JP2001247369A - Cutting tool and method for producing the same - Google Patents

Cutting tool and method for producing the same

Info

Publication number
JP2001247369A
JP2001247369A JP2000056303A JP2000056303A JP2001247369A JP 2001247369 A JP2001247369 A JP 2001247369A JP 2000056303 A JP2000056303 A JP 2000056303A JP 2000056303 A JP2000056303 A JP 2000056303A JP 2001247369 A JP2001247369 A JP 2001247369A
Authority
JP
Japan
Prior art keywords
tin
sintered body
cutting tool
silicon nitride
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000056303A
Other languages
Japanese (ja)
Other versions
JP4798821B2 (en
Inventor
Takashi Tokunaga
隆司 徳永
Tatsuyuki Nakaoka
達行 中岡
Nobuo Yoshida
暢生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000056303A priority Critical patent/JP4798821B2/en
Publication of JP2001247369A publication Critical patent/JP2001247369A/en
Application granted granted Critical
Publication of JP4798821B2 publication Critical patent/JP4798821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide both a cutting tool composed of a silicon nitride sintered compact capable of exhibiting high abrasion resistance and defective resistance especially in high-speed cutting of a cast iron and to provide a method for producing the same. SOLUTION: Both TiC and TiN are added to a sintered compact and TiN is made to preferentially exist on the surface of the sintered compact. A raw material molding containing TiC is heated and retained in a nitrogen gas atmosphere at a temperature lower than a fixed baking temperature and baked at the fixed baking temperature for >=10 hours to prepare the sintered compact.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐欠損性、耐摩耗
性に優れた窒化けい素質焼結体からなる切削工具および
その製造方法に関するものであり、特に鋳鉄の切削に適
した切削工具およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cutting tool comprising a silicon nitride sintered body having excellent chipping resistance and wear resistance, and a method for producing the same. The present invention relates to the manufacturing method.

【0002】[0002]

【従来の技術】切削工具として用いられる窒化けい素質
焼結体としては、アルミナ焼結体やアルミナにジルコニ
ア、炭化チタン等を添加したアルミナ質焼結体、さらに
窒化けい素に各種の焼結助剤を添加した窒化けい素質焼
結体等がある。この中で窒化けい素質焼結体はセラミッ
クス中で最も靭性が高く、特に切削工具として多く使用
されている。
2. Description of the Related Art Silicon nitride sintered bodies used as cutting tools include alumina sintered bodies, alumina sintered bodies obtained by adding zirconia, titanium carbide, etc. to alumina, and various types of sintering aids to silicon nitride. There is a silicon nitride sintered body to which an agent is added. Among them, the silicon nitride sintered body has the highest toughness among ceramics, and is particularly often used as a cutting tool.

【0003】[0003]

【発明が解決しようとする課題】各種切削加工分野にお
いて生産性を向上するために、高速加工、高送り加工等
の重切削に対する要求が高まっており切削工具の使用条
件も年々、高速化、高送り化が進んでいる。このため、
切削工具には一層の耐摩耗性、耐欠損性が要求されてい
る。
In order to improve productivity in various cutting fields, demands for heavy cutting such as high-speed machining and high feed machining are increasing, and the use conditions of cutting tools are increasing year by year. Feeding is progressing. For this reason,
Cutting tools are required to have even higher wear resistance and chipping resistance.

【0004】しかし、上述したような従来の窒化けい素
質焼結体からなる切削工具は、鋳鉄を高速、高送り切削
する場合、具体的には800m/min以上、送り0.
7mm/rev(mm/tooth)以上の条件で切削
した場合に、刃先が非常に高温となるので十分な耐摩耗
性、耐欠損性を発揮できなかった。その結果、上記従来
の切削工具は、刃先のチッピング、欠損、異常摩耗等を
生じ易く、寿命は短いものであった。
[0004] However, the cutting tool made of the conventional silicon nitride sintered body as described above, when cutting high-speed, high-feed cutting of cast iron, specifically, at a speed of 800 m / min or more and a feed of 0.1 mm.
When the cutting was performed under the condition of 7 mm / rev (mm / tooth) or more, the cutting edge became extremely high temperature, so that sufficient wear resistance and chipping resistance could not be exhibited. As a result, the above-mentioned conventional cutting tool is liable to cause chipping, chipping, abnormal wear, and the like of the cutting edge, and has a short life.

【0005】従って、本発明は、特に鋳鉄を高速切削す
るのに高い耐摩耗性と耐欠損性を発揮することのできる
窒化けい素質焼結体からなる切削工具およびその製造方
法を提供することを目的とするものである。
[0005] Accordingly, the present invention provides a cutting tool made of a silicon nitride sintered body which can exhibit high wear resistance and chipping resistance especially for high-speed cutting of cast iron, and a method of manufacturing the same. It is the purpose.

【0006】[0006]

【課題を解決するための手段】本研究者等は、前記課題
を解決するために鋭意研究を重ねた結果、TiCとTi
Nを共に焼結体中に含ませ且つTiNを焼結体の表面に
優先的に存在させることにより切削工具が高い耐摩耗性
と耐欠損性を発揮するようにできることを見いだした。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and have found that TiC and Ti
It has been found that the cutting tool can exhibit high wear resistance and fracture resistance by including both N in the sintered body and preferentially presenting TiN on the surface of the sintered body.

【0007】また、本発明者等はTiCを含む原料成形
体を窒素ガス雰囲気中にて所定焼成温度より低い温度に
て加熱保持させた後、所定焼成温度にて10時間以上の
焼成を行うことにより、かかる焼結体を作製できること
を見いだし、本発明を完成するに至った。
Further, the present inventors heat and hold a raw material compact containing TiC in a nitrogen gas atmosphere at a temperature lower than a predetermined firing temperature, and then perform firing at the predetermined firing temperature for 10 hours or more. As a result, it has been found that such a sintered body can be produced, and the present invention has been completed.

【0008】すなわち、本発明請求項1の発明の切削工
具は、窒化けい素を10〜68.5モル%と、少なくと
も炭化物および窒化物の形でTi化合物を30〜80モ
ル%と、AlをAl23換算で1.5〜10モル%を有
する窒化けい素質焼結体を使用した切削工具であって、
該焼結体はTiNを焼結体の表面部分に優先的に存在さ
せていることを特徴とする。
More specifically, the cutting tool according to the first aspect of the present invention is characterized in that 10 to 68.5 mol% of silicon nitride, 30 to 80 mol% of Ti compound in the form of at least carbide and nitride, and Al a cutting tool using silicon nitride sintered body having a 1.5 to 10 mol% in terms of al 2 O 3,
The sintered body is characterized in that TiN is preferentially present on the surface of the sintered body.

