JP2006206959A - Method for nitriding aluminum alloy - Google Patents

Method for nitriding aluminum alloy Download PDF

Info

Publication number
JP2006206959A
JP2006206959A JP2005020439A JP2005020439A JP2006206959A JP 2006206959 A JP2006206959 A JP 2006206959A JP 2005020439 A JP2005020439 A JP 2005020439A JP 2005020439 A JP2005020439 A JP 2005020439A JP 2006206959 A JP2006206959 A JP 2006206959A
Authority
JP
Japan
Prior art keywords
gas
nitriding
aluminum alloy
nitrogen
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005020439A
Other languages
Japanese (ja)
Inventor
Tamio Hara
民夫 原
Hiroaki Shoyama
裕章 庄山
Riyuumo Hishida
隆模 菱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plus Corp
Original Assignee
Plus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plus Corp filed Critical Plus Corp
Priority to JP2005020439A priority Critical patent/JP2006206959A/en
Publication of JP2006206959A publication Critical patent/JP2006206959A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for nitriding aluminum alloy, which can quickly form a nitrided layer at a low temperature. <P>SOLUTION: An apparatus for nitriding aluminum alloy comprises: an electron beam excitation plasma source for generating a high-density plasma of highly dissociated nitrogen; a treatment tank for storing the plasma and nitriding the aluminum alloy therein; a vacuum pumping system, a heating device, a biased-voltage application device for an article to be treated; and a source gas system. The nitriding method includes treating the aluminum alloy in the high-density plasma atmosphere of excited and highly dissociated nitrogen by an electron beam. The electron beam excitation plasma source is operated in conditions of an accelerating voltage (V) of 50 to 150 volts and an accelerating current (A) of 4 amperes or higher. A source gas of plasma is nitrogen gas; a mixture gas of nitrogen gas and hydrogen gas; a mixture gas of nitrogen gas and argon gas; or a mixture gas of nitrogen gas, hydrogen gas and argon gas. A nitriding temperature is 300 to 550°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、アルミニウム合金の窒化処理方法に関するものである。   The present invention relates to a method for nitriding an aluminum alloy.

一般に金属の窒化処理方法としては、大まかにガス窒化法,ガス軟窒化法,塩浴窒化法,塩浴軟窒化法,イオン窒化法がある。ガス窒化法は原料として毒性の強いアンモニアを使用し、加熱による分解時に発生する活性の高い窒素を金属に拡散させて窒化層を得る方法であり、分解温度を高くし長時間処理する必要がある。アンモニアの分解を促進する触媒的な働きをするのが鋼材であり、鋼材の窒化方法に適している。最近では窒素ガスを原料とした高圧高温の方法が試みられている。   Generally, as a method for nitriding a metal, there are roughly a gas nitriding method, a gas soft nitriding method, a salt bath nitriding method, a salt bath soft nitriding method, and an ion nitriding method. The gas nitriding method uses highly toxic ammonia as a raw material and diffuses highly active nitrogen generated during decomposition by heating into a metal to obtain a nitrided layer, which requires a high decomposition temperature and a long treatment time. . Steel materials act as a catalyst to promote the decomposition of ammonia, and are suitable for the method of nitriding steel materials. Recently, high pressure and high temperature methods using nitrogen gas as a raw material have been tried.

ガス軟窒化法は、炭素鋼などを主体にした低級材料への処理に使用される。有機溶剤の熱分解ガスなどの浸炭ガスまたは窒素ガス雰囲気中にアンモニアガスを添加し、窒素と炭素を同時に侵入拡散させ、表面に炭窒化物を形成させる方法である。窒素・アンモニア・一酸化炭素の混合ガスも原料とする方法も開発されている。   The gas soft nitriding method is used for processing to lower materials mainly composed of carbon steel. This is a method in which ammonia gas is added to a carburizing gas or nitrogen gas atmosphere such as a pyrolysis gas of an organic solvent, and nitrogen and carbon are simultaneously penetrated and diffused to form carbonitrides on the surface. A method using a mixed gas of nitrogen, ammonia, and carbon monoxide as a raw material has also been developed.

塩浴窒化法は、一般用構造鋼用として開発されたものであり、ナトリウム,カリウムのシアン化塩を主体として、加熱溶解した塩浴中に浸漬し、比較的短時間で処理できる方法である。塩浴軟窒化法はナトリウムあるいはカリウムのシアン酸塩を塩浴とし、窒素と炭素を同時に拡散させる処理である。いずれもシアン化合物やシアン酸化合物の安全性や後処理の排水,排ガスの公害防止対策の問題がある。   The salt bath nitriding method was developed for use in general structural steels, and is a method that can be processed in a relatively short time by immersing it in a heat-dissolved salt bath mainly composed of sodium and potassium cyanide salts. . The salt bath soft nitriding method uses sodium or potassium cyanate as a salt bath to diffuse nitrogen and carbon simultaneously. All of these have problems with the safety of cyanide and cyanate compounds, post-treatment wastewater, and measures to prevent pollution of exhaust gases.

イオン窒化方法は、前記方法に比べてより活性の高い原子状窒素気体を窒素雰囲気として使用する。陰極と処理物表面との間の放電(グロー,アーク)により、処理槽内に注入した窒素または窒素混合ガスを解離,電離し、窒素雰囲気を生成すると同時に、放電による処理物表面加熱で原子状窒素を内部へ熱拡散させる方法が従来の主流となっている。イオン窒化はガス窒化に比べ窒化速度が2〜2.5倍速いとされ、好んで適用されるようになってきたが、高温での処理となるため処理物の変形や温度班による不均一窒化が起き易かった。
特開昭61−290629号公報
In the ion nitriding method, atomic nitrogen gas having higher activity than the above method is used as a nitrogen atmosphere. The discharge (glow, arc) between the cathode and the surface of the workpiece dissociates and ionizes the nitrogen or nitrogen mixed gas injected into the treatment tank, creating a nitrogen atmosphere, and at the same time, heating the surface of the workpiece to generate atomic form A method of thermally diffusing nitrogen into the interior has become a conventional mainstream. Ion nitriding has a nitriding rate that is 2 to 2.5 times faster than gas nitriding, and has been favorably applied. However, since the treatment is performed at a high temperature, deformation of the processed material and non-uniform nitridation due to temperature spots are not possible. It was easy to get up.
Japanese Patent Laid-Open No. 61-290629

アルミニウム合金は鋼材などに比べて硬度が低く、焼き付き易く、摩耗し易い材料である。このため、アルミニウム材には鍍金(メッキ),溶射,陽極酸化を利用した各種表面処理が検討されてきた。これらはアルミニウム材の表面にアルミ酸化物層を形成するものがほとんどで、アルミニウム材の窒化処理については、表面に形成される窒化層が薄く、十分満足できる方法がなかった。また、アルミニウム合金の窒化処理は一般に550℃〜600℃の高温で行われる場合が多く、高温による処理物の変形の問題や、アルミニウム合金の熱的な変性による機械的特性の低下など、実使用に耐えないこともあって、低温で窒化処理する方法が望まれていた。   Aluminum alloys have a lower hardness than steel and the like, and are easy to seize and wear. For this reason, various surface treatments using plating (plating), thermal spraying, and anodic oxidation have been studied for aluminum materials. Most of them form an aluminum oxide layer on the surface of an aluminum material, and there has been no satisfactory method for nitriding the aluminum material because the nitride layer formed on the surface is thin. In addition, nitriding treatment of aluminum alloy is generally performed at a high temperature of 550 ° C. to 600 ° C., and the actual use such as a problem of deformation of the processed material due to the high temperature and deterioration of mechanical properties due to thermal modification of the aluminum alloy. Therefore, a method of nitriding at a low temperature has been desired.

また、従来のイオン窒化方法では注入ガスの解離を担う電子のエネルギーが低く、原子状窒素雰囲気が希薄であるのに加え、処理物が放電電極を兼ねるために雰囲気生成と処理物表面温度の制御が非独立かつ不安定である問題が残っていた。   In addition, in the conventional ion nitriding method, the energy of electrons responsible for dissociation of the injected gas is low, the atomic nitrogen atmosphere is dilute, and the treated material also serves as the discharge electrode, so that the atmosphere generation and the treated surface temperature are controlled. There remained a problem of being independent and unstable.

本発明は上記課題を解決し、低温でより速く窒化層を形成できるアルミニウム合金の窒化方法を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a method for nitriding an aluminum alloy that can form a nitride layer more quickly at a low temperature.

本発明の第1の課題解決手段は、電子ビームにより励起させた高密度,高解離度の窒素原子プラズマ浴中でアルミニウム合金を処理することである。   The first problem-solving means of the present invention is to treat an aluminum alloy in a high-density, high-dissociation nitrogen atom plasma bath excited by an electron beam.

本発明の第2の課題解決手段は、第1課題解決手段に加え、高密度,高解離度の窒素原子プラズマを発生させるための電子ビーム励起プラズマ源,プラズマを溜め窒化処理を行う処理槽,真空排気系装置,加熱装置,処理物バイアス電圧印加装置,原料ガス系装置からなる処理装置を使用することである。   The second problem-solving means of the present invention includes, in addition to the first problem-solving means, an electron beam-excited plasma source for generating high-density, high-dissociation nitrogen atom plasma, a treatment tank for storing plasma and performing nitriding treatment, This is to use a processing apparatus comprising an evacuation system apparatus, a heating apparatus, a workpiece bias voltage application apparatus, and a raw material gas system apparatus.

本発明の第3の課題解決手段は、第1課題解決手段に加え、電子ビーム励起プラズマ源の運転条件が、加速電圧は50〜150ボルト,加速電流は4アンペア以上であることである。   The third problem solving means of the present invention is that, in addition to the first problem solving means, the operating conditions of the electron beam excited plasma source are an acceleration voltage of 50 to 150 volts and an acceleration current of 4 amperes or more.

本発明の第4の課題解決手段は、第1課題解決手段に加え、プラズマの原料ガスが窒素ガス、または窒素ガスと水素ガスの混合ガス,または窒素ガスとアルゴンガスの混合ガス、または窒素ガスと水素ガスとアルゴンガスの混合ガスであることである。   In addition to the first problem solving means, the fourth problem solving means of the present invention is that the plasma source gas is nitrogen gas, a mixed gas of nitrogen gas and hydrogen gas, a mixed gas of nitrogen gas and argon gas, or nitrogen gas. And a mixed gas of hydrogen gas and argon gas.

本発明の第5の課題解決手段は、第1課題解決手段に加え、窒化処理温度が300〜550℃で窒化処理することである。   The fifth problem solving means of the present invention is to perform nitriding at a nitriding temperature of 300 to 550 ° C. in addition to the first problem solving means.

本発明の第6の課題解決手段は、第1課題解決手段に加え、窒化処理温度が350〜500℃で窒化処理することである。   The sixth problem solving means of the present invention is to perform nitriding at a nitriding temperature of 350 to 500 ° C. in addition to the first problem solving means.

本発明の第7の課題解決手段は、第1課題解決手段に加え、処理物バイアス電圧をプラズマを基準として負に30ボルト以上印加することである。   A seventh problem-solving means of the present invention is to apply a workpiece bias voltage negatively by 30 volts or more with reference to plasma in addition to the first problem-solving means.

本発明は窒素分子の衝突断面積が最大値を迎える約80eVの電子ビームで励起した高密度,高解離度の窒素原子プラズマを利用し、窒化処理槽に溜めたプラズマ浴中にアルミニウム合金処理物を置き、これにバイアス電圧を印加して、外部より独立に加熱制御を行い、従来できなかったアルミニウム合金の低温窒化が可能であることを見いだした。   The present invention uses a high-density, high-dissociation nitrogen atom plasma excited by an electron beam of about 80 eV, where the collision cross-sectional area of nitrogen molecules reaches the maximum value, and treats an aluminum alloy in a plasma bath stored in a nitriding tank. In this case, a bias voltage was applied to this, and heating control was performed independently from the outside, and it was found that low temperature nitriding of an aluminum alloy, which could not be performed conventionally, was possible.

電子ビームで励起した窒素プラズマは通常の窒素プラズマに比べ、プラズマ密度が非常に高く、また窒素分子の解離度が2〜3桁高く、雰囲気中に原子状窒素が多く存在していることが報告されている。窒素原子は窒素分子に比べ、金属への拡散・反応が速く、従来のイオン窒化に比べてより低温で窒化が可能となることを見いだした。(アトム窒化と称する)   Nitrogen plasma excited by electron beam has a much higher plasma density than ordinary nitrogen plasma, and the degree of dissociation of nitrogen molecules is 2 to 3 orders of magnitude higher, and it is reported that there is a lot of atomic nitrogen in the atmosphere. Has been. It was found that nitrogen atoms diffuse and react with metals faster than nitrogen molecules, and nitriding is possible at a lower temperature than conventional ion nitriding. (Referred to as atom nitriding)

窒素原子プラズマを生成する電子ビーム励起プラズマ源としては、特開昭61−290629号が知られており、電子ビームを発生する放電領域と加速領域からなり、放電領域で電子を生成させ、加速領域で電子を加速し、電子ビームを発生させる。窒化処理槽に処理物を置き、真空排気して窒素ガスまたは窒素・水素混合ガス、窒素ガス・アルゴン混合ガスを所定量流し、発生させた電子ビームで窒素ガス類を励起しプラズマに換え、プラズマ中で窒化処理を行う装置を用いる。   Japanese Patent Application Laid-Open No. Sho 61-290629 is known as an electron beam excitation plasma source for generating nitrogen atom plasma, and is composed of a discharge region and an acceleration region for generating an electron beam. Accelerate electrons and generate an electron beam. Place the treatment in a nitriding tank, evacuate it, flow a predetermined amount of nitrogen gas, nitrogen / hydrogen mixed gas, nitrogen gas / argon mixed gas, excite nitrogen gas with the generated electron beam and change it to plasma, plasma An apparatus for performing nitriding treatment is used.

一般に電子ビームの発生は電子銃に数kV・数百mAで使用されるが、本発明の電子ビーム発生の条件は、加速電圧=50〜150ボルトの低電圧、加速電流=4アンペア以上の大電流が主として用いられる。また、電子ビーム発生の放電用ガスとしてアルゴンガスを使用する。発生した電子は直接加速されることにより、50〜150eVの高エネルギーをもつ電子ビームとなる。   In general, the generation of an electron beam is used for an electron gun at several kV and several hundred mA, but the conditions for generating an electron beam according to the present invention are as follows: acceleration voltage = 50 to 150 volts, low voltage, acceleration current = greater than 4 amps Current is mainly used. Argon gas is used as a discharge gas for generating an electron beam. The generated electrons are directly accelerated to become an electron beam having a high energy of 50 to 150 eV.

この電子ビームでもって窒素ガスを励起し、高効率解離で高密度の窒素プラズマ(窒素原子雰囲気を含む)を形成することができる。通常のグロー放電では窒素分子の解離が困難で、低密度の窒素雰囲気しか生成できない。代表的な窒素雰囲気のパラメーターは、プラズマ密度が109〜1011cm-3のプラズマ密度、窒素原子密度が1010〜1012cm-3、プラズマ電子温度が1〜2eVの性質のものである。このプラズマ源の高出力化は種々条件を検討すればさらに可能である。 Nitrogen gas is excited by this electron beam, and high-density dissociation and high-density nitrogen plasma (including nitrogen atom atmosphere) can be formed. In normal glow discharge, dissociation of nitrogen molecules is difficult, and only a low-density nitrogen atmosphere can be generated. The typical nitrogen atmosphere parameters are those having a plasma density of 10 9 to 10 11 cm −3 , a nitrogen atom density of 10 10 to 10 12 cm −3 , and a plasma electron temperature of 1 to 2 eV. . It is possible to increase the output of this plasma source by examining various conditions.

窒素原子プラズマ用原料ガスとしては純窒素ガスまたは窒素と水素の混合ガス,窒素とアルゴンの混合ガス,または窒素ガスと水素ガスとアルゴンガスの混合ガスを使用すると良い。アルミニウム合金の種類によって処理温度,処理時間など目的とする窒化層が得られる条件を適宜選択すればよい。   As the source gas for nitrogen atom plasma, pure nitrogen gas or a mixed gas of nitrogen and hydrogen, a mixed gas of nitrogen and argon, or a mixed gas of nitrogen gas, hydrogen gas and argon gas may be used. The conditions for obtaining the target nitrided layer, such as processing temperature and processing time, may be appropriately selected depending on the type of aluminum alloy.

必要であれば、処理物を負にバイアスし、プラズマ雰囲気からイオン衝撃を加えることにより、表面の不動態膜を除去しつつ処理を行うことも可能である。アルミニウム合金の場合には、表面に窒素原子の通過を妨げる酸化アルミニウム層が存在するため、処理物バイアス電圧をプラズマに対して−30V以上印加する。その際、プラズマ生成と処理物の独立性は保たれ、放電も発生しないので、処理物が異常高温にさらされることもない。処理物の加熱については外部加熱,内部加熱いずれも可能であるが、高純度の窒素雰囲気を要する場合は、不純物の発生を抑えられる外部加熱が好ましい。   If necessary, the treatment can be carried out while removing the passive film on the surface by negatively biasing the treatment object and applying ion bombardment from the plasma atmosphere. In the case of an aluminum alloy, since an aluminum oxide layer that prevents the passage of nitrogen atoms exists on the surface, a workpiece bias voltage of −30 V or more is applied to the plasma. At that time, the independence of the plasma generation and the processed object is maintained, and no discharge is generated, so that the processed object is not exposed to an abnormally high temperature. Regarding the heating of the processed material, either external heating or internal heating is possible. However, when a high-purity nitrogen atmosphere is required, external heating that can suppress generation of impurities is preferable.

アルミニウム合金よりなる処理物の加熱温度は300℃〜550℃であり、好ましくは350℃〜500℃である。300℃以下では窒化がほとんど起こらず、アルミニウム合金が融点をむかえる550℃以上では結晶相変化が発生するため、窒化が行われても表面改質層の割れ、剥離や処理物そのものの変形等の熱的変性を受ける。加熱温度の設定についてはアルミニウム合金が熱的変性を受けない温度を選ぶことが重要である。目的とする厚さの窒化層を達成するためには時間をかけることも可能である。冷却方法は特にこだわらないが、気体による冷却が安全で好ましい。   The heating temperature of the processed product made of an aluminum alloy is 300 ° C to 550 ° C, preferably 350 ° C to 500 ° C. Nitriding hardly occurs at 300 ° C or lower, and a crystalline phase change occurs at 550 ° C or higher at which the melting point of the aluminum alloy is reached. Subject to thermal denaturation. Regarding the setting of the heating temperature, it is important to select a temperature at which the aluminum alloy does not undergo thermal modification. Time can be taken to achieve the desired thickness of the nitride layer. The cooling method is not particularly limited, but cooling with gas is safe and preferable.

本発明の窒化方法は、高密度,高解離度の窒素プラズマを使用し、通常の分子状プラズマとは作用が大きく異なる。化合物層の制御がし易く、窒化速度も通常のプラズマ処理に比べて速く、特に低温で処理できるため、表面の窒化班もなく、表面割れ、剥離もない。形状に関係なく均一に窒化でき、狭い隙間でもプラズマの入る所であれば窒化処理ができる。処理物の配置は単純でイオン窒化やラジカル窒化のような複雑な配置は必要でない。また、絶縁物材料でも処理可能である。   The nitriding method of the present invention uses high-density, high-dissociation nitrogen plasma, and its action is significantly different from that of normal molecular plasma. The compound layer is easy to control, the nitriding rate is faster than that of normal plasma treatment, and can be treated at a particularly low temperature, so there is no surface nitridation, and there is no surface cracking or peeling. Nitridation can be performed uniformly regardless of the shape, and nitriding can be performed if plasma enters even in a narrow gap. The arrangement of the processed material is simple and does not require a complicated arrangement such as ion nitriding or radical nitriding. It can also be processed with an insulating material.

本発明は、高密度,高解離度の窒素プラズマを用いることにより、低温でより速く、アルミニウム合金表面に直接、窒化層を設けることを可能とした。また、密着性のよい窒化層が得られ、40μm程度の厚みの窒化アルミ層が比較的簡単に得られる。特に、熱履歴を受け易い金属材料の窒化処理には低温で行える最適な方法である。   The present invention makes it possible to provide a nitride layer directly on the surface of an aluminum alloy more quickly at a low temperature by using high-density, high-dissociation nitrogen plasma. Moreover, a nitride layer with good adhesion can be obtained, and an aluminum nitride layer having a thickness of about 40 μm can be obtained relatively easily. In particular, it is an optimal method that can be performed at a low temperature for nitriding a metal material that is susceptible to thermal history.

以下に本発明の一実施例を図面にもとづき説明する。
図1は窒化処理装置のブロック図である。本実施例の窒化処理装置に用いられるプラズマ源は、カソードKとアノードS1,S2からなる放電領域1,2(第1放電領域1,第2放電領域2)と、加速電極Tを持つ加速領域3を持ち、窒化処理槽4に接続される。放電原料ガスとしてアルゴンガスを放電領域1,2に供給する。窒化処理槽4には処理ガス入口4aから、プラズマ原料ガスとして窒素ガス、または窒素ガス+水素ガス,または窒素ガス+アルゴンガス,または窒素ガス+水素ガス+アルゴンガスの混合ガスが供給され、これに電子ビームを衝突させ、高密度,高解離度の窒素プラズマを得る。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 1 is a block diagram of a nitriding apparatus. The plasma source used in the nitriding apparatus of the present embodiment includes discharge regions 1 and 2 (first discharge region 1 and second discharge region 2) composed of a cathode K and anodes S1 and S2, and an acceleration region having an acceleration electrode T. 3 is connected to the nitriding tank 4. Argon gas is supplied to the discharge regions 1 and 2 as a discharge source gas. Nitrogen gas, or nitrogen gas + hydrogen gas, or nitrogen gas + argon gas, or mixed gas of nitrogen gas + hydrogen gas + argon gas is supplied to the nitriding treatment tank 4 from the processing gas inlet 4a. A high density and high dissociation nitrogen plasma is obtained.

また、放電領域1,2,加速領域3,処理槽4を真空に保つ真空排気系ラインが処理槽4の排気口4bに設けられている。処理槽4は石英円筒体からなり、その外周を覆う放射型ヒーター(シーズヒーター)5で処理物Aを加熱する。処理物Aの表面に熱電対6aを設置し、それに接続した温度計測器6で処理物Aの表面の温度を測定する。処理物Aを置く処理台7は石英硝子製の梯子状のものである。   Further, a vacuum exhaust system line for keeping the discharge regions 1, 2, the acceleration region 3, and the processing tank 4 in a vacuum is provided at the exhaust port 4 b of the processing tank 4. The processing tank 4 is made of a quartz cylindrical body, and the processing object A is heated by a radial heater (seeds heater) 5 covering the outer periphery thereof. A thermocouple 6a is installed on the surface of the processed object A, and the temperature of the surface of the processed object A is measured by the temperature measuring device 6 connected thereto. The processing table 7 on which the processing object A is placed is a ladder made of quartz glass.

放電領域1にはフィラメントFを備えたカソード電極Kが設けられ、流量制御装置を介して例えばアルゴンガスなどの不活性ガス(以下アルゴンガスで代表して表現する)が不活性ガス入口1aより供給される。放電領域2は中央部に小孔が設けられた副アノード電極(陽極)S1により、一方で放電領域1に隣接し、他方で中央に小孔を有する主アノード電極(陽極)S2を介して、電子加速室3と区切られている。電子加速室3は中央に小孔を有する加速電極Tを挟んで、窒化処理槽4と隣接する。   A cathode electrode K having a filament F is provided in the discharge region 1, and an inert gas such as argon gas (hereinafter represented by argon gas) is supplied from an inert gas inlet 1a through a flow rate control device. Is done. The discharge region 2 is connected to the discharge region 1 on the one hand by a sub-anode electrode (anode) S1 having a small hole in the center, and on the other hand through a main anode electrode (anode) S2 having a small hole in the center. It is separated from the electron acceleration chamber 3. The electron acceleration chamber 3 is adjacent to the nitriding treatment tank 4 with an acceleration electrode T having a small hole in the center.

11はフィラメント用電源、12は放電用電源、13は主アノードS2と加速電極Tとの間に接続された電子加速用電源(電圧Va,電流Ia)、14は処理物Aへ与えるバイアス電源である。また、15は副アノードS1への電圧調整のための可変抵抗器である。   11 is a filament power source, 12 is a discharge power source, 13 is an electron acceleration power source (voltage Va, current Ia) connected between the main anode S2 and the acceleration electrode T, and 14 is a bias power source applied to the workpiece A. is there. Reference numeral 15 denotes a variable resistor for adjusting the voltage to the sub-anode S1.

次に前記において、作動状態を説明する。フィラメントFにより加熱されたカソード電極Kから電子が放出され、放電室1,2において、カソード電極Kと主アノード電極S2との間で放電を生成、維持し、放電領域1,2内にアルゴンプラズマを生成する。放電領域2内のアルゴンプラズマ中の電子の一部は加速電極Tで引き出され、電子加速室3で加速されて電子ビームとなる。電子ビームは処理槽4に入射して槽内の気体分子と衝突し、分子を電離してプラズマを生成する。   Next, the operating state will be described. Electrons are emitted from the cathode electrode K heated by the filament F, and discharge is generated and maintained between the cathode electrode K and the main anode electrode S2 in the discharge chambers 1 and 2, and argon plasma is generated in the discharge regions 1 and 2. Is generated. A part of the electrons in the argon plasma in the discharge region 2 are extracted by the acceleration electrode T and accelerated in the electron acceleration chamber 3 to become an electron beam. The electron beam enters the processing tank 4 and collides with gas molecules in the tank, ionizing the molecules and generating plasma.

この間に処理物Aをヒーター5で昇温する。表面温度を所定の温度に保持し、電子加速電圧Va、電子加速電流Ia、層内の圧力を調整しながら、処理ガス(窒素ガスと水素ガスなど)を導入して窒化処理を行う。   During this time, the temperature of the processed material A is raised by the heater 5. While maintaining the surface temperature at a predetermined temperature and adjusting the electron acceleration voltage Va, the electron acceleration current Ia, and the pressure in the layer, nitriding is performed by introducing a processing gas (such as nitrogen gas and hydrogen gas).

このように、本発明の窒化処理方法は、処理槽に処理ガス(窒素ガスと水素ガスやアルゴンガスを含む反応ガス)を供給し、放電プラズマから加速電極により引き出された電子ビームを窒化処理室に導き、前記反応ガスを電子ビームによりプラズマ化して処理物に作用させることにより、表面に窒素化合物層あるいは窒素拡散層を形成するのである。   Thus, in the nitriding method of the present invention, a processing gas (reactive gas containing nitrogen gas, hydrogen gas, and argon gas) is supplied to the processing tank, and an electron beam extracted from the discharge plasma by the acceleration electrode is supplied to the nitriding chamber. Then, the nitrogen gas layer or the nitrogen diffusion layer is formed on the surface by converting the reaction gas into plasma by an electron beam and allowing it to act on the processed material.

2cmφ×0.2cmtの円盤状のアルミ合金(A5083)の試料Aを処理台7に載せ処理槽4内に設置した。真空引きを行い処理槽内を10-4パスカルの真空を保つように制御した。アルゴンガスを処理槽に70sccm流し、0.5パスカルとし、加速電圧Vaを100V,加速電流Iaを4.5Aに設定し、電子ビームを発生させた。試料にバイアスVBを−200V印加し、470℃で1時間スパッタリング処理した。 A sample A of a disc-shaped aluminum alloy (A5083) of 2 cmφ × 0.2 cmt was placed on the processing table 7 and installed in the processing tank 4. A vacuum was applied to control the inside of the treatment tank so as to maintain a vacuum of 10 −4 Pascal. Argon gas was flowed through the treatment tank at 70 sccm to 0.5 Pascal, the acceleration voltage Va was set to 100 V, the acceleration current Ia was set to 4.5 A, and an electron beam was generated. A bias VB of −200 V was applied to the sample, and sputtering treatment was performed at 470 ° C. for 1 hour.

次に、処理槽内にアルゴンガスを35sccm、窒素ガスを35sccm供給し、窒素原子プラズマを発生させ、処理槽内をプラズマで満たした。−200Vの試料バイアスを印加しつつ、外部加熱炉となるヒーター5で処理物近傍の温度が470℃になるように調節,加熱し、窒化処理を3時間行った。窒化処理後、ヒーター5を開放し冷却を行い、室温に達してから処理物を取り出した。   Next, 35 sccm of argon gas and 35 sccm of nitrogen gas were supplied into the treatment tank to generate nitrogen atom plasma, and the treatment tank was filled with plasma. While applying a sample bias of −200 V, the temperature in the vicinity of the processed product was adjusted and heated to 470 ° C. with the heater 5 serving as an external heating furnace, and nitriding was performed for 3 hours. After the nitriding treatment, the heater 5 was opened and cooled, and the treated product was taken out after reaching room temperature.

取り出した処理物の外観,表面硬度(Hv)、窒化層の厚さを調べた。表面はつや消しの黒色を呈し、割れ剥がれもなく、窒化されていることが観察された。また、窒化層の厚さは約45μmであった。   The appearance, surface hardness (Hv), and thickness of the nitrided layer of the processed product taken out were examined. It was observed that the surface had a matte black color, was not cracked, and was nitrided. The thickness of the nitride layer was about 45 μm.

2cmφ×0.2cmtの円盤状のアルミ合金(A5052)の試料を処理台に載せ処理槽内に設置した。真空引きを行い処理槽内を10-4パスカルの真空を保つように制御した。アルゴンガスを処理槽に70sccm流し、0.5パスカルとし、加速電圧Vaを100V,加速電流Iaを4.5Aに設定し、電子ビームを発生させた。試料にバイアスVBを−200V印加し、500℃で1時間スパッタリング処理した。 A sample of a disc-shaped aluminum alloy (A5052) having a diameter of 2 cmφ × 0.2 cmt was placed on a processing table and placed in a processing tank. A vacuum was applied to control the inside of the treatment tank so as to maintain a vacuum of 10 −4 Pascal. Argon gas was flowed through the treatment tank at 70 sccm to 0.5 Pascal, the acceleration voltage Va was set to 100 V, the acceleration current Ia was set to 4.5 A, and an electron beam was generated. A bias VB of −200 V was applied to the sample, and sputtering was performed at 500 ° C. for 1 hour.

次に、処理槽内にアルゴンガスを35sccm、窒素ガスを35sccm供給し、窒素原子プラズマを発生させ、処理槽内をプラズマで満たした。−200Vの試料バイアスを印加しつつ、ヒーター5で処理物近傍の温度が500℃になるように調節,加熱し、窒化処理を0.5時間行った。窒化処理後、ヒーター5を開放し冷却を行い、室温に達してから処理物を取り出した。   Next, 35 sccm of argon gas and 35 sccm of nitrogen gas were supplied into the treatment tank to generate nitrogen atom plasma, and the treatment tank was filled with plasma. While applying a sample bias of −200 V, the heater 5 was adjusted and heated so that the temperature in the vicinity of the treatment became 500 ° C., and nitriding was performed for 0.5 hour. After the nitriding treatment, the heater 5 was opened and cooled, and the treated product was taken out after reaching room temperature.

取り出した処理物の外観,表面硬度(Hv)、窒化層の厚さを調べた。表面はつや消しの黒色を呈し、割れ剥がれのない均一な窒化が観察された。また、窒化層の厚さは約5μmであった。   The appearance, surface hardness (Hv), and thickness of the nitrided layer of the processed product taken out were examined. The surface was matte black and uniform nitriding without cracking was observed. The thickness of the nitride layer was about 5 μm.

処理物の断面を透過型電子顕微鏡で観察した結果、表層は約5μm長の揃った柱状結晶の集合体であり、X線回拆パターンよりウルツ鉱型の窒化アルミニウムであることを確認した。また、基材層と窒化アルミニウム層の間に中間層が存在していることが確認できた。この中間層はHVTEM−EDX分析の結果、MgAl24の層であることが元素分析や回拆より解拆できた。これはアルミニウム合金にふくまれているアルミニウム以外の金属が中間層で反応物として濃縮されており、この中間層が窒化アルミニウムと基材との密着性の向上に寄与していることが推察できた。
〔比較例〕
As a result of observing the cross section of the treated product with a transmission electron microscope, it was confirmed that the surface layer was an aggregate of columnar crystals having a length of about 5 μm and was wurtzite type aluminum nitride from the X-ray revolving pattern. Moreover, it has confirmed that the intermediate | middle layer existed between the base material layer and the aluminum nitride layer. As a result of HVTEM-EDX analysis, this intermediate layer was found to be a MgAl 2 O 4 layer by elemental analysis and recovery. It was speculated that metals other than aluminum contained in the aluminum alloy were concentrated as reactants in the intermediate layer, and this intermediate layer contributed to improving the adhesion between the aluminum nitride and the substrate. .
[Comparative Example]

試料を純アルミニウム(A−1080)に代え、実施例3と同様の条件で処理を行った。処理した試料の表面には、黒色の窒化アルミニウム層が生成していたが、部分的に欠けや剥離が認められ、均一な表面処理はできなかった。しかし、純度の高い窒化アルミニウムの得られる可能性がある。   The sample was replaced with pure aluminum (A-1080), and the treatment was performed under the same conditions as in Example 3. A black aluminum nitride layer was formed on the surface of the treated sample, but partial chipping or peeling was observed, and uniform surface treatment was not possible. However, high purity aluminum nitride may be obtained.

直径約30mmφ、長さ15mm、軸穴約6mmφのアルミ合金(A5052)製のプーリーを処理台に載せ処理槽内に設置した。真空引きを行い処理槽内を10-4パスカルの真空を保つように制御した。アルゴンガスを処理槽に70sccm流し、0.5パスカルとし、加速電圧Vaを100V,加速電流Iaを4.5Aに設定し、電子ビームを発生させた。試料にバイアスVBを−200V印加し、500℃で1時間スパッタリング処理した。 A pulley made of an aluminum alloy (A5052) having a diameter of about 30 mmφ, a length of 15 mm, and a shaft hole of about 6 mmφ was placed on the treatment table and installed in the treatment tank. A vacuum was applied to control the inside of the treatment tank so as to maintain a vacuum of 10 −4 Pascal. Argon gas was flowed through the treatment tank at 70 sccm to 0.5 Pascal, the acceleration voltage Va was set to 100 V, the acceleration current Ia was set to 4.5 A, and an electron beam was generated. A bias VB of −200 V was applied to the sample, and sputtering was performed at 500 ° C. for 1 hour.

次に、処理槽内にアルゴンガスを62.5sccm、窒素ガスの7.5sccmを処理槽内に流し、窒素原子プラズマを発生させ、処理槽内をプラズマで満たした。外部加熱(ヒーター5)で試料温度を460℃にして、窒化処理を0.5時間行った。窒化処理後、外部加熱炉を開放し冷却を行い、室温に達してから処理物を取り出した。   Next, 62.5 sccm of argon gas and 7.5 sccm of nitrogen gas were allowed to flow into the treatment tank to generate nitrogen atom plasma, and the treatment tank was filled with plasma. The sample temperature was set to 460 ° C. by external heating (heater 5), and nitriding was performed for 0.5 hour. After the nitriding treatment, the external heating furnace was opened and cooled, and the treated product was taken out after reaching room temperature.

取り出した処理物の外観,表面硬度(Hv)、窒化層の厚さを調べた。プーリー2個とも、表面はつや消しの黒色を呈し、剥がれ割れもなく、面全体に均一に窒化されており、軸穴の内部にまで処理されていることが観察された。   The appearance, surface hardness (Hv), and thickness of the nitrided layer of the processed product taken out were examined. It was observed that both pulleys had a matte black surface, no peeling cracks, were uniformly nitrided over the entire surface, and were processed even inside the shaft hole.

本発明は前記した実施例や実施態様に限定されず、特許請求の範囲および範囲を逸脱せずに種々の変形を含む。   The present invention is not limited to the examples and embodiments described above, and includes various modifications without departing from the scope and scope of the claims.

アルミニウムは鉄の次に多く使用されている金属材料である。アルミニウム合金の利用分野として、例えば1000系合金(純アルミニウム)は反射板,装飾品,導電材,器物,印刷物、2000系合金は航空機,油圧部品,ピストン,機械部品,構造材など、3000系合金はアルミ缶,配管材,日用品,建材,複写機ドラムなどに、4000系合金は溶加材,ろう材に、5000系合金は缶蓋材,圧力容器,車両や船舶の構造材,自動車のボディーシートなど、6000系合金はサッシ,高欄,自動車・単車フレームなどに、7000系合金は航空機構造材,単車構造部品,スポーツ用具類,金型など、8000系合金は航空機構造材,箔材,ビル外壁,装飾パネル,軸受け,粉末冶金などに使用されている。その他、アルミニウム合金鋳造品やアルミニウム合金ダイカストなどにも多く使用されている。これらの表面に直接強固な窒化物層を形成させ、耐摩耗性,耐焼き付け性,絶縁性,伝熱性を付与することが可能となる。   Aluminum is the second most used metal material after iron. For example, 1000 series alloys (pure aluminum) are reflectors, decorations, conductive materials, containers, printed materials, and 2000 series alloys are 3000 series alloys such as aircraft, hydraulic parts, pistons, machine parts, structural materials, etc. For aluminum cans, piping materials, daily necessities, building materials, copying machine drums, etc. 4000 series alloys for filler metal, brazing materials, and 5000 series alloys for can lids, pressure vessels, structural materials for vehicles and ships, automobile bodies 6000 series alloys are for sashes, railings, automobiles and motorcycle frames, 7000 series alloys are aircraft structural materials, single vehicle structural parts, sports equipment, molds, etc. 8000 series alloys are aircraft structural materials, foil materials, buildings, etc. Used for outer walls, decorative panels, bearings, powder metallurgy, etc. In addition, it is also widely used in aluminum alloy castings and aluminum alloy die castings. A strong nitride layer can be directly formed on these surfaces to impart wear resistance, seizure resistance, insulation and heat transfer.

本発明方法に使用される窒化処理装置のブロック図である。It is a block diagram of the nitriding apparatus used for the method of the present invention.

符号の説明Explanation of symbols

A 処理物
K カソード電極
F フィラメント
S1 副アノード
S2 主アノード
T 加速電極
1 放電領域
1a 不活性ガス入口
2 放電領域
3 加速領域
4 処理層
4a 処理ガス入口
5 ヒーター
6 温度計測器
6a 熱電対
7 処理台
11 フィラメント用電源
12 放電用電源
13 電子加速用電源(電圧Va,電流Ia)
14 バイアス電源VB
15 可変抵抗器
A Processed material K Cathode electrode F Filament S1 Sub anode S2 Main anode T Acceleration electrode 1 Discharge area 1a Inert gas inlet 2 Discharge area 3 Acceleration area 4 Treatment layer 4a Treatment gas inlet 5 Heater 6 Temperature measuring instrument 6a Thermocouple 7 Treatment stand 11 Filament Power Supply 12 Discharge Power Supply 13 Electron Acceleration Power Supply (Voltage Va, Current Ia)
14 Bias power supply VB
15 Variable resistor

Claims (7)

電子ビームにより励起させた高密度,高解離度の窒素原子プラズマ浴中でアルミニウム合金を処理するアルミニウム合金の窒化方法。 A method of nitriding an aluminum alloy in which the aluminum alloy is treated in a high-density, high-dissociation nitrogen atom plasma bath excited by an electron beam. 高密度,高解離度の窒素原子プラズマを発生させるための電子ビーム励起プラズマ源,プラズマを溜め窒化処理を行う処理槽,真空排気系装置,加熱装置,処理物バイアス電圧印加装置,原料ガス系装置からなる処理装置を使用することを特徴とする請求項1記載のアルミニウム合金の窒化方法。 Electron beam-excited plasma source for generating high-density, high-dissociation nitrogen atom plasma, treatment tank for storing plasma and performing nitriding treatment, vacuum evacuation system device, heating device, workpiece bias voltage application device, source gas system device 2. A method for nitriding an aluminum alloy according to claim 1, wherein a processing apparatus comprising: 電子ビーム励起プラズマ源の運転条件が、加速電圧は50〜150ボルト,加速電流は4アンペア以上であることを特徴とする請求項1記載のアルミニウム合金の窒化方法。 2. The method of nitriding an aluminum alloy according to claim 1, wherein the operating conditions of the electron beam excited plasma source are an acceleration voltage of 50 to 150 volts and an acceleration current of 4 amperes or more. プラズマの原料ガスが窒素ガス、または窒素ガスと水素ガスの混合ガス,または窒素ガスとアルゴンガスの混合ガス、または窒素ガスと水素ガスとアルゴンガスのの混合ガスであることを特徴とする請求項1記載のアルミニウム合金の窒化方法。 The plasma source gas is nitrogen gas, a mixed gas of nitrogen gas and hydrogen gas, a mixed gas of nitrogen gas and argon gas, or a mixed gas of nitrogen gas, hydrogen gas and argon gas, 2. The method for nitriding an aluminum alloy according to 1. 窒化処理温度が300〜550℃で窒化処理することを特徴とする請求項1記載のアルミニウム合金の窒化方法。 The method for nitriding an aluminum alloy according to claim 1, wherein nitriding is performed at a nitriding temperature of 300 to 550 ° C. 窒化処理温度が350〜500℃で窒化処理することを特徴とする請求項1記載のアルミニウム合金の窒化方法。 The method for nitriding an aluminum alloy according to claim 1, wherein nitriding is performed at a nitriding temperature of 350 to 500 ° C. 処理物バイアス電圧をプラズマを基準として負に30ボルト以上印加することを特徴とする請求項1記載のアルミニウム合金の窒化方法。

2. The method for nitriding an aluminum alloy according to claim 1, wherein the workpiece bias voltage is negatively applied 30 volts or more with reference to plasma.

JP2005020439A 2005-01-27 2005-01-27 Method for nitriding aluminum alloy Pending JP2006206959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005020439A JP2006206959A (en) 2005-01-27 2005-01-27 Method for nitriding aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005020439A JP2006206959A (en) 2005-01-27 2005-01-27 Method for nitriding aluminum alloy

Publications (1)

Publication Number Publication Date
JP2006206959A true JP2006206959A (en) 2006-08-10

Family

ID=36964131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005020439A Pending JP2006206959A (en) 2005-01-27 2005-01-27 Method for nitriding aluminum alloy

Country Status (1)

Country Link
JP (1) JP2006206959A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014080685A (en) * 2012-09-27 2014-05-08 Toyo Aluminium Kk Conductive member, electrode, secondary battery, capacitor, and manufacturing method of conductive member and electrode
JPWO2012153767A1 (en) * 2011-05-09 2014-07-31 学校法人トヨタ学園 Nitriding processing method and nitriding processing apparatus
US20160186310A1 (en) * 2013-07-03 2016-06-30 Oerlikon Surface Solutions Ag, Trübbach Target preparation
CN108866474A (en) * 2018-06-22 2018-11-23 珠海格力精密模具有限公司 Die treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012153767A1 (en) * 2011-05-09 2014-07-31 学校法人トヨタ学園 Nitriding processing method and nitriding processing apparatus
JP2018111884A (en) * 2011-05-09 2018-07-19 学校法人トヨタ学園 Nitriding method and nitriding equipment
JP2014080685A (en) * 2012-09-27 2014-05-08 Toyo Aluminium Kk Conductive member, electrode, secondary battery, capacitor, and manufacturing method of conductive member and electrode
US20160186310A1 (en) * 2013-07-03 2016-06-30 Oerlikon Surface Solutions Ag, Trübbach Target preparation
US10053769B2 (en) * 2013-07-03 2018-08-21 Oerlikon Surface Solutions Ag, Pfäffikon Target preparation
CN108866474A (en) * 2018-06-22 2018-11-23 珠海格力精密模具有限公司 Die treatment method

Similar Documents

Publication Publication Date Title
US6482476B1 (en) Low temperature plasma enhanced CVD ceramic coating process for metal, alloy and ceramic materials
JPS62294160A (en) Thermochemical surface treatment of material in reactive gaseous plasma
JPH0688242A (en) Surface treating method for metal by atmospheric plasma
EP0010484B1 (en) Improvement in the chromising of steel in the gaseous phase
JP2006206959A (en) Method for nitriding aluminum alloy
US6090223A (en) Chromium nitride film and method for forming the same
US4704168A (en) Ion-beam nitriding of steels
WO2020189195A1 (en) Plasma nitridization method
JPH0790541A (en) Mixed gas penetration modifying method and device therefor
Denisova et al. Influence of nitrogen content in the working gas mixture on the structure and properties of the nitrided surface of die steel
JPH08296064A (en) Article coated with oxidation and wear resistant film
RU2291227C1 (en) Construction-steel parts surface hardening method
JP2001192861A (en) Surface treating method and surface treating device
JPH0835075A (en) Steel-series composite surface-treated product and its production
JP2006249508A (en) Method for nitriding titanium and titanium alloy
KR100594998B1 (en) Method for nitriding of Ti and Ti alloy
RU2413793C2 (en) Procedure for ion-plasma treatment of surface of metal cutting tool made out of high speed powder steel
JP2002356764A (en) Nitriding method and device using electron beam excitation plasma
Elwar et al. Plasma (ion) nitriding and nitrocarburizing of steels
JPS63166957A (en) Surface coated steel product
JPH03232957A (en) Production of wear resistant member
JPH0813126A (en) Ion-soft nitriding process for metallic member
JPH07300665A (en) Method for forming boron cementation layer and boron film on metallic base material
KR100290975B1 (en) Method for boronizing steel material using plasma
JP3637255B2 (en) Aluminum nitride material and manufacturing method thereof