JP2001241729A - Cooling water supply system of refrigerating machine for air conditioning - Google Patents

Cooling water supply system of refrigerating machine for air conditioning

Info

Publication number
JP2001241729A
JP2001241729A JP2000060372A JP2000060372A JP2001241729A JP 2001241729 A JP2001241729 A JP 2001241729A JP 2000060372 A JP2000060372 A JP 2000060372A JP 2000060372 A JP2000060372 A JP 2000060372A JP 2001241729 A JP2001241729 A JP 2001241729A
Authority
JP
Japan
Prior art keywords
chilled water
water supply
control valve
temperature
cold water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000060372A
Other languages
Japanese (ja)
Inventor
Tetsuji Yanagisawa
徹爾 柳澤
Takayuki Sonoda
隆幸 薗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000060372A priority Critical patent/JP2001241729A/en
Publication of JP2001241729A publication Critical patent/JP2001241729A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform stabilized operation even upon variation of load by employing general purpose components in a refrigerating machine supply facility and reducing the amount of materials up to the load side. SOLUTION: Inlet/outlet temperature difference of chilled water in cooling systems 11a, 11b, 11c on the load side is set higher than the inlet/outlet temperature difference of a chilled water supply facility 3 for a refrigerating machine on the chilled water supply side and bypass piping 15 for absorbing the difference in the volume of chilled water between the supply side and the load side is provided. At the time of variation on the load side, the inlet/outlet pressure difference and the return temperature of the chilled water supply facility 3 for the refrigerating machine are varied. In order to sustain stabilized operation regardless of these variations, the bypass piping 15 is provided with a pressure control valve 16 and a controller 21 controls the opening of a flow regulation valve 14 to regulate the flow rate of chilled water flowing through the cooling systems 11a, 11b, 11c on the load side such that the chilled water return temperature of the chilled water supply facility 3 for the refrigerating machine will be constant.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調用冷凍機冷水
供給システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water supply system for an air conditioner.

【0002】[0002]

【従来の技術】従来、原子力発電所の換気空調用冷水設
備は、特開昭64−14542号公報に記載のように、
負荷側の冷却コイル温度差に合わせた冷水温度差で供給
する冷凍機を有するシステムである。
2. Description of the Related Art Conventionally, chilled water equipment for ventilation and air conditioning of a nuclear power plant has been disclosed in Japanese Patent Application Laid-Open No. 64-14542.
This is a system having a refrigerator that supplies a chilled water temperature difference that matches the cooling coil temperature difference on the load side.

【0003】従来の原子力発電所の換気空調用冷水設備
は、原子力発電所定格運転時、あるいは予備機の冷凍機
も運転し原子力発電所で定期的に行う発電設備の定期検
査時における作業員への作業環境の改善時において、冷
凍機供給冷水量の全量を用いて各負荷側の冷却コイルへ
供給しなければならない。
Conventional chilled water equipment for ventilation and air conditioning of a nuclear power plant is required for workers at the time of rated operation of the nuclear power plant or at the time of regular inspection of the power plant periodically operating at the nuclear power plant by operating a refrigerator as a standby unit. When the work environment is improved, the cooling water supplied to each load must be supplied using the entire amount of the cooling water supplied to the refrigerator.

【0004】また、外気温度が予測を超えて変化した場
合には、負荷側の冷却コイルの熱交換が過負荷となるの
で、負荷側から冷凍機側に循環して来る冷水の温度が冷
凍機への設定された流入温度を超える。これを防ぐため
に、特開昭64−14542号公報原子力発電所の換気
空調用冷水設備では、その過負荷状態の場合に開通する
バイパス流路で冷凍機の冷水出口側の冷水を冷凍機の入
口側にショートパスさせて冷凍機の入口側の冷水の温度
を低下させるシステムを有する。
If the outside air temperature changes more than expected, the heat exchange of the cooling coil on the load side becomes overloaded, and the temperature of the chilled water circulating from the load side to the refrigerator side is reduced. Exceeds the set inlet temperature to In order to prevent this, Japanese Patent Laid-Open Publication No. 64-14542 discloses a chilled water facility for ventilation and air conditioning at a nuclear power plant. The system has a system that reduces the temperature of the chilled water on the inlet side of the refrigerator by short-passing the side.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術は、過負
荷時の対策には有効であるが、負荷側の許容量を大きく
すべく、負荷側の冷却コイル温度差を大きくとろうとし
た場合、同じように冷凍機側冷水温度差も大きくなり、
一般で用いられる汎用品の冷水温度差では使用できない
問題点がある。
The above-mentioned prior art is effective as a countermeasure in the event of overload. However, when the cooling coil temperature difference on the load side is to be increased in order to increase the allowable amount on the load side, Similarly, the difference in the chilled water temperature on the refrigerator side also increases,
There is a problem that it cannot be used with the difference in cold water temperature of general-purpose products used in general.

【0006】また、逆に冷凍機側冷水温度差を一般で用
いられる汎用品の冷水温度差で使用した場合、供給側と
負荷側を連通する配管は、配管内基準流速から配管口径
を選定した場合、配管及び配管に接続される弁,付属品
の口径が増大し、物量増加の問題点がある。このような
問題点が発生すると、空調用冷凍機冷水供給システムの
物量も多くなるのでコストが高騰する。
Conversely, when the chiller-side chilled water temperature difference is used as the chilled water temperature difference of a general-purpose product that is generally used, the pipe diameter connecting the supply side and the load side is selected from the reference flow velocity in the pipe. In this case, the diameter of the pipe and the valves and accessories connected to the pipe are increased, which causes a problem of an increase in the amount of material. When such a problem occurs, the amount of the chilled water supply system for the air conditioner becomes large, so that the cost increases.

【0007】本発明の目的は、上記に示した問題点を解
決し、空調用冷凍機冷水供給システムのコストを低減す
ることにある。
An object of the present invention is to solve the above-mentioned problems and to reduce the cost of a chilled water supply system for an air conditioner.

