JP3275291B2 - Method of manufacturing magnetic shield material having high magnetic permeability and high ductility - Google Patents

Method of manufacturing magnetic shield material having high magnetic permeability and high ductility

Info

Publication number
JP3275291B2
JP3275291B2 JP22060296A JP22060296A JP3275291B2 JP 3275291 B2 JP3275291 B2 JP 3275291B2 JP 22060296 A JP22060296 A JP 22060296A JP 22060296 A JP22060296 A JP 22060296A JP 3275291 B2 JP3275291 B2 JP 3275291B2
Authority
JP
Japan
Prior art keywords
cold rolling
annealing
shield material
rolling
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22060296A
Other languages
Japanese (ja)
Other versions
JPH1046249A (en
Inventor
秋男 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22060296A priority Critical patent/JP3275291B2/en
Publication of JPH1046249A publication Critical patent/JPH1046249A/en
Application granted granted Critical
Publication of JP3275291B2 publication Critical patent/JP3275291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、通常ブラウン管と
呼ばれている受像管(Cathode−RayTub
e)の内部に装着される高透磁率・高延性を有する磁気
シールド材の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode ray tube (Cathode-RayTub) which is usually called a cathode ray tube.
The present invention relates to a method for producing a magnetic shield material having high magnetic permeability and high ductility to be mounted inside e).

【0002】[0002]

【従来の技術】カラーブラウン管の内部には、一般に地
磁気その他の外部撹乱磁場が電子ビームに影響するのを
避けるため、漏斗状の磁気シールド部材が設けられてい
る。この磁気シールド部材の素材として用いられる強磁
性体である鋼板(鋼帯)には、地磁気(約0.35O
e:エルステッド)のような低磁場において高い透磁率
を有すること、成形加工性が良好であること、カラーブ
ラウン管使用中に発生する熱を外部へ効果的に放射でき
るよう熱放射率が高く、かつガス放出の少ないことなど
が要求される。
2. Description of the Related Art In general, a funnel-shaped magnetic shield member is provided inside a color cathode-ray tube in order to prevent geomagnetic or other externally disturbing magnetic fields from affecting an electron beam. A ferromagnetic steel plate (steel strip) used as a material of the magnetic shield member has a geomagnetism (about 0.35O).
e: high magnetic permeability in a low magnetic field such as Oersted), good molding workability, high heat emissivity to effectively radiate the heat generated during use of the color cathode ray tube to the outside, and It is required that the gas emission is small.

【0003】最近のカラーブラウン管においては、動画
像用ディスプレイとしての用途に加え、静止画像用の用
途が増加している。静止画像用の受像管では、動画像用
以上に地磁気等の外部磁場の影響を大きく受けることか
ら、受像管内部に装着される磁気シールド部材には、よ
り比透磁率(0.35Oeの下で)の大きなものが要求
されるようになってきている。
[0003] In recent color cathode ray tubes, applications for still images are increasing in addition to uses as displays for moving images. Since the picture tube for a still image is more affected by an external magnetic field such as terrestrial magnetism than that for a moving image, the magnetic shield member mounted inside the picture tube has a higher relative permeability (below 0.35 Oe). ) Is being demanded.

【0004】従来、受像管用磁気シールド材は、高透磁
率のものを得るべく、例えば、次のような方法で製造さ
れていた。すなわち、低炭素アルミキルド鋼の連続鋳造
スラブを熱間圧延、酸洗後一次冷間圧延してオープンコ
イル焼鈍法による脱炭処理(OCA脱炭焼鈍)によって
C:0.001%以下の極低炭素とし、次いで圧下率1
0%前後の軽圧下の二次冷間圧延後、バッチ焼鈍によっ
て結晶粒粗大化処理(粒度番号が1程度)を行い、その
後最終冷間圧延を行うという方法で磁気シールド材を製
造していた。
Conventionally, a magnetic shield material for a picture tube has been manufactured by, for example, the following method in order to obtain a material having a high magnetic permeability. That is, a continuous cast slab of low carbon aluminum killed steel is hot-rolled, pickled and then cold-rolled, and decarbonized by open coil annealing (OCA decarburized annealing) to obtain an extremely low carbon of 0.001% or less. And then the reduction rate is 1
A magnetic shield material was manufactured by a method of performing a coarse graining treatment (grain number: about 1) by batch annealing after secondary cold rolling under light pressure of about 0%, and then performing final cold rolling. .

【0005】次に上記磁気シールド材は、所定の受像管
用磁気シールド材の形状に成形加工したのち、還元性雰
囲気中で磁気シールド材を650〜800℃で30〜6
0分間加熱する磁気特性回復、向上のための磁性焼鈍を
行い、しかるのち、防錆および熱放射率向上のために磁
気シールド材表面に黒化処理が施される。黒化処理は、
例えば、水蒸気添加空気のような湿潤雰囲気および/ま
たは二酸化炭素等の酸化性ガス雰囲気中で磁気シールド
材を560〜600℃で5〜20分間加熱することによ
り、その表面に約1〜6μmのマグネタイト(Fe
34)を主体とした黒化膜を形成する。
[0005] Next, the above-mentioned magnetic shield material is formed into a shape of a predetermined magnetic shield material for a picture tube, and then the magnetic shield material is heated at 650 to 800 ° C in a reducing atmosphere at 30 to 6 ° C.
Magnetic annealing is performed to recover and improve the magnetic properties by heating for 0 minutes. Thereafter, the surface of the magnetic shield material is subjected to a blackening treatment to prevent rust and improve the thermal emissivity. The blackening process is
For example, by heating the magnetic shield material at 560 to 600 ° C. for 5 to 20 minutes in a humid atmosphere such as steam-added air and / or an oxidizing gas atmosphere such as carbon dioxide, about 1 to 6 μm of magnetite (Fe
A blackening film mainly composed of 3 O 4 ) is formed.