【0009】かかる切削工具は、表面部分に残留応力が
多く発生し靱性および硬度が高められる。すなわち、熱
膨張率の大きなTiNが焼成における昇温、冷却の過程
で表面部分に残留応力を発生させ、この残留応力により
この部分の靱性および硬度が高められる。これに対し
て、TiNを焼結体中に均一的に分散含有したもの、或
いは、表面部分よりも内部にTiNを優先的に存在せし
めたものは、かかる靱性および硬度の向上は得られな
い。 また、靱性、耐反応性に優れるTiNが表面部
分に優先的に存在するので耐摩耗性、耐欠損性共により
一層高められる。
In such a cutting tool, a large amount of residual stress is generated on the surface portion, and the toughness and hardness are enhanced. That is, TiN having a large coefficient of thermal expansion generates a residual stress in the surface portion in the process of heating and cooling during firing, and the residual stress increases the toughness and hardness of this portion. On the other hand, in the case where TiN is uniformly dispersed and contained in the sintered body or the case where TiN is preferentially present in the inside rather than the surface portion, such improvement in toughness and hardness cannot be obtained. Further, since TiN having excellent toughness and reaction resistance is preferentially present in the surface portion, both abrasion resistance and fracture resistance are further enhanced.

【0010】さらに、前記焼結体はTiNとともに熱膨
張係数が低いTiCを含むことにより高温での耐欠損性
が高められる。
Further, since the sintered body contains TiC having a low coefficient of thermal expansion together with TiN, fracture resistance at a high temperature is improved.

【0011】すなわち、本発明請求項1の発明によれ
ば、Ti化合物としてTiCおよびTiNを共存させ且
つTiNを焼結体の表面部分に優先的に存在させたこと
により、切削工具の耐摩耗性、耐欠損性および耐熱衝撃
性が高められる。
That is, according to the first aspect of the present invention, the wear resistance of the cutting tool is improved by coexisting TiC and TiN as Ti compounds and preferentially allowing TiN to be present on the surface of the sintered body. , Fracture resistance and thermal shock resistance are enhanced.

【0012】また、かかる切削工具の製造方法として、
請求項3の発明は、窒化けい素を10〜68.5モル%
と、少なくとも炭化物の形でTi化合物を30〜80モ
ル%と、AlをAl23換算で1.5〜10モル%を有
する窒化けい素質焼結体用組成物を混合粉砕し、該混合
物を所定の形状に成形させ、窒素ガス雰囲気中にて所定
焼成温度より低い温度にて加熱保持させた後、所定焼成
温度にて10時間以上の焼成を行うことにより、焼結体
の表面部分において前記Tiの炭化物をTiの窒化物に
優先的に変化させることを特徴とする。
Further, as a method of manufacturing such a cutting tool,
The third aspect of the present invention is to provide the silicon nitride of 10 to 68.5 mol%.
And at least 30 to 80 mol% of a Ti compound in the form of a carbide and 1.5 to 10 mol% of Al in terms of Al 2 O 3 , which are mixed and pulverized, and the mixture is pulverized. Is molded into a predetermined shape, heated and held at a temperature lower than a predetermined firing temperature in a nitrogen gas atmosphere, and then fired at a predetermined firing temperature for 10 hours or more, so that the surface portion of the sintered body is The Ti carbide is preferentially changed to a Ti nitride.

【0013】この製造方法において、所定焼成温度より
低い温度の加熱保持までは、成形体の密度が低いので焼
成雰囲気中の窒素が成形体表面から内部に向かって浸透
して行く。しかしながら、この段階ではTiCと窒素と
の反応が起こりにくい。
In this manufacturing method, the nitrogen in the firing atmosphere permeates from the surface of the molded body to the inside until the heated body is kept at a temperature lower than the predetermined baking temperature because the molded body has a low density. However, at this stage, the reaction between TiC and nitrogen hardly occurs.

【0014】他方、メカニズムは明らかでないが、加熱
保持よりも温度を上げた所定焼成温度による焼成では、
内部に浸透した窒素がTiCと反応する。
[0014] On the other hand, although the mechanism is not clear, firing at a predetermined firing temperature at a temperature higher than heating and holding results in:
Nitrogen penetrating inside reacts with TiC.

【0015】この際、炭化物から窒化物への反応が行わ
れる。その結果、TiCがTiNに変化し、この所定温
度での焼成を10時間以上行うことにより、このTiN
形成が目的の深さまで進行する。
At this time, a reaction from carbide to nitride takes place. As a result, TiC is changed to TiN. By firing at this predetermined temperature for 10 hours or more, the TiN
Formation proceeds to the desired depth.

【0016】切削工具は焼結体を所定の寸法に合わせる
ために、必要に応じて表面に研磨加工を施す。したがっ
て、TiN形成が浅過ぎる場合には、研磨加工後の焼結
体表面にTiNが残存しないこととなる。このため、T
iN形成を目的の深さまで進行させることは重要なこと
である。
The surface of the cutting tool is polished as necessary to adjust the sintered body to a predetermined size. Therefore, if the TiN formation is too shallow, no TiN will remain on the surface of the sintered body after polishing. Therefore, T
It is important that the iN formation proceeds to the desired depth.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施形態を説明す
る。
Embodiments of the present invention will be described below.

【0018】本発明の切削工具を構成する窒化けい素質
焼結体は、窒化けい素を10〜68.5モル%と、少な
くとも炭化物および窒化物の形でTi化合物を30〜8
0モル%と、AlをAl23換算で1.5〜10モル%
を有する組成物である。これら組成は、窒化けい素質焼
結体として焼結後の組成である。
The silicon nitride sintered body constituting the cutting tool according to the present invention has a silicon nitride content of 10 to 68.5 mol% and a Ti compound in the form of at least carbide and nitride of 30 to 8%.
0 mol%, and 1.5 to 10 mol% of Al in terms of Al 2 O 3
It is a composition which has. These compositions are compositions after sintering as a silicon nitride sintered body.

