JP2001244785A - Surface acoustic wave device - Google Patents

Surface acoustic wave device

Info

Publication number
JP2001244785A
JP2001244785A JP2000054164A JP2000054164A JP2001244785A JP 2001244785 A JP2001244785 A JP 2001244785A JP 2000054164 A JP2000054164 A JP 2000054164A JP 2000054164 A JP2000054164 A JP 2000054164A JP 2001244785 A JP2001244785 A JP 2001244785A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
electrode
base substrate
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000054164A
Other languages
Japanese (ja)
Other versions
JP4510982B2 (en
Inventor
Atsuo Kishu
淳雄 旗手
Kazuhiro Otsuka
一弘 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000054164A priority Critical patent/JP4510982B2/en
Publication of JP2001244785A publication Critical patent/JP2001244785A/en
Application granted granted Critical
Publication of JP4510982B2 publication Critical patent/JP4510982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface acoustic wave device that can be made small in size similar to the case with the size of element and manufactured easily. SOLUTION: In the surface acoustic wave device S1, a surface acoustic wave element 3, consisting of an excitation electrode 1 and lead electrodes 8, 9 (8 is a signal electrode and 9 is a ground electrode) connected to the electrode 1 formed on a lower side of a piezoelectric substrate 2, is placed on a base substrate 14, a recessed part 16 counterposed to the exciting electrode 1 and a through-hole 15 opposed to the lead electrodes 8, 9 are respectively formed to the base substrate 14 and a metallic film 17 which is a 1st conducting member and a 2nd conduction member 18 are filled into the through-hole 15 to form an external circuit connection section.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車電話及び携
帯電話等の移動体無線機器に内蔵される共振器や周波数
帯域フィルタである弾性表面波装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface acoustic wave device which is a resonator or a frequency band filter incorporated in a mobile radio device such as a mobile phone and a mobile phone.

【0002】[0002]

【従来技術とその課題】近年、電波を利用し通信を行な
う電子機器用の帯域通過フィルタ等の周波数フィルタ
(以下、フィルタという)、遅延線、発信器等の電子部
品として、多くの弾性表面波共振子や弾性表面波フィル
タが用いられている。特に、移動体通信分野において、
携帯電話等の携帯端末装置のRF(Radio Frequency:無
線周波数あるいは高周波)ブロック及びIF(Intermedia
te Frequency:中間周波数)ブロックのフィルタとして
多用されている。今後、自動車電話及び携帯電話等の移
動体無線機器を使用した通信システム上、部品の軽量化
や小型化が望まれている。
2. Description of the Related Art In recent years, many surface acoustic waves have been used as electronic components such as frequency filters (hereinafter, referred to as filters), delay lines, and transmitters for electronic devices that communicate using radio waves. Resonators and surface acoustic wave filters are used. In particular, in the mobile communications field,
RF (Radio Frequency: radio frequency or high frequency) block and IF (Intermedia) of a mobile terminal device such as a mobile phone.
It is often used as a filter for te Frequency (intermediate frequency) blocks. In the future, it is desired to reduce the weight and size of components in a communication system using mobile wireless devices such as a mobile phone and a mobile phone.

【0003】従来の弾性表面波(Surface Acoustic Wav
eで、以下、SAWともいう)装置の基本構成は、圧電
基板の表面に一対の櫛歯状の励振電極(Inter Digital
Transducer、IDT電極)を複数配置してある素子を、セ
ラミック製の筐体内に載置した構造となっている。
[0003] Conventional surface acoustic waves (Surface Acoustic Wav)
e, hereinafter also referred to as SAW) The basic configuration of the device is that a pair of comb-shaped excitation electrodes (Inter Digital
Transducers, IDT electrodes) are mounted in a ceramic housing.

【0004】図5に従来の一例を示す。励振電極1は、
例えば36°YカットX伝搬タンタル酸リチウム単結晶等か
らなる圧電基板2上に、蒸着法、スパッタ法等によりA
l、Al-Cu合金等の導電膜を成膜した後、フォトリソグラ
フィ法により微細な電極となるように導電膜をパターニ
ングして形成される。
FIG. 5 shows an example of the related art. The excitation electrode 1
For example, on a piezoelectric substrate 2 made of 36 ° Y-cut X-propagation lithium tantalate single crystal or the like, A
1. After forming a conductive film such as an Al-Cu alloy, the conductive film is patterned by photolithography so as to be a fine electrode.

【0005】さらに、励振電極1を形成した圧電基板2
をダイシングソーで切断することにより、SAW素子3
が作製される。また、このSAW素子3をセラミックで
作製した筐体4内に載置し接着樹脂5にて固着させ、筐
体4の入出力電極6または接地電極7をそれぞれの引き
出し電極8、9にワイヤ10で接続する。そして耐候性
を持たせるために、筐体4と蓋体11をシーム溶接また
は半田または樹脂の封止材12により封止する。
Further, a piezoelectric substrate 2 on which an excitation electrode 1 is formed
Is cut with a dicing saw to obtain a SAW element 3
Is produced. The SAW element 3 is placed in a casing 4 made of ceramic and fixed with an adhesive resin 5, and the input / output electrode 6 or the ground electrode 7 of the casing 4 is connected to the lead electrodes 8 and 9 by wires 10. Connect with. Then, in order to provide weather resistance, the housing 4 and the lid 11 are sealed by seam welding or a sealing material 12 made of solder or resin.