【0006】この磁気シールド材表面への黒化膜の形成
においては、一般に鋼の成分が大きく影響することが知
られている。特に、鋼中にSiやAlなどの酸化物生成
元素が存在する場合は、マグネタイトの他にヘマタイト
(Fe23)が多く生成し易く、黒化膜の組織が粗く、
緻密性に欠ける傾向があり、受像管内で黒化膜が剥離す
るおそれがある。このため、従来の磁気シールド材の製
造方法においては、例えば、特開昭59−173219
号公報、特開昭59−172431号公報、特公平6−
13730号公報に開示されているように、リムド鋼を
使用したものが多く提案されている。
It is generally known that the formation of a blackened film on the surface of a magnetic shield material is largely affected by the composition of steel. In particular, when oxide-forming elements such as Si and Al are present in steel, hematite (Fe 2 O 3 ) is easily generated in addition to magnetite, and the structure of the blackened film is coarse.
It tends to lack denseness, and the blackened film may be peeled off in the picture tube. For this reason, in a conventional method for manufacturing a magnetic shield material, for example, Japanese Patent Application Laid-Open No. 59-173219
JP-A-59-172431, Japanese Patent Publication No.
As disclosed in Japanese Patent Publication No. 13730, many devices using rimmed steel have been proposed.

【0007】一方、近年の製鋼法は、製鋼技術の発展や
造塊法の合理化によって、鋼塊法からコストの易い連続
鋳造法に移行しており、鋼塊法によるリムド鋼はその生
産が極めて限定されている。このため、リムド鋼を用い
た磁気シールド材は、その製造が次第に困難になりつつ
ある。しかも、リムド鋼を用いた磁気シールド材は、受
像管用磁気シールド材として十分な性能も認められない
という問題がある。さらに、リムド鋼を用いて磁気シー
ルド材を製造する場合は、中間工程でいわゆるオープン
コイル焼鈍法による脱炭処理を施す必要があるため、そ
の分のコスト上昇は避けられない。
On the other hand, in recent years, the steelmaking method has shifted from the steel ingot method to the continuous casting method, which is easy in cost, due to the development of steelmaking technology and the rationalization of the ingot making method. Limited. For this reason, the manufacture of a magnetic shield material using rimmed steel is becoming increasingly difficult. Moreover, there is a problem that a magnetic shield material using rimmed steel does not have sufficient performance as a magnetic shield material for a picture tube. Further, in the case of manufacturing a magnetic shield material using rimmed steel, it is necessary to perform a decarburization treatment by a so-called open coil annealing method in an intermediate step, so that an increase in cost is inevitable.

【0008】他方、オープンコイル焼鈍法によるアルミ
キルド鋼を用いる上記従来の受像管用磁気シールド材の
製造においては、オープンコイル焼鈍法による脱炭処
理、軽圧下冷間圧延、結晶粒粗大化焼鈍、冷間圧延とい
う一連の複雑な工程を経るため、通常の冷延鋼帯製造工
程に著しい支障を来たすことがあると共に、コスト高に
なるという問題を有していた。また、この受像管用磁気
シールド材は、結晶粒が粗大化しているため、強加工に
耐えられず、その結果、インナーシールド材の加工方法
も限定されるという問題があり、さらに、黒化膜の組織
が粗く、緻密性が劣るという問題があった。
On the other hand, in the production of the above-mentioned conventional magnetic shield material for a picture tube using aluminum-killed steel by open coil annealing, decarburization treatment by open coil annealing, cold rolling under light pressure, grain coarsening annealing, cold Since the rolling process involves a series of complicated processes, such as a rolling process, there is a problem that a normal cold-rolled steel strip manufacturing process may be significantly hindered, and the cost may be increased. In addition, since the crystal grains of the picture tube magnetic shield material are coarse, they cannot withstand strong processing, and as a result, there is a problem that the processing method of the inner shield material is also limited. There was a problem that the structure was coarse and the denseness was poor.

【0009】最近の製鋼法においては、真空脱ガス技術
の進歩と製鋼脱酸用Al使用量の最適化によって、Al
を殆ど含まない極低炭素のキルド鋼(以下「未脱酸キル
ド鋼」という)を連続鋳造法により得ることが可能とな
った。この未脱酸キルド鋼は、オープンコイル焼鈍法に
よる脱炭処理を行う必要がなく、しかも、素材としての
鋼片が生産効率の高い連続鋳造法で製造できるため、リ
ムド鋼を用いた場合に比較し、低コストで磁気シールド
材を製造することができる。
In recent steelmaking methods, advances in vacuum degassing technology and optimization of the amount of Al used for steelmaking deoxidation have led to
It has become possible to obtain a very low carbon killed steel (hereinafter, referred to as “non-deoxidized killed steel”) containing little Al by a continuous casting method. This non-deoxidized killed steel does not need to be decarburized by the open coil annealing method, and the billet as a raw material can be manufactured by continuous casting with high production efficiency. In addition, the magnetic shield material can be manufactured at low cost.

【0010】[0010]

【発明が解決しようとする課題】前記未脱酸キルド鋼
は、リムド鋼がオープンコイル焼鈍法による脱炭処理を
行うのに対し、オープンコイル焼鈍法による脱炭処理を
必要としないため、オープンコイル焼鈍法による脱炭処
理を施されたリムド鋼に比較して炭素量が多くなる。こ
のため、未脱酸キルド鋼の場合は、オープンコイル焼鈍
法による脱炭処理を施されたリムド鋼と同一の製造工程
では結晶粒が微細化してしまって比透磁率がオープンコ
イル焼鈍法による脱炭処理を施されたリムド鋼から製造
したものに劣ることとなる。
The undeoxidized killed steel does not require the decarburization treatment by the open coil annealing method, whereas the rimmed steel does not require the decarburization treatment by the open coil annealing method. The carbon content is larger than that of rimed steel that has been decarburized by the annealing method. For this reason, in the case of non-deoxidized killed steel, in the same manufacturing process as that of rimed steel subjected to decarburization treatment by open coil annealing, crystal grains are refined and the relative magnetic permeability is reduced by open coil annealing. It is inferior to that produced from charcoal-treated rimmed steel.

【0011】本発明の目的は、前記従来技術の問題点を
解消し、受像管用磁気シールドに適した磁気シールド材
を、黒化膜の密着性を阻害するアルミキルド鋼を使用す
ることなく、しかも、リムド鋼のようにコスト上昇を招
くオープンコイル焼鈍法による脱炭処理を施すことな
く、オープンコイル焼鈍法により脱炭処理したリムド鋼
と同等以上の比透磁率が得られ、かつ、加工性に優れた
磁気シールド材を低コストで製造できる高透磁率・高延
性を有する磁気シールド材の製造方法を提供することに
ある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a magnetic shield material suitable for a magnetic shield for a picture tube without using aluminum-killed steel which hinders the adhesion of a blackening film, and Relative permeability equal to or higher than that of rimed steel decarburized by open coil annealing can be obtained without decarburization by open coil annealing which leads to cost increase like rimed steel, and excellent workability It is an object of the present invention to provide a method of manufacturing a magnetic shield material having high magnetic permeability and high ductility, which can manufacture a magnetic shield material at a low cost.

