JP2001243931A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP2001243931A
JP2001243931A JP2000050982A JP2000050982A JP2001243931A JP 2001243931 A JP2001243931 A JP 2001243931A JP 2000050982 A JP2000050982 A JP 2000050982A JP 2000050982 A JP2000050982 A JP 2000050982A JP 2001243931 A JP2001243931 A JP 2001243931A
Authority
JP
Japan
Prior art keywords
lead
negative electrode
lithium battery
positive electrode
synthetic rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000050982A
Other languages
Japanese (ja)
Inventor
Hiromitsu Mishima
洋光 三島
Shinji Umagome
伸二 馬込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000050982A priority Critical patent/JP2001243931A/en
Publication of JP2001243931A publication Critical patent/JP2001243931A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration of reliability caused by leakage of electrolytic solution from a lead take-out part or by vapor intrusion. SOLUTION: Between a positive and a negative electrode with a lead provided for taking out an electrochemical energy, an electrolyte is arranged to form a electricity-generating element, which is contained in a battery case made of a bag-like laminated sheet so that an end side of the lead is located outside of the laminated sheet. The taking-out part of the lead from the laminated sheet is clad with synthetic rubber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム電池に関
し、特に電気化学エネルギーを外部に取り出すためのリ
ードが設けられた発電要素を電槽に収容したリチウム電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to a lithium battery in which a power generation element provided with a lead for extracting electrochemical energy to the outside is accommodated in a battery case.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】近年
の携帯機器の小型軽量化に伴い、それら携帯機器の電源
として使用されるリチウム電池の小型軽量化、特に薄型
化が強く求められている。
2. Description of the Related Art In recent years, as portable devices have become smaller and lighter, there is a strong demand for lithium batteries used as power sources for such portable devices to be smaller and lighter, particularly thinner.

【0003】この薄型化の要求に応えるために、従来か
ら密閉型電池の電槽に使用されていたステンレス鋼やア
ルミニウムに代えて、金属箔と樹脂フィルムを積層した
厚さの薄いラミネートシートを採用したリチウム電池の
開発が進められ、一部ではすでに実用化されている。
In order to respond to the demand for thinning, instead of stainless steel or aluminum, which has been conventionally used for a battery case of a sealed battery, a thin laminated sheet made of a metal foil and a resin film is adopted. Lithium batteries have been developed and some have already been put into practical use.

【0004】ラミネートシートを電槽として用いたフィ
ルム電池やカード電池では、二つの皿状の金属製集電体
兼電槽を熱融着性樹脂で接着したり、ラミネートシート
の開口部を熱融着性樹脂で熱融着して封口することが提
案されている(例えば特開平7−6743号公報や特開
平8−83596号公報)。
In a film battery or a card battery using a laminate sheet as a battery case, two dish-shaped metal current collectors and a battery case are bonded with a heat-fusible resin, or the opening of the laminate sheet is fused with a heat-sealing resin. It has been proposed to seal by heat-sealing with an adhesive resin (for example, JP-A-7-6743 and JP-A-8-83596).

【0005】1対の金属製集電体兼電槽を熱融着性樹脂
で接着する場合には(特開平7−6743号公報)、上
下のヒーターの熱と圧力がシール部に均等に伝わって問
題ないが、リードを電槽内部からシール部を通過して引
き出す場合には(特開平8−83596号公報)、リー
ドに厚みがあるため、シール時に圧力がリード取出部に
均等に伝わらず、リード取出部の接着力がばらついた
り、リードの端面と熱融着性樹脂が十分に接着しないと
いう問題があった。
When a pair of metal current collector and battery case is bonded with a heat-fusible resin (Japanese Patent Laid-Open No. 7-6743), the heat and pressure of the upper and lower heaters are evenly transmitted to the seal portion. However, when the lead is pulled out from the inside of the battery case through the seal portion (Japanese Patent Laid-Open No. 8-83596), the pressure is not evenly transmitted to the lead extraction portion during sealing because the lead has a thickness. In addition, there have been problems that the adhesive strength of the lead extraction portion varies, and that the end face of the lead does not sufficiently adhere to the heat-fusible resin.

【0006】また、ラミネートシートに一般的に用いら
れる金属と接着性を有するポリオレフィン樹脂との接着
性が乏しいために、電解液の液漏れや水分の侵入などの
問題があった。
[0006] In addition, poor adhesion between a metal generally used for a laminate sheet and a polyolefin resin having adhesiveness causes problems such as leakage of electrolyte and intrusion of moisture.

【0007】そこで、リードのラミネートシート接着部
を金属との接着性に優れた熱融着性樹脂で予め被覆して
おくことが提案されている(特開平11−233133
号公報)。
[0007] Therefore, it has been proposed to coat a lead sheet bonding portion of a lead with a heat-fusible resin having excellent adhesion to metal in advance (Japanese Patent Laid-Open No. 11-233133).
No.).

【0008】リードを熱融着性樹脂で被覆する方法とし
ては、リードをフィルム状の熱融着性樹脂で挟んで加熱
して加圧する方法がとられている。これによってリード
の表面を完全に被覆することができるとされているが、
ヒーターが直接接触して加熱・加圧されたリードの表面
部分はよいが、ヒーターが直接触れないリードの端面部
分では、溶融した熱融着性樹脂が流れて接着するだけで
あり、充分な接着力が得られているとは言えず、長期の
使用においては依然として電解液の液漏れや水分の侵入
などの問題があった。
As a method of coating the lead with the heat-fusible resin, a method is used in which the lead is sandwiched between film-like heat-fusible resins and heated and pressed. It is said that this can completely cover the surface of the lead,
The heater is in direct contact with the heated and pressurized lead surface, but the heater is not in direct contact with the end face of the lead. It cannot be said that the power has been obtained, and there has been still a problem such as leakage of the electrolyte solution and intrusion of moisture in long-term use.

【0009】本発明はこのような従来のリチウム電池の
問題点に鑑みなされたものであり、ラミネートシートと
リードの接着状態を改善して電解液の液漏れや水分の侵
入を完全に防止したラミネートシートを電槽としたリチ
ウム電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional lithium battery, and has been made in consideration of the above problem. An object is to provide a lithium battery using a sheet as a battery case.

【0010】[0010]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明のリチウム電池では、電気化学エネルギー
を外部に取り出すためのリードが設けられた正極と負極
との間に、電解質を配設して発電要素を形成し、前記リ
ードの端部側が袋状のラミネートシートの外部に位置す
るように、前記発電要素をこの袋状のラミネートシート
から成る電槽に収容したリチウム電池において、前記リ
ードの前記ラミネートシートからの取出部を合成ゴムで
被覆した。
In order to achieve the above object, in the lithium battery of the present invention, an electrolyte is disposed between a positive electrode and a negative electrode provided with a lead for extracting electrochemical energy to the outside. And forming a power generating element, the lithium battery containing the power generating element in a battery container made of the bag-shaped laminated sheet so that the end side of the lead is located outside the bag-shaped laminated sheet. The portion where the lead was removed from the laminate sheet was covered with synthetic rubber.

【0011】上記リチウム電池では、前記合成ゴムがS
BR系合成ゴムであることが望ましい。
In the above lithium battery, the synthetic rubber is S
Desirably, it is a BR synthetic rubber.

【0012】上述の合成ゴムは有機溶剤などに可溶であ
り、1液性の接着剤インクとして取扱うことができ、リ
ードの所定位置に塗布して乾燥することで、強固な合成
ゴム皮膜を形成することができる。また、この皮膜は樹
脂製であり、金属とだけでなく、ラミネートシートに使
われるポリオレフィンや変性ポリオレフィンとの接着性
も良好で、リード引き出し部からの電解液の液漏れや水
分の侵入を阻止できる。
The above-mentioned synthetic rubber is soluble in an organic solvent or the like, and can be handled as a one-part adhesive ink. A strong synthetic rubber film is formed by applying it to a predetermined position of a lead and drying it. can do. In addition, this film is made of resin and has good adhesiveness not only to metal but also to polyolefin and modified polyolefin used in laminate sheets, and can prevent leakage of electrolyte and moisture from the lead-out portion. .

【0013】また、SBR系合成ゴムは金属やポリオレ
フィンとの接着性に特に優れるほか、耐溶剤性が高く、
有機電解液を用いたリチウム電池の場合に、電解液の散
逸や液漏れを効果的に阻止できる。
The SBR synthetic rubber is particularly excellent in adhesion to metals and polyolefins, and has high solvent resistance.
In the case of a lithium battery using an organic electrolyte, dissipation and leakage of the electrolyte can be effectively prevented.

【0014】[0014]

【発明の実施の形態】以下、本発明のリチウム電池の実
施形態を添付図面に基づいて説明する。図1は本発明に
係るリチウム電池の構成例を示す平面図であり、図2は
図1のA−A線断面図、図3は図1のB−B線断面図で
ある。図1〜図3において、1は電槽、2は発電要素、
3は正極リード、4は負極リード、5は合成ゴム、6は
正極集電体、7は正極活物質層、8は電解質層、9は負
極集電体、10は負極活物質層である。ここで、正極集
電体6と正極活物質層7を併せて正極と呼ぶ場合や、負
極集電体9と負極活物質層10を併せて負極と呼ぶ場合
がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the lithium battery of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a plan view showing a configuration example of a lithium battery according to the present invention, FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB of FIG. 1 to 3, 1 is a battery case, 2 is a power generation element,
Reference numeral 3 denotes a positive electrode lead, 4 denotes a negative electrode lead, 5 denotes a synthetic rubber, 6 denotes a positive electrode current collector, 7 denotes a positive electrode active material layer, 8 denotes an electrolyte layer, 9 denotes a negative electrode current collector, and 10 denotes a negative electrode active material layer. Here, the positive electrode current collector 6 and the positive electrode active material layer 7 may be collectively referred to as a positive electrode, or the negative electrode current collector 9 and the negative electrode active material layer 10 may be collectively referred to as a negative electrode.

【0015】電槽1に用いるラミネートシートは、アル
ミニウム、ステンレス鋼などの金属箔の片面もしくは両
面に、ポリエチレンやポリプロピレン、ポリエチレンテ
レフタレートなどのポリオレフィン、変性ポリエチレン
や変性ポリプロピレンなどの変性ポリオレフィン、ポリ
イミド、ポリメタクリル酸メチル、あるいはエチレン・
プロピレン共重合体などの樹脂フィルムを積層して一体
化したものを使用できる。ここで、電槽1を形成した場
合に内側になる樹脂フィルムは、金属との接着性は特に
必要でなく、内側になる樹脂同士が熱融着できるもので
あればよい。
The laminate sheet used for the battery case 1 is made of a metal foil such as aluminum or stainless steel on one or both sides, a polyolefin such as polyethylene, polypropylene, polyethylene terephthalate, a modified polyolefin such as modified polyethylene or modified polypropylene, a polyimide, a polymethacryl. Methyl acid or ethylene
What integrated and laminated | stacked the resin films, such as a propylene copolymer, can be used. Here, the resin film that forms inside when the battery case 1 is formed is not particularly required to have adhesiveness to metal, and may be any as long as the resin that forms inside can be thermally fused to each other.

【0016】図1では、電槽1は1枚のラミネートシー
トを電池要素2の下端部で折り返して三方をシールする
例を示したが、2枚のラミネートシートを対向させて四
辺をシールしたものや、1枚のラミネートシートの一辺
をシールして筒状としたものに発電要素2を収納し、残
りの2辺をシールしてシール部をH型にしたものなどで
もよい。
FIG. 1 shows an example in which the battery case 1 is formed by folding one laminated sheet at the lower end portion of the battery element 2 and sealing the three sides. However, two laminated sheets are opposed to each other and four sides are sealed. Alternatively, the power generating element 2 may be housed in a tubular shape in which one side of a laminate sheet is sealed, and the remaining two sides may be sealed to form an H-shaped seal portion.

【0017】発電要素2は、図3に示すように、正極集
電体6上に形成された正極活物質層7と負極集電体9上
に形成された負極活物質層10を電解質層8を介して積
層した構造となっている。本発明では、発電要素2の構
成部材、つまり集電体、活物質層、あるいは電解質など
の構成材料や組成は限定されるものではなく、従来のリ
チウム電池で使用可能なすべての材料とその組み合わせ
が使用できる。また、発電要素2の作製方法も従来のリ
チウム電池で行われている手法が全て適用できる。
As shown in FIG. 3, the power generating element 2 includes a positive electrode active material layer 7 formed on a positive electrode current collector 6 and a negative electrode active material layer 10 formed on a negative electrode current collector 9. It has a structure of being laminated via a. In the present invention, the constituent members of the power generating element 2, that is, the constituent materials and compositions such as the current collector, the active material layer, and the electrolyte are not limited, and all materials usable in conventional lithium batteries and their combinations are used. Can be used. In addition, the method for manufacturing the power generation element 2 can be applied to all the methods used in conventional lithium batteries.

【0018】図3では、一例としてゲル電解質を不織布
に含浸して硬化した電解質層8を配した発電要素を示
す。正極集電体6と正極活物質層7からなる正極は、ま
ずアルミ箔製の正極集電体6上に正極活物質と導電材と
結着材からなる正極合剤を塗布して乾燥して固着して作
製する。次に負極集電体9と負極活物質層10からなる
負極は、銅箔製の負極集電体9の両面に負極活物質と結
着材からなる負極合剤を塗布して乾燥して固着して作製
する。電解質層8は、電解液とポリマーと重合開始剤か
ら成るゲル電解質の原液を不織布に含浸して硬化するこ
とで作製する。上述のように作製した正極、負極、電解
質層を図3のように積層して発電要素2を作製する。
FIG. 3 shows, as an example, a power generating element in which a non-woven fabric is impregnated with a gel electrolyte and a cured electrolyte layer 8 is provided. First, the positive electrode including the positive electrode current collector 6 and the positive electrode active material layer 7 is coated with a positive electrode mixture including a positive electrode active material, a conductive material, and a binder on the positive electrode current collector 6 made of aluminum foil, and dried. It is made by sticking. Next, the negative electrode composed of the negative electrode current collector 9 and the negative electrode active material layer 10 is fixed by applying a negative electrode mixture composed of a negative electrode active material and a binder to both surfaces of the negative electrode current collector 9 made of copper foil and drying the mixture. To make. The electrolyte layer 8 is produced by impregnating a nonwoven fabric with a stock solution of a gel electrolyte composed of an electrolyte solution, a polymer, and a polymerization initiator and curing the solution. The power generating element 2 is manufactured by stacking the positive electrode, the negative electrode, and the electrolyte layer manufactured as described above as shown in FIG.

【0019】本発明に係るリチウム電池は、図1に示す
ように、ラミネートシートの三方をシールすることによ
って形成された電槽1内に発電要素2が収納され、発電
要素2から正極リード3および負極リード4を通して電
気化学エネルギーを外部に取り出す構造となっている。
In the lithium battery according to the present invention, as shown in FIG. 1, a power generation element 2 is housed in a battery case 1 formed by sealing three sides of a laminate sheet. The structure is such that electrochemical energy is taken out through the negative electrode lead 4.

【0020】前記正極リード3および負極リード4のラ
ミネートシートを通過する部分、すなわちリードの取出
部は、図1および図2に示すように、合成ゴム5で被覆
されている。この合成ゴムとしては、SBR系合成ゴム
を用いることができる。このSBR系合成ゴムは、金属
やポリプロピレン、ポリエチレンなどのポリオレフィン
との接着性に優れ、また有機電解液などに対する耐溶剤
性にも優れている。
The portion of the positive electrode lead 3 and the negative electrode lead 4 passing through the laminate sheet, that is, the lead-out portion, is covered with a synthetic rubber 5 as shown in FIGS. As this synthetic rubber, SBR synthetic rubber can be used. This SBR synthetic rubber has excellent adhesion to metals, polyolefins such as polypropylene and polyethylene, and also has excellent solvent resistance to organic electrolytes and the like.

【0021】リード3、4の被覆は、SBR系合成ゴム
をトルエンに溶解して適当な粘度とした後、この溶液を
所定部位に刷毛塗りしたり、パターン印刷したり、溶液
中にリード3、4の所定部位を浸漬してディップコーテ
ィングした後、乾燥してトルエンを揮発させる方法など
で行う。
The coating of the leads 3 and 4 is performed by dissolving the SBR synthetic rubber in toluene to obtain an appropriate viscosity, and then brushing or printing a pattern on a predetermined portion of the solution, and adding the leads 3 and 4 in the solution. Dip coating is performed by dipping a predetermined portion of No. 4 and then drying and volatilizing toluene.

【0022】正極リード3および負極リード4には、従
来のリチウム電池の集電体に使われているのと同じ金
属、例えばアルミニウム、ニッケル、銅、あるいはステ
ンレス鋼などを使用することができる。また、有機電解
液を使用するリチウム電池においては、正極集電体や負
極集電体と同じ金属を使うことがリード3、4の腐食を
防止する上で好ましい。一方、例えば固体電解質を使用
したリチウム電池のように、リード3、4に電解液が触
れないものであれば、集電体6、9とは異なる材料で形
成してもよい。
For the positive electrode lead 3 and the negative electrode lead 4, the same metals as those used for the current collector of the conventional lithium battery, such as aluminum, nickel, copper, and stainless steel, can be used. Further, in a lithium battery using an organic electrolyte, it is preferable to use the same metal as the positive electrode current collector and the negative electrode current collector from the viewpoint of preventing corrosion of the leads 3 and 4. On the other hand, if the electrolytic solution does not touch the leads 3 and 4, such as a lithium battery using a solid electrolyte, the current collectors 6 and 9 may be formed of a different material.

【0023】また、図1では集電体6、9に設けられた
リード接続用タブとリード3、4を抵抗溶接や超音波溶
接で接合する例を示したが、1対の正極、負極と電解質
層8で構成されるリチウム電池の場合などは、あえてタ
ブとリードを接合する必要はなく、集電体6、9から引
き出された集電体6、9と一体となったリードであって
もよい。
FIG. 1 shows an example in which the lead connecting tabs provided on the current collectors 6 and 9 and the leads 3 and 4 are joined by resistance welding or ultrasonic welding. In the case of a lithium battery composed of the electrolyte layer 8, for example, it is not necessary to join the tab and the lead, and the lead is integrated with the current collectors 6, 9 drawn from the current collectors 6, 9. Is also good.

【0024】[0024]

【実施例】[実施例]リード接続用タブを設けたアルミ
箔製の正極集電体6上に、LiMn24を活物質とする
正極活物質層7を形成し、同じくリード接続用タブを設
けた銅箔製の負極集電体9の両面に、Li4Ti512
活物質とする負極活物質層10を形成し、それぞれ正極
と負極とした。電解質層8には、有機電解液1M Li
PF6−EC/DEC(体積比1/1)とポリエチレン
グリコールジアクリレート(分子量約400)を重量比
4:1で混合し、これに光重合開始剤である2,4,6
−トリメチルベンゾイルジフェニルフォスフィンオキサ
イドを1,000ppm添加したゲル電解質原液を不織
布に含浸し、紫外線硬化したゲル電解質を用いた。これ
ら正極、負極、および電解質層を図3に示した順に積層
して発電要素を作製した。
EXAMPLE A positive electrode active material layer 7 containing LiMn 2 O 4 as an active material was formed on a positive electrode current collector 6 made of aluminum foil provided with a tab for lead connection. A negative electrode active material layer 10 using Li 4 Ti 5 O 12 as an active material was formed on both surfaces of a negative electrode current collector 9 made of copper foil provided with, and used as a positive electrode and a negative electrode, respectively. In the electrolyte layer 8, an organic electrolyte 1M Li
PF6-EC / DEC (volume ratio 1/1) and polyethylene glycol diacrylate (molecular weight: about 400) were mixed at a weight ratio of 4: 1, and the photopolymerization initiators 2,4,6
A non-woven fabric was impregnated with a stock gel electrolyte solution containing 1,000 ppm of trimethylbenzoyldiphenylphosphine oxide, and a UV-cured gel electrolyte was used. These positive electrode, negative electrode, and electrolyte layer were laminated in the order shown in FIG. 3 to produce a power generating element.

【0025】正極リード3、負極リード4は、それぞれ
集電体と同じ材質の厚み0.1mmのアルミ薄板と銅薄
板を所定寸法に裁断して用いた。次に、SBR系合成ゴ
ムをトルエンに20重量%になるように溶解し、この溶
液にリードのラミネートシートのシール部位を通過する
部分を浸漬して引き上げて乾燥することで、合成ゴムで
被覆されたリードを作製した。
The positive electrode lead 3 and the negative electrode lead 4 were each used by cutting an aluminum thin plate and a copper thin plate having the same material as the current collector and having a thickness of 0.1 mm into predetermined dimensions. Next, the SBR-based synthetic rubber is dissolved in toluene so as to have a concentration of 20% by weight, and a portion of the lead passing through the sealing portion of the laminate sheet is immersed, pulled up, and dried to be coated with the synthetic rubber. A lead was prepared.

【0026】作製した正極リード3と負極リード4をそ
れぞれ正極集電体と負極集電体のタブに超音波溶接で接
合し、できあがった発電要素2をポリエチレンテレフタ
レート/アルミ箔/変性ポリプロピレンで構成されたラ
ミネートシートで包含して開口部の三方を順次加熱・加
圧シールしてリチウム電池を作製した。
The produced positive electrode lead 3 and negative electrode lead 4 are joined to the tabs of the positive and negative electrode current collectors by ultrasonic welding, respectively, and the completed power generating element 2 is composed of polyethylene terephthalate / aluminum foil / modified polypropylene. The three sides of the opening were sequentially sealed by heating and pressurizing, and a lithium battery was produced.

【0027】[比較例1]正極リード3と負極リード4
のラミネートシートと接着する部分を金属に対して接着
性を有する変性ポリプロピレンで予め被覆したこと以外
は、実施例1と同様にしてリチウム電池を作製した。
Comparative Example 1 Positive Lead 3 and Negative Lead 4
A lithium battery was produced in the same manner as in Example 1, except that the portion to be adhered to the laminate sheet was previously coated with a modified polypropylene having adhesiveness to metal.

【0028】[比較例2]正極リード3および負極リー
ド4のラミネートシートと接着する部分を予め被覆する
ことなくラミネートシートと接着したこと以外は、実施
例1と同様にしてリチウム電池を作製した。 (評価)上記実施例で作製したリチウム電池は、リード
を合成ゴムで予め被覆することにより、リード引き出し
部からの水分の侵入が阻止され、末充電状態で放置して
も放電容量の減少がないものと推定される。そこで、実
施例および比較例1、2で作製したリチウム電池を3サ
イクル常温で充放電した後、4サイクル目の充電未で6
0℃の恒温層内に30日間放置し、放置前後の放電量の
比較実験を行った。なお、充放電試験は0.2Cの定電
流充放電で行い、充電の上限電圧と放電の下限電圧をそ
れぞれ2.9Vと1.5Vとした。
Comparative Example 2 A lithium battery was produced in the same manner as in Example 1 except that the portions of the positive electrode lead 3 and the negative electrode lead 4 that were bonded to the laminate sheet were bonded to the laminate sheet without previously coating. (Evaluation) In the lithium battery manufactured in the above example, the lead was coated in advance with synthetic rubber, so that the invasion of moisture from the lead draw-out portion was prevented, and the discharge capacity did not decrease even when the battery was left in a late charged state. It is presumed that. Therefore, the lithium batteries prepared in Examples and Comparative Examples 1 and 2 were charged and discharged at room temperature for 3 cycles, and then charged for 6 cycles before charging in the fourth cycle.
It was left in a constant temperature layer at 0 ° C. for 30 days, and a comparative experiment was performed on the discharge amount before and after leaving. The charge / discharge test was performed at a constant current charge / discharge of 0.2 C, and the upper limit voltage for charging and the lower limit voltage for discharging were set to 2.9 V and 1.5 V, respectively.

【0029】表1にそれぞれのリチウム電池の3サイク
ル目の放電容量に対する高温放置後の4サイクル目の放
電容量の比を%で示す。
Table 1 shows the ratio of the discharge capacity at the fourth cycle after leaving at high temperature to the discharge capacity at the third cycle of each lithium battery in%.

【0030】[0030]

【表1】 [Table 1]

【0031】表1から明らかなように、比較例に対して
実施例では放電容量の減少が見られなかった。
As is evident from Table 1, no decrease in the discharge capacity was observed in Examples in comparison with Comparative Examples.

【0032】また、実験終了後のそれぞれのリチウム電
池のリード引き出し部の接着状態を解体調査したとこ
ろ、比較例2のリチウム電池ではほとんどラミネートシ
ートの変性ポリプロピレンとリードが接着していないこ
とが分かった。比較例2の電池は比較的強く接着されて
いるものの、リードとラミネートシートを引き剥がすこ
とができた。これに対して、実施例のリチウム電池で
は、ラミネートシートを引き剥がすことができなかっ
た。
Further, when the bonding state of the lead lead-out portion of each lithium battery after the end of the experiment was disassembled, it was found that in the lithium battery of Comparative Example 2, the modified polypropylene of the laminated sheet and the lead hardly adhered. . Although the battery of Comparative Example 2 was relatively strongly adhered, the lead and the laminate sheet could be peeled off. On the other hand, in the lithium batteries of Examples, the laminate sheet could not be peeled off.

【0033】これらの結果から、実施例のリチウム電池
ではリードとSBR系合成ゴムの強固な接着状態が長期
にわたって維持され、水分が侵入することがなかったも
のと推定される。一方、比較例1、2のリチウム電池で
は高温放置中に水分が電池内に侵入し、活物質中のリチ
ウム、特に負極活物質中に取り込まれたリチウムと不可
逆な反応をして放電容量が減少したものと推定される。
From these results, it is presumed that in the lithium batteries of the examples, the strong adhesion between the lead and the SBR-based synthetic rubber was maintained for a long period of time, and no water entered. On the other hand, in the lithium batteries of Comparative Examples 1 and 2, moisture penetrated into the batteries during high-temperature storage, causing an irreversible reaction with lithium in the active material, particularly lithium taken in the negative electrode active material, resulting in a decrease in discharge capacity. It is presumed to have been done.

【0034】[0034]

【発明の効果】以上のように、本発明に係るリチウム電
池によれば、リードのラミネートシートからの取出部を
合成ゴムで被覆したことから、接着時に電槽とリードの
間に隙間が生じたり、使用中にラミネートシートが剥が
れたりすることがなく、電解液の漏液や水分の侵入が阻
止され、信頼性の高いリチウム電池を提供することがで
きる。
As described above, according to the lithium battery according to the present invention, since the portion from which the lead is taken out of the laminate sheet is covered with synthetic rubber, a gap may be formed between the battery case and the lead at the time of bonding. In addition, the laminated sheet does not peel off during use, leakage of the electrolyte solution and intrusion of moisture are prevented, and a highly reliable lithium battery can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るリチウム電池の構成例を示す平面
図である。
FIG. 1 is a plan view showing a configuration example of a lithium battery according to the present invention.

【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のB−B線断面図である。FIG. 3 is a sectional view taken along line BB of FIG. 1;

【符号の説明】[Explanation of symbols]

1:電槽、2:発電要素、3:正極リード、4:負極リ
ード、5:合成ゴム、6:正極集電体、7:正極活物質
層、8:電解質層、9:負極集電体、10:負極活物質
1: battery case, 2: power generation element, 3: positive electrode lead, 4: negative electrode lead, 5: synthetic rubber, 6: positive electrode current collector, 7: positive electrode active material layer, 8: electrolyte layer, 9: negative electrode current collector , 10: negative electrode active material layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気化学エネルギーを外部に取り出すた
めのリードが設けられた正極と負極との間に、電解質を
配設して発電要素を形成し、前記リードの端部側が袋状
のラミネートシートの外部に位置するように、前記発電
要素をこの袋状のラミネートシートから成る電槽に収容
したリチウム電池において、前記リードの前記ラミネー
トシートからの取出部を合成ゴムで被覆したことを特徴
とするリチウム電池。
An electrolyte is disposed between a positive electrode and a negative electrode provided with a lead for extracting electrochemical energy to the outside to form a power generating element, and the end side of the lead is a bag-like laminated sheet. A lithium battery in which the power generating element is housed in a battery case made of the bag-shaped laminated sheet so as to be located outside, wherein a portion of the lead from the laminated sheet is covered with synthetic rubber. Lithium battery.
【請求項2】 前記合成ゴムがSBR系合成ゴムである
ことを特徴とする請求項1に記載のリチウム電池。
2. The lithium battery according to claim 1, wherein the synthetic rubber is an SBR synthetic rubber.
JP2000050982A 2000-02-28 2000-02-28 Lithium battery Pending JP2001243931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050982A JP2001243931A (en) 2000-02-28 2000-02-28 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050982A JP2001243931A (en) 2000-02-28 2000-02-28 Lithium battery

Publications (1)

Publication Number Publication Date
JP2001243931A true JP2001243931A (en) 2001-09-07

Family

ID=18572700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050982A Pending JP2001243931A (en) 2000-02-28 2000-02-28 Lithium battery

Country Status (1)

Country Link
JP (1) JP2001243931A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424263B1 (en) * 2001-11-16 2004-03-22 삼성에스디아이 주식회사 Lithium secondary battery
WO2005114765A1 (en) * 2004-05-20 2005-12-01 Seidensha Electronics Co., Ltd Method of joining polymer battery lead tub to resin film
JP2007207639A (en) * 2006-02-03 2007-08-16 Hitachi Maxell Ltd Cylindrical non-aqueous electrolytic solution primary battery
JP2011210707A (en) * 2010-03-30 2011-10-20 Samsung Sdi Co Ltd Pouch type secondary battery, and the fabrication method thereof
KR101306809B1 (en) * 2006-02-03 2013-09-10 히다치 막셀 가부시키가이샤 Cylinderical nonaqueous electrolyte primary battery
JP2013243015A (en) * 2012-05-18 2013-12-05 Sh Copper Products Corp Tab lead with resin, continuum of the same, and manufacturing methods of tab lead and continuum
JP2017123306A (en) * 2016-01-08 2017-07-13 トヨタ自動車株式会社 Laminate battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424263B1 (en) * 2001-11-16 2004-03-22 삼성에스디아이 주식회사 Lithium secondary battery
WO2005114765A1 (en) * 2004-05-20 2005-12-01 Seidensha Electronics Co., Ltd Method of joining polymer battery lead tub to resin film
JP2007207639A (en) * 2006-02-03 2007-08-16 Hitachi Maxell Ltd Cylindrical non-aqueous electrolytic solution primary battery
KR101306809B1 (en) * 2006-02-03 2013-09-10 히다치 막셀 가부시키가이샤 Cylinderical nonaqueous electrolyte primary battery
JP2011210707A (en) * 2010-03-30 2011-10-20 Samsung Sdi Co Ltd Pouch type secondary battery, and the fabrication method thereof
US8771866B2 (en) 2010-03-30 2014-07-08 Samsung Sdi Co., Ltd. Pouch type secondary battery and the fabrication method thereof
JP2013243015A (en) * 2012-05-18 2013-12-05 Sh Copper Products Corp Tab lead with resin, continuum of the same, and manufacturing methods of tab lead and continuum
JP2017123306A (en) * 2016-01-08 2017-07-13 トヨタ自動車株式会社 Laminate battery

Similar Documents

Publication Publication Date Title
JP6694246B2 (en) Thin electricity storage device and manufacturing method thereof
JP6487712B2 (en) Power storage device
US6444355B1 (en) Adhesive for battery, battery using the same and method of fabricating the same
WO2016090868A1 (en) Electrochemical energy storage device
WO1999031749A1 (en) Manufacture of lithium ion secondary battery
KR20130128033A (en) Device for removing gas from battery cell
KR20140136831A (en) Pouch for secondary battery and method for manufacturing the same
TW201911627A (en) Method for manufacturing electrode sheet, all-solid-state cell, and method for manufacturing all-solid-state cell
EP0859417A2 (en) Adhesive for battery, battery using the same and method of fabricating a battery using the same
JP4042613B2 (en) Bipolar battery
JPH11242953A (en) Battery having roughened electrode terminal
JP2018085270A (en) Power storage device module and method for manufacturing the same
JP2002151024A (en) Flat type battery
JP2001243931A (en) Lithium battery
WO2022001235A1 (en) Separator for electrochemical apparatus, electrochemical apparatus, and electronic apparatus
JP3992261B2 (en) Stacked polymer electrolyte battery
JPH0521086A (en) Electrode and battery using this
JP4070367B2 (en) Laminated polymer electrolyte battery and sheet battery manufacturing method
WO1999031750A1 (en) Adhesive for cells, a cell using the same and a process for producing cells
KR20200127696A (en) Battery including a bonding structure between a lead tab having plurality of holes and electrode tabs and method of joining electrode tabs and a lead tab of a battery
JP2003132936A (en) Secondary battery and its manufacturing method
WO1999048164A1 (en) Secondary battery and method for forming the same
JP2003077545A (en) Method of manufacturing nonaqueous electrolyte battery
JP2004327374A (en) Bipolar battery, method of manufacturing bipolar battery, battery pack, and vehicle
JP4032931B2 (en) Bipolar battery