【0019】このうち窒化けい素は、硬質粒子として硬
質相を構成する。本発明に用いる窒化けい素粉末として
は、還元窒化法、直接窒化法等により製造されたα型、
β型のいずれでもよく、BET比表面積が5m2/g以
上、不純物酸素量が0.7〜2重量%の粉末が適当であ
る。窒化けい素の含有率が10モル%未満の場合、焼結
性が低下し緻密な焼結体が得られず切削工具としての特
性を満足できない。一方、上記含有率が68.5モル%
よりも多いと、切削工具の耐摩耗性、耐欠損性向上の効
果が小さい。
Of these, silicon nitride constitutes a hard phase as hard particles. As the silicon nitride powder used in the present invention, a reduction nitridation method, α-type produced by a direct nitridation method, etc.
Any of the β type may be used, and a powder having a BET specific surface area of 5 m 2 / g or more and an impurity oxygen amount of 0.7 to 2% by weight is suitable. When the content of silicon nitride is less than 10 mol%, the sinterability is reduced, and a dense sintered body cannot be obtained, so that the characteristics as a cutting tool cannot be satisfied. On the other hand, the content is 68.5 mol%.
If it is larger than this, the effect of improving the wear resistance and chipping resistance of the cutting tool is small.

【0020】本発明において前記TiCやTiNなどの
Ti化合物は、硬質粒子として窒化けい素粒子の間に分
散され、焼結体の硬度、耐反応性、靱性を向上させる作
用がある。さらに、本発明の切削工具は、Ti化合物と
して、熱膨張係数が低く耐熱衝撃性に優れるTiCおよ
び耐摩耗性、耐欠損性、耐反応性が優れるTiNを共存
させ且つ、TiNを焼結体の表面部分に優先的に存在さ
せている。
In the present invention, the Ti compound such as TiC or TiN is dispersed as hard particles between silicon nitride particles, and has the effect of improving the hardness, reaction resistance and toughness of the sintered body. Furthermore, the cutting tool of the present invention is characterized in that TiC having a low coefficient of thermal expansion and excellent thermal shock resistance and TiN having excellent wear resistance, fracture resistance and reaction resistance coexist as a Ti compound, and It is preferentially present on the surface.

【0021】上記TiC、TiNを含むTi化合物が3
0モル%よりも少ないと切削工具の耐摩耗性、耐欠損性
向上の効果が小さく、一方、80モル%よりも多いと焼
結性が低下し緻密な焼結体が得られず切削工具としての
特性が満足できない。上記Ti化合物量の含有量として
は特に35〜75モル%であるのが望ましい。
The Ti compound containing TiC and TiN is 3
If it is less than 0 mol%, the effect of improving the wear resistance and fracture resistance of the cutting tool is small, while if it is more than 80 mol%, the sinterability is reduced and a dense sintered body cannot be obtained, so that the cutting tool cannot be used. Cannot be satisfied. It is particularly preferable that the content of the Ti compound is 35 to 75 mol%.

【0022】また表面部分は、切削工具の靱性向上のた
めに焼結体母材表面から少なくとも750μm程度あれ
ば、耐摩耗性、耐欠損性向上の効果が顕著に現れた。こ
れに対して、層厚がこの程度の厚みよりも薄い場合には
耐摩耗性や耐欠損性向上の効果が顕著でない傾向があ
る。本発明の切削工具は、前記焼結体の表面においてT
iN量がTiC量よりも多いことが望ましい。これらT
iN、TiCの存在量比は、これを、CuKα線を用い
たX線回折測定で得られるピーク強度で比較するのが好
適である。具体的には、切削工具を構成する焼結体につ
いて、その表面のTiNのX線回折ピーク[(111)
面]中におけるTiNのピーク強度をIN : TiC
のX線回折ピークをIC: とした場合、IN>ICで
あることが好ましい。この場合、焼結体表面のTiN濃
度が高いので、耐摩耗性、耐欠損性が向上する傾向があ
るためである。他方、IN<ICの場合には耐摩耗性、
耐欠損性の向上があまり見られない傾向がある。
Further, if the surface portion is at least about 750 μm from the surface of the sintered body base material for improving the toughness of the cutting tool, the effect of improving wear resistance and chipping resistance is remarkable. On the other hand, when the layer thickness is thinner than this level, the effect of improving wear resistance and fracture resistance tends to be insignificant. In the cutting tool of the present invention, T
It is desirable that the iN amount is larger than the TiC amount. These T
It is preferable to compare the abundance ratio of iN and TiC with the peak intensity obtained by X-ray diffraction measurement using CuKα radiation. Specifically, for the sintered body constituting the cutting tool, the X-ray diffraction peak of TiN on the surface of the sintered body [(111)
Plane], the peak intensity of TiN in: IN: TiC
When the X-ray diffraction peak of is IC :, it is preferable that IN> IC. In this case, since the TiN concentration on the surface of the sintered body is high, abrasion resistance and chipping resistance tend to be improved. On the other hand, when IN <IC, abrasion resistance,
There is a tendency that the improvement in fracture resistance is hardly seen.

【0023】また、TiCやTiNの存在は金属顕微鏡
による組織観察で行うこともできる。硬質粒子である窒
化けい素、TiCやTiNは上記組織観察において明暗
がはっきりと異なるので、それぞれの存在を確認するこ
とは容易である。したがって、焼結体表面を深さ方向に
研磨し、その露出表面について前記組織観察を行うこと
で、所望深さでのTiCやTiNの存在を確認すること
ができる。
The presence of TiC or TiN can also be performed by observing the structure with a metallographic microscope. Silicon nitride, TiC, and TiN, which are hard particles, have distinctly different light and darkness in the above microstructure observation, and it is easy to confirm their existence. Therefore, the presence of TiC or TiN at a desired depth can be confirmed by polishing the surface of the sintered body in the depth direction and observing the structure on the exposed surface.

【0024】次に前記AlはAl23の形で焼結助剤と
して添加される。焼結助剤は焼結体のボイドを減らし、
粒径を小さくする作用がある。Alが酸化物換算で1.
5モル%よりも少ないと焼結性が低く、Ti化合物を添
加した場合に窒化けい素質焼結体の緻密体が得られな
い。一方、10モル%よりも多いと焼結体の耐熱衝撃性
と耐反応性が劣化し切削工具としての性能が劣るためで
ある。
Next, the Al is added as a sintering aid in the form of Al 2 O 3 . The sintering aid reduces voids in the sintered body,
It has the effect of reducing the particle size. Al is 1.
If the amount is less than 5 mol%, the sinterability is low, and a dense silicon nitride sintered body cannot be obtained when a Ti compound is added. On the other hand, if it is more than 10 mol%, the thermal shock resistance and the reaction resistance of the sintered body are deteriorated, and the performance as a cutting tool is inferior.