【0012】[0012]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく未脱酸キルド鋼を用い、特に受像管等のイン
ナーシールド材に適した高透磁率と高加工性とを合わせ
もつ磁気シールド材、具体的には0.35 Oeでの比
透磁率(以下「比透磁率(0.35 Oe)」という)
が1000以上で、かつ、JIS Z 2201に規定
の金属材料引張試験片の13B号試験片を用い、JIS
Z 2241に規定の金属材料引張試験方法により測
定した引張伸びが35%以上である磁気シールド材を製
造すべく、種々試験検討を重ねた結果、下記のような知
見を得た。 (1) 冷延鋼帯の焼鈍後に平坦度および仕上がり改善
のために行う調質圧延によって透磁率が著しく低下する
ため、例えば、受像管に組込んだ後の磁気シールド材に
おいて比透磁率(0.35 Oe)750以上を得るに
は焼鈍直後の比透磁率(0.35 Oe)を1000以
上とする必要があること。 (2) 焼鈍直後の比透磁率(0.35 Oe)100
0以上の高透磁率は、図2に示すとおり、再結晶粒度が
JIS G 0552の鋼のフェライト結晶粒度試験方
法に規定の粒度番号7.5以下の粗粒側で得られるこ
と。 (3) JIS Z 2201に規定の金属材料引張試
験片の13B号試験片を用い、JIS Z 2241に
規定の金属材料引張試験方法により測定した引張伸びが
35%以上の高伸びは、図3に示すとおり、再結晶粒度
がJIS G 0552の鋼のフェライト結晶粒度試験
方法に規定の粒度番号6.5以上の細粒側で得られるこ
と。 (4) このような理想的な再結晶粒度は、最終冷間圧
延前の中間冷間圧延における圧下率と最終冷間圧延での
圧下率とによって決定され、必ずしもオープンコイル焼
鈍法による脱炭処理を必要とせず、冷間圧延スケジュー
ルによって調整し得ること。
In order to achieve the above object, the present inventor has used non-deoxidized killed steel and has both high magnetic permeability and high workability suitable for an inner shield material such as a picture tube. Magnetic shield material, specifically, relative permeability at 0.35 Oe (hereinafter referred to as “relative permeability (0.35 Oe)”)
Using a No. 13B test piece of a metal material tensile test specimen having a JIS of 1000 or more and specified in JIS Z 2201
Various tests were conducted to produce a magnetic shielding material having a tensile elongation of 35% or more as measured by a metal material tensile test method specified in Z 2241. As a result, the following findings were obtained. (1) Since the magnetic permeability is significantly reduced by temper rolling performed to improve flatness and finish after annealing of a cold-rolled steel strip, for example, the relative magnetic permeability (0 .35 Oe) In order to obtain 750 or more, the relative magnetic permeability (0.35 Oe) immediately after annealing must be 1000 or more. (2) Relative permeability immediately after annealing (0.35 Oe) 100
As shown in FIG. 2, a high magnetic permeability of 0 or more must be obtained on the coarse grain side having a recrystallized grain size of 7.5 or less specified in the method for testing ferrite grain size of steel according to JIS G 0552. (3) High elongation with a tensile elongation of 35% or more as measured by a metal material tensile test method specified in JIS Z 2241 using a metal material tensile test specimen No. 13B specified in JIS Z 2201 is shown in FIG. As shown, the recrystallized grain size must be obtained on the fine grain side having a grain size number of 6.5 or more specified in the ferrite grain size test method for steel of JIS G 0552. (4) Such an ideal recrystallized grain size is determined by the rolling reduction in the intermediate cold rolling before the final cold rolling and the rolling reduction in the final cold rolling, and is not necessarily decarburization treatment by the open coil annealing method. And can be adjusted by the cold rolling schedule.

【0013】本出願人は、上記の知見に基づき、C:
0.005%以下、Si:0.03%以下、Mn:0.
15〜0.5%、Al:0.003%以下、S:0.0
1%以下を含有し、残部がFeおよび不可避的不純物か
らなる未脱酸キルド鋼を連続鋳造によりスラブとなし、
このスラブに通常の熱間圧延を施したのち、720℃〜
850℃の範囲で熱延板焼鈍を行い、次いで中間焼鈍を
挟み2回以上の冷間圧延を施す際に、最終冷間圧延前の
中間焼鈍後の結晶粒度を粒度番号(JIS G0552
に規定する比較法で測定した場合の粒度番号)4.0〜
6.0のものに調整したのち、最終圧下率40%〜75
%で冷間圧延することにより、比透磁率に優れた磁気シ
ールド材を製造できることを見い出し、既に特願平7−
67440号として特許出願している。
[0013] Based on the above findings, the present applicant has developed C:
0.005% or less, Si: 0.03% or less, Mn: 0.
15-0.5%, Al: 0.003% or less, S: 0.0
An undeoxidized killed steel containing 1% or less, with the balance being Fe and unavoidable impurities, is converted into a slab by continuous casting.
After subjecting this slab to normal hot rolling, 720 ° C.
When hot-rolled sheet annealing is performed in the range of 850 ° C. and then cold rolling is performed twice or more with intermediate annealing interposed, the crystal grain size after intermediate annealing before final cold rolling is determined by the grain size number (JIS G0552).
Particle size number when measured by the comparison method specified in Section 4.0)
After adjusting to 6.0, final rolling reduction 40% to 75%
It has been found that a magnetic shield material having excellent relative magnetic permeability can be manufactured by cold rolling at a ratio of 0.1%.
Patent application No. 67440.

【0014】上記特願平7−67440号に開示の方法
は、熱延板焼鈍を行うため、0.35 Oeでの比透磁
率μ≧1000を得ようとすれば、超粗粒化が要求さ
れ、製品は混粒となって延性の確保が困難である。ま
た、特願平7−67440号に開示の方法は、結晶粒度
の調整は、最終的には冷間圧延での圧下率のみでしかで
きないため、バラツキが生じることとなる。
According to the method disclosed in Japanese Patent Application No. 7-67440, in order to perform hot-rolled sheet annealing, if a relative magnetic permeability μ ≧ 1000 at 0.35 Oe is to be obtained, ultra-coarse graining is required. Therefore, it is difficult to ensure ductility because the product is mixed. Further, in the method disclosed in Japanese Patent Application No. 7-67440, the adjustment of the crystal grain size can be finally performed only by the rolling reduction in the cold rolling, so that a variation occurs.