【0008】[0008]

【課題を解決するための手段】空調用冷凍機冷水設備の
仕様を一般汎用品の標準仕様にて使用するため及び供給
側と負荷側を連通する配管や弁,付属品の口径を低減す
るために、供給側の冷水温度差より負荷側の冷却装置の
冷却コイル出入口冷水温度差を拡大し、かつ供給側と負
荷側との冷水量の差を吸収する手段を設けた。これによ
り、冷凍機冷水設備からの冷水と負荷側からの戻りの冷
水とを常時混合出来るので、負荷側の冷却コイル出入口
冷水温度差が冷凍機冷水設備の仕様に基づく冷水温度差
より大きい場合でも、冷凍機冷水設備を一般汎用品の標
準仕様の冷水温度差にて使用が可能になる。また、冷凍
機冷水設備から全量の一部を負荷側に供給し、残りの冷
水を常時バイパスして冷凍機冷水設備に戻すことからバ
イパスする冷水の量に応じて配管及び配管に接続される
弁,付属品を流通する冷水の量が少なくなって配管及び
配管に接続される弁,付属品の口径を小さくし、物量の
低減が可能になり、冷水の供給側の冷凍機冷水設備と負
荷側の冷却装置とを備えた空調用冷凍機冷水供給システ
ムのコストを低減できる。
[MEANS FOR SOLVING THE PROBLEMS] To use the specifications of the chilled water equipment for air conditioning refrigeration equipment in the standard specifications of general-purpose products, and to reduce the diameter of pipes, valves, and accessories that connect the supply side and the load side. Further, a means is provided for expanding the difference between the cooling water temperature at the inlet and outlet of the cooling coil of the cooling device on the load side from the difference between the cooling water temperature on the supply side and absorbing the difference in the amount of chilled water between the supply side and the load side. This allows the chilled water from the chiller chilled water facility and the chilled water returned from the load side to be constantly mixed, so that even if the chilled water temperature difference between the load side cooling coil inlet and outlet is greater than the chilled water temperature difference based on the specifications of the chiller chilled water facility. In addition, the chiller chiller can be used with the chilled water temperature difference of the standard specification of general-purpose products. Also, a part of the whole amount is supplied to the load side from the chiller chilled water equipment, and the remaining chilled water is always bypassed and returned to the chiller chilled water equipment. , The amount of cold water flowing through the accessories is reduced, the pipes and valves connected to the pipes, the diameter of the accessories, and the diameter of the accessories are reduced, and the volume can be reduced. The cost of the chilled water supply system for the air conditioner provided with the cooling device can be reduced.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施例について、
図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described.
This will be described with reference to the drawings.

【0010】図1に示す第1実施例の空調用冷凍機冷水
供給システムは、例えば4台の冷凍機1と4台の冷水搬
送ポンプ2から構成される冷凍機冷水供給設備3を備え
ている。それらの4台の冷凍機1からの冷水を集合,分
散する供給側ヘッダ管4が冷凍機冷水供給設備3の冷水
の出口側として備えられ、同じく冷却装置11a,11
b,11cからの冷水を各冷凍機1に分散して流す戻り
側ヘッダ管5が冷凍機冷水供給設備3の冷水の入口側と
して備えられる。
The chilled water supply system for an air conditioner according to the first embodiment shown in FIG. 1 is provided with a chilled water supply system 3 comprising four chillers 1 and four chilled water transfer pumps 2, for example. . A supply-side header pipe 4 for collecting and dispersing the chilled water from the four chillers 1 is provided as an outlet side of the chilled water of the chilled water supply equipment 3 for the chiller, and the cooling devices 11a and 11
A return header pipe 5 for dispersing and flowing the cold water from b and 11c to each refrigerator 1 is provided as a cold water inlet side of the refrigerator cold water supply equipment 3.

【0011】冷凍機1と冷水搬送ポンプ2とは直列回路
に接続され、その直列回路が供給側ヘッダ管4と戻り側
ヘッダ管5との間で4回路分並列に、戻り側ヘッダ管5
側から冷水を冷水搬送ポンプ2で吸込んで供給側ヘッダ
管4側へ冷凍機1を通して出す流れとなるように流れの
向きを統一して接続される。
The refrigerator 1 and the chilled water transfer pump 2 are connected in a series circuit, and the series circuit is connected in parallel by four circuits between the supply side header tube 4 and the return side header tube 5, and the return side header tube 5
The flows are connected in a unified manner so that cold water is sucked from the side by the cold water transfer pump 2 and flows out through the refrigerator 1 to the supply side header pipe 4 side.

【0012】冷凍機冷水供給設備3から供給側ヘッダ管
4に供給される冷水を供給側ヘッダ管4から戻り側ヘッ
ダ管5へバイパスする配管15を供給側である冷凍機冷
水供給設備3から出される冷水量と負荷側である冷却装
置11a,11b,11cの必要とする冷水量との差を
吸収する手段として備えている。
A pipe 15 for bypassing the cold water supplied from the refrigerator cold water supply equipment 3 to the supply header pipe 4 from the supply header pipe 4 to the return header pipe 5 is discharged from the refrigerator cold water supply equipment 3 as the supply side. It is provided as means for absorbing the difference between the amount of chilled water to be used and the amount of chilled water required by the cooling devices 11a, 11b, 11c on the load side.

【0013】冷凍機冷水供給設備3は、冷凍機冷水供給
設備3を通過する冷水に、他の冷却設備からの冷却水配
管6を流れる深冷された冷媒、例えばR134a等の流
体と管壁を介して熱交換を受けさせて、摂氏12度の冷
水を摂氏7度の冷水に冷却する。
The chiller chilled water supply equipment 3 is provided with a chilled water passing through the chiller chilled water supply equipment 3 and a deeply cooled refrigerant, for example, R134a, flowing through a cooling water pipe 6 from another cooling equipment. Through 12 ° C. to cool 7 ° C. cold water.

【0014】各冷却装置11a,11b,11c共、フ
ァン9と冷水が通される冷却コイル10から成る。その
冷却コイル10の冷水の入口側には供給側ヘッダ管4に
接続されている供給側配管7a,7b,7cへ仕切り弁
12やフランジ13を介して接続される。また、その冷
却コイル10の冷水の出口側には戻り側ヘッダ管5に接
続されている戻り側配管8a,8b,8cへフランジ13
や流量調整弁14を介して接続されている。このように
して、負荷側である各冷却装置11a,11b,11c
は互いに並列にされて供給側配管と戻り側配管とに接続
される。
Each of the cooling devices 11a, 11b and 11c comprises a fan 9 and a cooling coil 10 through which cold water flows. The cooling water inlet side of the cooling coil 10 is connected to supply side pipes 7 a, 7 b, 7 c connected to the supply side header pipe 4 via a gate valve 12 and a flange 13. In addition, the cooling water outlet side of the cooling coil 10 is connected to the return pipes 8a, 8b, 8c connected to the return header pipe 5 by flanges 13.
And a flow control valve 14. In this way, each cooling device 11a, 11b, 11c on the load side
Are connected in parallel with each other to the supply pipe and the return pipe.

【0015】冷水は冷凍機1で冷却された後に供給側ヘ
ッダ管4内に入り、供給側配管7a,7b,7cを通じ
て冷却装置11a,11b,11cの冷却コイル内を通
過し冷却ファン9で送られてきた気体と冷却コイルの面
を介して熱交換して加熱され、戻り側配管8a,8b,
8cを通じて戻り側ヘッダ管5内に入り再度冷凍機1内
に入るという循環経路をたどる。そのため、供給側配管
7a,7b,7cと戻り側配管8a,8b,8cとは冷
水の冷凍機1と冷却装置11a,11b,11cとの間の
循環のための配管に用いられる。
After the chilled water is cooled by the refrigerator 1, the chilled water enters the supply side header pipe 4, passes through the cooling coils of the cooling devices 11a, 11b, 11c through the supply side pipes 7a, 7b, 7c and is sent by the cooling fan 9. The returned gas is heated by exchanging heat through the surface of the cooling coil, and the return pipes 8a, 8b,
A circulation path is entered through 8c into the return header tube 5 and again into the refrigerator 1. Therefore, the supply side pipes 7a, 7b, 7c and the return side pipes 8a, 8b, 8c are used as pipes for circulation between the cold water refrigerator 1 and the cooling devices 11a, 11b, 11c.

【0016】各冷却装置11a,11b,11cへ供給
する冷凍機冷水供給設備3からの冷水の温度を例えば供
給温度7℃で出して、戻り温度を例えば摂氏12℃の出
入口温度差が5℃と比較的小さい一般汎用品による標準
仕様にする。これに対して、各冷却装置11a,11
b,11cの仕様を全て冷凍機冷水供給設備3の出入口
温度差より大きな温度差、例えば冷却コイル入口側温度
を7℃、同じく出口側温度を摂氏27℃とする。
The temperature of the chilled water supplied from the chiller chilled water supply equipment 3 to be supplied to each of the cooling devices 11a, 11b and 11c is output at, for example, a supply temperature of 7 ° C., and the return temperature is, for example, 12 ° C. Use standard specifications with relatively small general-purpose products. On the other hand, each cooling device 11a, 11
The specifications of b and 11c are all assumed to be a temperature difference larger than the temperature difference between the inlet and the outlet of the refrigerator cold water supply equipment 3, for example, the cooling coil inlet side temperature is 7 ° C. and the outlet side temperature is 27 ° C.

【0017】その一方で、バイパス配管15を通じて供
給側ヘッダ管から戻り側ヘッダ管へバイパスされる7℃
の冷水と各冷却装置出口側からの27℃の冷水とが戻り
側ヘッダ管5で合流するために、冷凍機冷水供給設備3
の戻り温度を一般汎用品による標準仕様の戻り温度12
℃にすることができる。
On the other hand, 7 ° C. is bypassed from the supply header pipe to the return header pipe through the bypass pipe 15.
Chilled water and 27 ° C. chilled water from each cooling device outlet side merge at the return side header pipe 5, so that the chiller cold water supply equipment 3
Return temperature of standard specification for general-purpose products 12
° C.

【0018】また、各冷却装置11a,11b,11c
の仕様を全て冷凍機冷水供給設備3の温度差より大きな
温度差としていることから、負荷側である冷却装置11
a,11b,11cまでの各配管7a〜7c,8a〜8
c、及び各冷却装置11a〜11c出入口の仕切り弁1
2,流量調整弁14及びフランジ13の口径を小さくす
ることができ、上記物量を低減する効果がある。
Further, each of the cooling devices 11a, 11b, 11c
Are all set to a temperature difference larger than the temperature difference of the refrigerator cold water supply equipment 3, the cooling device 11 on the load side
pipes 7a to 7c, 8a to 8 up to a, 11b, 11c
c, and the gate valve 1 at the entrance and exit of each of the cooling devices 11a to 11c
2. The diameters of the flow control valve 14 and the flange 13 can be reduced, which has the effect of reducing the amount of material.

【0019】尚、上記に示した低減内容を以下数式を交
え定量的に示す。上記に示すように供給冷水温度7℃,
戻り温度12℃の温度差5℃で例えば冷却能力100k
Wの冷凍機1が予備機1台として3台運転している場
合、冷水量を求める下式より冷水量(m3/h)=
[{冷却能力(kW)×860}/{戻り温度(℃)−
供給冷水温度(℃)}]×0.001 の内容から実数値
を入れて{(100×860×3)/(12−7)}×
0.001となって解として51.6m3/h の冷水量値
が求められる。その51.6m3/hの冷水量が冷凍機冷
水供給設備3より各負荷側の冷却装置11へ供給され
る。
The contents of the reduction described above are shown quantitatively using the following equations. As shown above, supply chilled water temperature 7 ° C,
With a temperature difference of 5 ° C with a return temperature of 12 ° C, for example, a cooling capacity of 100k
When three W refrigerators 1 are operating as one standby unit, the amount of chilled water (m 3 / h) =
[{Cooling capacity (kW) × 860} / {Return temperature (° C)-
Supply cold water temperature (° C)}] × 0.001 and enter the actual value {(100 × 860 × 3) / (12-7)} ×
0.001 and a solution value of 51.6 m 3 / h is obtained as a solution. The amount of chilled water of 51.6 m 3 / h is supplied from the chiller chilled water supply equipment 3 to the cooling device 11 on each load side.

【0020】従来の冷凍機冷水供給設備3と同じ出入り
口温度差5℃の冷却装置11では、例えば冷凍機1と同
じ冷却能力の場合、冷却装置11a,11b,11cに
等しい冷水量17.2m3/hを流す必要がある。つま
り、配管7a,8aの冷水量は51.6m3/h、配管7
b,8bの冷水量は34.4m3/h、配管7c,8cの
冷水量は17.2m3/hとなる。
In the cooling device 11 having the same inlet / outlet temperature difference of 5 ° C. as that of the conventional refrigerator cold water supply equipment 3, for example, in the case of the same cooling capacity as the refrigerator 1, the amount of cold water 17.2 m 3 equal to the cooling devices 11a, 11b, 11c. / H. That is, the amount of cold water in the pipes 7a and 8a is 51.6 m 3 / h,
The amount of cold water for b and 8b is 34.4 m 3 / h, and the amount of cold water for pipes 7c and 8c is 17.2 m 3 / h.

【0021】一方、負荷側の各冷却装置11a〜11c
を冷却装置の冷却コイル入口側での冷水の温度7℃、出
口側での冷水の温度27℃の仕様で上記と同様な冷却能
力100kWとした場合、合計冷水量は、{(100×
860×3)/(27−7)}×0.001から12.9m3
/h となる。これは、従来の配管7a,8aでの冷水
量51.6m3/hと比較し、温度差を拡大した冷却装置
11a〜11cでの配管7a,8aの方が冷水量12.
9m3/hと小さい。また、配管7b,8bについても
従来冷水量34.4m3/hに対し、本実施例では冷水量
8.6m3/hと小さくなる。さらに、各配管7c,8c
も同様に従来冷水量17.2m3/hから4.3m3/hへ
と低減出来る。
On the other hand, each of the cooling devices 11a to 11c on the load side
If the cooling water temperature at the inlet of the cooling coil of the cooling device is 7 ° C. and the cooling water temperature at the outlet is 27 ° C. and the cooling capacity is 100 kW, the total amount of the chilled water is {(100 ×
860 × 3) / (27-7)} × 0.001 to 12.9 m 3
/ H. This conventional pipe 7a, compared to the cold water quantity 51.6m 3 / h at 8a, pipe 7a in the cooling device 11a~11c enlarging the temperature difference, who 8a cold water amount 12.
It is as small as 9 m 3 / h. Further, the pipe 7b, relative to the conventional cold water quantity 34.4m 3 / h also 8b, smaller cold water amount 8.6 m 3 / h in the present embodiment. Furthermore, each pipe 7c, 8c
Similarly, the amount of cold water conventionally can be reduced from 17.2 m 3 / h to 4.3 m 3 / h.

【0022】このことは、例えば配管内基準流速を0.
5〜1.5m/sとした場合、従来方法の冷水量51.6
3/hでは各配管7a,8aの口径として呼び径12
5Aの配管が必要になるのに対して、本実施例の冷水量
12.9m3/hでは配管7a,8aの口径として呼び径
65Aの配管で十分であり、さらに各配管7b,8bの
口径についても従来が呼び径100Aに対し、本実施例
は呼び径50Aで良く、各配管7c,8cの口径は従来
が呼び径65Aに対し、本実施例は呼び径40Aで十分
である。
This means that, for example, the reference flow velocity in the pipe is set to 0.
In the case of 5 to 1.5 m / s, the amount of cold water of the conventional method is 51.6.
In m 3 / h, the nominal diameter is 12 as the diameter of each pipe 7a, 8a.
While a pipe of 5A is required, a pipe of nominal diameter 65A is sufficient for the pipes 7a and 8a for the cold water flow rate of 12.9 m 3 / h in the present embodiment, and a pipe of each pipe 7b and 8b is used. In this embodiment, the nominal diameter may be 50A in the present embodiment with respect to the nominal diameter of 100A, and the nominal diameter of the pipes 7c and 8c may be sufficient in the present embodiment with the nominal diameter of 65A in the present embodiment.

【0023】尚、差分の冷水量38.7m3/hをバイパ
ス配管15を経由して各冷却装置11a〜11cに供給
せずに供給側ヘッダ管4から戻り側ヘッダ管5へバイパ
スすることにより、熱収支のバランスは供給側と負荷側
で等しくなる。これは、次式、合流温度(℃)=Σ{冷
水量(m3/h)×冷水温度(℃)}/Σ{冷水量(m3
/h)}から冷凍機冷水供給設備3への戻り温度を求め
ると、{(12.9×27)+(38.7×7)}/5
1.6より12℃となることからもいえる。
It is to be noted that the difference of 38.7 m 3 / h of chilled water is bypassed from the supply header pipe 4 to the return header pipe 5 without being supplied to the cooling devices 11 a to 11 c via the bypass pipe 15. In addition, the balance of heat balance is equal on the supply side and the load side. This is expressed by the following equation, confluence temperature (° C.) = {Cool water amount (m 3 / h) × cold water temperature (° C.)} / {Cool water amount (m 3
/ H) When the return temperature to the refrigerator cold water supply equipment 3 is obtained from}, {(12.9 × 27) + (38.7 × 7)} / 5
This can be said from the fact that the temperature becomes 12 ° C. from 1.6.

【0024】また、冷凍機冷水供給設備3の全冷水量の
一部の冷水量をバイパス配管15でバイパスするには、
バイパス配管15の配管口径を配管内基準流速に基づい
て選定することにより、必要冷水量をバイパスすること
が出来る。
In order to bypass a part of the total chilled water amount of the chiller chilled water supply equipment 3 by the bypass pipe 15,
By selecting the pipe diameter of the bypass pipe 15 based on the reference flow velocity in the pipe, the required amount of cold water can be bypassed.

【0025】以上より本実施例によれば、冷凍機冷水供
給設備3に出入口温度差が5℃と比較的小さい一般汎用
品を用いた場合でも、供給側ヘッダ管4から戻り側ヘッ
ダ管5まで約冷凍機1の1台分の長さのバイパス配管1
5が増加するものの、バイパス配管15よりも長い経路
となる供給側と負荷側までを繋ぐ各配管7a,7b,7
c,8a,8b,8c及び冷却装置11a,11b,1
1cの出入口側の各仕切り弁12,流量調整弁14,フ
ランジ13の口径を小さくすることができ、物量を低減
でき、空調用冷凍機冷水供給システムのコストを低減で
きる効果が得られる。
As described above, according to this embodiment, even when a general-purpose product having a relatively small temperature difference of 5 ° C. between the inlet and outlet is used for the refrigerator cold water supply equipment 3, the supply-side header pipe 4 to the return-side header pipe 5 can be used. A bypass pipe 1 of a length equivalent to about one refrigerator 1
5, the pipes 7a, 7b, 7 connecting the supply side and the load side, which are longer than the bypass pipe 15,
c, 8a, 8b, 8c and cooling devices 11a, 11b, 1
The diameter of each of the gate valve 12, the flow control valve 14, and the flange 13 on the entrance / exit side of 1c can be reduced, the physical quantity can be reduced, and the cost of the chilled water supply system for the air conditioner can be reduced.

【0026】図2,図3は、本発明の第2実施例に係る
空調用冷凍機冷水供給システムの構成を示す。図2,図
3における符号1〜15は第1実施例である図1と同様
の物である。図2に示される16は、供給側ヘッダ管4
と戻り側ヘッダ管5の圧力差を制御する圧力制御弁であ
って、その圧力制御弁16はバイパス配管15に備えら
れている。
FIGS. 2 and 3 show the configuration of a chilled water supply system for an air conditioning refrigerator according to a second embodiment of the present invention. Reference numerals 1 to 15 in FIGS. 2 and 3 are the same as those in FIG. 1 of the first embodiment. Reference numeral 16 shown in FIG.
And a pressure control valve for controlling the pressure difference between the return side header pipe 5 and the pressure control valve 16 provided in the bypass pipe 15.

【0027】圧力検出器18に圧力を伝える配管17が
供給側ヘッダ管4と戻り側ヘッダ管5とに接続されてい
る。圧力検出器18は、配管17を通じて供給側ヘッダ
管4と戻り側ヘッダ管5の冷水の圧力を検出して、供給
側ヘッダ管4と戻り側ヘッダ管5の冷水の圧力差を求め
る。その求められた圧力差が信号として圧力制御弁16
の弁開度の制御装置19に送られる。その制御装置19
では、予め設定されていた圧力差と圧力検出器18で求
めた圧力差を比較して、予め設定されていた圧力差を圧
力検出器18で求めた圧力差が超える場合には、その制
御装置19は圧力制御弁16の弁の開閉を司る駆動装置
に弁を開く方向へ弁を駆動するように制御信号を発す
る。
A pipe 17 for transmitting pressure to a pressure detector 18 is connected to the supply header pipe 4 and the return header pipe 5. The pressure detector 18 detects the pressure of the chilled water in the supply header pipe 4 and the return header pipe 5 through the pipe 17, and obtains the pressure difference between the supply header pipe 4 and the return header pipe 5. The obtained pressure difference is used as a signal as a pressure control valve 16.
Is sent to the control device 19 for the valve opening. The control device 19
Then, the preset pressure difference is compared with the pressure difference obtained by the pressure detector 18, and when the preset pressure difference exceeds the pressure difference obtained by the pressure detector 18, the control device Reference numeral 19 issues a control signal to a driving device for opening and closing the pressure control valve 16 so as to drive the valve in a direction to open the valve.

【0028】その制御信号を受けた圧力制御弁16は弁
を今以上に開くように駆動して供給側ヘッダ管4と戻り
側ヘッダ管5の冷水の圧力差を上述の予め設定されてい
た圧力差に戻すように機能する。この間、バイパス配管
15内を通過する冷水の流量は増加する。
Upon receiving the control signal, the pressure control valve 16 is driven to open the valve more than it is, and the pressure difference between the cold water of the supply header pipe 4 and the return water of the return header pipe 5 is reduced to the above-mentioned predetermined pressure. It works to get back to the difference. During this time, the flow rate of the cold water passing through the bypass pipe 15 increases.

【0029】逆に、予め設定されていた圧力差を圧力検
出器18で求めた圧力差が下回る場合には、その制御装
置19は圧力制御弁16の弁の開閉を司る駆動装置に弁
を閉じる方向へ弁を駆動するように制御信号を発する。
Conversely, if the pressure difference determined by the pressure detector 18 is smaller than the preset pressure difference, the control device 19 closes the pressure control valve 16 by a driving device that controls the opening and closing of the valve. A control signal is issued to drive the valve in the direction.

【0030】その制御信号を受けた圧力制御弁16は弁
を今以上に閉じるように駆動して供給側ヘッダ管4と戻
り側ヘッダ管5の冷水の圧力差を上述の予め設定されて
いた圧力差に戻すように機能する。この間、バイパス配
管15内を通過する冷水の流量は減少するが、その流量
が無くなるということは無い。
Upon receiving the control signal, the pressure control valve 16 is driven so as to close the valve further, and the pressure difference between the chilled water of the supply header pipe 4 and the return water of the return header pipe 5 is reduced to the above-mentioned predetermined pressure. It works to get back to the difference. During this time, the flow rate of the cold water passing through the bypass pipe 15 decreases, but the flow rate does not disappear.

【0031】図2に示される第2実施例は、上記に示さ
れる圧力制御弁16を設けたので、建屋内に供給する外
気を冷却する同じ仕様の外気を冷却する冷却装置11a
〜11cが例えば1日の日中と夕方で外気温度の変化
(負荷変動)がある場合、外気を冷却する冷却装置11
a〜11cの空気側吹出し温度(冷却装置11a〜11
cから吹出される空気の温度)を一定にするために流量
調整弁14の弁開度を調整することによる冷水量の変化
が生じる場合でも、冷凍機冷水供給設備3の供給側圧力
と戻り側圧力の圧力差を自動で一定の圧力差に維持する
ことができる。
In the second embodiment shown in FIG. 2, since the pressure control valve 16 shown above is provided, the cooling device 11a for cooling the outside air of the same specification for cooling the outside air supplied to the building is provided.
For example, when the outside air temperature changes (load fluctuation) between daytime and evening in the day, the cooling device 11 cools the outside air.
a to 11c (the cooling devices 11a to 11c).
c), the supply side pressure and the return side of the chiller chilled water supply equipment 3 can be changed even when the amount of chilled water changes due to adjusting the valve opening of the flow control valve 14 in order to make the temperature constant. The pressure difference between the pressures can be automatically maintained at a constant pressure difference.

【0032】尚、上記圧力制御弁16を、上述の圧力制
御弁16の開閉制御と同様な開閉動作となるように、各
ヘッダ管4,5内の圧力を圧力検出器で監視しながら、
マニュアル操作してもよい。この場合には、制御装置1
9は必要が無くなる。
The pressure in the header pipes 4 and 5 is monitored by a pressure detector so that the pressure control valve 16 performs an opening and closing operation similar to the opening and closing control of the pressure control valve 16 described above.
It may be operated manually. In this case, the control device 1
9 becomes unnecessary.

【0033】また、図3は例えば冷却装置11a,11
cが建屋内に供給する外気を冷却する外気冷却装置,冷
却装置11bが特定の室内を冷却する再循環冷却装置の
ように各負荷側の仕様が異なり、また用途も相違する複
数台の冷却装置11a,11b,11cを有する構成にお
いても上記と同じように、冷凍機冷水供給設備3の供給
側圧力と戻り側圧力の圧力差、即ち各ヘッダ管4,5内
の圧力の差を一定の圧力差に維持することができる。そ
の他の構成と作用は図1の第1実施例と同じである。
FIG. 3 shows, for example, cooling devices 11a and 11a.
A plurality of cooling devices having different specifications on each load side and different uses, such as an outside air cooling device for cooling the outside air supplied to the building by c, and a recirculation cooling device for cooling the specific room by the cooling device 11b. Similarly, in the configuration having 11a, 11b, and 11c, the pressure difference between the supply side pressure and the return side pressure of the refrigerator cold water supply equipment 3, that is, the difference between the pressures in the header pipes 4 and 5 is set to a constant pressure. The difference can be maintained. Other configurations and operations are the same as those of the first embodiment shown in FIG.

【0034】このように各ヘッダ管4,5内の圧力の差
を予め決められた一定の圧力差に維持することができる
ので、システムのコスト低減の他に、システムの安全は
もとより、負荷側である冷却装置11a,11b,11
cの負荷変動に対するシステムの機能の正常化を維持で
きる効果が得られる。
As described above, the pressure difference between the header tubes 4 and 5 can be maintained at a predetermined constant pressure difference, so that not only the cost of the system is reduced, but also the safety of the system and the load side are reduced. Cooling devices 11a, 11b, 11
The effect of maintaining the normalization of the function of the system with respect to the load fluctuation of c can be obtained.

【0035】図4は、本発明の第3実施例に係る空調用
冷凍機冷水供給システムの構成を示す。図4における符
号1〜19は図2と同じ物を表している。図4に示され
る20は、戻り側ヘッダ管5の冷水の戻り温度を検出す
る感温素子を、21は感温素子20からの冷水の戻り温
度を読取り、その冷水の戻り温度に基づいて冷却装置1
1の流量調整弁14に弁開度調整を促す制御装置であ
る。
FIG. 4 shows a configuration of a chilled water supply system for an air conditioning refrigerator according to a third embodiment of the present invention. 4 denote the same items as in FIG. 4 is a thermo-sensitive element for detecting the return temperature of the chilled water of the return-side header tube 5, and 21 is a sensor for reading the return temperature of the chilled water from the thermo-sensitive element 20 and performing cooling based on the returned temperature of the chilled water. Apparatus 1
This is a control device that prompts the first flow control valve 14 to adjust the valve opening.

【0036】本実施例は、上記に示される冷水量制御弁
14の弁開度を調整することにより、冷凍機冷水供給設
備3の戻り温度を一層良く一定とするようにした場合で
ある。上記第2実施例に示されるような冷却装置11
a,11b,11cの負荷変動が急激あるいはゆっくり
とある場合でも、自動的かつ容易に冷水量を制御して一
般汎用品標準仕様の冷凍機冷水供給設備3の戻り温度
(摂氏12度の冷水の温度)にすることができる。
In this embodiment, the return temperature of the chilled water supply equipment 3 is made more constant by adjusting the opening of the chilled water control valve 14 described above. Cooling device 11 as shown in the second embodiment
Even when the load fluctuations of a, 11b, and 11c are abrupt or slow, the amount of chilled water is automatically and easily controlled to return the return temperature of the chiller chilled water supply equipment 3 (standard temperature of 12 ° C.). Temperature).

【0037】感温素子20が戻り側ヘッダ管内の冷水の
温度を検出して、その検出値が予め設定した摂氏12度
よりも低い場合には、その感温素子の検出信号を受けて
制御装置21が流量調整弁14に弁を今以上に開かせる
信号を送り、流量調整弁14はその信号を受けて弁が開
く方向に駆動される。逆に感温素子20が戻り側ヘッダ
管内の冷水の温度を検出して、その検出値が予め設定し
た摂氏12度よりも高い場合には、その感温素子20の
検出信号を受けて制御装置21が流量調整弁14に弁を
今以上に閉じさせる信号を送り、流量調整弁14はその
信号を受けて弁が閉じる方向に駆動される。
The temperature sensing element 20 detects the temperature of the cold water in the header pipe on the return side, and if the detected value is lower than a preset 12 degrees Celsius, the control device receives the detection signal of the temperature sensing element. 21 sends a signal to the flow control valve 14 to open the valve any more, and the flow control valve 14 receives the signal and is driven to open the valve. Conversely, the temperature sensing element 20 detects the temperature of the chilled water in the return header pipe, and if the detected value is higher than a preset 12 degrees Celsius, the control device receives the detection signal of the temperature sensing element 20 and receives the detection signal. 21 sends a signal to the flow control valve 14 to close the valve any more, and the flow control valve 14 receives the signal and is driven in a direction to close the valve.

【0038】尚、以下に本実施例を定量的に示す。本実
施例の定格運転時における運転条件を例えば、第1実施
例及び図1と同様とする。ここで、例えば負荷側の各冷
却装置11a,11b,11cの負荷が変動し、100
kWから90kWに減少したと仮定する。
The present embodiment will be described below quantitatively. The operating conditions during the rated operation of the present embodiment are, for example, the same as those of the first embodiment and FIG. Here, for example, the load of each cooling device 11a, 11b, 11c on the load side fluctuates,
Assume that the power has been reduced from kW to 90 kW.

【0039】上記に示される流量調整弁14に弁開度調
整を促す制御装置21がない場合は、負荷変動の前と後
でも同じ冷水量が各冷却装置11a,11b,11cに
流れることから各冷却装置11a,11b,11cの出
口冷水温度は、{(90×860×0.001)/4.
3}+7より25℃となる。従って、冷凍機冷水供給設
備3への戻り温度は、{(12.9×25)+(38.7
×7)}/51.6 より11.5℃となる。
If the flow control valve 14 does not have the control device 21 for prompting the valve opening adjustment, the same amount of chilled water flows through the cooling devices 11a, 11b, and 11c before and after the load change. The outlet cold water temperature of the cooling devices 11a, 11b, 11c is {(90 × 860 × 0.001) / 4.
25 ° C. from 3} +7. Therefore, the return temperature to the refrigerator cold water supply equipment 3 is {(12.9 × 25) + (38.7)
× 7) It becomes 11.5 ° C from} /51.6.

【0040】一方、本発明の図4に示す実施例によれ
ば、上記のように負荷変動により各冷却装置11a,1
1b,11cの負荷が減少した場合は、冷凍機冷水供給
設備3への冷水の戻り温度を一定に保つ制御が働くた
め、各冷却装置11a,11b,11cに接続されてい
る各流量調整弁14を定格状態より開けることができ
る。
On the other hand, according to the embodiment shown in FIG. 4 of the present invention, each cooling device 11a, 1
When the load of 1b, 11c decreases, control is performed to keep the return temperature of the chilled water to the chiller chilled water supply equipment 3 constant, and therefore, each flow control valve 14 connected to each of the cooling devices 11a, 11b, 11c. Can be opened from the rated state.

【0041】従って、本発明の図4に示す実施例によれ
ば、各冷却装置11a,11b,11cの吹出し側空気
温度を下げることから減少した分の負荷を各冷却装置11
a,11b,11cに与えることができる。例えば、上
記各冷却装置11a,11b,11cの冷水量を負荷変
動に伴い4.3m3/hから8.6m3/hになるように各
冷却装置11a,11b,11cに接続する各流量調整
弁14を開けた場合、各冷却装置11a,11b,11
cの負荷は、空気側吹出し温度が下がることから100
kWとなり、従って各冷却装置11a,11b,11c
の出口冷水温度は、{(100×860×0.001)
/8.6}+7より17℃となり、また、負荷側へ冷水
量を多く流すことによる各ヘッダ管4,5内の圧力の差
圧の低下は圧力制御弁16の弁開度の調整(この例の場
合には弁が閉じる方向へ調整される)されるから、これ
らにより冷凍機冷水供給設備3へ戻る冷水の温度、即ち
冷凍機冷水供給設備3への戻り温度を算出すると、
{(8.6×3×17)+(25.8×7)}/51.6
より12℃となる。
Therefore, according to the embodiment shown in FIG. 4 of the present invention, each cooling device 11a, 11b, 11c is provided with a reduced load by lowering the air temperature on the outlet side.
a, 11b, 11c. For example, the flow rate adjustment for connecting each cooling device 11a, 11b, the cold water of 11c from 4.3 m 3 / h with the load variation 8.6 m 3 / h so that each cooling device 11a, 11b, and 11c When the valve 14 is opened, each cooling device 11a, 11b, 11
The load of c is 100
kW, and therefore each of the cooling devices 11a, 11b, 11c
Outlet cold water temperature is {(100 × 860 × 0.001)
/8.6}+7, the temperature becomes 17 ° C., and the decrease in pressure difference between the header pipes 4 and 5 due to the flow of a large amount of chilled water to the load side is caused by adjusting the valve opening of the pressure control valve 16 (this In the case of the example, the valve is adjusted in a direction to close), so that when these are used to calculate the temperature of the chilled water returning to the refrigerator cold water supply facility 3, that is, the return temperature to the refrigerator cold water supply facility 3,
{(8.6 × 3 × 17) + (25.8 × 7)} / 51.6
12 ° C.

【0042】以上より本実施例によれば、戻りヘッダ管
5に感温素子20を設け、感温素子20から冷凍機冷水
供給設備3へ戻る冷水の温度、即ち冷凍機冷水供給設備
3への戻り温度を読取り各冷却装置11a,11b,1
1cに接続されている各流量調整弁14に弁開度調整を
促す制御装置21を設けたことにより、負荷側の各冷却
装置11a,11b,11cの負荷変動に影響されない
安定した冷凍機冷水供給設備の運転に効果がある。本実
施例でも圧力制御弁16を各ヘッダ管4,5内の圧力の
差圧を確認しながら手動で図1の実施例と同様な弁の開
度調整が出来るようにしてもよい。
As described above, according to the present embodiment, the temperature sensing element 20 is provided in the return header tube 5, and the temperature of the cold water returning from the temperature sensing element 20 to the refrigerator cold water supply facility 3, that is, the temperature of the cold water supply facility 3 The return temperature is read and each cooling device 11a, 11b, 1
By providing the control device 21 for prompting the adjustment of the opening degree of each flow control valve 14 connected to the flow control valve 1c, stable chiller chilled water supply not affected by load fluctuations of the load side cooling devices 11a, 11b, 11c. Effective for operation of equipment. In this embodiment as well, the opening degree of the valve may be manually adjusted in the same manner as in the embodiment of FIG. 1 while checking the pressure difference between the pressures in the header pipes 4 and 5 using the pressure control valve 16.

【0043】[0043]

【発明の効果】以上説明したように、本発明の空調用冷
凍機冷水供給システムによれば、冷凍機冷水供給設備の
出入口温度差よりも拡大された出入口温度差とした負荷
側の冷却装置を用いること、及び上記に示す負荷側の冷
却装置への冷水量と冷凍機冷水供給設備の供給冷水量と
の差をバイパスすることができることから、冷凍機冷水
供給設備の一般汎用品の適用、及び冷凍機冷水供給設備
と負荷側の冷却装置間の通水冷水量の軽減による配管を
含む物量低減で空調用冷凍機冷水供給システムのコスト
の低減効果がある。
As described above, according to the chilled water supply system for an air conditioner of the present invention, the cooling device on the load side having an inlet / outlet temperature difference larger than the inlet / outlet temperature difference of the chiller chilled water supply equipment is provided. Since it is possible to use and a difference between the amount of chilled water to the cooling device on the load side and the amount of chilled water supplied to the chiller chilled water supply equipment as described above, application of a general-purpose chiller chilled water supply equipment, and By reducing the amount of water including the piping by reducing the amount of cooling water passing through between the cooling water supply equipment for the refrigerator and the cooling device on the load side, there is an effect of reducing the cost of the cooling water supply system for the air conditioning refrigerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例である空調用冷凍機冷水供
給システムの系統図である。
FIG. 1 is a system diagram of a chilled water supply system for an air conditioning refrigerator according to a first embodiment of the present invention.

【図2】本発明の第2実施例である空調用冷凍機冷水供
給システムの系統図である。
FIG. 2 is a system diagram of a chilled water supply system for an air conditioner according to a second embodiment of the present invention.

【図3】本発明の第2実施例で負荷側が異なる場合の空
調用冷凍機冷水供給システムの系統図である。
FIG. 3 is a system diagram of an air-conditioning chiller chilled water supply system when a load side is different in a second embodiment of the present invention.

【図4】本発明の第3実施例である空調用冷凍機冷水供
給システムの系統図である。
FIG. 4 is a system diagram of a chilled water supply system for an air conditioner according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…冷凍機、2…冷水搬送ポンプ、3…冷凍機冷水供給
設備、4…供給側ヘッダ管、5…戻り側ヘッダ管、6…
冷却水配管、7a,7b,7c…供給側配管、8a,8
b,8c…戻り側配管、9…ファン、10…冷却コイ
ル、11a,11b,11c…冷却装置、12…仕切
弁、13…フランジ、14…流量調節弁、15…バイパ
ス配管、16…圧力制御弁、17…圧力を検出するため
の配管、18…圧力検出器、19…圧力制御弁の弁開度
を調整する制御装置、20…感温素子、21…流量調整
弁の弁開度を調整する制御装置。
DESCRIPTION OF SYMBOLS 1 ... Refrigerator, 2 ... Cold water conveyance pump, 3 ... Refrigerator cold water supply equipment, 4 ... Supply side header pipe, 5 ... Return side header pipe, 6 ...
Cooling water piping, 7a, 7b, 7c ... supply side piping, 8a, 8
b, 8c: return side pipe, 9: fan, 10: cooling coil, 11a, 11b, 11c: cooling device, 12: gate valve, 13: flange, 14: flow control valve, 15: bypass pipe, 16: pressure control Valves, 17 ... Piping for detecting pressure, 18 ... Pressure detector, 19 ... Control device for adjusting valve opening of pressure control valve, 20 ... Temperature sensing element, 21 ... Adjusting valve opening of flow control valve Control device.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】冷凍機冷水供給設備と、前記冷凍機冷水供
給設備の出と入りの冷水の温度差よりも出と入りの冷水
の温度差を拡大した冷却装置と、前記冷凍機冷水供給設
備と前記冷却装置とを前記冷水が循環するように連通す
る配管と、前記冷却装置を迂回させて前記冷凍機冷水供
給設備の出口側からの冷水を入口側に戻すバイパス配管
とを備えた空調用冷凍機冷水供給システム。
1. A refrigerator chilled water supply system, a cooling device in which the temperature difference between the incoming and outgoing chilled water is larger than the temperature difference between the incoming and outgoing chilled water of the refrigerator cold water supplying device, and the chiller chilled water supply device And a cooling device, and a bypass pipe for communicating the cooling water so that the cold water circulates, and a bypass pipe for bypassing the cooling device and returning cold water from an outlet side of the refrigerator cold water supply facility to an inlet side. Refrigerator cold water supply system.
【請求項2】請求項1において、バイパス配管に圧力制
御弁を備えた空調用冷凍機冷水供給システム。
2. The chilled water supply system for an air conditioner according to claim 1, further comprising a pressure control valve in a bypass pipe.
【請求項3】請求項2において、前記圧力制御弁の弁開
度を前記冷凍機冷水供給設備の出口側と入口側との冷水
の圧力差に基づいてその圧力差が設定圧力差よりも大き
い場合には前記弁開度が大きく成るように前記圧力制御
弁を駆動させ、逆に小さい場合には前記弁開度が小さく
成るように駆動させるように構成された前記圧力制御弁
の弁開度の制御手段とを備えた空調用冷凍機冷水供給シ
ステム。
3. The pressure control valve according to claim 2, wherein the pressure difference is larger than a set pressure difference based on a pressure difference between the outlet side and the inlet side of the refrigerator cold water supply equipment. In such a case, the pressure control valve is driven so that the valve opening is increased, and conversely, if the pressure is small, the pressure control valve is driven so that the valve opening is reduced. Air conditioner chiller water supply system comprising:
【請求項4】請求項1から請求項3までのいずれか1項
において、前記冷却装置と、前記冷却装置から前記冷凍
機冷水供給設備へ冷水を循環させる配管と流量調整弁を
備え、前記冷凍機冷水供給設備の冷水の入口側の前記冷
水の温度に基づいて、前記温度が設定温度よりも高い場
合には前記流量調整弁の弁開度が小さく成るように前記
流量調整弁を駆動させ、逆に低い場合には前記流量調整
弁の弁開度が大きく成るように駆動させるように構成さ
れた前記流量調整弁の弁開度の制御手段とを備えた空調
用冷凍機冷水供給システム。
4. The refrigeration system according to claim 1, further comprising the cooling device, a pipe for circulating cold water from the cooling device to the chilled water supply equipment for the refrigerator, and a flow control valve. Based on the temperature of the chilled water on the inlet side of the chilled water of the machine chilled water supply equipment, when the temperature is higher than a set temperature, the flow rate control valve is driven such that the valve opening of the flow rate control valve is reduced, Conversely, when the temperature is low, the flow control valve is driven so that the valve opening of the flow control valve is increased, and the control means for controlling the valve opening of the flow control valve is provided.
JP2000060372A 2000-03-01 2000-03-01 Cooling water supply system of refrigerating machine for air conditioning Pending JP2001241729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060372A JP2001241729A (en) 2000-03-01 2000-03-01 Cooling water supply system of refrigerating machine for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060372A JP2001241729A (en) 2000-03-01 2000-03-01 Cooling water supply system of refrigerating machine for air conditioning

Publications (1)

Publication Number Publication Date
JP2001241729A true JP2001241729A (en) 2001-09-07

Family

ID=18580704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060372A Pending JP2001241729A (en) 2000-03-01 2000-03-01 Cooling water supply system of refrigerating machine for air conditioning

Country Status (1)

Country Link
JP (1) JP2001241729A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427842C (en) * 2004-11-10 2008-10-22 曹琦 Energy saving comfortable central air-conditioning system without electric two-way regulating valve
KR100875273B1 (en) * 2008-07-24 2008-12-23 (주)파미르산업개발 Air conditioning system of multistoried building
CN102809195A (en) * 2011-05-30 2012-12-05 昆山台佳机电有限公司 Water source heat pump intelligent centralized control all-in-one machine capable of spontaneously changing flow
JP2014001872A (en) * 2012-06-15 2014-01-09 Toenec Corp Heat source performance evaluation system for air conditioning
CN106545930A (en) * 2016-11-04 2017-03-29 广东汉维科技有限公司 A kind of energy-efficient central air conditioner room and power-economizing method
CN109340933A (en) * 2018-10-25 2019-02-15 华南理工大学 A kind of big temperature difference energy-saving air conditioning system of chilled water and its implementation
CN109611980A (en) * 2018-10-31 2019-04-12 厦门华睿晟智能科技有限责任公司 A kind of air-conditioning water piping system and air-conditioning system
CN109945394A (en) * 2019-01-22 2019-06-28 中山大学 A kind of small temperature difference syndrome Precise Diagnosis method of freezing water system of central air conditioner
CN110608515A (en) * 2018-06-15 2019-12-24 开利公司 Air conditioning system and control method thereof
CN112665237A (en) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 Chilled water system flow control method and device and chilled water system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100427842C (en) * 2004-11-10 2008-10-22 曹琦 Energy saving comfortable central air-conditioning system without electric two-way regulating valve
KR100875273B1 (en) * 2008-07-24 2008-12-23 (주)파미르산업개발 Air conditioning system of multistoried building
CN102809195A (en) * 2011-05-30 2012-12-05 昆山台佳机电有限公司 Water source heat pump intelligent centralized control all-in-one machine capable of spontaneously changing flow
CN102809195B (en) * 2011-05-30 2015-12-16 昆山台佳机电有限公司 From the water source heat pump intelligent centralized-control all-in-one machine of variable-flow
JP2014001872A (en) * 2012-06-15 2014-01-09 Toenec Corp Heat source performance evaluation system for air conditioning
CN106545930B (en) * 2016-11-04 2019-09-27 广东汉维科技有限公司 A kind of energy-efficient central air conditioner room and power-economizing method
CN106545930A (en) * 2016-11-04 2017-03-29 广东汉维科技有限公司 A kind of energy-efficient central air conditioner room and power-economizing method
CN110608515A (en) * 2018-06-15 2019-12-24 开利公司 Air conditioning system and control method thereof
CN110608515B (en) * 2018-06-15 2022-12-06 开利公司 Air conditioning system and control method thereof
CN109340933A (en) * 2018-10-25 2019-02-15 华南理工大学 A kind of big temperature difference energy-saving air conditioning system of chilled water and its implementation
CN109611980A (en) * 2018-10-31 2019-04-12 厦门华睿晟智能科技有限责任公司 A kind of air-conditioning water piping system and air-conditioning system
CN109945394A (en) * 2019-01-22 2019-06-28 中山大学 A kind of small temperature difference syndrome Precise Diagnosis method of freezing water system of central air conditioner
CN109945394B (en) * 2019-01-22 2020-04-07 中山大学 Accurate diagnosis method for small temperature difference syndrome of chilled water system of central air conditioner
CN112665237A (en) * 2020-12-17 2021-04-16 珠海格力电器股份有限公司 Chilled water system flow control method and device and chilled water system

Similar Documents

Publication Publication Date Title
JP5501179B2 (en) Medium temperature source system with free cooling
US20060010893A1 (en) Chiller system with low capacity controller and method of operating same
JP6570746B2 (en) Heat medium circulation system
US10203128B2 (en) Cold water circulation system with control of supply of cold water based on degree of air handler surplus
US8701424B2 (en) Turbo chiller, heat source system, and method for controlling the same
US9157650B2 (en) Heat source apparatus
EP2806228B1 (en) Air conditioner
US20140374497A1 (en) Heat source system, control device thereof, and control method thereof
JP2005069554A (en) Water heat source air conditioning system
JP2001241729A (en) Cooling water supply system of refrigerating machine for air conditioning
US10451305B2 (en) Air-conditioning apparatus
US6321548B1 (en) Apparatus for automatically closing a cooling system expansion valve in response to power loss
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP2577668B2 (en) Water temperature control device for heat source water for air conditioning
JP2009138997A (en) Outside air cold recovery control system and outside air cold recovery control method
US20200318880A1 (en) Refrigeration cycle apparatus
US6817209B1 (en) Fluid cooled air conditioning system
JP3320631B2 (en) Cooling and heating equipment
JP5595975B2 (en) Air conditioning piping system
JP4477914B2 (en) Air conditioning system
JP2003130428A (en) Connection type cold/hot water device
JP3534048B2 (en) Air conditioning system
JPH08303877A (en) Air conditioner
JP3195376B2 (en) Chilled water system control method in air conditioning equipment
EP4134596A1 (en) Air conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060530