JP2001240955A - Aluminum nitride material and its manufacturing method - Google Patents

Aluminum nitride material and its manufacturing method

Info

Publication number
JP2001240955A
JP2001240955A JP2000055153A JP2000055153A JP2001240955A JP 2001240955 A JP2001240955 A JP 2001240955A JP 2000055153 A JP2000055153 A JP 2000055153A JP 2000055153 A JP2000055153 A JP 2000055153A JP 2001240955 A JP2001240955 A JP 2001240955A
Authority
JP
Japan
Prior art keywords
aluminum
layer
nitride
aluminum nitride
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000055153A
Other languages
Japanese (ja)
Other versions
JP3637255B2 (en
Inventor
Matsufumi Takatani
松文 高谷
Yukihiro Sakamoto
幸弘 坂本
Atsuo Kawana
淳雄 川名
Yoshiro Ishii
芳朗 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON COATING CENTER KK
NIPPON COATING CT KK
Original Assignee
NIPPON COATING CENTER KK
NIPPON COATING CT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON COATING CENTER KK, NIPPON COATING CT KK filed Critical NIPPON COATING CENTER KK
Priority to JP2000055153A priority Critical patent/JP3637255B2/en
Publication of JP2001240955A publication Critical patent/JP2001240955A/en
Application granted granted Critical
Publication of JP3637255B2 publication Critical patent/JP3637255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problems that no satisfactory hardness has been obtained so far by surface treatments of an aluminum material by the previous technology, such as positive formation of an oxide film on a basis material, impregnation of the film with resin and formation of a nitride (AlN) by melting of the surface, that improvement of adhesion is still required even in the case of a technology of deposition of a high-hardness nitride using PVD, and that, as for a technology of formation of a nitride layer by nitrogen diffusion using ion nitriding, improvements are still required because of, e.g. the lack of efficiency in a previous process for removal of alumina film and the incapability of forming a satisfactory nitrogen diffusion layer after once forming an AlN film on the surface. SOLUTION: In the aluminum nitride material, an aluminum nitride layer is formed on the surface of an aluminum basis material composed of aluminum material or aluminum-alloy material by holding the aluminum basis material at 200-400 deg.C, using gaseous ammonia and gaseous hydrogen, and applying glow discharge at 0.001 to 2.0 mA/cm2 to the surface of the metal member. In this aluminum nitride material, the aluminum nitride layer exists in 1-50 μm layer thickness in the inner part of the basis material and is formed into a thin layer where nitrogen density is reduced in the vicinity of the surface of the nitride layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性にすぐれ
たアルミニウム窒化材およびその製造方法に関するもの
である。
The present invention relates to an aluminum nitride material having excellent wear resistance and a method for producing the same.

【0002】[0002]

【従来の技術】アルミニウムあるいはアルミニウム合金
は比重が小さく、電気伝導度、熱伝導度、反射率等が大
きく良好な耐食性があることから、これらの性質が要求
される色々な用途、例えば陸海空輸送機器、電気機器、
家庭用品、光学機器等の構成部材として用いられている
が、これらの用途において摺動等の摩擦を受ける部分で
は基材の硬さが低いことから耐摩耗性に劣る。それを改
善をするために種々の表面処理が開発あるいは実用化さ
れている。しかし、アルミニウム材はチタン等と同様に
酸素との親和力が非常に大きく、しかも強固な酸化被膜
を形成する。すなわち空気中に放置されたアルミニウム
材は空気中の酸素と反応し、緻密な100オングストロ
ーム程度の薄いアルミナ層を形成する。このアルミナ層
の存在により、アルミニウム材の表面処理は鉄系材料に
比べて著しく困難であり、その表面処理方法は限られた
ものであった。
2. Description of the Related Art Aluminum or aluminum alloys have a low specific gravity and high electrical conductivity, thermal conductivity, reflectivity, etc. and have good corrosion resistance. Therefore, various applications in which these properties are required, for example, land, sea and air transportation equipment. , Electrical equipment,
It is used as a constituent member of household goods, optical equipment, and the like. However, in these applications, a portion that is subjected to friction such as sliding is inferior in wear resistance due to a low hardness of the base material. Various surface treatments have been developed or put to practical use in order to improve this. However, the aluminum material has a very high affinity for oxygen, like titanium or the like, and forms a strong oxide film. That is, the aluminum material left in the air reacts with oxygen in the air to form a dense thin alumina layer of about 100 angstroms. Due to the presence of the alumina layer, the surface treatment of the aluminum material was extremely difficult as compared with the iron-based material, and the surface treatment method was limited.

【0003】一般的にはアルミニウム材の表面処理に
は、シュウ酸、硫酸、クロム酸あるいはこれらの混酸か
らなる電解液中で陽極酸化処理により陽極酸化被膜を形
成させることが古くから行われている(JISH860
1)。また近年では、摩擦係数および耐摩耗性の改善を
図る方法として、酸化被膜に対して溶解能力のある電解
質によって生成された陽極酸化被膜の多孔質層内にフッ
素樹脂を融着させた処理も用いられるようになっている
(「金属材料」,井衛,16(1967)50)。これ
らの方法はいずれもアルミナ被膜を形成させることが基
になっているものであり、これらの被膜の硬さは処理条
件、種類等によっても変化するが800HV以下であ
り、必ずしも充分な耐摩耗性を有するものではない。さ
らにこれらの処理法は湿式プロセスであり、前処理工
程、本処理および後処理工程に多大の時間を要し、かつ
廃液処理などに細心の注意を払う必要があり、総じて原
価高になっていた。
In general, for the surface treatment of aluminum materials, an anodic oxide film is formed by anodizing treatment in an electrolytic solution comprising oxalic acid, sulfuric acid, chromic acid or a mixed acid thereof for a long time. (JISH860
1). In recent years, as a method for improving the coefficient of friction and wear resistance, a process in which a fluororesin is fused into a porous layer of an anodic oxide film generated by an electrolyte capable of dissolving an oxide film is also used. (“Metal material”, Iei, 16 (1967) 50). All of these methods are based on the formation of an alumina coating, and the hardness of these coatings varies depending on the processing conditions, types, etc., but is not more than 800 HV, and is not necessarily sufficient for abrasion resistance. Does not have. Furthermore, these treatment methods are wet processes, requiring a great deal of time in the pre-treatment step, the main treatment and the post-treatment step, and requiring careful attention to waste liquid treatment, etc., which has generally increased the cost. .

【0004】一方、アルミニウム材は窒素との親和力も
酸素の場合と同様に強く、窒素と容易に反応してAlN
を形成するAlNは高い硬さを有して耐摩耗性に優れ、
物理的性質では融点が2000°C以上と高く、熱伝導
度が大きく、かつ電気絶縁性に優れている。したがって
アルミニウム材の表面にAlNを形成する技術の開発が
種々行われている。例えば特開昭56−25966号に
記載されているように、アルミニウム材を不活性ガスと
窒素あるいはアンモニアガスの雰囲気中でアーク熱源で
溶融状態に保持することでAlN層を生成する方法(溶
融窒化法)、PVD(Physical Vapor
Deposition)法の反応性スパッタリングある
いはARE法(活性化反応蒸着法、Activated
Reactive Evaporation)等の方
法によりAlN層の形成が行われている。溶融窒化法は
簡便に処理部材の必要部のみを迅速に処理できるが、溶
融による熱変形あるいは表面粗さの変化を生じる可能性
がある。またPVD法は被処理部材の表面に被膜をコー
ティングするものであるため、被処理部材とAlN被膜
の密着性は低く、かつその値は前処理あるいは処理温度
等により大きく影響される。また蒸着あるいはスパッタ
粒子の直進性のために、つき回りもほとんどなく、複雑
な形状への均一な処理は困難であるという問題がある。
On the other hand, the aluminum material has a strong affinity for nitrogen as in the case of oxygen, and easily reacts with nitrogen to form AlN.
Has high hardness and excellent wear resistance,
In terms of physical properties, the melting point is as high as 2000 ° C. or higher, the thermal conductivity is large, and the electrical insulation is excellent. Accordingly, various techniques for forming AlN on the surface of an aluminum material have been developed. For example, as described in JP-A-56-25966, a method of forming an AlN layer by holding an aluminum material in a molten state with an arc heat source in an atmosphere of an inert gas and nitrogen or ammonia gas (fused nitriding) Method), PVD (Physical Vapor)
Deposition method reactive sputtering or ARE method (activated reactive vapor deposition, Activated)
An AlN layer is formed by a method such as Reactive Evaporation. Although the fusion nitriding method can easily and quickly treat only the necessary parts of the treatment member, there is a possibility that thermal deformation or a change in surface roughness due to melting may occur. In addition, since the PVD method coats a film on the surface of the member to be processed, the adhesion between the member to be processed and the AlN film is low, and the value is greatly affected by the pretreatment or treatment temperature. There is also a problem that there is almost no turn around due to the straightness of the vapor deposition or sputtered particles, and it is difficult to uniformly process a complicated shape.

【0005】一方、鉄鋼材料等の窒化処理法の一つにイ
オン窒化法がある。この技術は多量処理が可能であり、
被処理部材を任意の処理温度にグロー放電エネルギーに
よって制御して窒化することが可能で、被処理材を溶融
する必要はない。さらに被処理部材の表面はグロー放電
によるイオン衝撃および処理ガスの水素ガスで活性化さ
れることにより、前処理の簡便さ、さらに処理の迅速性
の特徴がある。そのためこの処理法によれば表面の不動
態被膜(酸化膜)存在によりその除去工程の特別な処理
を必要としたステンレス鋼系も前述の効果により一般の
鉄鋼材料と同一に表面窒化処理を行うことが可能であ
る。そこで、アルミニウム材の表面に形成されているア
ルミナ被膜も上述のイオン窒化法の効果により活性化し
てアルミナ被膜を除去し、Alを窒化し、AlNを形成
することが検討された。しかし、アルミニウムの表面被
膜であるアルミナは酸化物生成の標準自由エネルギーよ
りも小さく、一般のイオン窒化装置では残留ガス中の酸
素により再び反応するので、活性な表面は得られず、し
たがって窒化処理は困難であった。
On the other hand, there is an ion nitriding method as one of the nitriding methods for steel materials and the like. This technology can process a large amount,
The member to be processed can be nitrided by controlling the glow discharge energy to an arbitrary processing temperature, and there is no need to melt the material to be processed. Further, the surface of the member to be processed is characterized by ion bombardment due to glow discharge and activation by hydrogen gas as a processing gas, thereby facilitating pre-processing and speeding up processing. Therefore, according to this treatment method, the surface nitriding treatment of stainless steel, which required a special treatment of the removal process due to the presence of a passivation film (oxide film) on the surface, is performed in the same manner as general steel materials by the above-mentioned effect. Is possible. Therefore, it has been studied to activate the alumina coating formed on the surface of the aluminum material by the effect of the above-described ion nitriding method to remove the alumina coating, nitride Al, and form AlN. However, alumina, which is a surface coating of aluminum, is smaller than the standard free energy of oxide formation, and in a general ion nitriding apparatus, it reacts again with oxygen in the residual gas, so that an active surface cannot be obtained. It was difficult.

【0006】そこで、イオン窒化法においてアルミニウ
ム材の表面に形成されているアルミナ被膜を除去して窒
化処理を行う方法として特開昭60−211061号記
載の方法がある。この処理法では、密閉容器内に残存す
る酸素ガスを除去する工程と、活性化ガスを放電させて
被処理材の表面を活性化する活性化工程を行って窒化処
理を行っている。この処理法によれば、ガス導入と減圧
を繰り返して酸素ガスを除去でき、その後に希ガスのイ
オン衝撃によりアルミナ被膜を除去でき、その後、窒化
処理により表面に硬質なAlNの形成がなされている。
しかし、この処理法では、酸素ガスを除去するために複
数(2〜3)回のガス(水素)導入と減圧(10-3To
rr、0.0133Pa)を繰り返して行うので、処理
工程が長くなる。さらに活性化工程でアルミナ被膜の除
去を希ガスのイオン衝撃によるスパッタクリーニングの
みで行っているために、活性化するには0.5〜2時間
のスパッタクリーニングを施しており、これも処理工程
を長くしている。また、スパッタクリーニングは昇温工
程を経て500°Cに過熱された状態であるため、活性
化用ガスの純度あるいは密閉容器内のわずかな残留酸素
によって、アルミナの酸化物生成の標準自由エネルギー
が非常に小さいことから、アルミナ膜が形成されてしま
う可能性があり、もしアルミナ被膜が形成されると前述
のように窒化処理を行ってもAlNが形成されない可能
性を生じる。
Therefore, there is a method described in Japanese Patent Application Laid-Open No. Sho 60-211061 as a method of performing a nitriding treatment by removing an alumina film formed on the surface of an aluminum material by an ion nitriding method. In this processing method, a nitriding treatment is performed by performing a step of removing oxygen gas remaining in the closed vessel and an activation step of discharging the activation gas to activate the surface of the workpiece. According to this treatment method, oxygen gas can be removed by repeating gas introduction and decompression, then the alumina film can be removed by ion bombardment of a rare gas, and thereafter, hard AlN is formed on the surface by nitriding treatment. .
However, in this treatment method, a plurality of (two to three) gas (hydrogen) introductions and a reduced pressure (10 -3 To
rr, 0.0133 Pa), so that the processing steps become longer. Furthermore, since the removal of the alumina film in the activation step is performed only by sputter cleaning using ion bombardment of a rare gas, the activation is performed by sputter cleaning for 0.5 to 2 hours. It is long. In addition, since the sputter cleaning is heated to 500 ° C. after the temperature raising step, the standard free energy of oxide formation of alumina is extremely low due to the purity of the activating gas or the slight residual oxygen in the closed vessel. Therefore, there is a possibility that an alumina film is formed, and if an alumina film is formed, there is a possibility that AlN will not be formed even if nitriding is performed as described above.

【0007】さらにイオン窒化では、本来基材金属の窒
化物ではなく、窒素元素の拡散層を基材表面に厚く形成
し、そして最表層に硬質の窒化物被膜を形成する複合効
果により、表面処理層の強度を増し、耐摩耗性を向上さ
せていた。しかしながら、基材がアルミニウム材料の場
合、例えば前記処理方法によって、表面にAlN被膜を
形成させても、充分な窒素の拡散層を形成することが困
難であった。その理由はAlNが電気的絶縁物質である
ため、表面にAlNが形成されたことにより、以後窒素
イオンを活性化させるグロー放電を持続させることが難
しくなるためである。
[0007] In addition, in the ion nitriding, not a nitride of a base metal but a thick diffusion layer of a nitrogen element on a base material surface, and a hard nitride coating on the outermost layer, a combined effect of surface treatment, The strength of the layer was increased and the wear resistance was improved. However, when the base material is an aluminum material, it has been difficult to form a sufficient nitrogen diffusion layer even if an AlN film is formed on the surface by, for example, the above-described processing method. The reason is that, since AlN is an electrically insulating material, it is difficult to maintain a glow discharge for activating nitrogen ions after the formation of AlN on the surface.

【0008】[0008]

【発明が解決しようとする課題】上記のように、従来技
術によるアルミニウム材の表面処理には、基材に酸化被
膜を積極的に形成したもの、その被膜中に樹脂を浸透処
理を施したもの、あるいは表面を溶融して窒化物(Al
N)を形成したもの等があるが、硬さが低かった。また
硬さの高い窒化物をPVD法により形成したものにおい
ても密着性の点で改善すべき点があった。
As described above, the surface treatment of an aluminum material according to the prior art includes a method in which an oxide film is positively formed on a substrate and a method in which a resin is penetrated into the film. Or melt the surface to nitride (Al
N) was formed, but the hardness was low. Further, even in the case where a nitride having high hardness is formed by the PVD method, there is a point to be improved in terms of adhesion.

【0009】一方、イオン窒化法により窒素を拡散させ
て窒化層を形成する方法ではアルミナ被膜の除去の前工
程が効率的でなく、また一旦表面にAlN被膜を形成さ
せると充分な窒素の拡散層を形成できない等の改善すべ
き点があった。
On the other hand, in the method of diffusing nitrogen by ion nitriding to form a nitride layer, the pre-process of removing the alumina film is not efficient, and once the AlN film is formed on the surface, a sufficient nitrogen diffusion layer is formed. There was a point to be improved such as inability to form

【0010】[0010]

【課題を解決するための手段】そこで、上記課題を解決
するために、本発明者らは、窒化処理に用いるプラズマ
を制御することにより、処理部材に対し、化合物層・拡
散層それぞれの形成を制御することが可能なラジカル窒
化(例えば、特開平6−220606号または特開平7
−118826号記載の方法)を用いることで、アルミ
ニウム基材への窒化層を形成しうるのではないかと考え
た。このラジカル窒化処理をアルミニウム基材に施した
したところ、窒化層形成に不都合な表面のアルミナ被膜
を特に意識的に前処理として除去することなく、また窒
化層の形成時にもアルミナ被膜の生成を抑制し、十分な
層厚の窒素の拡散層を形成しうるという研究結果を得た
のである。
In order to solve the above-mentioned problems, the present inventors control the plasma used for the nitriding treatment to form the compound layer and the diffusion layer on the processing member. Radical nitridation that can be controlled (for example, JP-A-6-220606 or JP-A-7-220606)
It was considered that a nitride layer could be formed on an aluminum substrate by using the method described in -118826. When this radical nitriding treatment was applied to the aluminum base material, the alumina coating on the surface that was inconvenient for the formation of the nitride layer was not specifically removed as a pretreatment, and the formation of the alumina coating was suppressed even when the nitride layer was formed. However, they have obtained a study result that a nitrogen diffusion layer having a sufficient thickness can be formed.

【0011】この発明は、上記研究結果に基づいてなさ
れたものであって、本発明の目的は、上記問題を解決す
るために、アルミニウム基材を200〜400°Cの温
度に維持して、アンモニアガスと水素ガスを用い、金属
部材の表面に対して0.001〜2.0mA/cm2
電流密度のグロー放電を行い、該アルミニウム基材の表
面をイオン窒化するラジカル窒化法において、該アルミ
ニウム基材の最表面に窒素の密度が減少する薄層を有
し、その表層内部にアルミニウム窒化層が膜厚にして1
μm〜50μm存在することを特徴とするアルミニウム窒
化材料およびアルミニウム窒化方法を提供することにあ
る。
The present invention has been made based on the above research results, and an object of the present invention is to maintain an aluminum substrate at a temperature of 200 to 400 ° C. in order to solve the above problems. In a radical nitriding method of performing a glow discharge at a current density of 0.001 to 2.0 mA / cm 2 on the surface of the metal member using an ammonia gas and a hydrogen gas, and ion-nitriding the surface of the aluminum base material, The outermost surface of the aluminum substrate has a thin layer having a reduced nitrogen density, and an aluminum nitride layer having a thickness of 1
An object of the present invention is to provide an aluminum nitride material and an aluminum nitride method characterized by being present in a range of μm to 50 μm.

【0012】[0012]

【発明の実施の形態】イオン窒化法により、金属表面か
ら内部へガス物質を拡散させ、金属とガス物質の化合物
層を金属表面に形成するには、ガス濃度、反応温度およ
び時間が主な因子となる。しかし、それ以前に金属表面
が活性状態であってガス物質が容易に浸透拡散できるこ
とが必須である。しかし、アルミニウム材は前述のよう
に室温に放置した状態でアルミナ被膜が形成され、この
酸化被膜のアルミナは薄い被膜(100オングストロー
ム以下)であるにも関わらず、安定でかつ緻密であるこ
とから、障壁となってガス物質の拡散を妨げるので、例
えば窒素ガスを導入しても窒化層は形成されない。そこ
で、アルミニウム材表面に窒化層を形成するにはアルミ
ナ被膜を除去し、活性状態の表面を得ることが重要とな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to diffuse a gaseous substance from a metal surface to the inside by an ion nitriding method and form a compound layer of a metal and a gaseous substance on a metal surface, gas concentration, reaction temperature and time are the main factors. Becomes However, before that, it is essential that the metal surface be in an active state so that the gaseous substance can easily penetrate and diffuse. However, as described above, an aluminum coating is formed on the aluminum material while it is left at room temperature, and the alumina of this oxide coating is stable and dense even though it is a thin coating (100 angstrom or less). Since it acts as a barrier to hinder the diffusion of gaseous substances, no nitrided layer is formed even if, for example, nitrogen gas is introduced. Therefore, in order to form a nitrided layer on the surface of the aluminum material, it is important to remove the alumina coating to obtain an active surface.

【0013】アルミニウム材の酸化被膜の除去方法とし
ては、(1)アルカリ溶液等の化学洗浄による被膜の破
壊、(2)ワイヤーブラッシング等の機械的方法による
被膜の破壊、(3)素地金属との共晶反応等の冶金反応
による被膜の破壊、(4)イオン衝撃等の電気的方法に
よる被膜の破壊等がある。これらの方法についてイオン
窒化法のための被処理部材の前処理方法としての適用性
を考えてみると、(1)および(2)の処理は減圧容器
内である炉体内で行うことは不可能であり、炉体外で行
えば、先に述べた酸化被膜が形成されて目的を達しな
い。(3)は金属との接合に用いられているものであ
り、表面処理には適さない。一方、(4)はグロー放電
によるスパッタクリーニングに関して従来用いられてお
り、また、より高真空で行うイオンビームスパッタ法も
あるが、ビームの入射しない穴内面等複雑形状への適用
は困難である。
[0013] The method of removing the oxide film of the aluminum material includes (1) destruction of the film by chemical cleaning with an alkali solution or the like, (2) destruction of the film by a mechanical method such as wire brushing, and (3) destruction of the base metal. There are destruction of the coating by a metallurgical reaction such as eutectic reaction, and (4) destruction of the coating by an electric method such as ion bombardment. Considering the applicability of these methods as a pretreatment method for a member to be treated for ion nitriding, it is impossible to perform the treatments (1) and (2) in a furnace inside a vacuum vessel. If performed outside the furnace, the above-mentioned oxide film is formed and the purpose is not achieved. (3) is used for bonding with a metal and is not suitable for surface treatment. On the other hand, (4) is conventionally used for sputter cleaning by glow discharge, and there is also an ion beam sputtering method performed in a higher vacuum.

【0014】以上のように、イオン窒化法のアルミニウ
ム材の酸化被膜を除去する前工程としては改善すべき点
がある。しかしながら、本発明者らの研究によると、ラ
ジカル窒化を適用すると、アルミニウム材表面の酸化被
膜を前記のような前処理を行うことなしに、酸化被膜を
除去し、かつ窒化層の形成途中における酸化被膜の生成
を抑制し、十分な層厚の窒素の拡散層を形成できること
が分かった。
As described above, there is a point to be improved as a pre-process for removing the oxide film of the aluminum material by the ion nitriding method. However, according to the study of the present inventors, when radical nitriding is applied, the oxide film on the surface of the aluminum material is removed without performing the above pretreatment, and the oxidation during the formation of the nitride layer is performed. It has been found that the formation of a film can be suppressed and a nitrogen diffusion layer having a sufficient thickness can be formed.

【0015】ラジカル窒化は、特開平6−220606
号または特開平7−118826号に開示されているよ
うに、一般の金属部材を窒化する場合では300〜65
0°Cの温度に維持して、アンモニアガスと水素ガスを
用い、金属部材の表面に対して0.001〜2.0mA
/cm2の電流密度のグロー放電を行い、金属部材の表
面をイオン窒化することを特徴とする金属部材のイオン
窒化法である。該イオン窒化法の特徴としては、0.0
01〜2.0mA/cm2の電流密度のグロー放電によ
りアンモニアガスと水素ガスを分解する点にある。これ
は、生成されるNHラジカルの比率が高く、また補助ガ
スとして水素を用いることで、そのNHラジカル種を安
定して生成するため、NHラジカル密度の高いプラズマ
を窒化反応に用いる点にある。このNHラジカルは、プ
ラズマを用いた窒化反応において、その反応性の高さを
示すプラズマ種であり、このNHラジカルの密度が高い
プラズマを用いたイオン窒化反応は、より効率的に窒化
層を形成することが可能となる。
Radical nitriding is disclosed in Japanese Patent Application Laid-Open No. 6-220606.
As disclosed in Japanese Unexamined Patent Application Publication No. Hei.
While maintaining the temperature at 0 ° C., using ammonia gas and hydrogen gas, the surface of the metal member is 0.001 to 2.0 mA.
Glow discharge at a current density of / cm 2 and ion nitriding of the surface of the metal member. As a feature of the ion nitriding method, 0.0
The point is that ammonia gas and hydrogen gas are decomposed by glow discharge at a current density of 01 to 2.0 mA / cm 2 . This is because the ratio of generated NH radicals is high, and the use of hydrogen as an auxiliary gas stably generates the NH radical species, so that a plasma having a high NH radical density is used for the nitriding reaction. The NH radical is a plasma species showing high reactivity in the nitridation reaction using plasma, and the ion nitridation reaction using the plasma having a high NH radical density forms a nitride layer more efficiently. It is possible to do.

【0016】さらに本発明者らの研究によると、ラジカ
ル窒化をアルミニウム材の窒化に用いるとこのNHラジ
カルは、窒化層の形成のみならず、表面の酸化被膜の還
元作用を持ち、酸化被膜の除去ならびに生成の抑制に効
果のあることがわかった。本発明で得られたアルミニウ
ム基材の最表面には窒素の密度が減少する薄層を有し、
その表層内部にアルミニウム窒化層が膜厚にして1μm
〜50μm存在するという構造は、上記酸化被膜の還元
反応と窒化反応が同時に起こったことにより形成された
ものであり、アルミニウム材料に対してラジカル窒化を
用いて窒化処理を行った特徴を示している。
Further, according to the study of the present inventors, when radical nitriding is used for nitriding an aluminum material, the NH radical not only forms a nitrided layer but also has a reducing effect on an oxide film on the surface, and the removal of the oxide film It was also found to be effective in suppressing generation. The outermost surface of the aluminum substrate obtained in the present invention has a thin layer in which the density of nitrogen is reduced,
An aluminum nitride layer having a thickness of 1 μm
The structure having a thickness of about 50 μm is formed by the simultaneous occurrence of the reduction reaction and the nitridation reaction of the oxide film, and shows a characteristic of nitriding the aluminum material using radical nitridation. .

【0017】この発明において対象とするアルミニウム
材は、純アルミニウム、鋳物用アルミニウム合金、ダイ
カスト用アルミニウム合金等、各種ある。
In the present invention, there are various aluminum materials such as pure aluminum, an aluminum alloy for casting, and an aluminum alloy for die casting.

【0018】[0018]

【実施例】次に、この発明のアルミニウム窒化材および
その製造方法を実施例により具体的に説明する。まず被
覆するアルミニウム基材として、JIS規格に定めると
ころの鋳物用アルミニウム合金AC8Aを用意し、15
mm角、厚さ5mmに切断し、試料とした。
EXAMPLES Next, the aluminum nitride material of the present invention and a method for producing the same will be described in detail with reference to examples. First, as an aluminum substrate to be coated, an aluminum alloy for castings AC8A specified in JIS standard is prepared.
The sample was cut into a square with a square of 5 mm and a thickness of 5 mm.

【0019】(実施例1)実施例1として、作製した試
料の一つにラジカル窒化処理を施した。窒化処理炉に試
料をセット後、真空槽内を10-7Torr(1.33×
10-5Pa)まで排気した。
Example 1 As Example 1, one of the manufactured samples was subjected to a radical nitriding treatment. After setting the sample in the nitriding furnace, the inside of the vacuum chamber was set to 10 -7 Torr (1.33 ×
It was evacuated to 10 -5 Pa).

【0020】次に、直流電源から−350Vの電圧を試
料に印加して水素ガスによる直流グロー放電プラズマを
起こし、真空チャンバー内壁と試料の表面を30分間清
浄化した。次に、水素ガス1000ml/分、アンモニ
アガス1000ml/分で真空チャンバー内に導入し、
圧力を1Torr(133Pa)に維持し、印加電圧−
350Vで水素ガスとアンモニアガスの直流グロー放電
プラズマを発生させイオン窒化処理を開始した。このと
きの電流密度を測定した基材と冶具に流れる電流値を基
材と冶具の有効表面積で割り、計算したところ、0.0
5mA/cm2であり、ラジカル窒化の処理条件であるこ
とを確認した。処理温度は200°Cであった。窒化処
理を1時間継続した後、プラズマを停止し、ガスの供給
と加熱を停止して室温まで冷却した。
Next, a voltage of -350 V was applied to the sample from a DC power supply to generate DC glow discharge plasma by hydrogen gas, and the inner wall of the vacuum chamber and the surface of the sample were cleaned for 30 minutes. Next, 1000 ml / min of hydrogen gas and 1000 ml / min of ammonia gas are introduced into the vacuum chamber,
The pressure is maintained at 1 Torr (133 Pa), and the applied voltage-
DC glow discharge plasma of hydrogen gas and ammonia gas was generated at 350 V to start ion nitriding. The value of the current flowing through the jig and the base material at which the current density was measured at this time was divided by the effective surface area of the base material and the jig, and calculated.
It was 5 mA / cm 2 , which was confirmed to be the treatment condition for radical nitriding. The processing temperature was 200 ° C. After the nitriding treatment was continued for one hour, the plasma was stopped, gas supply and heating were stopped, and the temperature was cooled to room temperature.

【0021】(実施例2)実施例2として、実施例1と
同様のアルミニウム合金基材を用い、ラジカル窒化処理
条件としては、電流密度0.06mA/cm2であり、
温度220°C、処理時間を10時間にて行った。
(Example 2) In Example 2, the same aluminum alloy base material as in Example 1 was used, and the conditions for radical nitriding were a current density of 0.06 mA / cm 2 ,
The treatment was performed at a temperature of 220 ° C. for a treatment time of 10 hours.

【0022】(実施例3)実施例3として、実施例と同
様のアルミニウム合金基材を用い、ラジカル窒化処理条
件としては、電流密度0.045mA/cm2であり、
温度220°C、処理時間にて行った。
Example 3 In Example 3, the same aluminum alloy substrate as in Example was used, and the conditions for radical nitriding were a current density of 0.045 mA / cm 2 ,
The test was performed at a temperature of 220 ° C. for a processing time.

【0023】(実施例4)実施例4として、被覆するア
ルミニウム基材として、JIS規格に定めるところのダ
イカスト用アルミニウム合金ADC12を用意し、15
mm角、厚さ5mmに切断し、試料とした。試料をAD
C12にした以外は、実施例1と同様の方法で、窒化処
理を行った。処理条件は電流密度0.07mA/cm2
であり、温度300°C、処理時間を1時間にて行っ
た。
Example 4 As Example 4, as an aluminum substrate to be coated, an aluminum alloy ADC12 for die casting as specified in JIS standard was prepared.
The sample was cut into a square with a square of 5 mm and a thickness of 5 mm. AD sample
A nitriding treatment was performed in the same manner as in Example 1 except that C12 was used. The processing conditions were a current density of 0.07 mA / cm 2
The temperature was 300 ° C. and the processing time was 1 hour.

【0024】(比較例1)比較例1として、実施例1と
同様のアルミニウム基体を用意し、実施例1と同様に窒
化処理炉に試料をセット後、真空槽内を10-7Torr
(1.33×10 -5Pa)まで排気し、排気を続けなが
ら水素ガスを1000ml/分で供給し、1Torr
(133Pa)に維持した。同時に加熱ヒーターで試料
が380°Cに均一化されるまで1時間加熱した。その
後、バイアス電圧を−600V以外は、同様の条件で窒
化処理を施した。この条件が従来のイオン窒化処理条件
と類似の処理条件である。
(Comparative Example 1) As Comparative Example 1, Example 1
A similar aluminum substrate was prepared, and nitrided as in Example 1.
After setting the sample in the chemical treatment furnace,-7Torr
(1.33 × 10 -FiveExhaust to Pa) and continue exhausting
And supply hydrogen gas at 1000 ml / min.
(133 Pa). At the same time sample with heater
Was heated to 380 ° C. for 1 hour. That
Then, under the same conditions except for setting the bias voltage to -600 V,
Treatment. This is the conventional ion nitriding condition.
The processing conditions are similar to.

【0025】窒化処理後のそれぞれの試料を光学顕微鏡
によって表面状態を確認した結果、比較例1の試料は、
表面荒れが著しく、化合物の生成が示唆された。一方、
本発明のラジカル窒化処理を施した試料は、外観上、ほ
とんど表面荒れが認められなかった。
As a result of confirming the surface condition of each sample after the nitriding treatment by an optical microscope, the sample of Comparative Example 1
The surface roughness was remarkable, suggesting the formation of a compound. on the other hand,
The sample subjected to the radical nitriding treatment of the present invention showed almost no surface roughness in appearance.

【0026】次に、それぞれの試料に対し、GDS(G
low Discharge Spectroscop
y:グロー放電分光)分析を行った。図1に実施例2の
試料のGDSスペクトルをを示す。なお、比較例1の試
料では、表面に窒素の存在が認められるものの、内部に
は窒素原子の存在が確認できなかった。それに対し、本
発明の窒化処理を施した試料では、表面より2μmの深
さでは窒素の存在が少なくなっているが、深さ3μmを
ピークにして約7μmの幅の窒化層が認められた。
Next, GDS (G
low Discharge Spectroscop
y: glow discharge spectroscopy) analysis. FIG. 1 shows a GDS spectrum of the sample of Example 2. In the sample of Comparative Example 1, the presence of nitrogen was recognized on the surface, but the presence of nitrogen atoms could not be confirmed inside. In contrast, in the sample subjected to the nitriding treatment of the present invention, the presence of nitrogen was reduced at a depth of 2 μm from the surface, but a nitrided layer having a width of about 7 μm with a peak at a depth of 3 μm was observed.

【0027】また、処理時間を変えた実施例および実施
例の試料も同様の分析を行ったところ、窒化層は、それ
ぞれ30μm、50μmであった。なお、いずれの試料
でも表層の構造は、実施例2と同様、窒素の存在が少な
くなっていた。
The same analysis was also performed on the samples of the examples and the examples in which the treatment time was changed. As a result, the nitrided layers were 30 μm and 50 μm, respectively. In each of the samples, the structure of the surface layer was such that the presence of nitrogen was reduced as in Example 2.

【0028】次に、実施例2の試料について、表面硬度
の測定を実施した。荷重を0.05Nとしたマイクロビ
ッカース硬さにより、処理前後の硬度を測定したとこ
ろ、窒化処理前で132HVであったものが、処理後で
159HV以上になっていた。
Next, the surface hardness of the sample of Example 2 was measured. The hardness before and after the treatment was measured by micro Vickers hardness with a load of 0.05 N, and the hardness was 132 HV before the nitriding treatment, but was 159 HV or more after the treatment.

【0029】次に、本発明により作製したアルミニウム
窒化材の耐摩耗性を評価するために、ボールオンディス
ク摩耗試験を実施した。比較例としては、未処理のアル
ミニウム合金試料を用いた。ボール材に超硬合金の直径
6mmの球を使用し、荷重10Nで、摩耗距離1000
0mの試験を行った。
Next, in order to evaluate the wear resistance of the aluminum nitride material manufactured according to the present invention, a ball-on-disk wear test was performed. As a comparative example, an untreated aluminum alloy sample was used. Using a ball of cemented carbide with a diameter of 6 mm as the ball material, with a load of 10 N and a wear distance of 1000
A 0 m test was performed.

【0030】未処理のアルミニウム材では、およそ55
00mでアルミニウムの溶着と思われる摩擦係数の上昇
が認められた。一方、本発明の窒化処理を施した試料
は、いずれも10000m終了した時点でも特に溶着の
徴候は見られず、良好な摩耗状態を示していた。これは
表層の窒化層により、硬度が上昇したことによると思わ
れる。
For an untreated aluminum material, approximately 55
At 00 m, an increase in the coefficient of friction which was considered to be due to welding of aluminum was observed. On the other hand, any of the samples subjected to the nitriding treatment of the present invention did not show any particular signs of welding even at the end of 10,000 m, and showed a good abrasion state. This is presumably because the hardness was increased by the surface nitride layer.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明によ
れば、従来、特殊な表面酸化物の除去工程を必要とした
アルミニウム基材の窒化処理が、本発明のラジカル窒化
処理を行うことによって、特に酸化物の除去工程を行う
ことなしに、窒化層を形成することができ、耐摩耗性に
優れたアルミニウム窒化材を形成することができる。
As described above in detail, according to the present invention, the nitridation of an aluminum base material which conventionally required a special surface oxide removing step is performed by the radical nitridation treatment of the present invention. Accordingly, the nitride layer can be formed without performing the oxide removing step, and an aluminum nitride material having excellent wear resistance can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明による実施例1の試料のグロー放
電分光(GDS)測定スペクトルである。
FIG. 1 is a glow discharge spectroscopy (GDS) measurement spectrum of a sample of Example 1 according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高谷 松文 千葉県習志野市津田沼2−17−1 千葉工 業大学内 (72)発明者 坂本 幸弘 千葉県習志野市津田沼2−17−1 千葉工 業大学内 (72)発明者 川名 淳雄 神奈川県大和市下鶴間3860 日本コーティ ングセンター株式会社内 (72)発明者 石井 芳朗 千葉県市川市中国分3−18−5 住友金属 鉱山株式会社中央研究所内 Fターム(参考) 4K028 AA02 AB02 AC08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Matsufumi Takatani 2-17-1 Tsudanuma, Narashino-shi, Chiba Chiba Institute of Technology (72) Inventor Yukihiro Sakamoto 2-17-1 Tsudanuma, Narashino-shi, Chiba Chiba Institute of Technology (72) Inventor Atsushi Kawana 3860 Shimotsuruma, Yamato-shi, Kanagawa Japan Coating Center Co., Ltd. (72) Inventor Yoshiro Ishii 3-18-5, Chugoku, Ichikawa-shi, Chiba Sumitomo Metal Mining Co., Ltd. (Reference) 4K028 AA02 AB02 AC08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム材料またはアルミニウム合金
材料からなるアルミニウム基材の表面にアルミニウム窒
化層を形成したアルミニウム窒化材において、該基材内
部にアルミニウム窒化層が層厚にして1μm以上、50
μm以下存在し、該窒化層の表面近傍に窒素の密度が減
少する薄層を有することを特徴とするアルミニウム窒化
材。
1. An aluminum nitride material having an aluminum nitride layer formed on the surface of an aluminum substrate made of an aluminum material or an aluminum alloy material, wherein the aluminum nitride layer has a thickness of 1 μm or more inside the substrate.
An aluminum nitride material having a thickness of not more than μm and a thin layer near the surface of the nitride layer, the density of nitrogen being reduced.
【請求項2】アルミニウム基材を200〜400°Cの
温度に維持して、アンモニアガスと水素ガスを用い、金
属部材の表面に対して0.001〜2.0mA/cm2
の電流密度のグロー放電を行い、アルミニウム窒化材を
基材表面層に形成するアルミニウム窒化材の製造方法に
おいて、基材内部にアルミニウム窒化層が層厚にして1
μm以上、50μm以下存在し、該窒化層の表面近傍に窒
素の密度が減少する薄層を有することを特徴とするアル
ミニウム窒化材の製造方法。
2. An aluminum substrate is maintained at a temperature of 200 to 400 ° C., and an ammonia gas and a hydrogen gas are used, and the surface of the metal member is 0.001 to 2.0 mA / cm 2.
A glow discharge at a current density of 1 to form an aluminum nitride material on the surface layer of the base material.
A method for producing an aluminum nitride material, comprising: a thin layer having a thickness of not less than μm and not more than 50 μm and having a nitrogen density decreasing near a surface of the nitrided layer.
JP2000055153A 2000-03-01 2000-03-01 Aluminum nitride material and manufacturing method thereof Expired - Lifetime JP3637255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055153A JP3637255B2 (en) 2000-03-01 2000-03-01 Aluminum nitride material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055153A JP3637255B2 (en) 2000-03-01 2000-03-01 Aluminum nitride material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001240955A true JP2001240955A (en) 2001-09-04
JP3637255B2 JP3637255B2 (en) 2005-04-13

Family

ID=18576316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055153A Expired - Lifetime JP3637255B2 (en) 2000-03-01 2000-03-01 Aluminum nitride material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3637255B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133542A (en) * 2007-12-07 2008-06-12 Seiko Epson Corp Surface treatment method for ornament, and ornament
JP2008174778A (en) * 2007-01-17 2008-07-31 Jatco Ltd Surface treating method of aluminum material and aluminum material
JP2010180481A (en) * 2010-04-12 2010-08-19 Jatco Ltd Surface treatment method for aluminum material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174778A (en) * 2007-01-17 2008-07-31 Jatco Ltd Surface treating method of aluminum material and aluminum material
JP4649419B2 (en) * 2007-01-17 2011-03-09 ジヤトコ株式会社 Surface treatment method of aluminum material
JP2008133542A (en) * 2007-12-07 2008-06-12 Seiko Epson Corp Surface treatment method for ornament, and ornament
JP2010180481A (en) * 2010-04-12 2010-08-19 Jatco Ltd Surface treatment method for aluminum material

Also Published As

Publication number Publication date
JP3637255B2 (en) 2005-04-13

Similar Documents

Publication Publication Date Title
US5443663A (en) Plasma nitrided titanium and titanium alloy products
EP2262919B1 (en) Treatment of metal components
Leyland et al. Plasma nitriding in a low pressure triode discharge to provide improvements in adhesion and load support for wear resistant coatings
JPS60211061A (en) Ion-nitrifying method of aluminum material
US6863531B2 (en) Surface modification process on metal dentures, products produced thereby, and the incorporated system thereof
Tao Surface composition and corrosion behavior of an Al-Cu alloy
JP5074836B2 (en) Composite hard carbon film, method for producing the same, and sliding member
JPH0147548B2 (en)
JP4512603B2 (en) Halogen gas resistant semiconductor processing equipment components
JPH01319665A (en) Ion nitriding method for aluminum material
JP3637255B2 (en) Aluminum nitride material and manufacturing method thereof
EP0470878B1 (en) Anti-wear coating on a titanium based substrate
Denisova et al. Influence of nitrogen content in the working gas mixture on the structure and properties of the nitrided surface of die steel
JPH1161410A (en) Vacuum chamber member and its production
EP0801142A2 (en) Treatment method of a metallic substrate, metallic substrate thereby obtained and his applications
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
Efeoglu et al. Mechanical and structural properties of AISI 8620 steel TiN coated, nitrided and TiN coated+ nitrided
JP2006206959A (en) Method for nitriding aluminum alloy
JPH07113182A (en) Method and apparatus for coating metallic substrate with coating layer of metal or metal alloy
Rogozin et al. Reactive gas-controlled arc process
JP2004332005A (en) METHOD OF PRODUCING ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, MEMBER COATED WITH ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, AND ITS PRODUCTION METHOD
JP3009503B2 (en) Surface treatment member and method of manufacturing the same
JPH0723531B2 (en) Surface treatment method for aluminum material
JPH05320863A (en) Alloy member resistant against heat and corrosion and its production
JP3572240B2 (en) Method and apparatus for physically modifying a conductive member

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3637255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term