【0025】本発明の切削工具は焼結助剤としてAlと
ともに第3a族元素(RE)の酸化物を添加しても良
い。本発明において用いられる周期律表第3a族元素と
しては、Y、Sc、Yb、Er、Dy、Ho、Luなど
が挙げられ、これらの中でも、特に切削工具として使用
する場合はEr、Yb、Luが良い。
In the cutting tool of the present invention, an oxide of a Group 3a element (RE) may be added together with Al as a sintering aid. Examples of Group 3a elements of the periodic table used in the present invention include Y, Sc, Yb, Er, Dy, Ho, and Lu. Among them, Er, Yb, and Lu are particularly used when used as a cutting tool. Is good.

【0026】この周期律表第3a族元素を含有させる場
合、前記窒化けい素に対し酸化物換算で10モル%より
多いと、焼結体の硬度が低下し切削工具としての耐摩耗
性が劣化する。窒化けい素に対し周期律表第3a族元素
が酸化物換算で1モル%より少ないと緻密体が得られず
切削工具の耐欠損性が低下する。
When the element of Group 3a of the periodic table is contained, if it is more than 10 mol% in terms of oxide relative to the silicon nitride, the hardness of the sintered body is reduced and the wear resistance as a cutting tool is deteriorated. I do. If the content of Group 3a element in the periodic table is less than 1 mol% with respect to silicon nitride, a dense body cannot be obtained and the chipping resistance of the cutting tool decreases.

【0027】これらAl23や第3a族元素(RE)の
酸化物などの焼結助剤は、焼結体の粒界相に含まれる。
粒界相は、非晶質である場合もあるが、望ましくは結晶
化しているのが良い。結晶相としては、アパタイト、Y
AM、ヴォラストナイト、ダイシリケート、モノシリケ
ートのうちの少なくとも1種を主体とするものであるこ
とが望ましい。
These sintering aids such as Al 2 O 3 and oxides of Group 3a element (RE) are included in the grain boundary phase of the sintered body.
The grain boundary phase may be amorphous, but is preferably crystallized. Apatite, Y
It is desirable that the main component be at least one of AM, wollastonite, disilicate, and monosilicate.

【0028】次に、かかる切削工具の製造方法を説明す
る。
Next, a method for manufacturing such a cutting tool will be described.

【0029】まず、窒化けい素粉末に対して、添加成分
として周期律表第3a族元素(RE)酸化物の粉末と、
Al23粉末を添加し、ボールミルなどで混合する。
First, a powder of a Group 3a element (RE) oxide of the periodic table as an additional component is added to silicon nitride powder;
Al 2 O 3 powder is added and mixed with a ball mill or the like.

【0030】上記のようにして混合された混合物を、所
望の成形手段、例えば、金型プレス,冷間静水圧プレ
ス、押出し成形、鋳込成形、射出成形等により任意の形
状に成形する。
The mixture mixed as described above is formed into an arbitrary shape by desired molding means, for example, a die press, a cold isostatic press, an extrusion molding, a casting molding, an injection molding and the like.

【0031】次いで、この成型体を焼成炉内に投入し、
窒素ガス雰囲気中にて所定焼成温度より低い加熱保持さ
せた後、所定焼成温度にて10時間以上の焼成を行うこ
とにより、焼結体の表面部分においてTi
CをTiNに優先的に変化させる。
Next, the molded body is put into a firing furnace,
After heating and holding at a temperature lower than a predetermined firing temperature in a nitrogen gas atmosphere, firing is performed for 10 hours or more at a predetermined firing temperature, so that Ti
C is preferentially changed to TiN.

【0032】このような本発明の製造方法において、焼
成温度は、出発する組成や成型品の大きさによっても相
違するが1700〜2000℃であり、且つ上記加熱保
持温度は1600〜1800℃であることが好ましい。
特に、焼成温度は1770℃〜1780℃、加熱保持温
度は1650〜1760℃の範囲であることが好まし
い。
In the production method of the present invention, the sintering temperature is 1700 to 2000 ° C., although it varies depending on the starting composition and the size of the molded product, and the heating and holding temperature is 1600 to 1800 ° C. Is preferred.
In particular, the firing temperature is preferably in the range of 1770 ° C to 1780 ° C, and the heating and holding temperature is preferably in the range of 1650 ° to 1760 ° C.

【0033】上記加熱保持温度が1600℃未満の場
合、反応生成物としてのTiNの生成し難くなる傾向が
ある。他方、上記加熱保持温度が1800℃を超えると
焼結体の緻密化が早く進み、その結果、TiNが生成し
難くなる傾向がある。
When the heating and holding temperature is lower than 1600 ° C., the production of TiN as a reaction product tends to be difficult. On the other hand, when the heating holding temperature exceeds 1800 ° C., the densification of the sintered body proceeds rapidly, and as a result, TiN tends to be hardly generated.

【0034】また、前記焼成温度が1700℃未満の場
合もTiNの生成量が少なくなる傾向があり、他方、2
000℃を超えると結晶の異常粒成長が生じたり、窒化
けい素が分解し表面が荒れる等の問題が生じる恐れがあ
る。
When the calcination temperature is lower than 1700 ° C., the amount of TiN produced tends to decrease.
If the temperature is higher than 000 ° C., abnormal crystal growth may occur, or silicon nitride may be decomposed and the surface may be roughened.

【0035】また上記加熱保持と焼成との温度差は、1
0℃〜200℃の温度差範囲が好ましい。この温度差が
10°未満の場合、TiNが生成し難くなる傾向があ
る。また、温度差が200℃を超える場合も、TiNが
生成し難くなる傾向がある。
The temperature difference between the heating and holding and the firing is 1
A temperature difference range from 0 ° C to 200 ° C is preferred. When this temperature difference is less than 10 °, TiN tends to be hardly generated. Also, when the temperature difference exceeds 200 ° C., TiN tends to be hardly generated.

【0036】加熱保持と焼成の時間は、加熱保持が4時
間〜8時間、焼成が10時間〜18時間行うことが好ま
しい。加熱保持時間が4時間未満の場合、TiNが生成
し難くなる傾向がある。一方、加熱保持時間が8時間を
超えると、耐摩耗性、耐欠損性向上の効果が小さくなる
傾向がある。また、前記焼成時間が10時間未満の場
合、緻密化し難く、TiNが生成し難くなる傾向があ
る。一方、焼成時間が18時間を超えると耐摩耗性、耐
欠損性向上の効果が小さくなる傾向がある。
It is preferable that the heating and holding are performed for 4 to 8 hours and the firing is performed for 10 to 18 hours. If the heating holding time is less than 4 hours, TiN tends to be hardly generated. On the other hand, if the heating holding time exceeds 8 hours, the effect of improving wear resistance and fracture resistance tends to decrease. If the baking time is less than 10 hours, it tends to be difficult to densify, and it is difficult to generate TiN. On the other hand, if the firing time exceeds 18 hours, the effect of improving wear resistance and chipping resistance tends to decrease.

【0037】焼成の方法としては、窒化けい素が分解し
ないようにすればよく、常圧焼成、窒素ガス2気圧以上
の窒素ガス加圧焼成、ホットプレス焼成法などが用いら
れる。 また、これら加熱保持および焼成後に1000
気圧以上の圧力下で熱間静水圧焼成することによりさら
に緻密化させることができる。特に、2気圧以上の窒素
ガスを含有した非酸化性雰囲気で焼成することが望まし
い。
As a firing method, it is sufficient that silicon nitride is not decomposed, and normal pressure firing, nitrogen gas pressurization firing at 2 atm or more of nitrogen gas, hot press firing method and the like are used. In addition, after these heat holding and firing, 1000
It can be further densified by hot isostatic firing under a pressure of at least atmospheric pressure. In particular, firing in a non-oxidizing atmosphere containing nitrogen gas at 2 atm or more is desirable.

【0038】焼成後、焼結体を切削工具の所定の寸法に
合わせるために、必要に応じて表面に数百μm程度の厚
みを除去する研磨加工を施す。
After firing, in order to adjust the sintered body to a predetermined size of the cutting tool, the surface is polished to remove a thickness of about several hundred μm as necessary.

【0039】また本発明の切削工具は、前記焼結体の表
面に周期律表4a、5a、6a族の炭化物、窒化物、炭
酸窒化物及びAl23から選ばれる少なくとも一種以上
から硬質層を被覆したものであっても良い。
Further, in the cutting tool of the present invention, the surface of the sintered body may include a hard layer made of at least one selected from carbides, nitrides, carbonitrides, and Al 2 O 3 of Groups 4a, 5a and 6a of the periodic table. May be coated.

【0040】これら周期律表4a、5a、6a族の炭化
物、窒化物、炭酸窒化物及びAl23は高硬度であり且
つ、被削材との耐反応性に優れるので、耐摩耗性を向上
させる事ができる。この表面被覆層の形成にはCVD法
およびPVD法を用いるのが望ましい。
The carbides, nitrides, carbonitrides and Al 2 O 3 belonging to groups 4a, 5a and 6a of the periodic table have a high hardness and an excellent reaction resistance with the work material. Can be improved. It is desirable to use a CVD method and a PVD method to form the surface coating layer.

【0041】なお、前記硬質層を形成した切削工具の場
合、前記X線回折におけるTiN,TiC最大ピーク強
度の測定は厳密に焼結体表面で行うことは困難である。
これは、硬質層を除去する際に、注意深く作業しても、
焼結体表面を数〜十数μm程度、除去してしまうことが
普通であるためである。したがって、硬質層を設けた場
合の前記X線回折の測定は、元々の焼結体の表面を数〜
十数μm程度除去してしまっても、除去後の表面で行え
ば良い。
In the case of a cutting tool having the hard layer, it is difficult to measure the maximum peak intensity of TiN and TiC in the X-ray diffraction strictly on the surface of the sintered body.
This means that even when working carefully when removing the hard layer,
This is because the surface of the sintered body is usually removed by about several to several tens of μm. Therefore, the measurement of the X-ray diffraction in the case where the hard layer is provided indicates that the surface of the original sintered body is several to several times.
Even if it is removed by about 10 μm or more, it may be performed on the surface after the removal.

【0042】[0042]

【実施例】原料粉末としてα型の窒化けい素粉末(BE
T比表面積10m2/g、不純物酸素量1.0重量%)
と焼結助剤として表1に示した周期律表第3a族元素酸
化物、Al23、Ti化合物用いて調合した。これに成
形用のバインダーを加えて窒化けい素ボールを用いて混
合し、2ton/cm2 の圧力でCNGN160412
及びSNGN120408の工具形状にプレス成形を行
った。さらに3ton/cm2 の圧力で冷間静水圧成形
を行い成形体を得た。
EXAMPLE An α-type silicon nitride powder (BE) was used as a raw material powder.
T specific surface area 10 m 2 / g, impurity oxygen content 1.0 wt%)
And a sintering aid using an oxide of an element belonging to Group 3a of the Periodic Table shown in Table 1, Al 2 O 3 , and a Ti compound. A binder for molding was added thereto and mixed using a silicon nitride ball, and CNGN160412 was applied under a pressure of 2 ton / cm 2.
Then, press molding was performed to the tool shape of SNGN120408. Further, cold isostatic pressing was performed at a pressure of 3 ton / cm 2 to obtain a molded body.

【0043】この成形体を焼成炉に投入し、表1の温
度、時間で窒素ガス圧力5気圧下での前記加熱保持と窒
素ガス圧力10気圧下での所定温度による焼成を行い表
1に示す試料No.1〜23の焼結体を得た。
The molded body was placed in a firing furnace, and was heated and held at a nitrogen gas pressure of 5 atm and fired at a predetermined temperature at a nitrogen gas pressure of 10 atm at the temperature and time shown in Table 1, and the results are shown in Table 1. Sample No. 1 to 23 sintered bodies were obtained.

【0044】[0044]

【表1】 [Table 1]

【0045】続いて、これら焼結体の表面約250μm
に研磨処理を行って切削工具としての最終工具形状を得
た。
Subsequently, the surface of these sintered bodies was about 250 μm
Was subjected to a polishing treatment to obtain a final tool shape as a cutting tool.

【0046】得られた切削工具に対して、ICP発光分
光分析を行い、Si、周期律表第3a族元素(RE)、
Al、Tiの量を求め、SiはSi34 として、RE
はRE23 として、AlはAl23 として、TiはT
iの炭化物、窒化物、炭窒化物として換算し組成比を求
めた。X線回折ピークはCuKα線を用いて測定した。
The obtained cutting tool was subjected to ICP emission spectroscopic analysis to determine Si, a Group 3a element (RE) of the periodic table,
The amounts of Al and Ti are determined, and Si is regarded as Si 3 N 4 and RE
Is RE 2 O 3 , Al is Al 2 O 3 , Ti is T
The composition ratio was determined by converting it into carbide, nitride and carbonitride of i. The X-ray diffraction peak was measured using CuKα radiation.

【0047】また、前記切削工具に対して、金属顕微鏡
で表面の組織観察を行い、さらに750μmの研磨加工
を行い、金属顕微鏡で組織観察を行った。
Further, the surface structure of the cutting tool was observed with a metallographic microscope, 750 μm was polished, and the structure was observed with a metallographic microscope.

【0048】図1は、表1に示す本発明実施例品の試料
No.1と比較例品の試料No.18の焼結体表面(2
50μm研磨除去後)における前記X線回折ピークのグ
ラフである。同図に示したように、両試料ともにα型の
窒化けい素がβ型の窒化けい素に変わっていた。
FIG. 1 shows the sample No. of the product of the present invention shown in Table 1. Sample No. 1 and Comparative Example 18 sintered body surface (2
4 is a graph of the X-ray diffraction peak (after polishing removal of 50 μm). As shown in the figure, in both samples, α-type silicon nitride was changed to β-type silicon nitride.

【0049】また、本発明実施例品の試料No.1は、
TiNの最大ピーク強度がTiCの最大ピーク強度より
も3倍以上も大きい。したがって、表面部分ではTiN
濃度がTiC濃度よりも数倍高い。他の本発明実施例品
(試料No.2〜9)もすべて同様な結果であった。
Further, the sample No. of the product of the present invention was used. 1 is
The maximum peak intensity of TiN is more than three times greater than the maximum peak intensity of TiC. Therefore, TiN
The concentration is several times higher than the TiC concentration. All other examples of the present invention (samples Nos. 2 to 9) had similar results.

【0050】さらに、前記金属顕微鏡による組織観察に
よれば、本発明実施例品(試料No.1〜9)は、切削
工具表面および表面から750μmの深の両方でTiN
の存在を確認できた。なお、TiN粒子の存在率は表面
の方が明らかに多かった。
Further, according to the structure observation by the metallographic microscope, the products of the present invention (samples Nos. 1 to 9) showed that the TiN was obtained at both the surface of the cutting tool and at a depth of 750 μm from the surface.
Could be confirmed. In addition, the existence ratio of TiN particles was clearly higher on the surface.

【0051】これに対して、比較例の試料No.18
は、TiCのピークはあるが、TiNのピークは明確に
判別できない。TiNのピークは、図中点線〇印Aの部
分にごく小さいピークが存在する可能性があるに過ぎな
い。このような焼結体はTiNが表面に優先的に存在し
ているとは言えない。他の比較例のうち、No.17、
19〜21も同様な結果であった。
On the other hand, Sample No. 18
Has a peak of TiC, but a peak of TiN cannot be clearly distinguished. As for the peak of TiN, there is only a possibility that a very small peak exists at a portion indicated by a dotted line A in the figure. In such a sintered body, it cannot be said that TiN exists preferentially on the surface. Among other comparative examples, No. 17,
19 to 21 had similar results.

【0052】さらに、これら比較例の試料No.17〜
21は、前記金属顕微鏡による組織観察において、表面
でもTiNがほとんど確認できなかった。他方、750
μm深さでは、TiC粒子の存在が全く確認できなかっ
た。
Further, the sample Nos. 17 ~
In No. 21, almost no TiN was confirmed on the surface in the structure observation with the metal microscope. On the other hand, 750
At a depth of μm, the presence of TiC particles could not be confirmed at all.

【0053】また試料No.22の比較例はTi化合物
としてTiNのみを添加し、焼結体全体にTiNをほぼ
均一分散状態で含有したもの、試料No.23の比較例
はTi化合物としてTiNのみを添加し、焼結体全体に
TiNとTiCをほぼ均一分散状態で含有したものであ
った。すなわち、これら2つの比較例は、焼結体全体に
TiNをほぼ均一分散状態で含有したものである。
The sample No. Comparative Example No. 22 was prepared by adding only TiN as a Ti compound and containing TiN in a substantially uniform dispersion state throughout the sintered body. In Comparative Example 23, only TiN was added as a Ti compound, and the entire sintered body contained TiN and TiC in a substantially uniformly dispersed state. That is, in these two comparative examples, TiN was contained in the sintered body as a whole in a substantially uniformly dispersed state.

【0054】表1に示す試料No.1〜23について、
CNGN160412工具形状のものを用い、耐摩耗性
を評価するための切削試験として、下記の切削条件に
てねずみ鋳鉄材を乾式旋削加工し、20分間切削後の摩
耗幅を測定した。その結果を前記表1に併せて示した。 被削材 FC250 切削速度 800m/min 送り 0.7mm/rev 切り込み 3.0mm また、耐欠損性を評価するための切削試験として、S
NGN120408の形状の試料を用いて、下記条件の
正面フライス加工により球状黒鉛鋳鉄材を加工するテス
トを行なった。 被削材 FCD450(125×300mmの立方体形状) 切削速度 800m/min 送り 0.7mm/刃 切り込み 3.0mm この試験における欠損までの切削時間についても前述し
た表1に示した。
Sample No. shown in Table 1 For 1 to 23,
As a cutting test for evaluating abrasion resistance using a CNGN160412 tool shape, a gray cast iron material was dry-turned under the following cutting conditions, and a wear width after cutting for 20 minutes was measured. The results are shown in Table 1 above. Work material FC250 Cutting speed 800m / min Feed 0.7mm / rev Depth of cut 3.0mm In addition, as a cutting test for evaluating fracture resistance, S
Using a sample having the shape of NGN120408, a test for processing a spheroidal graphite cast iron material by face milling under the following conditions was performed. Work material FCD450 (cubic shape of 125 × 300 mm) Cutting speed 800 m / min Feeding 0.7 mm / tooth Cutting depth 3.0 mm The cutting time up to chipping in this test is also shown in Table 1 described above.

【0055】表1に示されるように、本発明実施例品の
試料No.1〜9は、何れも、切削テストにおいて一般
的に良好な耐摩耗性を有すると判断される摩耗幅0.2
0mm未満であり、かつ20分でも欠損を生じなかっ
た。このように本発明実施例品が良好な耐摩耗性と耐欠
損性を示したのは、次のような理由によるものと考えら
れる。
As shown in Table 1, the sample No. of the product of the present invention was used. Each of 1 to 9 has a wear width of 0.2, which is generally judged to have good wear resistance in a cutting test.
It was less than 0 mm, and no defect occurred even after 20 minutes. The reason why the product of the present invention exhibited good wear resistance and chipping resistance as described above is considered to be as follows.

【0056】本発明実施例品は、熱膨張率の大きなTi
Nが焼成における昇温、冷却の過程で表面部分に残留応
力を発生させ、この残留応力によりこの部分の靱性およ
び硬度が高められる。また、靱性、耐反応性に優れるT
iNが表面部分に優先的に存在するので耐摩耗性、耐欠
損性共により一層高められる。さらに、本発明実施例品
はTiNとともに熱膨張係数が低いTiCを含むことに
より高温での耐欠損性が高められる。
The product of the present invention is made of Ti having a large coefficient of thermal expansion.
N generates a residual stress in the surface portion in the process of heating and cooling during firing, and the residual stress increases the toughness and hardness of this portion. In addition, T which is excellent in toughness and reaction resistance
Since iN is preferentially present in the surface portion, both abrasion resistance and fracture resistance are further enhanced. Further, the example product of the present invention contains TiC having a low coefficient of thermal expansion together with TiN, whereby the fracture resistance at high temperatures is enhanced.

【0057】これに対して、比較例の試料No.10〜2
3では、0.20mmの摩耗幅よりも大きい摩耗幅とな
り、さらに、20分以内に欠損が生じて工具寿命となっ
た。
On the other hand, the samples No. 10-2 of the comparative example
In No. 3, the wear width was larger than the wear width of 0.20 mm, and further, chipping occurred within 20 minutes, and the tool life was shortened.

【0058】比較例のうち、試料No.10〜16は組
成が本発明の範囲から外れており、このため耐摩耗性と
耐欠損性の少なくともいずれかが良好でない。このこと
から本発明の組成範囲は重要であることがわかる。
Of the comparative examples, sample no. The compositions of Nos. 10 to 16 are out of the range of the present invention, so that at least one of abrasion resistance and fracture resistance is not good. This shows that the composition range of the present invention is important.

【0059】また比較例の試料のNo.17〜21は、
前述のように焼結体表面にほとんどTiNが形成されて
おらず、TiNが焼結体の表面部分に優先的に存在して
いるものとはなっていない。すなわち、焼結体中に含ま
れるTi化合物は殆ど全てがTiCである。その結果、
耐摩耗性と耐欠損性の少なくともいずれかが良好でな
い。このことから、焼結体中にTiNとTiCの両方を
含有し、且つ、TiNが焼結体の表面部分に優先的に存
在していることが重要であることがわかる。
In addition, the sample No. of the comparative example was no. 17-21 are
As described above, almost no TiN is formed on the surface of the sintered body, and TiN is not predominantly present on the surface of the sintered body. That is, almost all Ti compounds contained in the sintered body are TiC. as a result,
At least one of wear resistance and fracture resistance is not good. From this, it is understood that it is important that both the TiN and TiC are contained in the sintered body and that the TiN is preferentially present on the surface portion of the sintered body.

【0060】このうち、比較例の試料No.18は、加
熱保持温度と焼成温度が1700℃と同一であり、その
結果、焼結体表面にほとんどTiNが形成されず、耐摩
耗性、耐欠損性ともに良好でなかった。このことから、
本発明の切削工具の製造工程において、加熱保持温度に
対し加熱保持後に行う焼成の温度を上げることが重要で
あることがわかる。
Among them, the sample No. of the comparative example. In No. 18, the heating holding temperature and the sintering temperature were the same as 1700 ° C. As a result, almost no TiN was formed on the surface of the sintered body, and neither the wear resistance nor the chipping resistance was good. From this,
In the manufacturing process of the cutting tool of the present invention, it is understood that it is important to raise the temperature of the firing performed after the heating and holding with respect to the heating and holding temperature.

【0061】また、比較例の試料No.19は、焼成時
間が10時間未満(9時間)であり、その結果、焼結体
表面にほとんどTiNが形成されず、耐摩耗性、耐欠損
性ともに良好でなかった。このことから、本発明の切削
工具の製造工程において、焼成を10時間以上行うこと
が重要であることがわかる。
The sample No. of the comparative example was used. In No. 19, the firing time was less than 10 hours (9 hours). As a result, almost no TiN was formed on the surface of the sintered body, and neither the wear resistance nor the chipping resistance was good. This indicates that it is important to perform firing for 10 hours or more in the manufacturing process of the cutting tool of the present invention.

【0062】次に、比較例の試料No.22、23は焼
結体全体にTiNをほぼ均一分散状態で含有したもので
あり、その結果、耐欠損性と耐摩耗性の両方が良好でな
かった。すなわち、TiNを焼結体全体に含むものであ
っても、TiNが焼結体の表面部分に優先的に存在して
いない場合には、耐欠損性と耐摩耗性が向上しなかっ
た。このことから、TiNが焼結体の表面部分に優先的
に存在していることが重要であることがわかる。
Next, the sample No. of the comparative example was used. Samples Nos. 22 and 23 contained TiN in a substantially uniformly dispersed state throughout the sintered body. As a result, both the fracture resistance and the wear resistance were not good. That is, even if TiN is contained in the entire sintered body, when TiN is not preferentially present on the surface portion of the sintered body, the fracture resistance and the wear resistance are not improved. This indicates that it is important that TiN preferentially exists on the surface of the sintered body.

【0063】[0063]

【発明の効果】以上詳述した通り、本発明の切削工具
は、鋳鉄の高速切削において、優れら耐摩耗性、耐欠損
性および耐熱衝撃性を有し工具の寿命を延長することが
できる。
As described in detail above, the cutting tool of the present invention has excellent wear resistance, chipping resistance and thermal shock resistance in high-speed cutting of cast iron, and can extend the life of the tool.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例品である試料No.1と比較例品
No.18の焼結体表面における(250μm研磨除去
後)前記X線回折ピークのグラフである。
FIG. 1 shows a sample No. which is an example of the present invention. 1 and Comparative Example No. 18 is a graph of the X-ray diffraction peak on the surface of the sintered body No. 18 (after polishing and removal of 250 μm).

【符号の説明】[Explanation of symbols]

A TiNのピークが存在する可能性がある箇所。 A Location where a TiN peak may be present.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 35/64 C04B 35/58 102T 35/64 D Fターム(参考) 3C046 FF33 FF40 FF42 4G001 BA03 BA08 BA09 BA25 BA32 BA73 BB03 BB08 BB09 BB25 BB32 BB38 BC12 BC13 BC52 BC57 BD12 BD18 BE11 BE35──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 35/64 C04B 35/58 102T 35/64 DF Term (Reference) 3C046 FF33 FF40 FF42 4G001 BA03 BA08 BA09 BA25 BA32 BA73 BB03 BB08 BB09 BB25 BB32 BB38 BC12 BC13 BC52 BC57 BD12 BD18 BE11 BE35