【0015】本発明者は、さらに試験研究を重ねた結
果、未脱酸キルド鋼の連続鋳造スラブを熱間圧延したの
ち、熱延板焼鈍を行わなくても、中間焼鈍を挟み2回以
上の冷間圧延を施すに際し、最終冷間圧延前に圧下率2
0〜50%で中間冷間圧延して中間焼鈍した後、圧下率
40〜75%で最終冷間圧延したのち仕上焼鈍すること
によって、粒度番号6.5以上7.5以下に制御でき、
引張伸びが35%以上の高伸びを確保できると共に、焼
鈍直後の比透磁率(0.35 Oe)1000以上の高
透磁率を得ることができることを確認し、この発明に到
達した。
As a result of further study, the inventor of the present invention has found that, after hot rolling a continuous cast slab of undeoxidized killed steel, two or more times of intermediate annealing are performed without performing hot-rolled sheet annealing. When performing cold rolling, the rolling reduction is 2 before the final cold rolling.
After intermediate cold rolling at 0 to 50% and intermediate annealing, final cold rolling at a reduction ratio of 40 to 75% and then finish annealing can be performed to control the grain size number to 6.5 or more and 7.5 or less,
It has been confirmed that a high elongation of 35% or more in tensile elongation can be ensured and a high magnetic permeability of not less than 1,000 (0.35 Oe) immediately after annealing can be obtained.

【0016】本発明の磁気シールド材の製造方法は、
C:0.005%以下、Si:0.03%以下、Mn:
0.15〜0.5%、Al:0.003%以下、S:
0.01%以下を含有し、残部がFeおよび不可避的不
純物からなる未脱酸キルド鋼を連続鋳造によりスラブと
なし、このスラブに通常の熱間圧延を施したのち、中間
焼鈍を挟み2回以上の冷間圧延を施すに際し、最終冷間
圧延前に圧下率20〜50%で中間冷間圧延して中間焼
鈍した後、圧下率40〜75%で最終冷間圧延したのち
仕上焼鈍することとしている。このように、C:0.0
05%以下、Si:0.03%以下、Mn:0.15〜
0.5%、Al:0.003%以下、S:0.01%以
下を含有し、残部がFeおよび不可避的不純物からなる
未脱酸キルド鋼を連続鋳造によりスラブとなし、このス
ラブに通常の熱間圧延を施したのち、中間焼鈍を挟み2
回以上の冷間圧延を施すに際し、最終冷間圧延前に圧下
率20〜50%で中間冷間圧延して中間焼鈍した後、圧
下率40〜75%で最終冷間圧延したのち仕上焼鈍する
ことによって、仕上焼鈍後の再結晶粒度をJIS G0
552の鋼のフェライト結晶粒度試験方法に規定の粒度
番号6.5以上7.5以下に制御でき、引張伸びが35
%以上の高伸びを確保できると共に、焼鈍直後の比透磁
率(0.35 Oe)1000以上の高透磁率を得るこ
とができる。
The method for producing a magnetic shield material of the present invention comprises:
C: 0.005% or less, Si: 0.03% or less, Mn:
0.15 to 0.5%, Al: 0.003% or less, S:
An undeoxidized killed steel containing 0.01% or less, with the balance being Fe and unavoidable impurities, is made into a slab by continuous casting, and this slab is subjected to ordinary hot rolling, and then subjected to intermediate annealing twice. In performing the above cold rolling, before the final cold rolling, intermediate cold rolling is performed at a reduction rate of 20 to 50% and intermediate annealing is performed, and then final cold rolling is performed at a reduction rate of 40 to 75%, and then finish annealing is performed. And Thus, C: 0.0
05% or less, Si: 0.03% or less, Mn: 0.15 to
An undeoxidized killed steel containing 0.5%, Al: 0.003% or less, S: 0.01% or less, and the balance being Fe and unavoidable impurities is formed into a slab by continuous casting. After hot rolling, and intermediate annealing
When performing cold rolling more than once, before the final cold rolling, intermediate cold rolling is performed at a reduction rate of 20 to 50% and intermediate annealing is performed, and then final cold rolling is performed at a reduction rate of 40 to 75%, and then finish annealing is performed. This makes it possible to reduce the recrystallized grain size after finish annealing to JIS G0.
552 can be controlled to a grain size number of 6.5 or more and 7.5 or less specified in the ferrite crystal grain size test method, and the tensile elongation is 35
% Or more, and a high magnetic permeability of not less than 1000 (0.35 Oe) relative permeability immediately after annealing can be obtained.

【0017】[0017]

【発明の実施の形態】本発明の磁気シールド材の製造方
法は、図1に示すとおり、真空脱ガス処理したC:0.
005%以下、Si:0.03%以下、Mn:0.15
〜0.5%、Al:0.003%以下、S:0.01%
以下を含有し、残部がFeおよび不可避的不純物からな
る未脱酸キルド鋼を連続鋳造した極低炭素鋼スラブを、
通常の熱間圧延を施して熱延鋼帯としたのち、中間焼鈍
を挟み2回以上(図1では3回)の冷間圧延を施すが、
その際に最終冷間圧延前に圧下率20〜50%で中間冷
間圧延して中間焼鈍した後、圧下率40〜75%で最終
冷間圧延したのち仕上焼鈍して所定板厚の素材とするこ
とによって、内部歪の除去された磁気特性ならびに延性
に優れた所定板厚の素材が得られる。なお、冷間圧延工
程は、中間焼鈍を挟み3回以上行ってもよく、また、最
終焼鈍と成形加工の両工程間に平坦度および仕上がり改
善のための調質圧延を行うこともできる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As shown in FIG. 1, a method of manufacturing a magnetic shield material according to the present invention is shown in FIG.
005% or less, Si: 0.03% or less, Mn: 0.15
0.5%, Al: 0.003% or less, S: 0.01%
An ultra-low carbon steel slab containing the following, with the remainder being continuously cast undeoxidized killed steel consisting of Fe and unavoidable impurities,
After performing normal hot rolling to form a hot-rolled steel strip, cold rolling is performed two or more times (three times in FIG. 1) with intermediate annealing therebetween.
At that time, before the final cold rolling, intermediate cold rolling is performed at a reduction ratio of 20 to 50% and intermediate annealing is performed. After final cold rolling is performed at a reduction ratio of 40 to 75%, finish annealing is performed to obtain a material having a predetermined thickness. As a result, a material having a predetermined thickness excellent in magnetic properties and ductility from which internal strain has been removed can be obtained. The cold rolling step may be performed three times or more with the intermediate annealing interposed therebetween, or may be subjected to temper rolling for improving flatness and finish between both the final annealing step and the forming step.