【0006】このように、従来のSAW装置では、軽量
化・小型化が要求されているにもかかわらず、素子に比
較して筐体が大きく、また、ワイヤボンディングにより
筐体内に空間を確保する必要があるため、SAW装置が
大型化するという問題があった。
As described above, in the conventional SAW device, despite the demand for weight reduction and size reduction, the housing is larger than the element, and a space is secured in the housing by wire bonding. Because of the necessity, there is a problem that the size of the SAW device is increased.

【0007】これに対し、近年、バンプを用いたフリッ
プチップ接続を行ない、装置全体を軽量化・小型化する
提案がなされている(例えば、特開平11−15044
0号公報を参照)。
On the other hand, in recent years, proposals have been made to perform flip-chip connection using bumps to reduce the weight and size of the entire device (for example, Japanese Patent Application Laid-Open No. H11-15044).
No. 0).

【0008】この方法によれば、電気的接続をフリップ
チップ接続で行なうことにより、ワイヤボンディングで
必要とされる空間が不要となる。このため、従来のワイ
ヤ接続によるSAW装置より小型とすることが出来る。
According to this method, the electrical connection is made by flip-chip connection, thereby eliminating the space required for wire bonding. For this reason, it is possible to make the SAW device smaller than a conventional SAW device by wire connection.

【0009】しかし、上記のいずれの方法においても、
フリップチップのベース基板あるいはパッケージは表面
に電極を形成する必要がある。また、SAW素子との接
続部からフリップチップされるベース基板の下面あるい
はパッケージの下面まで、電極を引き回す必要があり、
ベース基板あるいはパッケージの作製に多大な工数を要
していた。
However, in any of the above methods,
It is necessary to form electrodes on the surface of the flip chip base substrate or package. In addition, it is necessary to route electrodes from the connection portion with the SAW element to the lower surface of the base substrate to be flip-chip or the lower surface of the package,
A large number of man-hours were required for manufacturing the base substrate or the package.

【0010】そこで、本発明は素子サイズと同等に小型
化が可能で、しかも作製の容易なSAW装置を提供する
ことを目的とする。
Accordingly, an object of the present invention is to provide a SAW device which can be reduced in size to the size of an element and can be easily manufactured.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の弾性表面波装置は、ベース基板上に、圧電
基板の下面に励振電極と該励振電極に接続される引き出
し電極とを形成した弾性表面波素子を載置し、ベース基
板に励振電極に対向させる凹部と引出し電極に対向させ
る貫通孔をそれぞれ形成し、該貫通孔に導電材を充填し
て外部回路接続部となした。また、外部回路接続部はベ
ース基板の下面に対し凸状に形成されていることを特徴
とする。また、ベース基板は異方性エッチングが可能な
材料から成り、かつ凹部及び貫通孔が異方性エッチング
により形成されていることを特徴とする。
In order to achieve the above object, a surface acoustic wave device according to the present invention comprises an excitation electrode and a lead electrode connected to the excitation electrode on a lower surface of a piezoelectric substrate on a base substrate. The surface acoustic wave element was placed on the base substrate, and a concave portion facing the excitation electrode and a through hole facing the extraction electrode were formed in the base substrate, and the through hole was filled with a conductive material to form an external circuit connecting portion. Further, the external circuit connection portion is formed to be convex with respect to the lower surface of the base substrate. Further, the base substrate is made of a material that can be anisotropically etched, and the concave portions and the through holes are formed by anisotropic etching.

【0012】[0012]

【発明の実施の形態】本発明に係る弾性表面波装置の実
施形態を図面に基づき詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a surface acoustic wave device according to the present invention will be described in detail with reference to the drawings.

【0013】図1に本発明に係る弾性表面波装置S1に
ける断面図を示す。また、図2に弾性表面波装置S1の
上面透視図を示す。ここで、図1は図2のA−A'線断
面図である。
FIG. 1 is a sectional view of a surface acoustic wave device S1 according to the present invention. FIG. 2 is a top perspective view of the surface acoustic wave device S1. Here, FIG. 1 is a sectional view taken along line AA ′ of FIG.

【0014】弾性表面波装置S1は、ベース基板14上
に、圧電基板2の下面に励振電極1とこれに接続される
引き出し電極8,9(8は信号用電極、9は接地用電
極)とを形成した弾性表面波素子3を載置し、ベース基
板14に励振電極1に対向させる凹部16と引出し電極
8,9に対向させる貫通孔15をそれぞれ形成し、貫通
孔15に第1の導電材である金属膜17や第2の導電材
18を充填して外部回路接続部となしている。
The surface acoustic wave device S1 has an excitation electrode 1 and lead electrodes 8, 9 (8 is a signal electrode, 9 is a ground electrode) connected to the excitation electrode 1 on the lower surface of the piezoelectric substrate 2 on the base substrate 14. The surface acoustic wave element 3 on which is formed is mounted, a concave portion 16 facing the excitation electrode 1 and a through hole 15 facing the extraction electrodes 8 and 9 are respectively formed in the base substrate 14, and the first conductive material is formed in the through hole 15. A metal film 17 and a second conductive material 18 are filled to form an external circuit connection portion.

【0015】ここで、弾性表面波素子3の機能面上に、
例えば絶縁体材料の樹脂から成る枠状の封止材12を塗
布形成している。この封止材12により弾性表面波素子
3とベース基板14とを接合し気密封止している。
Here, on the functional surface of the surface acoustic wave element 3,
For example, a frame-shaped sealing material 12 made of a resin of an insulator material is applied and formed. The surface acoustic wave element 3 and the base substrate 14 are bonded and hermetically sealed by the sealing material 12.

