JP3195376B2 - Chilled water system control method in air conditioning equipment - Google Patents

Chilled water system control method in air conditioning equipment

Info

Publication number
JP3195376B2
JP3195376B2 JP12133091A JP12133091A JP3195376B2 JP 3195376 B2 JP3195376 B2 JP 3195376B2 JP 12133091 A JP12133091 A JP 12133091A JP 12133091 A JP12133091 A JP 12133091A JP 3195376 B2 JP3195376 B2 JP 3195376B2
Authority
JP
Japan
Prior art keywords
air
temperature
water
cooler
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12133091A
Other languages
Japanese (ja)
Other versions
JPH04350431A (en
Inventor
讓 川名
耕一 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shin Nippon Air Technologies Co Ltd
Original Assignee
Toshiba Corp
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shin Nippon Air Technologies Co Ltd filed Critical Toshiba Corp
Priority to JP12133091A priority Critical patent/JP3195376B2/en
Publication of JPH04350431A publication Critical patent/JPH04350431A/en
Application granted granted Critical
Publication of JP3195376B2 publication Critical patent/JP3195376B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、原子力施設等の空調設
備に係り、内部機器発熱用冷却器および外気用冷却器に
供給される冷却水の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner for a nuclear facility or the like, and more particularly, to a method for controlling cooling water supplied to a cooler for heating internal equipment and a cooler for outside air.

【0002】[0002]

【従来の技術】たとえば、原子力施設等においては、機
器類からの発生熱を排除するために、内部発熱用冷却器
によって年間を通じて冷房を行うとともに、汚染の可能
性のある区域へは換気の目的で、一定給気温度の空気を
送っている。
2. Description of the Related Art For example, in a nuclear facility or the like, in order to eliminate heat generated from equipment and the like, cooling is performed throughout the year by a cooler for internal heating, and ventilation is provided to a potentially contaminated area. The air is sent at a constant supply temperature.

【0003】図2に従来の原子力施設における空調用冷
水系設備の一例について示す。冷凍機群Eによって冷却
された冷水は、冷水往管路4、5によりそれぞれ内部機
器発熱用冷却器群Fおよび外気用冷却器群Gに送られ
る。前記内部機器発熱用冷却器群Fは、基本的には設置
機器からの発生熱を排除するためのものであるため、設
置機器類が年間を通じて一定運転される場合は、空調負
荷も同様に年間を通じて一定となり、各内部機器発熱用
冷却器1、1…に供給される送水量も年間を通じてほぼ
一定となる。
FIG. 2 shows an example of a conventional chilled water system for air conditioning in a nuclear facility. The cold water cooled by the refrigerating machine group E is sent to the internal device heat generating cooler group F and the outside air cooler group G by the cold water outgoing pipelines 4 and 5, respectively. The internal equipment heat-generating cooler group F is basically for eliminating the heat generated from the installed equipment. Therefore, when the installed equipment is operated at a constant rate throughout the year, the air conditioning load is similarly increased year by year. , And the amount of water supplied to each of the internal device heat-generating coolers 1, 1,... Is also substantially constant throughout the year.

【0004】一方、外気用冷却器群Gにおいては、各外
気用冷却器2、2…毎に給気温度計8、8…を設置し、
この温度計8、8…により測定される給気温度を設計給
気温度とすべく、各外気用冷却器2、2…の入側に設け
られた調整弁6、6…の開度が調整器7、7…により制
御され送水量が制御されるため、外気用冷却器2、2…
に送給される送水量は年間を通じて常に変動することと
なる。
On the other hand, in the outdoor air cooler group G, air supply thermometers 8, 8,... Are installed for each outdoor air cooler 2, 2,.
In order to make the supply air temperature measured by the thermometers 8, 8,... The designed supply air temperature, the opening of the regulating valves 6, 6,. Are controlled by the water heaters 7, 7,.
The amount of water supplied to the island will fluctuate throughout the year.

【0005】前記内部機器発熱用冷却器群Fおよび外気
用冷却器群Gからの還り冷水は、冷水復管路9、10に
より各冷水ポンプ11、11…を経て、再び各冷凍機
3、3…に循環されている。前述の如く、内部機器発熱
用冷却器群Fへの送水量は年間を通じてほぼ一定とされ
るが、外気用冷却器群Gへの送水量は年間を通じて変動
するため、トータルでの送水量は年間を通じて変動す
る。したがって、各冷凍機3、3…の運転が過負荷とな
らないように、還り冷水の温度を還り水温度計12で測
定し、冷水の負荷変動を把握し、運転台数制御器13に
より冷凍機3、3…の運転台数を制御している。
Returning cold water from the internal equipment heat generating cooler group F and the external air cooler group G passes through the cold water return pipes 9 and 10 through the respective cold water pumps 11, 11. Circulated to ... As described above, the amount of water supplied to the internal equipment heat generating cooler group F is substantially constant throughout the year, but the amount of water supplied to the outdoor air cooler group G varies throughout the year. Fluctuate through. Therefore, the temperature of the return chilled water is measured by the return water thermometer 12 to grasp the load fluctuation of the chilled water, and the number of operating chillers 3 is controlled by the operating number controller 13 so that the operation of each of the refrigerators 3, 3,. , 3 ... are controlled.

【0006】[0006]

【発明が解決しようとする課題】前述した外気用冷却器
2、2…における設計給気温度(設定値)は室内環境を
保つのに最適な温度として設定されることが最も望まし
いが、そうすると冷凍機3、3…の負荷が大きくなるた
め、前記設計給気温度(設定値)は、設計外気条件温度
時(最大温度時)に、室内環境を許容できる最低条件に
保つ給気温度に設定されている。そのため、実際にはほ
とんどの期間、外気温度が設計外気条件温度よりも低く
なり冷凍機3、3…の運転能力に余裕があるにもかかわ
らず、冷水の送水量は前記「室内環境を許容できる最低
条件に保つ温度」にするための送水量とされているた
め、室内環境上、十分なものとは成り得ていない。
It is most desirable that the design air supply temperature (set value) in the above-described outdoor air coolers 2, 2,... Is set as an optimum temperature for maintaining the indoor environment. Because the load on the machines 3, 3,... Increases, the design supply air temperature (set value) is set to the supply air temperature that keeps the indoor environment at an acceptable minimum condition at the design outside air condition temperature (maximum temperature). ing. Therefore, although the outside air temperature is actually lower than the design outside air condition temperature for most of the period and the operation capacity of the refrigerators 3, 3,... It is not enough for indoor environment because it is the amount of water supply to make "temperature to keep the minimum condition".

【0007】また、異常気象により設計外気条件を超え
る外気条件となった場合には、外気用冷却器2、2…で
の冷却容量の増大とともに、冷凍機負荷が増大し冷凍機
のオーバーロードにより、冷却系全体の運転が停止する
問題と同時に、機器類の発熱を排除できないため機器類
の運転も不能になるなどの問題があった。
If the outside air condition exceeds the designed outside air condition due to abnormal weather, the cooling capacity of the outside air coolers 2, 2,... Increases, and the load of the refrigerator increases. In addition, there is a problem that the operation of the entire cooling system is stopped and, at the same time, the operation of the devices becomes impossible because the heat generation of the devices cannot be eliminated.

【0008】そこで、本発明の主たる課題は、冷凍機の
冷凍能力範囲内においては、室内環境を最適に制御し、
冷凍機の冷凍能力を超える負荷がかかった場合にでも、
冷却系全体の停止を防止するとともに、少なくとも機器
類の冷房は確保するようにした空調設備における冷水系
制御方法を提供するものである。
Therefore, a main object of the present invention is to optimally control the indoor environment within the range of the refrigerating capacity of the refrigerator,
Even if the load exceeds the refrigerating capacity of the refrigerator,
An object of the present invention is to provide a method for controlling a chilled water system in an air conditioner, which prevents the entire cooling system from being stopped and at least cools the devices.

【0009】[0009]

【課題を解決するための手段】前記課題は、年間を通じ
てほぼ一定量の冷水が送水される内部機器発熱用冷却器
群と、給気温度を目標給気温度とすべく送水量が変動制
御される外気用冷却器群と、前記内部機器発熱用冷却器
群と前記外気用冷却器群への送給水を冷却するために複
数台設置された冷凍機からなり、前記冷凍機からの冷水
を前記内部機器発熱用冷却器群と前記外気用冷却器群へ
並列的に供給し、冷却器からの還り冷水を再び前記冷
凍機へ循環させるようにした空調設備において:前記外
気用冷却器群の各外気用冷却器ごとの給気温度を目標給
気温度とするべく送水量を制御するとともに、前記目標
給気温度を外気温度の測定値に基づく最適給気温度に設
定し、この最適給気温度となるように前記各外気用冷却
器への送水量を個別に制御する最適給気温度カスケード
制御を行い前記内部機器発熱用冷却器群及び外気用冷
却器群の各冷却器からの還り冷水の温度を測定し、この
還り冷水温度が設計温度以上となる場合には、前記
気用冷却器への送水量を前記最適給気温度カスケード制
優先して絞る制御を行なうことで解決できる。
SUMMARY OF THE INVENTION The object of the present invention is to provide a cooling unit for heating internal equipment to which a substantially constant amount of chilled water is supplied throughout the year, and that a water supply amount is variably controlled so that the supply air temperature becomes a target supply air temperature. Outside air cooler group, comprising a plurality of refrigerators installed to cool the water supply to the internal device heat generation cooler group and the outside air cooler group, the cold water from the refrigerator is parallel to supply the internal equipment heating cooling unit group to the outside air cooler group, in air conditioning which is adapted to circulate cold water again the refrigerator went back from the condenser: the outer
The inlet air temperature for each outdoor air cooler of air cooling unit group and controls the water amount so as to obtain the target supply air temperature, setting the optimal supply air temperature based on the target supply air temperature to the measured value of the outside air temperature Then, an optimal supply air temperature cascade control for individually controlling the amount of water supplied to each of the outside air coolers so as to obtain the optimal supply air temperature is performed , and the internal equipment heat generation cooler group and the outside air cooling control are performed .
The temperature of the return chilled water from each of the coolers in the heat exchanger group is measured, and when the temperature of the returned chilled water is equal to or higher than the design temperature, the amount of water supplied to each of the external air coolers is adjusted to the optimum supply amount. The problem can be solved by performing control that prioritizes the air temperature cascade control.

【0010】[0010]

【作用】本発明においては、外気用冷却器ごとの給気温
度を目標給気温度とするべく送水量を個別に制御する外
気冷却器用送水制御において、前記目標給気温度を外気
温度の測定値に基づく最適給気温度に設定し、この最適
給気温度となるように前記外気用冷却器への送水量を制
御する最適給気温度カスケード制御を行なうものであ
る。したがって、基本的に冷凍機の能力範囲内において
は、目標給気温度を外気温度の測定値に基づく最適給気
温度に自由に設定するため、室内環境を最適に維持する
ことができる。
According to the present invention, Oite water supply amount to the supply air temperature for each outdoor air cooler and the target supply air temperature to the air cooler water control for controlling individually the target supply air temperature of the outside air temperature The optimum supply air temperature is set based on the measured value, and the optimum supply air temperature cascade control for controlling the amount of water supplied to the outside air cooler so as to achieve the optimum supply air temperature is performed. Therefore, basically, within the capacity range of the refrigerator, the target air supply temperature is freely set to the optimum air supply temperature based on the measured value of the outside air temperature, so that the indoor environment can be maintained optimally.

【0011】給気温度を自由に設定している関係で、外
気温度が一定値以上に高くなると、冷凍機は過負荷によ
りオーバーロードとなり、前記内部機器発熱用冷却器お
よび外気用冷却器ともに冷房能力が不足する。そのた
め、逐次還り冷水の温度を測定し設計温度との比較を行
い過負荷状態を検知するようにしている。そして、前記
還り冷水温度が設計温度以上となる場合(過負荷状態)
となった際には、前記外気用冷却器への冷水送水量を
前記最適給気温度カスケード制御に優先して絞るよう制
御することによって、外気用冷却器側での冷房を犠牲に
しつつも、少なくとも内部機器発熱用冷却器側での冷房
を確保し、過負荷状態とならないように制御する。かか
る冷水系制御により冷凍機の過負荷が抑えられ、冷凍機
のオーバーロードによる冷却系全体の運転が停止するの
を防止することができる。
When the outside air temperature rises above a certain value due to the freely set supply air temperature, the refrigerator is overloaded due to overload, and both the internal equipment heat generating cooler and the external air cooler are cooled. Insufficient ability. For this reason, the temperature of the returning cold water is sequentially measured and compared with a design temperature to detect an overload state. When the return chilled water temperature is equal to or higher than the design temperature (overload state)
When it becomes, by controlling the amount of chilled water to be supplied to each of the outside air coolers so as to be throttled in preference to the optimal supply air temperature cascade control, while sacrifice cooling on the outside air cooler side. At least, cooling is ensured on the side of the internal device heat generating cooler, and control is performed so as not to cause an overload state. Such chilled water system control can suppress overload of the refrigerator and prevent the entire operation of the cooling system from being stopped due to the overload of the refrigerator.

【0012】また、年間を通じて外気用冷却器への冷水
送水量が変動するため、冷凍機の所要能力も変動する。
従来においては、還り冷水温度を測定して冷凍機の運転
台数を制御していたが、この管理システムだと、外気温
度が高くなった際、外気用冷却器への冷水量が自動的に
増加するが、冷水ポンプの運転台数が同じであれば、内
部機器発熱用冷却器への冷水量が低下し内部発熱への冷
却が不十分となり、冷凍機への負荷(還り冷水温度)と
冷水量は必ずしもリンクしないことがあった。
Further, since the amount of cold water supplied to the outside air cooler varies throughout the year, the required capacity of the refrigerator also varies.
In the past, the number of chillers operated was measured by measuring the return chilled water temperature, but this management system automatically increases the amount of chilled water to the outside air cooler when the outside air temperature rises. However, if the number of operating chilled water pumps is the same, the amount of chilled water to the internal equipment heat-generating cooler will decrease, and cooling to internal heat generation will be insufficient, and the load on the refrigerator (return chilled water temperature) and the amount of chilled water Did not always link.

【0013】そのため本発明においては、冷却器群で必
要とする冷水量が冷凍機の供給量を上回った場合には冷
凍機群の往側と還側での水圧差が設計条件より低下する
ことに着目し、冷凍機の往側と還側における水圧変化に
基づいて冷凍機の運転台数を制御するため、内部機器発
熱用冷却器への冷水量を確実に確保することができる。
Therefore, in the present invention, when the amount of chilled water required in the cooler group exceeds the supply amount of the refrigerator, the water pressure difference between the forward side and the return side of the refrigerator group is reduced below the design condition. And the number of operating chillers is controlled based on the water pressure change on the outward and return sides of the chiller, so that the amount of chilled water to the internal equipment heat-generating cooler can be ensured.

【0014】なお、従来の還り冷水温度測定に基づく冷
凍機運転台数の制御系と本発明に係る前記水圧差に基づ
く冷凍機運転台数の制御系とを併用することにより、よ
り確実な制御系とすることができる。
By using the conventional control system of the number of operating refrigerators based on the measurement of return chilled water temperature and the control system of the number of operating refrigerators based on the water pressure difference according to the present invention, a more reliable control system can be realized. can do.

【0015】[0015]

【実施例】以下、本発明の図1に示す実施例に基づき詳
説する。図1において、冷凍機群Eからの冷水は、冷水
往管路4、5によりそれぞれ内部機器発熱用冷却器群F
および外気用冷却器群Gに送られ、これらの冷却器群
F、Gからの還り冷水が、冷水復管路9、10により各
冷水ポンプ11、11…を経て、再び各冷凍機3、3…
に循環されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in FIG. In FIG. 1, the chilled water from the refrigerator group E is supplied to the internal equipment heat-generating coolers F by the cold water outgoing lines 4 and 5, respectively.
And returned to the cooler group G for outside air, and return cold water from the cooler groups F and G passes through the cold water return lines 9 and 10 through the respective cold water pumps 11 and 11. …
Has been circulated.

【0016】前記内部機器発熱用冷却器群Fは、基本的
に設置機器からの発生熱を排除するためのものであるた
め、設置機器類が年間を通じて一定運転される場合は、
空調負荷も同様に年間を通じて一定となり、各内部機器
発熱用冷却器1、1…に供給される送水量も年間を通じ
てほぼ一定となっている。
Since the internal equipment heat-generating cooler group F is basically for removing the heat generated from the installed equipment, when the installed equipment is operated constantly throughout the year,
Similarly, the air conditioning load is constant throughout the year, and the amount of water supplied to each of the internal device heat-generating coolers 1, 1,... Is also substantially constant throughout the year.

【0017】一方、外気用冷却器群Gにおいては、各外
気用冷却器2、2…毎に給気温度計8、8…を設置し、
この温度計8、8…により測定される給気温度を目標給
気温度とすべく、各外気用冷却器2、2…の入側に設け
られた調整弁6、6…の開度が調整器7、7…により制
御され送水量が調整される。
On the other hand, in the outdoor air cooler group G, supply air thermometers 8, 8,... Are installed for each outdoor air cooler 2, 2,.
In order to make the supply air temperature measured by the thermometers 8, 8,... The target supply air temperature, the opening of the regulating valves 6, 6,. Are controlled by the heaters 7, 7,...

【0018】また、本実施例においては、前記冷凍機
3、3…の容量内で室内環境を最適にするために、外気
温度を測定するための外気温度計17を設け、この測定
温度を調整器7、7…と接続し、外気用冷却器2、2…
の送水量制御については、前記外気温度に基づき室内温
度が最適となるような最適給気温度を設定するカスケー
ド制御を行っている。
In this embodiment, in order to optimize the indoor environment within the capacity of the refrigerators 3, 3,..., An outside air thermometer 17 for measuring the outside air temperature is provided, and the measured temperature is adjusted. ..., and connected to outside air coolers 2, 2,.
The cascade control for setting the optimum supply air temperature so that the room temperature becomes optimum based on the outside air temperature is performed.

【0019】前述のように、目標給気温度を外気温度に
応じて自由に設定している関係で、外気状態が設計外気
条件より高くなった場合には、外気用冷却器2、2…で
の冷却容量が設計値よりも多くなり冷凍機負荷が増大し
オーバーロードとなる。そのため本発明においては、還
り冷水の温度を還り水温度計12で測定し、逐次冷水の
負荷変動を把握し、還り冷水温度が設計温度以上となっ
た場合には、優先制御器16により外気用冷却器2、2
…への送水量を調整器7、7…の制御(外気温度に応じ
て最適給気温度に設定する制御)に優先して絞るように
している。
As described above, since the target supply air temperature is freely set according to the outside air temperature, when the outside air condition becomes higher than the design outside air condition, the outside air coolers 2, 2,... Cooling capacity exceeds the design value, and the load on the refrigerator increases, resulting in overloading. For this reason, in the present invention, the temperature of the return chilled water is measured by the return water thermometer 12, and the load fluctuation of the chilled water is sequentially grasped. Cooler 2, 2
Are narrowed down in priority to the control of the regulators 7, 7,... (Control to set the optimum supply air temperature in accordance with the outside air temperature).

【0020】さらに、内部機器発熱用冷却器群Fへの送
水量は年間を通じてほぼ一定とされるが、外気用冷却器
群Gへの送水量は、冬期には外気用冷却器2、2…の負
荷が無くなるため、冷凍機3、3…の運転台数が削減さ
れ、全体の負荷容量は小さくて済み、トータルでの送水
量は年間を通じて変動する。
Further, the amount of water supplied to the internal equipment heat generating cooler group F is substantially constant throughout the year, but the amount of water supplied to the external air cooler group G is set to be equal to the external air coolers 2, 2,. Are reduced, the number of operating refrigerators 3, 3,... Is reduced, the overall load capacity can be reduced, and the total water supply varies throughout the year.

【0021】したがって、各冷凍機3、3…の運転が過
負荷とならないように、還り冷水の温度を還り水温度計
12で測定し、冷水の負荷変動を把握し、運転台数制御
器13により冷凍機3、3…の運転台数を制御する制御
系を備えるとともに、内部機器発熱用冷却器群Fへの送
水量を確保するために、冷凍機3、3…の往側および還
側の配管21、20の水圧を差圧検出器14により測定
し、その差圧変化に基づいて運転台数制御器15により
冷凍機3、3…の運転台数の制御を行う制御系との二つ
の制御系を備え、一方の制御系が働いた場合には、冷凍
機3、3…の運転台数を変化させるようにしている。
Therefore, the temperature of the return chilled water is measured by the return water thermometer 12 so as to prevent the operation of each of the refrigerators 3, 3,... A control system for controlling the number of operating chillers 3, 3,... Is provided, and piping on the outgoing and returning sides of the chillers 3, 3,. the water pressure of 21 and 20 were measured by the pressure difference detector 14, the two control system and a control system for controlling the refrigerator 3,3 ... number of operating by the operation number controller 15 based on the difference pressure change , The operating number of the refrigerators 3, 3,... Is changed when one of the control systems operates.

【0022】[0022]

【発明の効果】以上詳説のとおり、本発明によれば、冷
凍機の冷却能力範囲内においては、室内環境を最適に制
御することができ、冷凍機の冷却能力を超える負荷がか
かった場合にでも、冷却系全体の停止を防止するととも
に、少なくとも機器類の冷房は確保することができる。
As described above, according to the present invention, the indoor environment can be optimally controlled within the range of the cooling capacity of the refrigerator, and when the load exceeding the cooling capacity of the refrigerator is applied. However, stoppage of the entire cooling system can be prevented, and at least cooling of the equipment can be ensured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空調用冷水設備のおける全体フロ
ー図である。
FIG. 1 is an overall flowchart of an air-conditioning chilled water system according to the present invention.

【図2】従来の空調用冷水設備のおける全体フロー図で
ある。
FIG. 2 is an overall flowchart of a conventional chilled water system for air conditioning.

【符号の説明】[Explanation of symbols]

1…内部機器発熱用冷却器、2…外気用冷却器、3…冷
凍機、4・5…冷水往管路、6…調整弁、7…調整器、
8…給気温度計、9・10…冷水復管路、11…冷水ポ
ンプ、12…還り水温度計、17…外気温度計
DESCRIPTION OF SYMBOLS 1 ... Cooler for heat generation of internal equipment, 2 ... Cooler for outside air, 3 ... Refrigerator, 4/5 ... Cold water outgoing line, 6 ... Regulator, 7 ... Regulator
8: supply air thermometer, 9/10: cold water return line, 11: cold water pump, 12: return water thermometer, 17: outside air thermometer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−106343(JP,A) 特開 昭49−82160(JP,A) 特開 平2−61454(JP,A) 特開 昭55−56553(JP,A) 特開 昭64−19263(JP,A) 特開 昭61−59142(JP,A) 特開 平2−192539(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 5/00 F24F 11/02 F25B 1/00 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-58-106343 (JP, A) JP-A-49-82160 (JP, A) JP-A-2-61454 (JP, A) JP-A 55-106 56553 (JP, A) JP-A-64-19263 (JP, A) JP-A-61-59142 (JP, A) JP-A-2-192539 (JP, A) (58) Fields investigated (Int. 7 , DB name) F24F 5/00 F24F 11/02 F25B 1/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】年間を通じてほぼ一定量の冷水が送水され
る内部機器発熱用冷却器群と、給気温度を目標給気温度
とすべく送水量が変動制御される外気用冷却器群と、前
記内部機器発熱用冷却器群と前記外気用冷却器群への送
給水を冷却するために複数台設置された冷凍機からな
り、前記冷凍機からの冷水を前記内部機器発熱用冷却器
群と前記外気用冷却器群へ並列的に供給し、冷却器か
らの還り冷水を再び前記冷凍機へ循環させるようにした
空調設備において:前記外気用冷却器群の各外気用冷却器 ごとの給気温度を
目標給気温度とするべく送水量を制御するとともに、 前記目標給気温度を外気温度の測定値に基づく最適給気
温度に設定し、この最適給気温度となるように前記各外
気用冷却器への送水量を個別に制御する最適給気温度カ
スケード制御を行い前記内部機器発熱用冷却器群及び外気用冷却器群の 各冷
却器からの還り冷水の温度を測定し、この還り冷水温度
が設計温度以上となる場合には、前記外気用冷却器へ
の送水量を前記最適給気温度カスケード制御優先して
絞る制御を行なうことを特徴とする空調設備における冷
水系制御方法。
1. A group of heat generating coolers for internal equipment to which a substantially constant amount of cold water is supplied throughout the year, and a group of external air coolers for controlling the amount of water supplied to change the supply air temperature to a target air supply temperature. It comprises a plurality of refrigerators installed to cool the water supply to the internal equipment heat generation cooler group and the outside air cooler group, and the internal equipment heat generation cooler group to cool water from the refrigerator. In an air-conditioning system that supplies the outside air coolers in parallel to each other and circulates the return cold water from each cooler again to the refrigerator: supply of each outside air cooler of the outside air coolers In addition to controlling the water supply amount so that the air temperature becomes the target air supply temperature, the target air supply temperature is set to the optimum air supply temperature based on the measured value of the outdoor air temperature, and each of the air supply air is set to the optimum air supply temperature. the optimal supply air temperature slag individually controlling the water amount to use cooler Performed over de control, the measured temperature of the cold water went back from the internal device heating cooling unit group and the cooler ambient air cooler group, if this went back chilled water temperature is equal to or higher than the design temperature, the respective A method for controlling a chilled water system in an air conditioner, wherein a control is performed to narrow down an amount of water supplied to a cooler for outside air in preference to the optimal supply air temperature cascade control.
【請求項2】冷凍機群の往側と還側における水圧を測定
し、この水圧間の差圧変化に基づいて冷凍機の運転台数
を制御する請求項1記載の空調設備における冷水系制御
方法。
2. The chilled water system control method in an air conditioner according to claim 1, wherein the water pressure on the outward side and the return side of the group of chillers is measured, and the number of chillers operated is controlled based on a change in the differential pressure between the water pressures. .
JP12133091A 1991-05-27 1991-05-27 Chilled water system control method in air conditioning equipment Expired - Lifetime JP3195376B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12133091A JP3195376B2 (en) 1991-05-27 1991-05-27 Chilled water system control method in air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12133091A JP3195376B2 (en) 1991-05-27 1991-05-27 Chilled water system control method in air conditioning equipment

Publications (2)

Publication Number Publication Date
JPH04350431A JPH04350431A (en) 1992-12-04
JP3195376B2 true JP3195376B2 (en) 2001-08-06

Family

ID=14808592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12133091A Expired - Lifetime JP3195376B2 (en) 1991-05-27 1991-05-27 Chilled water system control method in air conditioning equipment

Country Status (1)

Country Link
JP (1) JP3195376B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10438758B2 (en) 2017-02-27 2019-10-08 Hyundai Motor Company Trunk switch module for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3549306B2 (en) * 1995-10-30 2004-08-04 松下エコシステムズ株式会社 Optimal start control device for air conditioner
JP3717657B2 (en) * 1998-02-25 2005-11-16 三洋電機株式会社 Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4982160A (en) * 1972-12-12 1974-08-07
JPS58106343A (en) * 1981-12-17 1983-06-24 Toshiba Corp Main coolant controller for ventilation air conditioner auxiliary device cooling system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10438758B2 (en) 2017-02-27 2019-10-08 Hyundai Motor Company Trunk switch module for vehicle

Also Published As

Publication number Publication date
JPH04350431A (en) 1992-12-04

Similar Documents

Publication Publication Date Title
US11359847B2 (en) Systems and methods for controlling a refrigeration system
US5797275A (en) Air-cooling system
US10739045B2 (en) Systems and methods for controlling a refrigeration system
EP2981767B1 (en) Air conditioning system and method for controlling an air conditioning system
JP6570746B2 (en) Heat medium circulation system
US10203128B2 (en) Cold water circulation system with control of supply of cold water based on degree of air handler surplus
JP2001091087A (en) Method for controlling refrigerator of absorption heater chiller
JP4693645B2 (en) Air conditioning system
CN113531811B (en) Control method of air conditioner, storage medium and program product
JP3195376B2 (en) Chilled water system control method in air conditioning equipment
JP6125836B2 (en) Cold water circulation system
JP2001241729A (en) Cooling water supply system of refrigerating machine for air conditioning
JP2588438B2 (en) Repair method of air conditioning equipment of existing building
US5275010A (en) Control method and apparatus of absorption chiller heater
US20130081778A1 (en) Method and apparatus for a close-coupled cooling system
JP5595975B2 (en) Air conditioning piping system
US6817209B1 (en) Fluid cooled air conditioning system
CN116147102A (en) Management device and heat source system
JPH06272987A (en) Chilled water system controlling method for air conditioning facility
JP5940608B2 (en) Heat medium circulation system
KR20190043392A (en) HVAC for ship based on multiple AHU cooler
JPH06272988A (en) Chilled water system controlling method for air conditioning facility
JP3418320B2 (en) Method of setting refrigerant evaporation pressure corresponding to load of refrigeration equipment and refrigeration equipment
JP7093649B2 (en) Heat source system and its control method
EP3559561B1 (en) Methods for reducing energy consumption in a heating, ventilation and air conditioning (hvac) system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080601

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090601

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 10

EXPY Cancellation because of completion of term