【0018】このようにして得られた素材は、図1に示
すとおり、次いで受像管用インナーシールドなどの所定
の磁気シールド材の形状に成形加工され、さらに、水蒸
気またはCO2等の酸化雰囲気中で黒化処理を施すこと
によって、磁気シールド材表面への黒化膜の形成と内部
歪の除去が行われる。その場合、本発明では、前記した
とおり最終冷間圧延前の中間冷間圧延ならびに最終冷間
圧延における圧下率を調整することにより、その後の中
間焼鈍ならびに最終焼鈍において適正な粒径の再結晶粒
が得られ、黒化処理後の比透磁率(0.35 Oe)1
000以上を確保することができる。このようにして製
造された磁気シールド材は、オープンコイル焼鈍法によ
る脱炭処理を行わなくても、その後の黒化処理によっ
て、オープンコイル焼鈍法により脱炭処理したキルド鋼
やオープンコイル焼鈍法により脱炭処理したリムド鋼か
ら製造した磁気シールド材の磁気特性を凌駕し、同時に
高度の加工性を有する受像管用磁気シールド材が得られ
る。
The material thus obtained is then formed into a predetermined magnetic shielding material such as an inner shield for a picture tube, as shown in FIG. 1, and further processed in an oxidizing atmosphere such as water vapor or CO 2. By performing the blackening process, a blackened film is formed on the surface of the magnetic shield material and the internal strain is removed. In this case, in the present invention, by adjusting the rolling reduction in the intermediate cold rolling before the final cold rolling and the final cold rolling as described above, the recrystallized grains having an appropriate grain size in the subsequent intermediate annealing and final annealing. And the relative magnetic permeability (0.35 Oe) 1 after the blackening treatment
000 or more can be secured. The magnetic shield material manufactured in this manner is not subjected to decarburization by the open coil annealing method, but is not subjected to the subsequent blackening treatment, but to the killed steel decarburized by the open coil annealing method or to the open coil annealing method. A magnetic shield material for a picture tube that surpasses the magnetic properties of a magnetic shield material manufactured from decarburized rimmed steel and at the same time has a high degree of workability can be obtained.

【0019】さらに、本発明においては、酸素と強い親
和性を有するSi、Mn、Al等を所定値以下に制限し
た未脱酸キルド鋼を原料として使用したことによって、
黒化処理の際にヘマタイト等の酸化物を形成しないの
で、磁気シールド材の下部または周辺に黒化ムラや密着
性の劣る黒化膜が形成されることもない。
Further, in the present invention, the use of undeoxidized killed steel in which Si, Mn, Al and the like having a strong affinity for oxygen are limited to a predetermined value or less, as a raw material,
Since no oxide such as hematite is formed during the blackening treatment, blackening unevenness and a blackened film with poor adhesion are not formed below or around the magnetic shield material.

【0020】本発明において、鋼成分を上記範囲に限定
した理由は下記のとおりである。Cは多いと再結晶粒の
成長を阻害し、透磁率を低下させるので、0.005%
以下にする必要がある。Siは非金属介在物の主要な構
成因子をなしており、この非金属介在物の存在は磁気特
性を劣化させ、かつ、黒化膜の密着性を劣化させるので
少ない方が望ましいが、耐火物からの混入が不可避であ
るため、0.03%以下とした。Mnは0.15%未満
では熱間脆性が起こり、熱間圧延が行い難く、0.5%
を超えると鋼帯が硬化し、プレス成形性が悪化すると共
に、黒化膜にヘマタイト(Fe23)が生成し、密着性
を低下させるので、0.15〜0.5%とした。Alは
多いと黒化処理時において結晶粒成長を阻害し、磁気特
性に悪影響を与え、かつ、黒化膜の密着性を劣化させる
ので0.003%以下とした。Sは硫化物系介在物がS
iと同様に磁気特性を劣化させる傾向があり、また、熱
間加工性も悪くするので少ない方がよいので、0.01
%以下とした。
In the present invention, the reason why the steel component is limited to the above range is as follows. If the content of C is large, it inhibits the growth of recrystallized grains and lowers the magnetic permeability.
It must be: Si is a major component of non-metallic inclusions, and the presence of the non-metallic inclusions degrades magnetic properties and the adhesion of the blackened film. From 0.03% or less, since it is unavoidable to mix them in from water. If Mn is less than 0.15%, hot brittleness occurs, making it difficult to perform hot rolling.
The steel strip is hardened exceeds, the press formability is deteriorated, hematite (Fe 2 O 3) is generated blackened film, as it reduces the adhesion was from 0.15 to 0.5%. If the content of Al is large, it inhibits the growth of crystal grains during the blackening treatment, adversely affects the magnetic properties, and deteriorates the adhesion of the blackened film. S is sulfide-based inclusion
As in the case of i, the magnetic properties tend to deteriorate, and the hot workability also deteriorates.
% Or less.

【0021】また、本発明において最終冷間圧延前の中
間冷間圧延における圧下率を20〜50%としたのは、
20%未満では中間焼鈍により超粗大粒が発生し、最終
冷間圧延における圧下率をいかに調整しても再結晶粒が
粗大粒、細粒の混粒度の大きいものとなって延性の確保
が困難となり、また、50%を超えると最終冷間圧延に
おける圧下率をいかに調整しても再結晶粒が細粒とな
り、透磁率の確保が困難となるからである。なお、この
最終冷間圧延前の中間冷間圧延における圧下率は、望ま
しくは30〜40%である。
Further, in the present invention, the rolling reduction in the intermediate cold rolling before the final cold rolling is set to 20 to 50%,
If it is less than 20%, ultra-coarse grains are generated by intermediate annealing, and the recrystallized grains have a large mixed grain size of coarse grains and fine grains, and it is difficult to secure ductility even if the rolling reduction in the final cold rolling is adjusted no matter how much. Also, if it exceeds 50%, the recrystallized grains will be fine and it will be difficult to secure the magnetic permeability, regardless of how the rolling reduction in the final cold rolling is adjusted. The rolling reduction in the intermediate cold rolling before the final cold rolling is desirably 30 to 40%.