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】窒化けい素を10〜68.5モル%と、少
なくとも炭化物および窒化物の形でTi化合物を30〜
80モル%と、AlをAl23換算で1.5〜10モル
%を有する窒化けい素質焼結体を使用した切削工具であ
って、 該焼結体はTiNを焼結体の表面部分に優先的に存在さ
せていることを特徴とする切削工具。
(1) a silicon nitride of 10 to 68.5 mol% and a Ti compound in the form of at least carbide and nitride of 30 to
A cutting tool using a silicon nitride sintered body having 80 mol% and 1.5 to 10 mol% of Al in terms of Al 2 O 3 , wherein the sintered body is made of TiN and a surface portion of the sintered body. Cutting tool characterized by being preferentially present in the cutting tool.
【請求項2】CuのKα線を用いたX線回折において、
前記窒化けい素質焼結体表面のTiNの最大ピーク強度
がTiCの最大ピーク強度よりも大であることを特徴と
する請求項1記載の切削工具。
2. In X-ray diffraction using Cu Kα ray,
The cutting tool according to claim 1, wherein the maximum peak intensity of TiN on the surface of the silicon nitride sintered body is larger than the maximum peak intensity of TiC.
【請求項3】窒化けい素を10〜68.5モル%と、少
なくとも炭化物の形でTi化合物を30〜80モル%
と、AlをAl23換算で1.5〜10モル%を有する
窒化けい素質焼結体用組成物を混合粉砕し、該混合物を
所定の形状に成形させ、窒素ガス雰囲気中にて所定焼成
温度より低い温度にて加熱保持させた後、所定焼成温度
にて10時間以上の焼成を行う工程を含むことを特徴と
する切削工具の製造方法。
3. A silicon nitride of 10 to 68.5 mol% and a Ti compound in the form of at least 30 to 80 mol% of carbide.
And a composition for a silicon nitride sintered body containing 1.5 to 10 mol% of Al in terms of Al 2 O 3 , mixed and pulverized, and the mixture is formed into a predetermined shape, and the mixture is formed in a nitrogen gas atmosphere. A method for manufacturing a cutting tool, comprising a step of heating and holding at a temperature lower than a firing temperature and then firing at a predetermined firing temperature for 10 hours or more.
【請求項4】上記焼成温度が1700〜2000℃であ
り、且つ上記加熱保持温度が1600〜1800℃であ
ることを特徴とする請求項3記載の製造方法。
4. The method according to claim 3, wherein the sintering temperature is 1700 to 2000 ° C., and the heating and holding temperature is 1600 to 1800 ° C.
JP2000056303A 2000-03-01 2000-03-01 Cutting tool and manufacturing method thereof Expired - Fee Related JP4798821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000056303A JP4798821B2 (en) 2000-03-01 2000-03-01 Cutting tool and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000056303A JP4798821B2 (en) 2000-03-01 2000-03-01 Cutting tool and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001247369A true JP2001247369A (en) 2001-09-11
JP4798821B2 JP4798821B2 (en) 2011-10-19

Family

ID=18577281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000056303A Expired - Fee Related JP4798821B2 (en) 2000-03-01 2000-03-01 Cutting tool and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4798821B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195184A (en) * 1987-02-10 1988-08-12 日産自動車株式会社 Surface treatment for silicon nitride base sintered body
JPH02107572A (en) * 1988-01-28 1990-04-19 Hitachi Metals Ltd Conductive sialon sintered body and heater
JPH04342466A (en) * 1991-05-20 1992-11-27 Hitachi Ltd Reacted sintered composite ceramic, its production and sliding member using the same
JPH05287433A (en) * 1992-04-16 1993-11-02 Sumitomo Electric Ind Ltd Sintered compact for high hardness tool
JPH06508339A (en) * 1991-06-17 1994-09-22 アライド−シグナル・インコーポレーテッド High toughness - high strength sintered silicon nitride
JPH08193261A (en) * 1995-01-12 1996-07-30 Hitachi Ltd Metallic working jig and formation of surface film thereof
JP2000007441A (en) * 1998-06-29 2000-01-11 Kyocera Corp High toughness ceramic sintered compact
JP2000044352A (en) * 1998-07-31 2000-02-15 Kyocera Corp Highly tough ceramic-based sintered compact

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195184A (en) * 1987-02-10 1988-08-12 日産自動車株式会社 Surface treatment for silicon nitride base sintered body
JPH02107572A (en) * 1988-01-28 1990-04-19 Hitachi Metals Ltd Conductive sialon sintered body and heater
JPH04342466A (en) * 1991-05-20 1992-11-27 Hitachi Ltd Reacted sintered composite ceramic, its production and sliding member using the same
JPH06508339A (en) * 1991-06-17 1994-09-22 アライド−シグナル・インコーポレーテッド High toughness - high strength sintered silicon nitride
JPH05287433A (en) * 1992-04-16 1993-11-02 Sumitomo Electric Ind Ltd Sintered compact for high hardness tool
JPH08193261A (en) * 1995-01-12 1996-07-30 Hitachi Ltd Metallic working jig and formation of surface film thereof
JP2000007441A (en) * 1998-06-29 2000-01-11 Kyocera Corp High toughness ceramic sintered compact
JP2000044352A (en) * 1998-07-31 2000-02-15 Kyocera Corp Highly tough ceramic-based sintered compact

Also Published As

Publication number Publication date
JP4798821B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
EP2402098B1 (en) Sialon insert, cutting tool equipped therewith, and manufacturing method thereof
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
WO2002028800A2 (en) &#39;SiAION MATERIAL AND CUTTING TOOLS MADE THEREOF&#39;
KR0177893B1 (en) Sintered silicon nitride-based body and process for producing the same
WO2014126178A1 (en) Cutting tool
US5316856A (en) Silicon nitride base sintered body
JP4716855B2 (en) Sialon cutting tool and tool equipped therewith
JP2010235351A (en) Alumina-based ceramic sintered compact, cutting insert and cutting tool
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
EP2760807B1 (en) Composite silicon nitride body
JP4070417B2 (en) Silicon nitride member, method for manufacturing the same, and cutting tool
KR100481075B1 (en) Titanium Carbonitride Complex Silicon Nitride Tools
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JP2001247369A (en) Cutting tool and method for producing the same
JPH06329470A (en) Sintered silicon nitride and its sintered and coated material
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP2000044352A (en) Highly tough ceramic-based sintered compact
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP2015009327A (en) Cutting insert
US6740611B2 (en) Alumina-based composite sintered material, wear resistant member and a method of manufacturing alumina based composite sintered material
JPH0531514B2 (en)
JP2003267787A (en) beta&#39;-SIALON-BASED CERAMIC TOOL AND ITS PRODUCTION METHOD
JP3615634B2 (en) High toughness silicon nitride sintered body and manufacturing method thereof
JP3591799B2 (en) High toughness silicon nitride based sintered body and method for producing the same
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110802

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees