JP2001247939A - Thin alloy sheet for shadow mask, excellent in blackening treatability, and shadow mask using it - Google Patents

Thin alloy sheet for shadow mask, excellent in blackening treatability, and shadow mask using it

Info

Publication number
JP2001247939A
JP2001247939A JP2000061439A JP2000061439A JP2001247939A JP 2001247939 A JP2001247939 A JP 2001247939A JP 2000061439 A JP2000061439 A JP 2000061439A JP 2000061439 A JP2000061439 A JP 2000061439A JP 2001247939 A JP2001247939 A JP 2001247939A
Authority
JP
Japan
Prior art keywords
shadow mask
blackening
less
outermost surface
thin plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000061439A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tachikawa
清 立川
Hideya Yamada
英矢 山田
Takeshi Hirabayashi
武 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2000061439A priority Critical patent/JP2001247939A/en
Publication of JP2001247939A publication Critical patent/JP2001247939A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thin alloy sheet for shadow mask, excellent in blackening treatability, by removing nonuniformity in blackening treatment. SOLUTION: The thin alloy sheet for shadow mask excellent in blackening treatability is composed of a shadow mask material having a composition consisting of, by mass, 29-45% Ni and the balance essentially Fe. Further, when the outermost surface of this shadow mask material is measured by the use of a device for photoelectron spectroscopic analysis, Si, Mn, B and N satisfy, by atom, Si>=1.0%, Mn>=0.5%, B<=25% and N<=35%, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、カラーテレビやコ
ンピュータディスプレイの受像管に用いられるシャドウ
マスク用合金薄板及びシャドウマスクに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloy thin plate for a shadow mask and a shadow mask used for a picture tube of a color television or a computer display.

【0002】[0002]

【従来の技術】カラーテレビやコンピュータディスプレ
イの受像管に用いられるシャドウマスク用合金薄板は、
熱拡散の促進や防錆のために、その表面に黒色の酸化膜
を形成することが必要とされている。この黒色の酸化膜
を形成する処理を一般的には黒化処理と称され、この黒
化処理性にすぐれたシャドウマスク材合金薄板として
は、例えば特開平6-25802号に記載されたFe-Ni合金のよ
うにMn、Al、Si、Cr、Tiといった酸化物形成元素と、M
o、W、Nb、V、Cu、As、Sbといった黒化膜成長速度を制
御する元素、B、H、希土類元素等の黒化膜の特性を決定
する元素等Fe-Ni合金中の各元素の含有量を適切量にす
ることで優れた黒化膜処理性を得ることを提案してい
る。
2. Description of the Related Art Alloy thin plates for shadow masks used for picture tubes of color televisions and computer displays are known as:
In order to promote thermal diffusion and prevent rust, it is necessary to form a black oxide film on the surface. This process of forming a black oxide film is generally called a blackening process. As a shadow mask material alloy thin plate having excellent blackening processability, for example, Fe- Oxide-forming elements such as Mn, Al, Si, Cr and Ti, such as Ni alloy, and M
Each element in the Fe-Ni alloy such as o, W, Nb, V, Cu, As, Sb, and other elements that control the blackening film growth rate, B, H, and rare earth elements that determine the characteristics of the blackening film It has been proposed to obtain an excellent blackening film treatment property by adjusting the content of an appropriate amount.

【0003】[0003]

【発明が解決しようとする課題】上述したように、これ
までは黒化膜性を向上させるためには、シャドウマスク
用合金薄板の組成をコントロールすることのみが試みら
れてきたに過ぎない。本発明者らの検討によれば、実際
には、直接黒化膜が形成される最表面の元素が直接黒化
性を支配しており、なかでも特にSiやMnの酸化物やそれ
らの化合物が結晶粒界や粒内に特定量存在することで、
最表面の結晶粒界を覆い黒化膜性を妨げるBやN、或いは
更にそれらの化合物が最表面に拡散することを抑制する
ことが可能性が高いことを見出した。そのため、シャド
ウマスク材合金薄板の最表面をESCA或いはXPSと称され
る光電子分光装置或いはオージェ分光分析装置で分析
し、測定面に存在する元素、その元素の量や、元素の結
合状態を知ることが重要となる。
As described above, in order to improve the blackening properties, only control of the composition of the alloy thin plate for a shadow mask has been attempted so far. According to the study of the present inventors, in fact, the element on the outermost surface on which the direct blackening film is formed directly governs the direct blackening property, and among them, particularly oxides of Si and Mn and compounds thereof. Is present in a specific amount in the grain boundaries and in the grains,
It has been found that it is highly possible to suppress the diffusion of B and N, or their compounds, which cover the crystal grain boundaries on the outermost surface and impair the blackening film properties, and further, those compounds on the outermost surface. Therefore, analyze the outermost surface of the shadow mask alloy thin plate with a photoelectron spectrometer or Auger spectrometer called ESCA or XPS to know the elements present on the measurement surface, the amount of the elements, and the bonding state of the elements. Is important.

【0004】本発明者等の検討によれば、シャドウマス
ク用合金薄板の最表層部と黒化処理性の関係を詳細に検
討した結果、結合状態で単独或いは複合化した化合物、
若しくは単独或いは複合化した化合物+メタルとなった
B、N、Mn、Si等があり、これらの元素が最表面に存在し
ていることを知見した。そこで本発明者等は、黒化膜が
均一に形成されていなかった黒化処理前のシャドウマス
ク用合金薄板の最表面および黒化処理後のシャドウマス
ク用合金薄板を詳細に分析を行った所、最表面におい
て、上述した特定の元素が、単独或いは複合化した化合
物、若しくは化合物+メタルの結合状態を示す元素が特
定量存在している合金薄板は黒化処理後の黒化膜が不均
一な酸化斑を生じることを知見した。
According to the study of the present inventors, as a result of a detailed study of the relationship between the outermost layer portion of the alloy thin plate for a shadow mask and the blackening property, it has been found that a compound singly or in a combined state,
Or a single or compound compound + metal
There were B, N, Mn, Si, and the like, and it was found that these elements existed on the outermost surface. Therefore, the present inventors conducted a detailed analysis of the outermost surface of the shadow mask alloy thin plate before the blackening treatment and the shadow mask alloy thin plate after the blackening treatment where the blackening film was not formed uniformly. On the outermost surface, a thin black alloy film after the blackening treatment is non-uniform in a thin alloy sheet in which a specific amount of the above-mentioned specific element is present alone or in a compound, or a specific amount of an element showing the combined state of compound and metal is present. It has been found that various oxidation spots occur.

【0005】そして更には、本発明者等は更に最表面の
状態を鋭意検討した結果、最表面において上述したよう
な元素が認められたものは、処理後の黒化膜の主要構成
元素であるC、Oが局部的に濃縮して黒色度が不均一とな
ることをも突き止めた。本発明の目的は、黒色度の不均
一性を解消することで、黒化処理性に優れたシャドウマ
スク用合金薄板及びそれを用いてなるシャドウマスクを
提供することである。
Further, the present inventors have further studied the state of the outermost surface, and as a result, those having the above-described elements on the outermost surface are the main constituent elements of the blackened film after the treatment. It was also found that C and O were locally concentrated, resulting in uneven blackness. An object of the present invention is to provide an alloy thin plate for a shadow mask excellent in blackening processability by eliminating non-uniformity of blackness and a shadow mask using the same.

【0006】[0006]

【課題を解決するための手段】本発明は、上述した問題
に鑑みてなされたもので、本発明の最も重要な特徴は、
最表面における、化合物、若しくは単独或いは複合化し
た化合物+メタルの結合状態を示す元素の量を調整する
ことにある。すなわち本発明は、質量%でNi:29〜45%
を含有し、残部は実質的にFeからなるシャドウマスク材
において、前記シャドウマスク材の最表面を光電子分光
分析装置で測定した時、原子%でSi:1.0%以上、Mn:0.
5%以上、B:25%以下(0%を含む)、N:35%以下である黒
化処理性に優れたシャドウマスク用合金薄板である。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and the most important features of the present invention are as follows.
The object of the present invention is to adjust the amount of an element showing the bonding state of a compound or a compound or a compound or a metal on the outermost surface. That is, the present invention, Ni: 29 to 45% by mass%
In a shadow mask material substantially consisting of Fe, the balance is as follows: when the outermost surface of the shadow mask material is measured by a photoelectron spectrometer, Si: 1.0% or more in atomic%;
5% or more, B: 25% or less (including 0%), and N: 35% or less. This is an alloy thin plate for a shadow mask having excellent blackening properties.

【0007】また本発明は、質量%でNi:29〜45%を含
有し、残部は実質的にFeからなるシャドウマスク材にお
いて、該シャドウマスク材の最表面をオージェ電子分光
分析装置で測定した時、Bが表面に偏析した結晶粒が視
野面積率で30%以下(0%を含む)である黒化処理性に優
れたシャドウマスク用合金薄板である。好ましくは、シ
ャドウマスク材の最表面を走査型電子顕微鏡で観察した
時、半球状の酸化物が視野面積率で12%以上である黒化
処理性に優れたシャドウマスク用合金薄板である。
In the present invention, a shadow mask material containing 29 to 45% of Ni by mass% and the balance substantially consisting of Fe was used, and the outermost surface of the shadow mask material was measured by an Auger electron spectrometer. In this case, B is a thin alloy sheet for a shadow mask having excellent blackening properties, in which the crystal grains segregated on the surface are 30% or less (including 0%) in view area ratio. Preferably, when the outermost surface of the shadow mask material is observed with a scanning electron microscope, a hemispherical oxide is 12% or more in view area ratio and is a thin alloy plate for a shadow mask excellent in blackening treatment.

【0008】また、本発明のシャドウマスク合金薄板の
好ましい化学組成は、質量%でNi:29〜45%、Si:0.03
%以下、Mn:0.3%以下、B:0.003%以下(0%を含む)、N:
0.005%以下、残部は不可避的不純物と実質的にFeでな
る黒化処理性に優れたシャドウマスク用合金薄板であ
り、前記のNiの一部を7%以下のCoで置換しても良い。
The preferred chemical composition of the shadow mask alloy sheet of the present invention is as follows: Ni: 29 to 45% by mass, Si: 0.03% by mass.
% Or less, Mn: 0.3% or less, B: 0.003% or less (including 0%), N:
0.005% or less, the balance being an unavoidable impurity and substantially Fe, which is an alloy thin plate for a shadow mask excellent in blackening processability. Fe may be partially substituted with 7% or less of Co.

【0009】また本発明は、質量%でNi:29〜45%を含
有し、残部は実質的にFeからなるシャドウマスク材に黒
化処理を施し、該黒化処理後のシャドウマスク材の最表
面を光電子分光分析装置で測定した時、原子%でC:30%
以下、O:50%以下であるシャドウマスク用合金薄板であ
る。更に本発明は、上述のシャドウマスク用合金薄板を
用いてなるシャドウマスクである。
Further, according to the present invention, a shadow mask material containing 29 to 45% of Ni by mass% and the balance substantially consisting of Fe is subjected to a blackening treatment, and the shadow mask material after the blackening treatment is subjected to a blackening treatment. When the surface is measured with a photoelectron spectrometer, C: 30% in atomic%
Hereinafter, it is an alloy thin plate for a shadow mask having O: 50% or less. Further, the present invention is a shadow mask using the above-mentioned alloy thin plate for a shadow mask.

【0010】[0010]

【発明の実施の形態】以下に本発明を詳しく説明する。
先ず、本発明の最も重要な特徴は上述のように、質量%
でNi:29〜45%を含有し、残部は実質的にFeからなるシ
ャドウマスク材において、直接黒化膜が形成される最表
面の元素が直接黒化性を支配していることを知見し、最
表面における、化合物、若しくは化合物+メタルの結合
状態を示す特定の元素の量を調整することにある。従っ
て、本発明では光電子分光装置で得られる被測定面の最
表面(ドライエッチングによるスパッタはしない)で測定
される元素の結合状態とその量、または、オージェ電子
分光分析装置を用いた元素の分布面積率が重要になる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the most important feature of the present invention is that, as described above,
In the shadow mask material containing 29-45% of Ni and the balance being substantially Fe, it was found that the element on the outermost surface on which the direct blackening film is formed directly controls the blackening property. The purpose of the present invention is to adjust the amount of a specific element showing the bonding state of a compound or a compound + metal on the outermost surface. Therefore, in the present invention, the bonding state and the amount of the element measured on the outermost surface of the surface to be measured obtained by the photoelectron spectrometer (not sputtered by dry etching), or the distribution of the element using an Auger electron spectrometer The area ratio becomes important.

【0011】この時に、測定面積については誤差の少な
い高精度の情報を得るには信号量を多く取り込むと良
く、そのためには測定面積が大きいほどよいが、表面に
存在する元素やそれらの化合物を観察し分析する場合に
は高倍観察できる条件での分析が望ましい。そこで光電
子分光装置では10mm×2mm程度の広い範囲で、オージェ
電子分光分析装置では1500倍視野で少なくとも5視野の
分析を行い平均することが望ましく、これらの測定面積
が確保できない場合は少なくとも20個程度の結晶粒が見
えるような測定倍率を使用する。なお、これらの測定を
行う測定表面がオイル等によって極めて汚染されている
場合には測定結果の信憑性に欠けるので有機溶剤で洗浄
してやれば良い。
At this time, in order to obtain high-accuracy information with a small error in the measurement area, it is good to take in a large amount of signal. For this purpose, the larger the measurement area, the better. In the case of observation and analysis, it is desirable to perform analysis under conditions that enable high magnification observation. Therefore, it is desirable to analyze and average at least 5 fields of view in a photoelectron spectrometer over a wide range of about 10 mm × 2 mm and auger electron spectrometer at 1500 times the field of view, and if these measurement areas cannot be secured, at least about 20 The measurement magnification is used so that the crystal grains can be seen. When the measurement surface for performing these measurements is extremely contaminated with oil or the like, the reliability of the measurement results is lacking, so that the measurement results may be washed with an organic solvent.

【0012】そして次に、本発明で規定する最表面の元
素の量を限定した理由を述べると以下のようになる。先
ず、最表面で検出されるB(ホウ素)には、主として窒化
ホウ素や酸化ホウ素、或いは更にそれらの複合化合物、
及びメタルとしてのホウ素が検出されるが、これらは黒
化処理に先立って行われる例えば800℃程度の軟化焼鈍
熱処理によって、結晶粒界から粒界拡散によって内部か
ら表面に染み出すように最表面に拡散し、さらに拡散が
進むと表面に観察される結晶粒を覆ってゆくように表面
拡散し、黒化膜の密着性を阻害したり、黒化膜が不均一
な酸化斑を引き起こす要因となるため25原子%以下に規
定した。
Next, the reason why the amount of the element on the outermost surface specified in the present invention is limited will be described as follows. First, B (boron) detected on the outermost surface is mainly boron nitride or boron oxide, or further a composite compound thereof,
And boron as a metal are detected, but these are subjected to softening annealing heat treatment at about 800 ° C., for example, which is performed prior to the blackening treatment, so that the outermost surface oozes from the inside through the grain boundary diffusion from the crystal grain boundary to the surface. Diffusion, and further diffusion spreads the surface so as to cover the crystal grains observed on the surface, which inhibits the adhesion of the blackened film and causes the blackened film to cause uneven oxidation spots Therefore, it is specified to 25 atomic% or less.

【0013】本発明において、Bの測定は、結合エネル
ギー185〜196eVの範囲内で測定するのが良く、この範囲
で測定すれば、特に最表面に存在して黒化処理性を阻害
する窒化ホウ素、酸化ホウ素、或いは更にそれらの複合
化合物、及びメタルとしてのホウ素を分析することがで
きる。なお、メカニズムは不明であるが、上述の範囲内
で測定された窒化ホウ素、酸化ホウ素、或いは更にそれ
らの複合化合物、及びメタルとしてのホウ素のうち、例
えば酸化ホウ素が多く検出される場合に比較して、窒化
ホウ素、或いは更に酸化ホウ素との複合化合物となった
ホウ素が多く検出される場合、黒化膜がより不均一な酸
化斑を生じ易くなる現象がある。
In the present invention, B is preferably measured in the range of a binding energy of 185 to 196 eV. If measured in this range, boron nitride, which is present on the outermost surface and inhibits the blackening property, may be measured. , Boron oxide, or their composite compounds, and boron as a metal. Although the mechanism is unknown, it is compared with the case where, for example, boron oxide is detected in a large amount in boron nitride, boron oxide, or a composite compound thereof, and boron as a metal, which are measured within the above range. Therefore, when boron nitride or boron which is a complex compound with boron oxide is detected in a large amount, there is a phenomenon that the blackened film is more likely to cause uneven oxidation spots.

【0014】また、オージェ電子分光分析装置でBを測
定するには積分スペクトルで140〜190eVのKLLピークを
採用し、このピークを用いてBの元素マッピングを行う
ことでオージェ電子強度によって表面のB濃度を見るこ
とで2次元のB分布の情報を得ることができる。この
時、視野面積率を定める偏析結晶粒は元素の最大検出強
度を輝度256とした時の輝度32を敷居値とし、そして1
個の結晶粒の80%以上がBで覆われている時はその結晶
粒を偏析結晶粒と看做し、視野面積率はこれらの結晶粒
の面積の和の総視野に対する比率のことを言う。そし
て、表面にBが偏析した結晶粒の視野面積率が30%をこ
えると黒化膜を形成した時に酸化斑を起こすため、Bが
表面に偏析した結晶粒が視野面積率で0%を含んで30%
以下であることが必要である。好ましくは25%以下であ
る。
In order to measure B with an Auger electron spectrometer, a KLL peak of 140 to 190 eV is employed in the integrated spectrum, and elemental mapping of B is performed using this peak, so that B at the surface is determined by Auger electron intensity. By looking at the density, two-dimensional B distribution information can be obtained. At this time, the segregated crystal grains that determine the viewing area ratio have a threshold value of luminance 32 when the maximum detection intensity of the element is luminance 256, and 1
When 80% or more of individual crystal grains are covered with B, the crystal grains are regarded as segregated crystal grains, and the visual field area ratio is the ratio of the sum of the areas of these crystal grains to the total visual field. . When the surface area ratio of the crystal grains in which B segregates on the surface exceeds 30%, oxidation spots occur when a blackened film is formed. Therefore, the crystal grains in which B segregates on the surface include 0% in the visual area ratio. At 30%
It must be: Preferably it is 25% or less.

【0015】上述のB(ホウ素)はN(窒素)と結びつき易い
元素であり、Nが存在すれば、NとBとの化合物を作り易
い性質をもっており、Nの存在はBの最表面への染み出し
を助長し、更には最表面〜1nm程度の深さまでの濃化を
も促進させる。またNは窒化ホウ素や他の元素と結びつ
いて窒化物を形成したものが殆どである。例えば、結合
エネルギー395〜403eVのこの範囲内で検出されるNの結
合状態は、上述のBと結合した化合物が多く、表層部にB
N(窒化ホウ素)が形成されていることを確認できる。こ
の、BNの他、他の元素と結びついた窒化物は主に粒界近
傍に形成されるが、過剰にこれらの窒化物が存在したと
きには表面拡散によって薄板最表面全体を覆うように形
成されることになり、黒化膜の密着性を低減させるだけ
でなく、黒化膜が不均一な酸化斑を引き起こす原因とな
るため、Nは35原子%以下に規定した。
The above-mentioned B (boron) is an element that is easily linked to N (nitrogen). If N is present, it has a property of easily forming a compound of N and B. It promotes exudation and further promotes concentration up to a depth of about 1 nm from the outermost surface. In most cases, N combines with boron nitride or other elements to form a nitride. For example, the bonding state of N detected within this range of the binding energy of 395 to 403 eV indicates that many of the compounds bonded to B described above and the surface layer has B
It can be confirmed that N (boron nitride) is formed. In addition to BN, nitrides associated with other elements are mainly formed near grain boundaries, but when these nitrides are present in excess, they are formed to cover the entire outermost surface of the thin plate by surface diffusion In other words, since not only the adhesion of the blackened film is reduced but also the blackened film causes uneven oxidation spots, N is set to 35 atomic% or less.

【0016】なお、このNの測定は、上述の通り、結合
エネルギー395〜403eVの範囲内で測定するのが良く、上
記する特に最表面に存在して黒化処理性を阻害するBNの
他、Siと結合した化合物、或いは更にそれらの複合化合
物、及びメタルとしての窒素を分析することができる。
また、オージェ電子分光分析装置でNを測定するには微
分スペクトルで350〜410eVのKLLピークを採用し、この
ピークを用いた元素マッピングを行うと、オージェ電子
強度によってN濃度を見ることで2次元のN分布の情報を
得ることができる。
As described above, it is preferable to measure the N within the range of the binding energy of 395 to 403 eV. In addition to the above-mentioned BN which is present especially on the outermost surface and inhibits the blackening property, Compounds bonded to Si, or their composite compounds, and nitrogen as metal can be analyzed.
To measure N with an Auger electron spectrometer, use the KLL peak at 350 to 410 eV in the differential spectrum, and perform element mapping using this peak. N distribution information can be obtained.

【0017】次に、最表面に存在するSiとMnは主に酸素
と結合した状態をとる。黒化膜は主に鉄の酸化膜である
が、結合状態のSi、Mnが主として粒界に分布すれば、黒
化膜の密着性を劣化させ、黒化膜が不均一な酸化斑を引
き起こす主な原因となるB、N、或いはそれらの化合物の
表面への粒界拡散による生成を抑制することができ、特
にBNの表面への粒界拡散の抑制に効果があるため、少な
くともSiは原子%で1.0%以上、Mnは0.5%以上が表面に
存在することが必要である。なお、この結合状態のSi、
Mnは、単に粒界にSi、Mnの単純な酸化物のみでなく、こ
れらの元素と酸素からなる複合化合物を形成し、粒界の
みならず最表面全体に酸化物或いは上述の複合化合物を
形成して、B単独或いは複合化した化合物、N単独或いは
複合化した化合物、更にはそれらの複合化合物の生成を
抑制しているものと考えられるが、そのメカニズムにつ
いては現時点では未解明である。
Next, Si and Mn present on the outermost surface are mainly in a state of bonding with oxygen. The blackened film is mainly an oxide film of iron, but if Si and Mn in the bonded state are mainly distributed at the grain boundaries, the adhesion of the blackened film is deteriorated, and the blackened film causes uneven oxidation spots. It is possible to suppress the generation of B, N, or their compounds, which are the main causes, by diffusion at the grain boundary to the surface, and it is particularly effective in suppressing the diffusion of the grain boundary to the surface of BN. % And 1.0% or more of Mn must be present on the surface. In this connection, Si,
Mn forms not only simple oxides of Si and Mn at the grain boundaries, but also forms a complex compound composed of these elements and oxygen, and forms oxides or the above-described complex compounds not only at the grain boundaries but also at the entire outermost surface. Then, it is considered that the formation of B alone or complexed compound, N alone or complexed compound, and further the formation of these complex compounds are suppressed, but the mechanism is not elucidated at present.

【0018】また本発明においては、好ましくは、Siの
上限は原子%で8%、更に好ましくは5原子%、Mnの上限
は原子%で6%、更に好ましくは4原子%であり、この範
囲であれば結合状態のSi、Mnが多量に存在することによ
る黒色度の劣化の発生を抑制できる。なお、本発明にお
いてはSiの測定は、結合エネルギーが97〜105eVの範囲
で行い、Mn結合エネルギー45〜50eVで行うと良く、この
範囲内で測定されるSi、Mnは、単純な酸化物のみでな
く、これらの元素と酸素からなる複合化合物を形成し、
粒界に析出して上述のB、N、或いはそれらの化合物等の
形成を抑制する効果を持つSi、Mnの結合状態を知ること
ができる。
In the present invention, the upper limit of Si is preferably 8% by atom%, more preferably 5% by atom, and the upper limit of Mn is 6% by atom%, more preferably 4% by atom. If so, it is possible to suppress the occurrence of deterioration in blackness due to the presence of a large amount of Si and Mn in a bonded state. In the present invention, the measurement of Si, the binding energy is performed in the range of 97 to 105 eV, it is good to be performed in the Mn binding energy of 45 to 50 eV, Si, Mn measured in this range is only a simple oxide Instead, form a compound compound consisting of these elements and oxygen,
It is possible to know the bonding state of Si and Mn which have an effect of suppressing the formation of B, N, or their compounds, which precipitate at the grain boundaries.

【0019】さらに本発明では、上述した範囲内でB、
N、Si、Mnを制御した材料の最表面を走査電子顕微鏡で
表面の観察・分析を行うと、半球状の酸化物が認められ
る。この半球状の酸化物をX線分析装置で定量分析する
と、Si或いはMnの何れかが主成分(50%以上)となってい
るか、Si,Mnの両方で主成分(50%以上)となっている。
勿論、Fe-Niのマトリックス(基地)の影響が分析値とし
て検出されるが、マトリックスの主元素であるFe,Ni(Co
を含有する場合はCoも)の影響を無いものと看做して、
分析値をみる。
Further, in the present invention, B,
When the outermost surface of the material in which N, Si, and Mn are controlled is observed and analyzed with a scanning electron microscope, a hemispherical oxide is observed. Quantitative analysis of this hemispherical oxide with an X-ray analyzer shows that either Si or Mn is the main component (50% or more) or both Si and Mn are the main components (50% or more). ing.
Of course, the influence of the matrix (base) of Fe-Ni is detected as an analysis value, but the main elements of the matrix, Fe, Ni (Co
Is considered to have no effect).
Look at the analysis values.

【0020】そして、上述のように結合状態のSi,Mnは
粒界のみならず最表面全体に酸化物或いは上述の複合化
合物を形成してB,Nやそれらの複合化合物の表面拡散を
抑制するが、この場合、半球状の酸化物が視野面積率で
特定の比率以上を見ることができれば、黒化膜の均一性
がより向上する傾向があり、本発明者等の詳細な研究に
よれば、半球状の酸化物は1500倍程度の観察倍率で0.5
μm以上の粒を計測した時、視野面積率で12%以上であ
れば良いことを知見している。よって、本発明ではシャ
ドウマスク用材の最表面を走査型電子顕微鏡で観察した
時、半球状の酸化物が視野面積率で12%以上に規定し
た。なお、酸化物が25%を超えて形成されると、酸化物
の分布が局所的になるので上限は25%以下が望ましい。
As described above, Si and Mn in a bonded state form an oxide or the above-mentioned composite compound not only at the grain boundaries but also on the entire outermost surface, thereby suppressing the surface diffusion of B, N and their composite compounds. However, in this case, if the hemispherical oxide can see a specific ratio or more in the viewing area ratio, the uniformity of the blackened film tends to be further improved, and according to the detailed research of the present inventors, The hemispherical oxide is 0.5 times at an observation magnification of about 1500 times.
It has been found that when measuring a grain having a size of not less than μm, the viewing area ratio should be 12% or more. Therefore, in the present invention, when the outermost surface of the shadow mask material is observed with a scanning electron microscope, the hemispherical oxide is defined to have a viewing area ratio of 12% or more. Note that if the oxide is formed in excess of 25%, the distribution of the oxide becomes local, so the upper limit is preferably 25% or less.

【0021】上述した特定元素を、最表面で本発明で規
定する特定量に制限するためには、次のような合金組成
を有するものを選ぶことが良い。Niはシャドウマスク用
合金の主要成分であり、シャドウマスクに求められる低
熱膨張特性を付与する。シャドウマスク用合金薄板では
色ずれ防止のため、30〜100℃の温度領域で3.0×10-6/
℃以下の熱膨張係数が求められる。この熱膨張係数を満
たすためにCoを添加することを前提とするとNiの含有量
は質量%で32〜38%の範囲にすればよく、Co無添加の場
合はNi含有量を質量%で29〜45%の範囲にすれば良い。
In order to limit the above-mentioned specific element to the specific amount specified in the present invention on the outermost surface, it is preferable to select an element having the following alloy composition. Ni is a major component of alloys for shadow masks, and provides low thermal expansion characteristics required for shadow masks. 3.0 × 10 −6 / 30 ° C./30° C./30×10 -6 /
A coefficient of thermal expansion of not more than ℃ is required. Assuming that Co is added in order to satisfy this coefficient of thermal expansion, the content of Ni may be in the range of 32 to 38% by mass%, and when Co is not added, the Ni content is 29% by mass. The range may be up to 45%.

【0022】Si、Mnは通常シャドウマスク用合金薄板で
は、脱酸を目的に微量含有されているが、過剰に添加す
れば、表層部近傍への濃化が促進されるばかりか、偏析
を起こし易くなるため、Siは0.03%以下、Mnは0.3%以
下であることが望ましい。Siが0.03%、Mnが0.3%を超
えて過剰に添加した場合はシャドウマスク用合金薄板の
軟化焼鈍熱処理において表面近傍に拡散濃化した活性な
Si、Mnは過度の酸化物を形成して、粒界に形成されるS
i、Mnの酸化物は粒界のみならず最表面〜1nmの深さま
で、粒内でも局所的に酸化物が形成されるようになる。
これらは、最表面に形成されるために整面処理性を劣化
させたり、マスク孔形成時のエッチングの初期速度を抑
制するので、エッチング特性を劣化させる。ただし、S
i、MnについてはBやNの単独或いは複合化した化合物が
表層部近傍への濃化を抑制できる最低限の酸化物を形成
するために、Siの下限は0.001%以上、Mnは0.01%以上
であることが好ましい。
Usually, Si and Mn are contained in a small amount in alloy thin plates for shadow masks for the purpose of deoxidation. However, if they are added excessively, not only the concentration near the surface layer portion is promoted, but also segregation occurs. It is desirable that Si is 0.03% or less and Mn is 0.3% or less, since it becomes easy. When Si is added in excess of 0.03% and Mn in excess of 0.3%, the active alloy diffuses and concentrates near the surface in the softening annealing heat treatment of alloy sheets for shadow masks.
Si and Mn form excessive oxides and form S at the grain boundaries.
The i and Mn oxides are locally formed not only at the grain boundaries but also within the grains from the outermost surface to a depth of 1 nm.
Since these are formed on the outermost surface, they degrade surface treatment properties and suppress the initial etching speed at the time of forming the mask holes, so that the etching characteristics are deteriorated. Where S
For i and Mn, the lower limit of Si is 0.001% or more, and Mn is 0.01% or more, because the compound of B or N alone or in combination forms a minimum oxide capable of suppressing concentration near the surface layer. It is preferred that

【0023】Bは熱間加工性の改善と同時に粒界に拡散
し易い。0.003%を超えるとシャドウマスク用合金薄板
の軟化焼鈍熱処理においてBの拡散が粒界拡散から表面
拡散へと形態が変化し、Bの濃化が最表面の広範囲にわ
たって生じる。このように最表面に濃化し化合物を形成
したBは黒化処理性を阻害するばかりでなく、整面処理
性やエッチング性を劣化させる。さらに、過剰なBは熱
間加工性を劣化させるため、0.003%以下が好ましく、
無添加(0%)でも良い。
B easily diffuses into the grain boundaries simultaneously with the improvement of hot workability. If the content exceeds 0.003%, the diffusion of B changes from grain boundary diffusion to surface diffusion in the softening annealing heat treatment of the alloy sheet for shadow mask, and B enrichment occurs over a wide range of the outermost surface. As described above, B, which is concentrated on the outermost surface to form a compound, not only impairs the blackening property, but also deteriorates the surface conditioning property and the etching property. Further, since excessive B deteriorates hot workability, 0.003% or less is preferable,
No additive (0%) may be used.

【0024】Nは、合金中に不可避的不純物として存在
する元素である。Nは、鋼中ではAlNを生成し介在物とな
って、エッチング性および軟化焼鈍特性を害するもので
ある。0.005%を超えて存在すると介在物が多くなりす
ぎて、エッチング性と軟化焼鈍特性を悪化させるばかり
か、Nはシャドウマスク用合金薄板の軟化焼鈍熱処理に
おいて最表面に濃化するようになる。またNは、表面拡
散したBと化合しBNを形成するようになるため、Bの表面
濃化を促進する。また、N化合物は比較的安定であるた
めに整面処理性やエッチング性を阻害する。以上の理由
からNは0.005%以下とした。
N is an element existing as an unavoidable impurity in the alloy. N forms AlN in steel and becomes an inclusion, thereby impairing the etching property and the soft annealing property. If the content exceeds 0.005%, the inclusions become too large, so that not only the etching property and the soft annealing property are deteriorated, but also N becomes concentrated on the outermost surface in the soft annealing heat treatment of the alloy sheet for the shadow mask. Further, N combines with B that has been surface-diffused to form BN, and thus promotes the B surface concentration. In addition, since the N compound is relatively stable, it impairs the surface treatment property and the etching property. For the above reasons, N is set to 0.005% or less.

【0025】また本発明では、上述したNiの一部を7%
以下のCoで置換しても良い。CoもNiと同様に熱膨張率を
低下させる元素である。CoをNiと置換するとキュリー点
が上昇し、より高温まで熱膨張係数を低く抑えることが
できる。またCoはFe-Ni合金に固溶して焼鈍時の硬さを
上昇させる効果があり、これによって最終冷間圧延後の
硬さも上昇させる。しかし7%以上の添加ではさらなる
効果は見られない。このためCoによるNi置換量は7%以
下に限定する。
In the present invention, a part of the above-mentioned Ni is reduced by 7%.
The following Co may be substituted. Co is an element that lowers the coefficient of thermal expansion similarly to Ni. When Co is replaced with Ni, the Curie point rises and the coefficient of thermal expansion can be kept low up to higher temperatures. In addition, Co forms a solid solution in the Fe-Ni alloy and has an effect of increasing the hardness during annealing, thereby increasing the hardness after final cold rolling. However, no further effect is seen with the addition of 7% or more. Therefore, the amount of Ni substitution by Co is limited to 7% or less.

【0026】なお、本発明の特定元素を、最表面で本発
明で規定する特定量に制限したシャドウマスク合金薄板
を得るためには、少なくともNiを質量%で29〜45%を含
有する黒化処理前の素材を、焼鈍温度と雰囲気を適宜調
整してやれば良く、例えば露点+10℃〜−10℃で4〜70
l/minの水素雰囲気中にて800℃×30分加熱を施すと良
い。なお、この流量は、加熱炉の大きさにもよって異な
るのは当然であり、加熱炉の容量によって最適な流量を
選定すると良い。また、この時、上記の黒化処理前の素
材の化学組成は、上述した本発明のシャドウマスク用合
金薄板の範囲内に調整したものを用いるのが望ましいこ
とは言うまでもない。
In order to obtain a shadow mask alloy thin plate in which the specific element of the present invention is limited to the specific amount specified in the present invention on the outermost surface, the blackening containing at least 29 to 45% by mass of Ni is required. The material before the treatment may be appropriately adjusted for the annealing temperature and atmosphere, for example, at a dew point of + 10 ° C to -10 ° C and a temperature of 4 to 70 ° C.
It is preferable to perform heating at 800 ° C. for 30 minutes in a hydrogen atmosphere of l / min. It is natural that the flow rate differs depending on the size of the heating furnace, and an optimum flow rate may be selected according to the capacity of the heating furnace. At this time, it is needless to say that the chemical composition of the material before the blackening treatment is preferably adjusted within the range of the alloy thin plate for a shadow mask of the present invention.

【0027】更に、上述した本発明で規定する範囲に調
整された最表面を有するシャドウマスク用合金薄板は、
その後に施される黒化処理後の最表面の光電子分光装置
による分析においても、特徴的な組成を有することを確
認している。具体的には、本発明で規定する最表面の組
成範囲から外れる組成の最表面を有するシャドウマスク
用合金薄板では、黒化膜が不均一に斑を生じており、驚
くべきことに、その最表面を光電子分光装置で分析する
と、C、Oの量が本発明材の黒化処理後の薄板に比して、
高いことを知見した。
Further, the alloy thin plate for a shadow mask having the outermost surface adjusted to the range specified in the present invention described above,
Analysis by a photoelectron spectrometer of the outermost surface after the blackening treatment performed thereafter has also confirmed that it has a characteristic composition. Specifically, in the alloy thin plate for a shadow mask having the outermost surface having a composition out of the composition range of the outermost surface defined in the present invention, the blackened film is unevenly unevenly formed. When the surface is analyzed with a photoelectron spectrometer, the amount of C and O is smaller than that of the thin plate after blackening of the material of the present invention,
It was found to be high.

【0028】即ち、本発明の合金薄板を用いて、例えば
500℃×15分、窒素と水素を混合させたブラウンガスを
流量20〜50 l/min中で熱処理する黒化処理を施せば、
シャドウマスク材の最表面を光電子分光分析装置で測定
した時、原子%でCが25%以下、Oが50%以下となる。な
お、黒化処理後の最表面において、原子%でCが30%、O
が50%を越える最表面をもつ黒化膜は、目視によって酸
化斑が確認されている。
That is, using the alloy thin plate of the present invention, for example,
If subjected to blackening treatment to heat brown gas mixed with nitrogen and hydrogen at a flow rate of 20 to 50 l / min at 500 ° C for 15 minutes,
When the outermost surface of the shadow mask material is measured with a photoelectron spectrometer, C is 25% or less and O is 50% or less in atomic%. In addition, on the outermost surface after the blackening treatment, C was 30% in atomic%, and O
In the blackened film having the outermost surface of which exceeds 50%, oxidation spots are visually confirmed.

【0029】以上、説明した本発明のシャドウマスク用
合金薄板をシャドウマスクの素材として用いれば、酸化
斑のないシャドウマスクとすることができる。
When the alloy thin plate for a shadow mask of the present invention described above is used as a material for the shadow mask, a shadow mask free from oxidation spots can be obtained.

【0030】[0030]

【実施例】表1に示すような化学組成を有するシャドウ
マスク用合金薄板素材を、小型実験炉を用いた水素雰囲
気中にて800℃×30分、流量を4〜10 l/minとして露点
を-30℃、-20℃、-10℃、0℃、10℃と変えて最表面に現
れる元素を制御した。加熱して得られた材料を分析面積
が2mm×10mmの範囲の測定できるように調整した光電子
分光分析装置(ESCA)を使用して最表面の濃化元素を調査
した。これは、分析面積を大きくとることは、表面の平
均的な情報を得る目的や微量の元素検出に有利なためで
ある。供試材は、No.1が36Ni-Fe合金、No.2が32Ni-5Co-
Fe合金、No.3が36Ni-Fe(B無添加)合金でなるシャドウマ
スク用合金薄板素材である。
EXAMPLE An alloy sheet material for a shadow mask having a chemical composition as shown in Table 1 was placed in a hydrogen atmosphere using a small experimental furnace at 800 ° C. for 30 minutes at a flow rate of 4 to 10 l / min to determine the dew point. The elements appearing on the outermost surface were controlled at -30 ° C, -20 ° C, -10 ° C, 0 ° C, and 10 ° C. The concentrated element on the outermost surface was investigated using a photoelectron spectroscopy analyzer (ESCA) in which the material obtained by heating was adjusted so that the analysis area could be measured in the range of 2 mm × 10 mm. This is because increasing the analysis area is advantageous for the purpose of obtaining average information on the surface and for detecting trace elements. No. 1 was a 36Ni-Fe alloy and No. 2 was a 32Ni-5Co-
Fe alloy, No. 3 is an alloy sheet material for shadow masks made of 36Ni-Fe (no B added) alloy.

【0031】[0031]

【表1】 [Table 1]

【0032】供試材最表面の定性分析を行い、検出され
た元素を確認した。検出元素が極微量の場合にはバック
グラウンドの状況によって定量評価が困難な場合がある
為に、定量評価するにあたっては、薄板の各構成元素で
あるC、O、Fe、Ni、Co、Si、Mn、B、N、S、Alの元素を
測定するように設定し、定性分析で認められた元素と上
述の各構成元素のメタルの状態と、化合物を形成してい
る結合エネルギー範囲で各元素の光電子ピークを微量で
も検出できるように細かに、複数回採取し重ね合わせ
た。それぞれ結合エネルギーがCでは275〜285eV、Oでは
520〜540eV、Feは700〜740eV、Niは845〜885eV、Coは77
0〜810eV、Bは180〜200eV、Nは400〜410eV、Sは155〜17
5eV、Siは95〜115eV、Mnは43〜63eV,Alは65〜85eVで規
定した結合エネルギーの範囲を測定した。
A qualitative analysis of the outermost surface of the test material was performed to confirm the detected elements. When the amount of the detected element is extremely small, it may be difficult to perform quantitative evaluation depending on the background, so in performing the quantitative evaluation, each of the constituent elements of the thin plate, C, O, Fe, Ni, Co, Si, The Mn, B, N, S, and Al elements were set to be measured, and the elements recognized in the qualitative analysis and the state of the metal of each of the constituent elements described above, and each element within the binding energy range forming the compound Were collected multiple times and superimposed so that even small amounts of photoelectron peaks could be detected. For C, the binding energy is 275-285 eV for C, and for O
520-540 eV, Fe 700-740 eV, Ni 845-885 eV, Co 77
0 to 810 eV, B is 180 to 200 eV, N is 400 to 410 eV, S is 155 to 17
5 eV, Si measured 95 to 115 eV, Mn measured 43 to 63 eV, and Al measured a bond energy range of 65 to 85 eV.

【0033】表1のNo.1の試料を上記熱処理条件で熱処
理した試料11から15の測定結果を表2に示す。なお表中
において、検出量を0%(検出されず)と示しているもの
は、定量評価できるように元素のメタルの状態と、化合
物を形成している結合エネルギー範囲で各元素の光電子
ピークを微量でも検出できるように細かに、複数回採取
し重ね合わせたにもかかわらず、ピークが極端に小さい
若しくはピークとして認識できないためにピーク以外の
バックグラウンドとピークとが区別できない状態にある
ことを言う。
Table 2 shows the measurement results of Samples 11 to 15 obtained by heat-treating the No. 1 sample in Table 1 under the above heat treatment conditions. In the table, the detection amount indicated as 0% (not detected) indicates the state of the metal of the element and the photoelectron peak of each element in the binding energy range forming the compound so that quantitative evaluation can be performed. Despite the fact that a peak is extremely small or cannot be recognized as a peak, it is indistinguishable from a background other than the peak because the peak is extremely small or cannot be recognized even though it is collected multiple times and superimposed so that it can be detected even in trace amounts. .

【0034】また、表1のNo.2の試料を上記熱処理条件
で熱処理した試料21から25の測定結果を表3に、表1の
No.3の試料を上記熱処理条件で熱処理した試料31から35
の測定結果を表4にそれぞれ示す。なお、測定結果は装
置固有の相対感度係数を用いてこれらの検出元素全てを
もって100原子%となるように各元素のピーク面積を積
分して定量化したものである。ただし、Alの定量値に関
しては全ての試料について検出できなかったためにこれ
らの表からは割愛した。しかし、元素によってはNo.3試
料のように素材全体でのBの検出濃度が0.0001mass%未
満(無添加)であっても、熱処理などの工程を経ること
で、表面に検出される場合もあった。
Table 3 shows the measurement results of Samples 21 to 25 obtained by heat-treating the No. 2 sample of Table 1 under the above heat treatment conditions.
Sample Nos. 31 to 35 heat-treated No. 3 sample under the above heat treatment conditions
Table 4 shows the measurement results. Note that the measurement results are quantified by integrating the peak areas of the respective elements using a relative sensitivity coefficient unique to the apparatus so that all of the detected elements become 100 atomic%. However, since the quantitative value of Al was not detected for all samples, it was omitted from these tables. However, depending on the element, even if the detection concentration of B in the entire material is less than 0.0001 mass% (no addition) as in the No. 3 sample, it may be detected on the surface through steps such as heat treatment. there were.

【0035】また、それぞれの表中には各試料表面を、
オージェ電子分光装置で1500倍視野で5視野について測
定し、Bの表面偏析の結晶粒の視野面積率と、走査電子
顕微鏡で1500倍視野で5視野観察した半球状の酸化物の
視野面積率を表2〜4に併せて示す。なお、オージェ分
光分析装置での分析は、積分スペクトルで140〜190eVの
KLLピークを採用し、このピークを、1500倍の視野で電
子線を走査し、BのKLLピークを用いた元素マッピングを
行いオージェ電子強度によってB濃度を見ることで空間
的なB分布の情報を得たものである。
In each table, the surface of each sample is shown.
Using an Auger electron spectrometer, measure the visual field area ratio of the crystal grains of the surface segregation of B at 1500 times field of view and the hemispherical oxide field area ratio observed at 1500 times field of view with the scanning electron microscope. The results are shown in Tables 2 to 4. In addition, the analysis with the Auger spectrometer was performed with an integrated spectrum of 140 to 190 eV.
The KLL peak is adopted, this peak is scanned with an electron beam in a field of view of 1500 times, element mapping using the KLL peak of B is performed, and information on the spatial B distribution is obtained by observing the B concentration by Auger electron intensity. I got it.

【0036】図1に酸化斑の見られなかった材料No.11
の軟化焼鈍後のオージェ分光分析装置によるBのマッピ
ング、図2に酸化斑の発生した材料No.13の軟化焼鈍後
のオージェ分光分析装置によるBのマッピングを示す
が、酸化斑の無いNo.11のBは局所的に分布(Bの信号量が
多いほど白く見える)しており、反対に酸化斑のあるNo.
13のBは全面に分布(Bの信号量が多く、全面白色)してい
ることがわかる。また、図3に酸化斑の無いNo.11の半
球状の酸化物の走査電子顕微鏡観察写真を示す。結晶粒
界に顕著で、結晶粒内にも見られる。酸化斑の無い材料
ではこの酸化物が見られる頻度が低い。
FIG. 1 shows a material No. 11 having no oxidized spots.
2 shows the mapping of B by Auger spectroscopy after soft annealing, and FIG. 2 shows the mapping of B by Auger spectroscopy after soft annealing of material No. 13 in which oxidized spots were generated. B is locally distributed (the more the signal amount of B, the whiter it looks), and conversely, No.
It can be seen that B of 13 is distributed over the entire surface (the signal amount of B is large and the entire surface is white). FIG. 3 shows a scanning electron micrograph of a hemispherical oxide of No. 11 having no oxidation spots. It is prominent at the crystal grain boundaries and is also found in the crystal grains. This oxide is less frequently found in materials without oxidation spots.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】上述したエネルギー範囲で検出された結合
エネルギーと、合金組成、熱処理の雰囲気から判断して
NIST(The U.S. National Institute of Standards
and Technology)やアルバックファイ株式会社のハン
ドブック等のデータベースから化合物を同定した。同定
の結果を記す。
Judging from the binding energy detected in the above energy range, the alloy composition, and the atmosphere of the heat treatment,
NIST (The US National Institute of Standards
and Technology) and a handbook of ULVAC-PHI CO., LTD. The result of the identification is described.

【0041】Cピークは284.8eVの表面のハイドロカーボ
ンと288.3eVの酸素と結合したCの複合化合物からなる。
Oピークは主に529.5eV〜530.2eVのFeの酸化物に相当す
ると考えられるが、529.3〜529.9eVのMnの酸化物、532.
4〜534.3eVのSiの酸化物、530.2〜533.2eVのBの酸化物
等の複合酸化物からなると考えられるピークであった。
The C peak consists of a complex compound of C bonded to a surface hydrocarbon of 284.8 eV and oxygen of 288.3 eV.
The O peak is considered to correspond mainly to an oxide of 529.5 eV to 530.2 eV of Fe, but an oxide of Mn of 529.3 to 529.9 eV, 532.
The peak was considered to be composed of a composite oxide such as an oxide of Si of 4 to 534.3 eV and an oxide of B of 530.2 to 533.2 eV.

【0042】Feピークは706.5〜708.7eVのメタルと709.
3〜710.7eVのFeO、710.3〜711.6eVのFe2O3、711.0〜71
2.0eVのFeOOHの複合化合物と考えられ、ピークの形状か
ら酸化物が主体であると考えられる。Niピークは853.5
〜854.5eVのNiO、856.0〜857.0eVのNi2O3の酸化物と、8
52.5〜853.8eVのメタルが認められ、主にメタルが多く
検出された結果となった。Coピークは780.0〜781.0eVの
CoO、778.2〜780.3eVのCo3O4、779.9eVのCo2O3等酸化物
と、778.1〜778.5eVのメタルのピークが検出された。
The Fe peak is 706.5 to 708.7 eV for metal and 709.
3~710.7eV of FeO, 710.3~711.6eV of Fe 2 O 3, 711.0~71
It is considered to be a complex compound of 2.0 eV FeOOH, and from the shape of the peak, it is considered that the oxide is mainly contained. Ni peak is 853.5
~854.5eV of NiO, an oxide of Ni 2 O 3 of 856.0~857.0eV, 8
Metal of 52.5 to 853.8 eV was recognized, and the result was that mainly metal was mainly detected. Co peak between 780.0 and 781.0 eV
CoO, Co 3 O 4 of 778.2~780.3EV, and Co 2 O 3 or the like oxide 779.9EV, metal peak 778.1~778.5eV were detected.

【0043】Bピークは190.0〜190.7evのBNと192.0〜19
3.6eVのB2O3の複合化合物からなり、ピークの主体はBN
であった。図3に一例として、酸化斑の無い材料No.11
の軟化焼鈍後のBのESCAプロファイルを、図4に酸化斑
の発生した材料No.13の軟化焼鈍後のESCAプロファイル
を示す。酸化斑の無い材料No.11のBはBと酸化の結合状
態が主体となっているピークになっており、酸化斑のあ
る材料No.13のBピークはBN主体のピークである。先に述
べたようにこれらの化合物は黒化膜の密着性を疎外した
り、不均一な酸化斑を引き起こす要因となるものであ
る。Bの検出量は露点が低いほど多くなる傾向が認めら
れ、B検出量の多い試料12〜15、22〜25、34〜35では不
均一な酸化斑を引き起こす傾向にある。
The B peak is BN of 190.0-190.7ev and 192.0-19
It consists of a complex compound of 3.6 eV B 2 O 3 and the main component of the peak is BN
Met. FIG. 3 shows an example of a material No. 11 having no oxidation spots.
4 shows the ESCA profile of B after soft annealing, and FIG. 4 shows the ESCA profile of soft No. 13 of material No. 13 in which oxidation spots have occurred. B of the material No. 11 having no oxidation spots has a peak mainly due to the bonding state of B and oxidation, and the B peak of the material No. 13 having the oxidation spots is a peak mainly containing BN. As described above, these compounds are factors that alienate the adhesion of the blackened film or cause uneven oxidation spots. The detection amount of B tends to increase as the dew point is lower, and the samples 12 to 15, 22 to 25, and 34 to 35 having a higher B detection amount tend to cause uneven oxidation spots.

【0044】Nピークは397.4〜398.0eVのSiN、398.2〜3
99.0eVのBN、398.9eVのS2N4等の複合化合物からなり、
ピーク自体はBNが主体であった。Sピークは164.0eVのメ
タルと164.6eVのS2N4、160.0〜163.5eVの硫化物の複合
化合物のピークとなった。
N peak is 397.4 to 398.0 eV SiN, 398.2 to 3
99.0 eV of BN, 398.9 eV of a complex compound such as S 2 N 4
The peak itself was mainly BN. S peak S 2 N 4 metal and 164.6eV of 164.0EV, peaked in complex compounds sulfides 160.0~163.5EV.

【0045】Siは102.7eVのSiO、102.3〜103.9eVのSiO2
と、101.5〜102.0eVのSi3N4からなると考えられる。Mn
は48.2eVのMnO、49.7eVのMn2O3、48.4eVのMn3O4の酸化
物と考えられる。これらの結果ではSiやMnの酸化物は露
点が高いほど多く検出されるようになり、これらの酸化
物によってBやNの複合化合物を抑制し、酸化斑を抑制で
きる。ただし、現存データベースと装置の分解能から必
ずしも結合エネルギーピークを確実に捉えられていない
ためにその他の化合物がある場合もやそれぞれの元素で
上記化合物の複合形態をとることも十分に考えられる。
Si is SiO of 102.7 eV, SiO2 of 102.3 to 103.9 eV
And 101.5 to 102.0 eV of Si 3 N 4 . Mn
The MnO of 48.2EV, believed oxide of Mn 3 O 4 of Mn2O3,48.4eV of 49.7EV. In these results, the oxides of Si and Mn are detected more as the dew point is higher, and these oxides can suppress the complex compound of B and N, thereby suppressing the oxidation spots. However, since the binding energy peak is not necessarily ascertained from the existing database and the resolution of the apparatus, it is conceivable that other compounds may be present, or that each element may take a complex form of the compound.

【0046】次に、上記のNo.11〜15、No.21〜25、No.3
1〜35までの供試材を500℃×15分、窒素と水素の混合比
率が8:92のブラウンガス中で熱処理して黒化したとき
の表面のむらの有無と光電子分光分析装置(ESCA)による
C、O、Fe、Co、Niの定量分析結果について表5に示す。
表2〜4に示した測定と同様に薄板の各構成元素である
C、O、Fe、Ni、Co、Si、Mn、B、N、S、Alの元素を測定
するように設定し、定性分析で認められた元素と上述の
各構成元素の測定を行ったが、C、O、Fe、Co、Niしか検
出することができなかったので検出できなかった元素に
ついては割愛した。
Next, No. 11 to 15, No. 21 to 25, and No. 3
Samples from 1 to 35 were heat-treated in brown gas with a mixture ratio of nitrogen and hydrogen of 8:92 at 500 ° C for 15 minutes, and the surface was blackened by blackening. Photoelectron spectroscopy (ESCA) by
Table 5 shows the results of quantitative analysis of C, O, Fe, Co, and Ni.
Each of the constituent elements of the thin plate as in the measurements shown in Tables 2 to 4.
C, O, Fe, Ni, Co, Si, Mn, B, N, S, was set to measure the elements of Al, and the elements recognized in the qualitative analysis and the measurement of each of the constituent elements described above were performed. , C, O, Fe, Co, and Ni could only be detected, and the elements that could not be detected were omitted.

【0047】この測定も上記の測定と同様に試料最表面
の定性分析を行い、検出された元素を確認した。定量評
価するにあたっては、薄板の各主要構成元素と、定性分
析で検出された元素について測定し、黒化処理による斑
は目視により判定した。なお、各元素の測定範囲は上記
の範囲と同様であり、装置固有の相対感度係数を用いて
これらの検出元素全てをもって100原子%となるように
定量化した。
In this measurement, the qualitative analysis of the outermost surface of the sample was performed in the same manner as the above measurement, and the detected element was confirmed. In the quantitative evaluation, each of the main constituent elements of the thin plate and the elements detected by the qualitative analysis were measured, and the spot due to the blackening treatment was visually determined. Note that the measurement range of each element was the same as the above range, and all the detected elements were quantified to 100 atomic% using the relative sensitivity coefficient unique to the apparatus.

【0048】[0048]

【表5】 [Table 5]

【0049】上述したのエネルギー範囲で検出された結
合エネルギーと、合金組成、熱処理の雰囲気から判断し
てNIST(The U.S. National Institute of Standar
dsand Technology)やアルバックファイ株式会社のハン
ドブック等のデータベースから化合物を同定した。同定
の結果を記す。
Judging from the binding energy detected in the above energy range, the alloy composition, and the heat treatment atmosphere, the NIST (The US National Institute of
dsand Technology) and a handbook of ULVAC-PHI, Inc. The result of the identification is described.

【0050】Cは284.8eVのハイドロカーボンからなって
いることを確認した。また、C量は、黒化処理に先立つ
熱処理において露点が低い状態で熱処理を行ったもので
多く、また、B無添加材ではその量が多いことが確認で
きた。Oは主に529.5〜530.2eVのFeの酸化物に相当し、F
eは709.3〜710.7eVのFeO、710.3〜711.6eVのFe2O3の複
合酸化物が主体となっており、これが、黒化膜を構成す
る主体の化合物である。これらは、黒化処理に先立って
行われた熱処理において露点が低い状態で熱処理を行っ
たもので多く、また、B無添加材ではFeの酸化物量が多
いことが確認できた。
It was confirmed that C was composed of 284.8 eV hydrocarbon. In addition, it was confirmed that the amount of C was large in the case where the heat treatment was performed in a state where the dew point was low in the heat treatment prior to the blackening treatment, and that the amount of C without B was large. O mainly corresponds to an oxide of 529.5 to 530.2 eV of Fe, and F
e is mainly composed of a composite oxide of 709.3 to 710.7 eV FeO and 710.3 to 711.6 eV Fe 2 O 3 , which is a main compound constituting the blackened film. Many of these were heat treatments performed at a low dew point in the heat treatment performed prior to the blackening treatment, and it was confirmed that the Fe-free material had a large amount of Fe oxide.

【0051】Niは853.5〜854.5eVのNiO、856.0〜857.0e
VのNi2O3と、852.5〜853.8eVのメタルのピークが検出さ
れ、メタルが主体であった。Coを含有するNo.31〜35で
は、Coピークは780.0〜781.0eVのCoO、778.2〜780.3eV
のCo3O4、779.9eVのCo2O3等酸化物と、778.1〜778.5eV
のメタルのピークが検出され、メタルが主体であった。
Ni is 853.5 to 854.5 eV NiO, 856.0 to 857.0 e
Peaks of Ni 2 O 3 of V and a metal of 852.5 to 853.8 eV were detected, and the metal was mainly contained. For Co containing Nos. 31-35, the Co peak was 780.0-781.0 eV CoO, 778.2-780.3 eV
And Co 3 O 4, etc. oxide Co 2 O 3 of 779.9eV of, 778.1~778.5EV
Was detected, and the metal was mainly contained.

【0052】表5の結果から、本発明で規定する濃度範
囲内に調整されたNo.11、21、31〜33は、原子%でC:30
%、O:50%以下を満たしており、黒化処理後の斑が認
められない。一方、No.12〜15、No.22〜25、No.34〜35
の供試材は、原子%でC:30%、O:50%を越えており、
何れも黒化処理でむらが発生している。以上の結果か
ら、本発明で規定する最表面となるようにコントロール
した材料を黒化すると酸化斑の無い黒化膜を形成できて
いることがわかり、良好な黒化膜を有するシャドウマス
クとすることができる。
From the results in Table 5, it is found that Nos. 11, 21, and 31 to 33 adjusted within the concentration range specified in the present invention are as follows:
%, O: 50% or less, and no spots are observed after the blackening treatment. On the other hand, No.12-15, No.22-25, No.34-35
The test material of C exceeds 30% in atomic% and O: 50%,
In any case, unevenness has occurred in the blackening process. From the above results, it was found that when the material controlled to be the outermost surface specified in the present invention was blackened, a blackened film without oxidation spots could be formed, and a shadow mask having a good blackened film was obtained. be able to.

【0053】[0053]

【発明の効果】本発明によれば黒化処理時の黒色度の均
一性を飛躍的に改善することができ、黒化処理特性の向
上を一段と求められるシャドウマスク用合金薄板にとっ
て欠くことのできない技術となる。
According to the present invention, the uniformity of blackness at the time of blackening can be remarkably improved, and the improvement of the blackening characteristics is indispensable for an alloy sheet for a shadow mask, which is required to be further improved. Technology.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のシャドウマスク用合金薄板を軟化焼鈍
した時の表面のオージェ分光分析装置によるBのマッピ
ングである。
FIG. 1 is a mapping of B by Auger spectroscopy on the surface of a soft alloy sheet for a shadow mask according to the present invention when it is softened and annealed.

【図2】比較用のシャドウマスク用合金薄板を軟化焼鈍
した時の表面のオージェ分光分析装置によるBのマッピ
ングである。
FIG. 2 is a mapping of B by Auger spectroscopy of the surface when a comparative alloy thin plate for a shadow mask is soft-annealed.

【図3】本発明のシャドウマスク用合金薄板を軟化焼鈍
した時に材料の表面に見られる酸化物の電子顕微鏡写真
である。
FIG. 3 is an electron micrograph of an oxide observed on the surface of a material of a shadow mask alloy sheet of the present invention when the alloy sheet is softened and annealed.

【図4】本発明のシャドウマスク用合金薄板表面のBの
ESCAプロファイルを示す図である。
FIG. 4 is a view showing an ESCA profile of B on the surface of the alloy thin plate for a shadow mask of the present invention.

【図5】比較用のシャドウマスク用合金薄板表面のBの
ESCAプロファイルを示す図である。
FIG. 5 is a view showing an ESCA profile of B on the surface of an alloy thin plate for a shadow mask for comparison.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%でNi:29〜45%を含有し、
残部は実質的にFeからなるシャドウマスク材におい
て、該シャドウマスク材の最表面を光電子分光分析装置
で測定した時、原子%でSi:1.0%以上、Mn:
0.5%以上、B:25%以下(0%を含む)、N:35
%以下であることを特徴とする黒化処理性に優れたシャ
ドウマスク用合金薄板。
1. A composition containing 29 to 45% of Ni by mass%,
The remainder is a shadow mask material substantially composed of Fe. When the outermost surface of the shadow mask material is measured by a photoelectron spectrometer, Si: 1.0% or more in atomic%, Mn:
0.5% or more, B: 25% or less (including 0%), N: 35
% Or less, which is excellent in blackening treatment properties.
【請求項2】 質量%でNi:29〜45%を含有し、
残部は実質的にFeからなるシャドウマスク材におい
て、該シャドウマスク材の最表面をオージェ電子分光分
析装置で測定した時、Bが表面に偏析した結晶粒が視野
面積率で30%以下(0%を含む)であることを特徴とす
る黒化処理性に優れたシャドウマスク用合金薄板。
2. Ni: 29 to 45% by mass%,
The remainder is a shadow mask material substantially composed of Fe. When the outermost surface of the shadow mask material is measured by an Auger electron spectrometer, crystal grains in which B segregates on the surface are 30% or less (0%) in view area ratio. And an alloy sheet for a shadow mask having excellent blackening properties.
【請求項3】 シャドウマスク材の最表面を走査型電子
顕微鏡で観察した時、半球状の酸化物が視野面積率で1
2%以上であることを特徴とする請求項1または2に記
載の黒化処理性に優れたシャドウマスク用合金薄板。
3. When the outermost surface of the shadow mask material is observed with a scanning electron microscope, a hemispherical oxide has a viewing area ratio of 1%.
The alloy thin plate for a shadow mask having excellent blackening properties according to claim 1 or 2, wherein the content is 2% or more.
【請求項4】 質量%でNi:29〜45%、Si:
0.03%以下、Mn:0.3%以下、B:0.003
%以下(0%を含む)、N:0.005%以下、残部は不
可避的不純物と実質的にFeでなることを特徴とする請
求項1乃至3の何れかに記載の黒化処理性に優れたシャ
ドウマスク用合金薄板。
4. Ni: 29 to 45% by mass%, Si:
0.03% or less, Mn: 0.3% or less, B: 0.003
% Or less (including 0%), N: 0.005% or less, and the balance consists essentially of Fe and unavoidable impurities. Excellent alloy thin plate for shadow mask.
【請求項5】 Niの一部を質量%で7%以下のCoで
置換することを特徴とする請求項4に記載の黒化処理性
に優れたシャドウマスク用合金薄板。
5. The alloy thin sheet for a shadow mask excellent in blackening treatment according to claim 4, wherein a part of Ni is replaced by Co of 7% or less by mass%.
【請求項6】 質量%でNi:29〜45%を含有し、
残部は実質的にFeからなるシャドウマスク材に黒化処
理を施し、該黒化処理後のシャドウマスク材の最表面を
光電子分光分析装置で測定した時、原子%でC:30%
以下、O:50%以下であることを特徴とするシャドウ
マスク用合金薄板。
6. Ni: 29 to 45% by mass%.
The remaining portion is subjected to blackening treatment on a shadow mask material substantially composed of Fe, and when the outermost surface of the shadow mask material after the blackening treatment is measured with a photoelectron spectrometer, C: 30% in atomic%
Hereafter, O: 50% or less, an alloy thin plate for a shadow mask,
【請求項7】 請求項1乃至6の何れかに記載のシャド
ウマスク用合金薄板を用いてなることを特徴とするシャ
ドウマスク。
7. A shadow mask using the alloy thin plate for a shadow mask according to any one of claims 1 to 6.
JP2000061439A 2000-03-07 2000-03-07 Thin alloy sheet for shadow mask, excellent in blackening treatability, and shadow mask using it Pending JP2001247939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000061439A JP2001247939A (en) 2000-03-07 2000-03-07 Thin alloy sheet for shadow mask, excellent in blackening treatability, and shadow mask using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000061439A JP2001247939A (en) 2000-03-07 2000-03-07 Thin alloy sheet for shadow mask, excellent in blackening treatability, and shadow mask using it

Publications (1)

Publication Number Publication Date
JP2001247939A true JP2001247939A (en) 2001-09-14

Family

ID=18581577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000061439A Pending JP2001247939A (en) 2000-03-07 2000-03-07 Thin alloy sheet for shadow mask, excellent in blackening treatability, and shadow mask using it

Country Status (1)

Country Link
JP (1) JP2001247939A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170096373A (en) * 2016-02-16 2017-08-24 엘지이노텍 주식회사 Metal substrate, metal mask for deposition, and oled pannel using the same
EP3257964A4 (en) * 2015-02-10 2018-08-22 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal sheet used for producing deposition mask, and manufacturing method for said metal sheet
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10233546B2 (en) 2013-09-13 2019-03-19 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US10731261B2 (en) 2013-09-13 2020-08-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by use of metal plate
US11486031B2 (en) 2013-10-15 2022-11-01 Dai Nippon Printing Co., Ltd. Metal plate
US10600963B2 (en) 2014-05-13 2020-03-24 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
US11217750B2 (en) 2014-05-13 2022-01-04 Dai Nippon Printing Co., Ltd. Metal plate, method of manufacturing metal plate, and method of manufacturing mask by using metal plate
EP3257964A4 (en) * 2015-02-10 2018-08-22 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal sheet used for producing deposition mask, and manufacturing method for said metal sheet
US10570498B2 (en) 2015-02-10 2020-02-25 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
US10612124B2 (en) 2015-02-10 2020-04-07 Dai Nippon Printing Co., Ltd. Manufacturing method for deposition mask, metal plate used for producing deposition mask, and manufacturing method for said metal sheet
CN110965020A (en) * 2015-02-10 2020-04-07 大日本印刷株式会社 Method for screening metal plate and method for manufacturing vapor deposition mask
CN110965020B (en) * 2015-02-10 2022-05-17 大日本印刷株式会社 Method for screening metal plate and method for manufacturing vapor deposition mask
KR20170096373A (en) * 2016-02-16 2017-08-24 엘지이노텍 주식회사 Metal substrate, metal mask for deposition, and oled pannel using the same
KR102590890B1 (en) * 2016-02-16 2023-10-19 엘지이노텍 주식회사 Metal substrate, metal mask for deposition, and oled pannel using the same

Similar Documents

Publication Publication Date Title
Maki et al. Galvanisability of silicon free CMnAl TRIP steels
Vanden Eynde et al. Investigation into the surface selective oxidation of dual‐phase steels by XPS, SAM and SIMS
CN109154056A (en) Fe-Ni-Cr alloy, Fe-Ni-Cr alloy strip, sheathed heater, the manufacturing method of Fe-Ni-Cr alloy and sheathed heater manufacturing method
Zhang et al. Investigation of selective oxidation during cooling of hot-rolled iron-manganese-silicon alloys
JP2001247939A (en) Thin alloy sheet for shadow mask, excellent in blackening treatability, and shadow mask using it
Oku et al. Comparison of intrinsic zero-energy loss and Shirley-type background corrected profiles of XPS spectra for quantitative surface analysis: Study of Cr, Mn and Fe oxides
Molinari et al. Influence of microstructure and chromium content on oxidation behaviour of spin cast high speed steels
JP2009293985A (en) Standard sample for quantification in glow discharge emission analysis, and glow discharge emission analysis method using the same
JP2956406B2 (en) High silicon magnetic steel sheet with excellent workability
Rakowski The Oxidation of Austenitic Stainless Steel Foils in Humidified Air
Perez et al. Surface modification of ion-implanted AISI 304 stainless steel after oxidation process: X-ray absorption spectroscopy analysis
JP3233839B2 (en) Method of manufacturing magnetic shield material for TV cathode ray tube
Kuypers et al. Depth profiling of rolled aluminium alloys by means of GDOES
Verhoeven et al. A scanning auger microscopy characterization of the internal oxidation produced on carburizing
US6641682B1 (en) Method for manufacturing an aperture grill material for color picture tube
Kang et al. Direct image observation of the initial forming of passive thin film on stainless steel surface by PEEM
JP3275291B2 (en) Method of manufacturing magnetic shield material having high magnetic permeability and high ductility
JP3647581B2 (en) Steel plate for mask frame of shadow mask type color picture tube
JPH0676650B2 (en) Fe-Ni alloy for shadow mask
Nakai et al. Effect of impurity sulfur on the formation of Cr2O3 and SiO2 at the early stage of steam oxidation in both ferittic and austenitic steels
JP4164782B2 (en) Fe-Ni alloy thin plate excellent in surface treatment and shadow mask using the same
JPH01195630A (en) Blackening of electron component for color cathode-ray tube
JP2005298968A (en) Steel sheet for magnetic shielding and its production method
JP3627840B2 (en) Steel plate for TV mask frame
EP1122327B1 (en) Aperture grill material for color picture tube, production method thereof, aperture grill and picture tube