【0022】さらに、本発明において最終冷間圧延にお
ける圧下率を40〜75%としたのは、40%未満では
最終冷間圧延前の中間冷間圧延における圧下率を調整し
て中間焼鈍し、再結晶粒を適正均一粒としたものであっ
ても、最終焼鈍での再結晶粒が粗大粒となって延性の確
保が困難となり、また、75%を超えると逆に最終焼鈍
での再結晶粒が細粒となり、透磁率の確保が困難となる
からである。
Further, in the present invention, the reduction ratio in the final cold rolling is set to 40 to 75%. If the reduction ratio is less than 40%, the intermediate annealing is performed by adjusting the reduction ratio in the intermediate cold rolling before the final cold rolling. Even if the recrystallized grains are appropriately uniform, the recrystallized grains in the final annealing become coarse grains, making it difficult to ensure ductility. If it exceeds 75%, conversely, the recrystallization in the final annealing This is because the grains become fine and it becomes difficult to secure magnetic permeability.

【0023】[0023]

【実施例】【Example】

実施例1 製鋼段階で真空脱ガス処理した表1に示す化学組成の未
脱酸キルド鋼を連続鋳造してスラブとなし、熱間圧延に
おける加熱温度は可能な限り低温とし、仕上温度は変態
点以下800℃前後で熱間圧延して600℃前後で巻取
って厚さ2.30mmの熱延鋼帯とした。この熱延鋼帯
を表2に示すとおり、一次冷間圧延、一次連続焼鈍、中
間冷間圧延、中間箱焼鈍、最終冷間圧延、最終連続焼鈍
からなる冷間圧延工程の中間冷間圧延の圧下率を10〜
60%に変化させて冷間圧延し、板厚0.15mmの極
低炭素冷延鋼帯を得た。この各極低炭素冷延鋼帯からJ
IS C 2531の鉄ニッケル磁性合金板および条に
規定のリング試験片(外径45mm、内径33mm)を
打抜き、各リング試験片にCO2:12%、残部窒素、
水素、COからなる雰囲気中、590℃で10分間の黒
化処理を施したうえで、直流磁化による比透磁率(0.
35Oe)を測定すると共に、温度90℃での熱放射率
の測定と、黒化膜の耐剥離性の試験を行った。また、各
極低炭素冷延鋼帯からJIS Z 2201の金属材料
引張試験片に規定の13B号試験片を切出し、JIS
Z 2241に規定の金属材料引張試験方法により引張
伸びを測定した。その結果を表3に示す。なお、熱放射
率は、試験片の熱放射の輝度(あるいは発散度)と、同
温度の黒体の熱放射の輝度(あるいは発散度)との比を
示す。また、黒化膜の耐剥離性を示す黒化膜密着性剥離
限界ρ(mm)については、所定厚みのゲージ板を間に
挟んで試験片を180°折り曲げ、その折り曲げ部にお
いて試験片表面の黒化膜の剥離が生じた時のゲージ板の
厚みの値から簡易的に曲げ半径を求めた。
Example 1 Undeoxidized killed steel having the chemical composition shown in Table 1 subjected to vacuum degassing in the steelmaking stage was continuously cast into a slab, the heating temperature in hot rolling was as low as possible, and the finishing temperature was the transformation point. Thereafter, it was hot-rolled at about 800 ° C. and wound up at about 600 ° C. to obtain a hot-rolled steel strip having a thickness of 2.30 mm. As shown in Table 2, this hot-rolled steel strip was subjected to a primary cold rolling, a primary continuous annealing, an intermediate cold rolling, an intermediate box annealing, a final cold rolling, and an intermediate cold rolling in a cold rolling process including a final continuous annealing. The rolling reduction is 10
Cold rolling was performed while changing the rolling rate to 60% to obtain a very low carbon cold rolled steel strip having a thickness of 0.15 mm. From each of these extremely low carbon cold rolled steel strips,
A specified ring test piece (outer diameter: 45 mm, inner diameter: 33 mm) was punched out from an iron-nickel magnetic alloy plate and a strip of IS C 2531, and CO 2 : 12%, the remaining nitrogen,
After subjecting to a blackening treatment at 590 ° C. for 10 minutes in an atmosphere composed of hydrogen and CO, the relative magnetic permeability (0.
35Oe), a thermal emissivity measurement at a temperature of 90 ° C., and a test for the peeling resistance of the blackened film were performed. In addition, a specified No. 13B test piece was cut out from each ultra-low carbon cold rolled steel strip into a tensile test piece of a metal material of JIS Z 2201, and the test piece was subjected to JIS.
The tensile elongation was measured by a metal material tensile test method specified in Z2241. Table 3 shows the results. The thermal emissivity indicates the ratio of the luminance (or divergence) of the heat radiation of the test piece to the luminance (or divergence) of the heat radiation of the black body at the same temperature. Regarding the blackening film adhesion peeling limit ρ (mm) indicating the peeling resistance of the blackening film, the test piece was bent 180 ° with a gauge plate of a predetermined thickness interposed therebetween, and the surface of the test piece was bent at the bent portion. The bending radius was easily obtained from the value of the thickness of the gauge plate when the blackening film was peeled off.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】表2、表3に示すとおり、最終冷間圧延前
の中間冷間圧延における圧下率が本発明の範囲内の20
〜50%で、最終冷間圧延における圧下率が本発明の範
囲内の60%の試験No.2、3の本発明例の場合は、
0.35 Oeでの比透磁率は1150以上、引張伸び
は36以上と、高透磁率と高延性を備え、しかも、熱放
射率、黒化膜密着性剥離限界に優れた磁気シールド材の
得られることが判明した。これに対し、最終冷間圧延前
の中間冷間圧延における圧下率が本発明の範囲外の10
%の試験No.1の比較例の場合は、0.35 Oeで
の比透磁率は1100と高透磁率を示すが、引張伸びは
25%と低い値を示している。また、最終冷間圧延前の
中間冷間圧延における圧下率が本発明の範囲外の60%
の試験No.4の場合は、引張伸びは43%と高延性を
有しているが、0.35 Oeでの比透磁率は750と
低い値を示している。
As shown in Tables 2 and 3, the rolling reduction in the intermediate cold rolling before the final cold rolling was within the range of the present invention.
5050%, and the rolling reduction in the final cold rolling was 60% within the range of the present invention. In the case of a few examples of the present invention,
A magnetic shield material having a high magnetic permeability and high ductility, having a relative magnetic permeability of 1150 or more and a tensile elongation of 36 or more at 0.35 Oe, and having excellent thermal emissivity and blackening film adhesion peeling limit. Turned out to be. On the other hand, the rolling reduction in the intermediate cold rolling before the final cold rolling is 10 out of the range of the present invention.
% Test No. In the case of Comparative Example No. 1, the relative magnetic permeability at 0.35 Oe indicates a high magnetic permeability of 1100, but the tensile elongation indicates a low value of 25%. The rolling reduction in the intermediate cold rolling before the final cold rolling is 60% out of the range of the present invention.
Test No. In the case of No. 4, the tensile elongation is 43% and has high ductility, but the relative magnetic permeability at 0.35 Oe shows a low value of 750.