【0016】貫通孔15に導電材18である例えば半田
や金属フィラーを混入させた樹脂を満たしているが、導
電材18はベース基板14の下面に対し表面が凸状にな
るよう印刷充填する。このように、導電材18を凸形状
にすることで、弾性表面波装置S1の特に信号用電極か
ら外部回路実装基板の電極への密着がきわめて容易かつ
良好になる。
The through hole 15 is filled with a conductive material 18, for example, a resin mixed with a solder or a metal filler. The conductive material 18 is printed and filled on the lower surface of the base substrate 14 so that the surface becomes convex. In this way, by making the conductive material 18 convex, the adhesion of the surface acoustic wave device S1 particularly from the signal electrode to the electrode of the external circuit mounting board becomes extremely easy and good.

【0017】貫通孔15の側面には導電材18とベース
基板14、および弾性表面波素子3の引き出し電極8、
9との密着性をよくするために金属膜17を被着形成し
ている。
On the side surface of the through hole 15, the conductive material 18, the base substrate 14, and the extraction electrode 8 of the surface acoustic wave element 3,
In order to improve the adhesion with the metal film 9, a metal film 17 is formed by adhesion.

【0018】また、ベース基板14の凹部16や貫通孔
15の形成は、異方性エッチングが可能な例えばSi単
結晶基板の(100)面や(110面)を主面として利
用すれば、(100)面または(110)面と(11
1)面とのエッチングレートの差異が大きいことを利用
した異方性エッチングにより、(111)面の傾斜面を
有する凹部16や貫通孔15の作製が容易となる。な
お、異方性エッチングに用いるアルカリ性エッチャント
としては、KOH,NaOH,EPW(エチレンジアミ
ン+ピロカテコール+水),ヒドラジン,TMAH(水
酸化テトラメチルアンモニウム)等のアルカリ水溶液が
好ましい。
The concave portion 16 and the through hole 15 of the base substrate 14 can be formed by using, for example, a (100) plane or (110 plane) of a Si single crystal substrate capable of anisotropic etching as a main surface. (100) plane or (110) plane and (11) plane
1) Anisotropic etching utilizing a large difference in etching rate from the plane facilitates production of the recess 16 and the through-hole 15 having the inclined plane of the (111) plane. The alkaline etchant used for the anisotropic etching is preferably an alkaline aqueous solution such as KOH, NaOH, EPW (ethylenediamine + pyrocatechol + water), hydrazine, TMAH (tetramethylammonium hydroxide).

【0019】凹部16に封止材12のたれ込み(加熱や
加圧時に変形すること)がある場合、弾性表面波素子3
上の励振電極1の妨げになり特性に悪影響を及ぼすおそ
れがあるが、樹脂のたれ込み部位に微小空間の傾斜面を
形成することで、樹脂の表面張力で樹脂のたれ込み量を
極力抑えることができるため、上記のような異方性エッ
チング法を用いることが好ましい。
In the case where the sealing material 12 is sagged (deformed when heated or pressed) in the recess 16, the surface acoustic wave element 3
Although it may hinder the upper excitation electrode 1 and adversely affect the characteristics, by forming an inclined surface of a minute space at the resin sinking portion, the resin sinking amount can be suppressed as much as possible by the surface tension of the resin. Therefore, it is preferable to use the anisotropic etching method as described above.

【0020】また、ベース基板14の上面で弾性表面波
素子3の励振電極1に対向する部位に異方性エッチング
により凹部16を形成しているため、弾性表面波素子3
の電極厚さによらず励振電極1の振動空間19を十分に
確保できる。
Further, since the recess 16 is formed by anisotropic etching on the upper surface of the base substrate 14 at a portion facing the excitation electrode 1 of the surface acoustic wave element 3, the surface acoustic wave element 3
Irrespective of the electrode thickness, the vibration space 19 of the excitation electrode 1 can be sufficiently secured.

【0021】さらに、貫通孔15には導電材18等を印
刷充填するため、導電体中に気泡が入りにくく充填され
やすいため、貫通孔15に傾斜をもたせることが可能な
異方性エッチング法を用いることが好ましい。
In addition, since the conductive material 18 and the like are printed and filled in the through hole 15, air bubbles are difficult to enter into the conductive material, and the conductive material is easily filled. Therefore, an anisotropic etching method capable of making the through hole 15 inclined is provided. Preferably, it is used.

【0022】次に、図3に示す他の実施形態について説
明する。ここで、枠状の封止材12は絶縁性のため、入
出力電極である引き出し電極8および接地電極である引
き出し電極9が電気的にショートとなることが無いた
め、引き出し電極8,9の圧電基板2上の引き回しが自
由にできる。これにより、ベース基板14上の入出力電
極および接地電極の引き出し電極8,9の配線ピッチに
自由度があり、また、圧電基板2上やベース基板14上
にインダクタやコンデンサなどの付加回路を作製するこ
とも可能である。このようにインダクタを構成するよう
にミアンダ状(蛇行状)線路20を有する接地電極を設
けることも可能である。
Next, another embodiment shown in FIG. 3 will be described. Here, since the frame-shaped sealing material 12 is insulative, the lead-out electrode 8 serving as the input / output electrode and the lead-out electrode 9 serving as the ground electrode are not electrically short-circuited. The wiring on the piezoelectric substrate 2 can be freely performed. Accordingly, the wiring pitch of the input / output electrodes on the base substrate 14 and the lead electrodes 8 and 9 of the ground electrode has a degree of freedom, and additional circuits such as inductors and capacitors are formed on the piezoelectric substrate 2 and the base substrate 14. It is also possible. Thus, it is also possible to provide a ground electrode having a meandering (meandering) line 20 so as to constitute an inductor.

【0023】また、弾性表面波素子3の機能面とベース
基板14とを、封止材12により接合し気密封止できる
が、弾性表面波装置を外部回路基板に実装する際、チッ
プマウンタのマニュピレータが与える圧力によって、弾
性表面波素子3の圧電基板2が破損することがあり得る
ため、図4に示す弾性表面波装置S3のように、圧電基
板2の上面側から保護樹脂22を樹脂ポッティングして
作製しても構わない。
Further, the functional surface of the surface acoustic wave element 3 and the base substrate 14 can be hermetically sealed by bonding with a sealing material 12. However, when the surface acoustic wave device is mounted on an external circuit board, a manipulator of a chip mounter is used. The piezoelectric substrate 2 of the surface acoustic wave element 3 may be damaged by the pressure given by the surface acoustic wave device 3. Therefore, like the surface acoustic wave device S3 shown in FIG. It may be made by making.

【0024】なお、圧電基板2はタンタル酸リチウム単
結晶、ニオブ酸リチウム単結晶、水晶、4ほう酸リチウ
ム単結晶、ランガサイト系単結晶、ニオブ酸カリウム単
結晶、ガリウム砒素単結晶が主に適用できる。
The piezoelectric substrate 2 can be mainly made of lithium tantalate single crystal, lithium niobate single crystal, quartz, lithium tetraborate single crystal, langasite single crystal, potassium niobate single crystal, or gallium arsenide single crystal. .

【0025】また、励振電極1や、貫通孔の表面被服す
る金属膜17の材料には、主にアルミニウム、アルミニ
ウム・銅合金、アルミニウム・チタン合金、アルミニウ
ム・珪素合金、金、銀、または銀・パラジウム合金が主
に適用でき、電極の密着度向上や電気抵抗の削減のため
下地材が必要な場合には、クロム、チタン、銅等が主に
適用できる。
The material of the excitation electrode 1 and the metal film 17 coated on the surface of the through hole is mainly aluminum, aluminum / copper alloy, aluminum / titanium alloy, aluminum / silicon alloy, gold, silver or silver / silver alloy. A palladium alloy can be mainly used, and when a base material is required to improve the degree of electrode adhesion and reduce electric resistance, chromium, titanium, copper, etc. can be mainly used.

【0026】また、封止材12や保護樹脂22は、熱硬
化性樹脂(エポキシ系、シリコーン系、フェノール系、
ポリイミド系、ポリウレタン系等)、熱可塑性樹脂(ポ
リフェニレンサルファイド等)、紫外線硬化樹脂、また
は低融点ガラス等が主に適用できる。
The sealing material 12 and the protective resin 22 are made of a thermosetting resin (epoxy, silicone, phenol,
Polyimide, polyurethane, etc.), thermoplastic resin (polyphenylene sulfide, etc.), ultraviolet curable resin, low melting point glass, etc. can be mainly applied.

【0027】また、導電材18は、熱硬化性樹脂(エポ
キシ系、シリコーン系、フェノール系、ポリイミド系、
ポリウレタン系等)、熱可塑性樹脂(ポリフェニレンサ
ルファイド等)、紫外線硬化樹脂、または低融点ガラス
等に金属フィラーを任意の割合で混入されたものが主に
適用できる。
The conductive material 18 is made of a thermosetting resin (epoxy, silicone, phenol, polyimide,
Polyurethane-based resin, thermoplastic resin (polyphenylene sulfide, etc.), ultraviolet curable resin, low-melting glass, or the like mixed with a metal filler at an arbitrary ratio can be mainly used.

【0028】また、圧電基板2上の微細な電極である励
振電極1を埃等の異物や金属マイグレーションから保護
するため、励振電極1上に保護膜21を約0.1μm以
内で形成するのが一般的である。
Further, in order to protect the excitation electrode 1 which is a fine electrode on the piezoelectric substrate 2 from foreign matter such as dust and metal migration, it is preferable to form a protective film 21 on the excitation electrode 1 within about 0.1 μm. General.

【0029】また、図1では励振電極を共振器梯子型フ
ィルタの構成図を示したが、共振器格子型フィルタや2
重モード共振器型フィルタ、マルチIDT電極型フィル
タ、またはこれらの複合された構成で行っても構わな
い。
FIG. 1 shows a configuration diagram of a resonator ladder type filter in which an excitation electrode is used.
The operation may be performed by a double mode resonator type filter, a multi-IDT electrode type filter, or a combination thereof.

【0030】なお、本発明は上記の実施形態に限定され
るものでなく、SAWフィルタだけでなく、SAWレゾ
ネータやSAWデュプレクサにも本発明が適用でき、本
発明の要旨を逸脱しない範囲で種々の変更は何等差し支
えない。
The present invention is not limited to the above-described embodiment. The present invention can be applied not only to a SAW filter but also to a SAW resonator and a SAW duplexer, and various modifications can be made without departing from the gist of the present invention. No changes can be made.

【0031】[0031]

【実施例】厚さ0.35mm、約80mm径の42°Yカ
ットX伝搬タンタル酸リチウム単結晶ウエハに、電極膜
としてAl−Cu合金をスパッタ法にて膜厚0.2μm
で成膜した。その上に、ポジ型フォトレジストを1μm
の厚さでスピンコート法により塗布した。その後、露
光、現像を行ないフォトレジストのパターニングを行な
い、ドライエッチング法で所望の励振電極1や引き出し
電極8,9形状となるようにエッチングし、アッシング
でフォトレジストを除去して電極パターニングを完了し
た。
EXAMPLE A 42 ° Y-cut X-propagation lithium tantalate single crystal wafer having a thickness of 0.35 mm and a diameter of about 80 mm was formed on an Al-Cu alloy as an electrode film by sputtering to a thickness of 0.2 μm.
Was formed. On top of that, a positive photoresist of 1 μm
Was applied by a spin coating method. After that, exposure and development are performed to pattern the photoresist, dry etching is performed to form the desired excitation electrode 1 and extraction electrodes 8 and 9, and the photoresist is removed by ashing to complete the electrode patterning. .

【0032】その後、SiO2膜をCVD法により0.
025μmの厚さで成膜し、ポジ型フォトレジストを1
μmの厚さでスピンコート法により塗布し、露光・現像
を行ないフォトレジストのパターニングを行ない、ドラ
イエッチング法により電極をエッチングし、アッシング
によりフォトレジストを除去して、励振電極1上に保護
膜21をパターニングした。
After that, the SiO2 film is formed to a thickness of 0.1 mm by the CVD method.
A film was formed with a thickness of 025 μm, and a positive photoresist was
It is applied by a spin coat method to a thickness of μm, is exposed and developed, is patterned by photoresist, is etched by dry etching, and the photoresist is removed by ashing. Was patterned.

【0033】多数のパターニングされた弾性表面波素子
3が並んだウエハを、ダイシングソーを用いてダイシン
グし、1mm角の弾性表面波素子3を多数完成させた。
A wafer on which a large number of patterned surface acoustic wave elements 3 are arranged is diced using a dicing saw to complete many 1 mm square surface acoustic wave elements 3.

【0034】次に、厚さ0.25mm、約80mm径の
Si単結晶(主面が(100)面)の基板に、ポジ型フ
ォトレジストを1μmの厚さでスピンコート法により塗
布し、露光・現像を行ないフォトレジストのパターニン
グを行い、水酸化カリウム水溶液に30時間浸漬してベ
ース基板14をエッチングし、Si基板のSAW素子3
と対向する面上に0.2mm角、外部回路との接続端子
面に0.55mm角の貫通孔を形成した。
Next, a positive photoresist is applied by a spin coating method to a substrate of 0.25 mm in thickness and a diameter of about 80 mm of Si single crystal (main surface is (100) plane) with a thickness of 1 μm. Developing, patterning the photoresist, immersing in a potassium hydroxide aqueous solution for 30 hours to etch the base substrate 14,
A through-hole of 0.2 mm square was formed on the surface opposite to the above, and a 0.55 mm square was formed on the connection terminal surface with the external circuit.

【0035】また、同様に振動空間19の形成のために
底面0.5mm角、上面0.64mm角の傾斜のある段
差部を異方性エッチングにより作製した。
Similarly, in order to form the vibration space 19, a step having a 0.5 mm square bottom surface and a 0.64 mm square top surface was formed by anisotropic etching.

【0036】その後、弾性表面波素子3に枠状の封止材
のエポキシ樹脂をマスク印刷により、0.1mm厚さ、
幅0.15mmに塗布し、前記エポキシ樹脂を150
℃、30分の条件で仮硬化させた。この弾性表面波素子
3と前記ベース基板14を前記エポキシ樹脂にて微小加
圧・加熱(150℃、2時間)し、気密封止を行った。
また、次に貫通孔15にマスク蒸着によりTiを0.1
μmの厚さで成膜し、貫通孔側面にTi金属膜を形成
し、無鉛はんだペーストを貫通孔15にマスク印刷し、
塗布した。
Thereafter, the surface acoustic wave element 3 is printed with a frame-shaped sealing resin of epoxy resin by mask printing to a thickness of 0.1 mm.
The epoxy resin is applied to a width of 0.15 mm,
Temporarily cured at 30 ° C. for 30 minutes. The surface acoustic wave element 3 and the base substrate 14 were slightly pressurized and heated (150 ° C., 2 hours) with the epoxy resin, and hermetically sealed.
Then, Ti is added to the through hole 15 by mask evaporation.
μm thick, a Ti metal film is formed on the side surface of the through hole, and a lead-free solder paste is mask-printed on the through hole 15.
Applied.

【0037】次にはんだペースト塗布面を上にして、S
iウエハをプレヒート150℃、1分間、溶融加熱23
0℃、5秒の条件ではんだボールを貫通孔に形成した。
Next, with the solder paste applied side facing up, S
Melt and heat the i-wafer at 150 ° C for 1 minute for 23 minutes.
Solder balls were formed in the through holes at 0 ° C. for 5 seconds.

【0038】そして、Siウエハをダイシングソーでダ
イシングし、1.5mm角の弾性表面波装置を多数完成
させた。
Then, the Si wafer was diced with a dicing saw to complete a number of 1.5 mm square surface acoustic wave devices.

【0039】以上の工程により大きさは幅1.5mm、
奥行き1.5mm、高さ0.7mmの超小型な弾性表面
波装置を完成させることができた。
By the above steps, the size is 1.5 mm in width,
An ultra-small surface acoustic wave device having a depth of 1.5 mm and a height of 0.7 mm was completed.

【0040】[0040]

【発明の効果】以上詳述したように、本発明の弾性表面
波装置によれば、電気的接続をフリップチップ接続で行
なうことにより、ワイヤボンディングで必要となる空間
を確保しなくともよい。このため、従来のワイヤ接続に
よる弾性表面波装置より小型の弾性表面波装置を提供す
ることができる。
As described in detail above, according to the surface acoustic wave device of the present invention, the electrical connection is made by flip-chip connection, so that it is not necessary to secure the space required for wire bonding. Therefore, a surface acoustic wave device smaller than a conventional surface acoustic wave device using a wire connection can be provided.

【0041】また、本発明のベース基板では、フリップ
チップ接続におけるベース基板あるいはワイヤ接続にお
けるパッケージで必要となる電極の引き回しをなくすこ
とができ、作製及び構造が非常に簡便な弾性表面波装置
を提供できる。
The base substrate of the present invention can eliminate the wiring of electrodes required for the base substrate for flip-chip connection or the package for wire connection, and provides a surface acoustic wave device that is very simple to manufacture and structure. it can.

【0042】さらに、外部回路接続部をベース基板の下
面に対し凸状に形成することにより、特に弾性表面波装
置と外部回路実装基板との密着がきわめて良好となり、
信頼性に優れた弾性表面波装置を提供できる。
Further, by forming the external circuit connecting portion in a convex shape with respect to the lower surface of the base substrate, the adhesion between the surface acoustic wave device and the external circuit mounting substrate becomes particularly excellent,
A surface acoustic wave device with excellent reliability can be provided.

【0043】そして、ベース基板を異方性エッチングが
可能な材料から成るものとし、凹部及び貫通孔が異方性
エッチングにより形成することによっても、作製が容易
で信頼性の優れた弾性表面波装置を提供できる。
Further, the base substrate is made of a material capable of anisotropic etching, and the recess and the through hole are formed by anisotropic etching. Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る弾性表面波装置の一実施形態を模
式的に説明する断面図である。
FIG. 1 is a cross-sectional view schematically illustrating one embodiment of a surface acoustic wave device according to the present invention.

【図2】本発明に係る弾性表面波装置の一実施形態を模
式的に説明する上面透視図である。
FIG. 2 is a top perspective view schematically illustrating one embodiment of a surface acoustic wave device according to the present invention.

【図3】本発明に係る弾性表面波装置の他の実施形態を
模式的に説明するの上面透視図である。
FIG. 3 is a top perspective view schematically illustrating another embodiment of the surface acoustic wave device according to the present invention.

【図4】本発明に係る弾性表面波装置の他の実施形態を
模式的に説明する断面図である。
FIG. 4 is a cross-sectional view schematically illustrating another embodiment of the surface acoustic wave device according to the present invention.

【図5】従来の弾性表面波装置を模式的に説明する断面
図である。
FIG. 5 is a cross-sectional view schematically illustrating a conventional surface acoustic wave device.

【符号の説明】[Explanation of symbols]

1:励振電極 2:圧電基板 3:弾性表面波素子 4:筐体 5:接着樹脂 6:入出力電極 7:接地電極 8:入出力電極(引き出し電極) 9:接地電極(引き出し電極) 10:ワイヤ 11:蓋体 12:封止材 14:ベース基板 15:貫通孔 16:凹部 17:第1の導電材(金属膜) 18:第2の導電材 19:振動空間 20:信号配線部 21:保護膜 22:保護樹脂 S1〜S3:弾性表面波装置 1: Excitation electrode 2: Piezoelectric substrate 3: Surface acoustic wave element 4: Housing 5: Adhesive resin 6: Input / output electrode 7: Ground electrode 8: Input / output electrode (lead electrode) 9: Ground electrode (lead electrode) 10: Wire 11: lid 12: sealing material 14: base substrate 15: through hole 16: recess 17: first conductive material (metal film) 18: second conductive material 19: vibration space 20: signal wiring portion 21: Protective film 22: Protective resin S1 to S3: Surface acoustic wave device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ベース基板上に、圧電基板の下面に励振
電極と該励振電極に接続される引き出し電極とを形成し
た弾性表面波素子を載置した弾性表面波装置であって、
前記ベース基板に前記励振電極に対向させる凹部と前記
引き出し電極に対向させる貫通孔をそれぞれ形成し、該
貫通孔に導電材を充填して外部回路接続部となしたこと
を特徴とする弾性表面波装置。
1. A surface acoustic wave device in which a surface acoustic wave element having an excitation electrode and a lead electrode connected to the excitation electrode formed on a lower surface of a piezoelectric substrate is mounted on a base substrate,
A concave portion facing the excitation electrode and a through hole facing the extraction electrode are formed in the base substrate, and the through hole is filled with a conductive material to form an external circuit connection portion. apparatus.
【請求項2】 前記外部回路接続部は前記ベース基板の
下面に対し凸状に形成されていることを特徴とする請求
項1に記載の弾性表面波装置。
2. The surface acoustic wave device according to claim 1, wherein the external circuit connection portion is formed in a convex shape with respect to a lower surface of the base substrate.
【請求項3】 前記ベース基板は異方性エッチングが可
能な材料から成り、かつ前記凹部及び貫通孔が異方性エ
ッチングにより形成されていることを特徴とする請求項
1に記載の弾性表面波装置。
3. The surface acoustic wave according to claim 1, wherein the base substrate is made of a material that can be anisotropically etched, and the recess and the through hole are formed by anisotropic etching. apparatus.
JP2000054164A 2000-02-29 2000-02-29 Surface acoustic wave device Expired - Fee Related JP4510982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000054164A JP4510982B2 (en) 2000-02-29 2000-02-29 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000054164A JP4510982B2 (en) 2000-02-29 2000-02-29 Surface acoustic wave device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009147777A Division JP4823336B2 (en) 2009-06-22 2009-06-22 Surface acoustic wave device and mounting structure

Publications (2)

Publication Number Publication Date
JP2001244785A true JP2001244785A (en) 2001-09-07
JP4510982B2 JP4510982B2 (en) 2010-07-28

Family

ID=18575455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000054164A Expired - Fee Related JP4510982B2 (en) 2000-02-29 2000-02-29 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4510982B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216267A1 (en) * 2002-04-12 2003-10-30 Infineon Technologies Ag Method for producing a housing for a chip with a micromechanical structure
US7042056B2 (en) 2002-07-31 2006-05-09 Murata Manufacturing Co., Ltd. Chip-size package piezoelectric component
US7102272B2 (en) 2002-07-31 2006-09-05 Murata Manufacturing Co., Ltd. Piezoelectric component and method for manufacturing the same
JP2006245098A (en) * 2005-03-01 2006-09-14 Seiko Epson Corp Electronic component and manufacturing method thereof, and electronic apparatus
US7622684B2 (en) * 2005-11-02 2009-11-24 Panasonic Corporation Electronic component package
US7652214B2 (en) 2005-11-02 2010-01-26 Panasonic Corporation Electronic component package
US9005853B2 (en) 2010-05-20 2015-04-14 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive film, rib pattern formation method, hollow structure and formation method for same, and electronic component
JPWO2016114358A1 (en) * 2015-01-16 2017-08-17 株式会社村田製作所 Substrate, substrate manufacturing method, and acoustic wave device
WO2018216486A1 (en) * 2017-05-26 2018-11-29 株式会社村田製作所 Electronic component and module equipped with same
CN109004083A (en) * 2018-08-10 2018-12-14 付伟 Chip-packaging structure and preparation method thereof with single cofferdam and scolding tin
CN109004080A (en) * 2018-08-10 2018-12-14 付伟 With extension double cofferdam and the chip-packaging structure of scolding tin and preparation method thereof
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11870424B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11881835B2 (en) 2020-11-11 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11901874B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11916540B2 (en) 2018-06-15 2024-02-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US12015393B2 (en) 2022-03-31 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590884A (en) * 1991-09-28 1993-04-09 Murata Mfg Co Ltd Surface acoustic wave device and its mounting method
JPH07111438A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Surface acoustic wave device and its production
JPH08204497A (en) * 1995-01-26 1996-08-09 Murata Mfg Co Ltd Surface acoustic wave device
JPH08274575A (en) * 1995-04-03 1996-10-18 Kokusai Electric Co Ltd Composite element mount circuit board
JPH09162688A (en) * 1995-12-11 1997-06-20 Matsushita Electric Ind Co Ltd Surface acoustic wave device
JPH104152A (en) * 1996-06-17 1998-01-06 Matsushita Electric Ind Co Ltd Electronic component
JPH1126628A (en) * 1997-06-30 1999-01-29 Murata Mfg Co Ltd Package structure of electronic component
JP2000124767A (en) * 1998-10-14 2000-04-28 Japan Radio Co Ltd Substrate mounting method for saw filter chip and saw filter chip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590884A (en) * 1991-09-28 1993-04-09 Murata Mfg Co Ltd Surface acoustic wave device and its mounting method
JPH07111438A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Surface acoustic wave device and its production
JPH08204497A (en) * 1995-01-26 1996-08-09 Murata Mfg Co Ltd Surface acoustic wave device
JPH08274575A (en) * 1995-04-03 1996-10-18 Kokusai Electric Co Ltd Composite element mount circuit board
JPH09162688A (en) * 1995-12-11 1997-06-20 Matsushita Electric Ind Co Ltd Surface acoustic wave device
JPH104152A (en) * 1996-06-17 1998-01-06 Matsushita Electric Ind Co Ltd Electronic component
JPH1126628A (en) * 1997-06-30 1999-01-29 Murata Mfg Co Ltd Package structure of electronic component
JP2000124767A (en) * 1998-10-14 2000-04-28 Japan Radio Co Ltd Substrate mounting method for saw filter chip and saw filter chip

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216267B4 (en) * 2002-04-12 2005-04-14 Infineon Technologies Ag Method for producing a housing for a chip with a micromechanical structure
US7011986B2 (en) 2002-04-12 2006-03-14 Infineon Technologies Ag Method for manufacturing a housing for a chip with a micromechanical structure
DE10216267A1 (en) * 2002-04-12 2003-10-30 Infineon Technologies Ag Method for producing a housing for a chip with a micromechanical structure
US7042056B2 (en) 2002-07-31 2006-05-09 Murata Manufacturing Co., Ltd. Chip-size package piezoelectric component
US7102272B2 (en) 2002-07-31 2006-09-05 Murata Manufacturing Co., Ltd. Piezoelectric component and method for manufacturing the same
US7867830B2 (en) 2005-03-01 2011-01-11 Seiko Epson Corporation Manufacturing method for electronic component with sealing film
JP2006245098A (en) * 2005-03-01 2006-09-14 Seiko Epson Corp Electronic component and manufacturing method thereof, and electronic apparatus
US7348263B2 (en) 2005-03-01 2008-03-25 Seiko Epson Corporation Manufacturing method for electronic component, electronic component, and electronic equipment
US8664730B2 (en) 2005-03-01 2014-03-04 Seiko Epson Corporation Manufacturing method for electronic component, electronic component, and electronic equipment
US7652214B2 (en) 2005-11-02 2010-01-26 Panasonic Corporation Electronic component package
US7622684B2 (en) * 2005-11-02 2009-11-24 Panasonic Corporation Electronic component package
US9005853B2 (en) 2010-05-20 2015-04-14 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive film, rib pattern formation method, hollow structure and formation method for same, and electronic component
US9625814B2 (en) 2010-05-20 2017-04-18 Hitachi Chemical Company, Ltd. Photosensitive resin composition, photosensitive film, rib pattern formation method, hollow structure and formation method for same, and electronic component
KR20170140435A (en) 2010-05-20 2017-12-20 히타치가세이가부시끼가이샤 Photosensitive resin composition, photosensitive film, rib pattern formation method, hollow structure and formation method for same, and electronic component
JPWO2016114358A1 (en) * 2015-01-16 2017-08-17 株式会社村田製作所 Substrate, substrate manufacturing method, and acoustic wave device
US10931258B2 (en) 2017-05-26 2021-02-23 Murata Manufacturing Co., Ltd.' Electronic device and module including the same
WO2018216486A1 (en) * 2017-05-26 2018-11-29 株式会社村田製作所 Electronic component and module equipped with same
JPWO2018216486A1 (en) * 2017-05-26 2020-03-12 株式会社村田製作所 Electronic component and module including the same
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11888463B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Multi-port filter using transversely-excited film bulk acoustic resonators
US11916540B2 (en) 2018-06-15 2024-02-27 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with periodic etched holes
US11817840B2 (en) 2018-06-15 2023-11-14 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11831289B2 (en) 2018-06-15 2023-11-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11870424B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Filters using transversly-excited film bulk acoustic resonators with frequency-setting dielectric layers
US11870423B2 (en) 2018-06-15 2024-01-09 Murata Manufacturing Co., Ltd. Wide bandwidth temperature-compensated transversely-excited film bulk acoustic resonator
US11876498B2 (en) 2018-06-15 2024-01-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multiple diaphragm thicknesses and fabrication method
US11881834B2 (en) 2018-06-15 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11888465B2 (en) 2018-06-15 2024-01-30 Murata Manufacturing Co., Ltd. Bandpass filter with frequency separation between shunt and series resonators set by dielectric layer thickness
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11901878B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes with a wider top layer
US11901874B2 (en) 2018-06-15 2024-02-13 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with half-lambda dielectric layer
US11909381B2 (en) 2018-06-15 2024-02-20 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators with two-layer electrodes having a narrower top layer
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US11996822B2 (en) 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11923821B2 (en) 2018-06-15 2024-03-05 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11929727B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11929735B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. XBAR resonators with non-rectangular diaphragms
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11942922B2 (en) 2018-06-15 2024-03-26 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
CN109004083A (en) * 2018-08-10 2018-12-14 付伟 Chip-packaging structure and preparation method thereof with single cofferdam and scolding tin
CN109004080A (en) * 2018-08-10 2018-12-14 付伟 With extension double cofferdam and the chip-packaging structure of scolding tin and preparation method thereof
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US12009804B2 (en) 2019-08-28 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11996826B2 (en) 2020-02-18 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with thermally conductive etch-stop layer
US11916539B2 (en) 2020-02-28 2024-02-27 Murata Manufacturing Co., Ltd. Split-ladder band N77 filter using transversely-excited film bulk acoustic resonators
US11811391B2 (en) 2020-05-04 2023-11-07 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11967943B2 (en) 2020-05-04 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US11881835B2 (en) 2020-11-11 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US12021502B2 (en) 2021-12-28 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark electrodes and optimized electrode thickness
US12021504B2 (en) 2022-01-26 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a front-side dielectric layer and optimized pitch and mark
US12015393B2 (en) 2022-03-31 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals

Also Published As

Publication number Publication date
JP4510982B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4510982B2 (en) Surface acoustic wave device
JP6290850B2 (en) Elastic wave device and elastic wave module
US7042056B2 (en) Chip-size package piezoelectric component
JP5865944B2 (en) Method for manufacturing acoustic wave device
CN1795610B (en) Piezoelectric electronic component, and production method therefor, communication equipment
JP5117083B2 (en) Elastic wave device and manufacturing method thereof
JP4377500B2 (en) Surface acoustic wave device and method of manufacturing surface acoustic wave device
JP2004129222A (en) Piezoelectric component and manufacturing method thereof
JP2000261284A (en) Surface acoustic wave device and its production
EP1973228B1 (en) Method for manufacturing surface acoustic wave device and surface acoustic wave device
US7872404B2 (en) Piezoelectric vibrating reed device having improved electrode design
JP4936953B2 (en) Manufacturing method of surface acoustic wave device
JP2008135971A (en) Elastic wave device
JP4771847B2 (en) Surface acoustic wave device
JP4906557B2 (en) Manufacturing method of surface acoustic wave device
JP4823336B2 (en) Surface acoustic wave device and mounting structure
JP2007081555A (en) Surface acoustic wave device
JP4467154B2 (en) Surface acoustic wave device
JP2005130341A (en) Piezoelectric component and its manufacturing method, communications equipment
JP2001345673A (en) Surface acoustic wave device
JP2000165192A (en) Surface acoustic wave device
JP2000223989A (en) Surface acoustic wave device
JP2001077658A (en) Surface acoustic wave device
JP4684343B2 (en) Surface acoustic wave device
JP5263529B2 (en) Method for manufacturing piezoelectric vibrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4510982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees