洞の一部を一体化したヒー
トパイプを用いたヒートシンク。
4. A flat heat pipe having a three-dimensionally twisted and folded structure having a heat receiving portion at one end and a heat sink and a fan motor having heat radiating fins thermally bonded at the other end, wherein the radiating fin and the fan motor wind tunnel are provided. A heat sink using a heat pipe that integrates a part of it.
【請求項5】ヒートパイプの立体的に折り返した折り返
し高さは、放熱フィンの高さと略同一とした請求項2か
ら4に記載のヒートパイプを用いたヒートシンク。
5. A heat sink using a heat pipe according to claim 2, wherein a height of the heat pipe three-dimensionally folded is substantially the same as a height of the radiation fin.
【請求項6】扁平状のヒートパイプの曲げ加工を施す曲
げ部分をねじり角を合わせて僅かに曲げてヒートパイプ
の内部の作動液を曲げ部分に寄せた後、ヒートパイプ内
部の作動液を凍結させて当該内部の容積を氷で固定し最
終形状に変形成形を行うヒートパイプの製造方法。
6. A bending portion of a flat heat pipe to be bent is slightly bent at an appropriate twist angle to bring the hydraulic fluid inside the heat pipe to the bent portion, and then freeze the hydraulic fluid inside the heat pipe. A method of manufacturing a heat pipe in which the inner volume is fixed with ice and deformed into a final shape.
【請求項7】扁平状のヒートパイプの少なくとも一部を
立体的にねじり折り返したヒートパイプにおいて、当該
扁平直状のヒートパイプ全体を加熱し当該ヒートパイプ
内部の作動液全体が蒸気化して内部圧力を外気圧以上に
十分に高めた状態で、当該ヒートパイプの扁平度を増加
させると共に最終形状に変形成形を行うヒートパイプの
製造方法。
7. A heat pipe in which at least a part of a flat heat pipe is three-dimensionally twisted and folded, the entire flat heat pipe is heated, and the entire working fluid inside the heat pipe is vaporized to thereby reduce internal pressure. A method of manufacturing a heat pipe, comprising: increasing the flatness of the heat pipe and deforming the heat pipe to a final shape in a state where the pressure is sufficiently increased to be equal to or higher than the external pressure.
JP2000058119A 2000-03-03 2000-03-03 Method for producing heat sink using heat pipe and method for producing heat pipe Pending JP2001251079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000058119A JP2001251079A (en) 2000-03-03 2000-03-03 Method for producing heat sink using heat pipe and method for producing heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000058119A JP2001251079A (en) 2000-03-03 2000-03-03 Method for producing heat sink using heat pipe and method for producing heat pipe

Publications (1)

Publication Number Publication Date
JP2001251079A true JP2001251079A (en) 2001-09-14

Family

ID=18578763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000058119A Pending JP2001251079A (en) 2000-03-03 2000-03-03 Method for producing heat sink using heat pipe and method for producing heat pipe

Country Status (1)

Country Link
JP (1) JP2001251079A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867971B2 (en) 2002-08-12 2005-03-15 Quanta Computer, Inc. Heat dissipation apparatus
US7170750B2 (en) 2003-11-28 2007-01-30 Kabushiki Kaisha Toshiba Electronic apparatus
US7203062B2 (en) 2003-09-30 2007-04-10 Kabushiki Kaisha Toshiba Electronic apparatus with air cooling unit
US7215546B2 (en) 2004-04-28 2007-05-08 Kabushiki Kaisha Toshiba Pump, electronic apparatus, and cooling system
US7301771B2 (en) 2004-04-28 2007-11-27 Kabushiki Kaisha Toshiba Heat-receiving apparatus and electronic equipment
JP2008108965A (en) * 2006-10-26 2008-05-08 Toshiba Corp Cooling device and electronic equipment equipped with the same
JP2011097064A (en) * 2004-09-30 2011-05-12 Toshiba Corp Electronic apparatus and cooling device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6867971B2 (en) 2002-08-12 2005-03-15 Quanta Computer, Inc. Heat dissipation apparatus
US7203062B2 (en) 2003-09-30 2007-04-10 Kabushiki Kaisha Toshiba Electronic apparatus with air cooling unit
US7170750B2 (en) 2003-11-28 2007-01-30 Kabushiki Kaisha Toshiba Electronic apparatus
US7215546B2 (en) 2004-04-28 2007-05-08 Kabushiki Kaisha Toshiba Pump, electronic apparatus, and cooling system
US7301771B2 (en) 2004-04-28 2007-11-27 Kabushiki Kaisha Toshiba Heat-receiving apparatus and electronic equipment
JP2011097064A (en) * 2004-09-30 2011-05-12 Toshiba Corp Electronic apparatus and cooling device
US8050033B2 (en) 2004-09-30 2011-11-01 Kabushiki Kaisha Toshiba Cooling device for cooling a heat-generating component, and electronic apparatus having the cooling device
JP2008108965A (en) * 2006-10-26 2008-05-08 Toshiba Corp Cooling device and electronic equipment equipped with the same

Similar Documents

Publication Publication Date Title
JP4391366B2 (en) Heat sink with heat pipe and method of manufacturing the same
KR100606283B1 (en) Heat pipe unit and heat pipe type heat exchanger
US20080283234A1 (en) Heat sink and method of making same
US20100147496A1 (en) Heat dissipation device with heat pipe
JP2001223308A (en) Heat sink
US7278467B2 (en) Liquid-cooled heat radiator kit
JP2001251079A (en) Method for producing heat sink using heat pipe and method for producing heat pipe
JP2004293833A (en) Cooling device
JP4508939B2 (en) Electronic heating element cooling device
JP4728522B2 (en) heatsink
CN113556914A (en) Heat dissipation pipe, heat dissipation module and liquid cooling system
JP3959428B2 (en) Stereo heat pipe radiator
JP5076476B2 (en) Cooling system
JP4521250B2 (en) Heat dissipation device and manufacturing method thereof
CN110864574A (en) Novel loop heat pipe without compensation cavity and using method thereof
JPH10185466A (en) Heat pipe type heat sink
JPH0936284A (en) Heat sink and heat exchanger
US20240023281A1 (en) Heat spreader for transferring heat from an electronic heat source to a heat sink
JP2001227886A (en) Heat sink
JPH0396259A (en) Heat-pipe type cooler
JP4753131B2 (en) Element heatsink
JPH08306836A (en) Heat pipe system heat sink
JPH0983164A (en) Heat sink and its manufacture
JPH11340384A (en) Heat sink and cooling structure using the same
JP2003254687A (en) Heat pipe and electronic equipment using it