【0028】実施例2 製鋼段階で真空脱ガス処理した前記実施例1の表1に示
す化学組成の未脱酸キルド鋼を連続鋳造してスラブとな
し、熱間圧延における加熱温度は可能な限り低温とし、
仕上温度は変態点以下800℃前後で熱間圧延して60
0℃前後で巻取って厚さ2.30mmの熱延鋼帯とし
た。この熱延鋼帯を表4に示すとおり、一次冷間圧延、
一次箱焼鈍、中間冷間圧延、中間箱焼鈍、最終冷間圧
延、最終連続焼鈍からなる冷間圧延工程の中間冷間圧延
の圧下率を30%一定、最終冷間圧延での圧下率を35
〜85%の範囲で変動させて冷間圧延し、板厚0.15
mmの極低炭素冷延鋼帯を得た。この各極低炭素冷延鋼
帯からJIS C 2531の鉄ニッケル磁性合金板お
よび条に規定のリング試験片(外径45mm、内径33
mm)を打抜き、各リング試験片にCO2:12%、残
部窒素、水素、COからなる雰囲気中で、590℃で1
0分間の黒化処理を施したうえで、実施例1と同様に直
流磁化による比透磁率(0.35Oe)を測定すると共
に、温度90℃での熱放射率の測定と、黒化膜の耐剥離
性の試験を行った。また、各極低炭素冷延鋼帯からJI
S Z 2201の金属材料引張試験片に規定の13B
号試験片を切出し、JIS Z 2241に規定の金属
材料引張試験方法により引張伸びを測定した。その結果
を表5に示す。
Example 2 Undeoxidized killed steel having the chemical composition shown in Table 1 of Example 1 subjected to vacuum degassing in the steelmaking stage was continuously cast into a slab, and the heating temperature in hot rolling was as low as possible. Low temperature,
The finishing temperature is about 800 ° C below the transformation point and hot-rolled to 60 ° C.
It was wound at around 0 ° C. to form a hot-rolled steel strip having a thickness of 2.30 mm. As shown in Table 4, this hot rolled steel strip was subjected to primary cold rolling,
In the cold rolling process consisting of primary box annealing, intermediate cold rolling, intermediate box annealing, final cold rolling and final continuous annealing, the rolling reduction in the intermediate cold rolling is constant at 30%, and the rolling reduction in the final cold rolling is 35.
Cold-rolled while varying in the range of ~ 85%,
mm low-carbon cold rolled steel strip was obtained. From each of the extremely low carbon cold rolled steel strips, a ring test piece (outer diameter: 45 mm, inner diameter: 33 mm) specified in JIS C 2531 iron-nickel magnetic alloy plate and strip
mm) was punched out, and each ring test piece was subjected to 1 % at 590 ° C. in an atmosphere consisting of 12% of CO 2 and the balance nitrogen, hydrogen and CO
After performing the blackening treatment for 0 minutes, the relative magnetic permeability (0.35 Oe) by DC magnetization was measured in the same manner as in Example 1, and the measurement of the thermal emissivity at a temperature of 90 ° C. A peel resistance test was performed. In addition, from each ultra-low carbon cold rolled steel strip,
13B specified for metal material tensile test specimen of SZ2201
No. test piece was cut out, and the tensile elongation was measured by a metal material tensile test method specified in JIS Z 2241. Table 5 shows the results.

【0029】[0029]

【表4】 [Table 4]

【0030】[0030]

【表5】 [Table 5]

【0031】表4、表5に示すとおり、試験No.6〜
8の本発明例の場合は、いずれも0.35 Oeでの比
透磁率は1180以上、引張伸びは38%以上と、高透
磁率と高延性を備え、しかも、熱放射率、黒化膜密着性
剥離限界に優れた磁気シールド材の得られることが判明
した。これに対し、最終冷間圧延における圧下率が本発
明の範囲40〜85%より低い35%の試験No.5の
比較例では、0.35Oeでの比透磁率は1055と高
透磁率であるが、引張伸びは21%と大幅に低くなって
いる。また、最終冷間圧延における圧下率が本発明の範
囲40〜85%より高い試験No.9の比較例では、引
張伸びは40%と高延性を備えているが、0.35 O
eでの比透磁率は805と大幅に低くなっている。
As shown in Tables 4 and 5, Test No. 6 ~
8, the relative magnetic permeability at 0.35 Oe is 1180 or more, the tensile elongation is 38% or more, and has high magnetic permeability and high ductility. It has been found that a magnetic shield material having excellent adhesion peeling limit can be obtained. On the other hand, in the test No. of 35% in which the rolling reduction in the final cold rolling was lower than the range of 40 to 85% of the present invention. In Comparative Example No. 5, the relative magnetic permeability at 0.35 Oe is as high as 1055, but the tensile elongation is as low as 21%. Test No. in which the rolling reduction in the final cold rolling was higher than the range of 40 to 85% of the present invention. In Comparative Example No. 9, the tensile elongation is 40% and has high ductility, but 0.35 O
The relative magnetic permeability at e is significantly lower at 805.

【0032】[0032]

【発明の効果】本発明の磁気シールド材の製造方法は、
所定成分の未脱酸キルド鋼を連続鋳造してスラブとな
し、これを熱間圧延したのち、中間焼鈍を挟み2回以上
の冷間圧延を施すに際し、最終冷間圧延前に圧下率20
〜50%で中間冷間圧延して中間焼鈍した後、圧下率4
0〜75%で最終冷間圧延したのち仕上焼鈍することに
よって、仕上焼鈍後の再結晶粒度をJIS G 055
2の鋼のフェライト結晶粒度試験方法に規定の粒度番号
6.5以上7.5以下に制御でき、引張伸びが35%以
上の高伸びを確保できると共に、焼鈍直後の比透磁率
(0.35 Oe)1000以上の高透磁率を得ること
ができる。
The method for manufacturing a magnetic shield material according to the present invention comprises:
An undeoxidized killed steel of a predetermined component is continuously cast to form a slab, which is hot-rolled, and then subjected to cold rolling two or more times with intermediate annealing therebetween.
Intermediate cold rolling at 5050% and intermediate annealing, then reduction ratio 4
After the final cold rolling at 0 to 75%, and then the finish annealing is performed, the recrystallized grain size after the finish annealing is determined according to JIS G 055.
2 can be controlled to a grain size number of 6.5 or more and 7.5 or less specified in the ferrite crystal grain size test method, a high elongation with a tensile elongation of 35% or more can be secured, and the relative magnetic permeability (0.35 Oe) A high magnetic permeability of 1000 or more can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁気シールド材の製造工程を例示した
系統図である。
FIG. 1 is a system diagram illustrating a manufacturing process of a magnetic shield material of the present invention.

【図2】未脱酸キルド鋼を用いた場合の焼鈍後の再結晶
粒度と比透磁率との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the recrystallized grain size after annealing and the relative magnetic permeability when an undeoxidized killed steel is used.

【図3】未脱酸キルド鋼を用いた場合の焼鈍後の結晶粒
度と引張伸びとの関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a grain size after annealing and a tensile elongation when an undeoxidized killed steel is used.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 C22C 38/00 303 C22C 38/06 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 8/12 C22C 38/00 303 C22C 38/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.005%以下、Si:0.03
%以下、Mn:0.15〜0.5%、Al:0.003
%以下、S:0.01%以下を含有し、残部がFeおよ
び不可避的不純物からなる未脱酸キルド鋼を連続鋳造に
よりスラブとなし、このスラブに通常の熱間圧延を施し
たのち、中間焼鈍を挟み2回以上の冷間圧延を施すに際
し、最終冷間圧延前に圧下率20〜50%で中間冷間圧
延して中間焼鈍した後、圧下率40〜75%で最終冷間
圧延したのち仕上焼鈍することを特徴とする高透磁率・
高延性を有する磁気シールド材の製造方法。
1. C: 0.005% or less, Si: 0.03
%, Mn: 0.15 to 0.5%, Al: 0.003
% Or less, S: 0.01% or less, and the rest is made of an undeoxidized killed steel consisting of Fe and inevitable impurities into a slab by continuous casting. In performing cold rolling twice or more with annealing, before the final cold rolling, intermediate cold rolling is performed at a reduction rate of 20 to 50% and intermediate annealing is performed, and then final cold rolling is performed at a reduction rate of 40 to 75%. High magnetic permeability characterized by finish annealing afterwards
A method of manufacturing a magnetic shield material having high ductility.
JP22060296A 1996-08-02 1996-08-02 Method of manufacturing magnetic shield material having high magnetic permeability and high ductility Expired - Fee Related JP3275291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22060296A JP3275291B2 (en) 1996-08-02 1996-08-02 Method of manufacturing magnetic shield material having high magnetic permeability and high ductility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22060296A JP3275291B2 (en) 1996-08-02 1996-08-02 Method of manufacturing magnetic shield material having high magnetic permeability and high ductility

Publications (2)

Publication Number Publication Date
JPH1046249A JPH1046249A (en) 1998-02-17
JP3275291B2 true JP3275291B2 (en) 2002-04-15

Family

ID=16753554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22060296A Expired - Fee Related JP3275291B2 (en) 1996-08-02 1996-08-02 Method of manufacturing magnetic shield material having high magnetic permeability and high ductility

Country Status (1)

Country Link
JP (1) JP3275291B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368236B1 (en) * 1998-12-18 2003-04-21 주식회사 포스코 Manufacturing method of ultra-thin cold rolled steel sheet for inner shield with excellent magnetic shielding
JP5392119B2 (en) * 2010-01-29 2014-01-22 新日鐵住金株式会社 Method for evaluating oxide coating adhesion strength of grain-oriented electrical steel sheet and its evaluation apparatus
JP6414172B2 (en) * 2015-12-04 2018-10-31 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH1046249A (en) 1998-02-17

Similar Documents

Publication Publication Date Title
RU2109839C1 (en) Cold-rolled steel sheet for shadow mask and method for its production
JP3243240B2 (en) Method of manufacturing thin cold rolled inner shield steel sheet with excellent magnetic field shielding properties
JP3275291B2 (en) Method of manufacturing magnetic shield material having high magnetic permeability and high ductility
JPH1150149A (en) Production of cold rolled steel sheet for shadow mask frame
JPH08260051A (en) Production of magnetic shielding material
JP3775215B2 (en) Magnetic shield material, steel plate for magnetic shield material and method for producing the same
JPS60255924A (en) Manufacture of steel plate used for magnetic shielding member
JP2000169945A (en) Material for inner shield and its production
JPH10219409A (en) Inner shielding material for magnetic shielding, and its production
JPH11158548A (en) Hot rolled steel sheet for shrink band of tv cathode-ray tube and its production
JPH04341541A (en) Mask frame material for tv cathode-ray tube having blackened film excellent in adhesion
WO2002042509A1 (en) Material for shadow mask, method for production thereof, shadow mask comprising the material and picture tube using the shadow mask
JPH0564698B2 (en)
JP2005054255A (en) High-strength hot-rolled steel plate for frame of cathode-ray tube, manufacturing method therefor, and frame of cathode-ray tube
JP3599118B2 (en) Manufacturing method of magnetic shield material
KR100851162B1 (en) Method of manufacturing cold rolled steel sheet for inner shied
EP1445341A1 (en) Fe-Ni BASED ALLOY FOR SHADOW MASK HAVING EXCELLENT CORROSION RESISTANCE AND SHADOW MASK MATERIAL
KR100238011B1 (en) The manufacturing method for inner shield cold rolling steel sheet with surface uniformity
JP2000160252A (en) Production of cold rolled steel sheet for inner shield of color picture tube
JP2003226921A (en) Method of producing high strength steel sheet for cathode-ray tube frame
JP2001240946A (en) High strength steel sheet for heat shrink band, excellent in geomagnetic shielding property, and its manufacturing method
JP4185000B2 (en) Manufacturing method of steel plate for magnetic shield inside TV CRT
KR20040041454A (en) Method for manufacturing inner shield cold rolling steel for braun tube with excellent magnetic shielding effect
JPH01264143A (en) Shadow mask and manufacture thereof
JPH0361330A (en) Manufacture of cold rolled steel sheet for shield of cathode-ray tube

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080208

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100208

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees