JP3009503B2 - Surface treatment member and method of manufacturing the same - Google Patents

Surface treatment member and method of manufacturing the same

Info

Publication number
JP3009503B2
JP3009503B2 JP3140835A JP14083591A JP3009503B2 JP 3009503 B2 JP3009503 B2 JP 3009503B2 JP 3140835 A JP3140835 A JP 3140835A JP 14083591 A JP14083591 A JP 14083591A JP 3009503 B2 JP3009503 B2 JP 3009503B2
Authority
JP
Japan
Prior art keywords
aluminum
aluminum nitride
nitride layer
base material
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3140835A
Other languages
Japanese (ja)
Other versions
JPH04337062A (en
Inventor
英男 太刀川
透 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP3140835A priority Critical patent/JP3009503B2/en
Publication of JPH04337062A publication Critical patent/JPH04337062A/en
Application granted granted Critical
Publication of JP3009503B2 publication Critical patent/JP3009503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金表面
に密着性に優れた窒化アルミニウム層を有する表面処理
部材およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface-treated member having an aluminum nitride layer having excellent adhesion on an aluminum alloy surface and a method for producing the same.

【0002】[0002]

【従来の技術】アルミニウムまたはアルミニウム合金
(以下、アルミニウム等とする)は、硬度がビッカース
硬度(Hv)で約200と低く耐摩耗性に乏しいため、
従来よりこれら性質の向上を図るべく表面処理技術の開
発が行なわれてきた。ところが、アルミニウム等は、空
気中の酸素との親和力が強く、酸素と容易に結合して極
めて安定で、かつ緻密な薄いアルミナ(Al2 3 )の
層を形成するため、鉄鋼のように、表面硬化元素を拡散
浸透させたり、または密着性のよい硬質膜を形成するこ
とが難しい。そのため、陽極酸化あるいはクロムメッキ
など、その表面処理法は限られたものとなっている。し
かし、この陽極酸化皮膜の硬度は、処理条件により異な
るが、Hvが200〜1000とばらつき、必ずしも充
分な耐摩耗性を有するものではない。また、Crメッキ
を施しても剥離し易い等の欠点がある。
2. Description of the Related Art Aluminum or an aluminum alloy (hereinafter referred to as aluminum, etc.) has a low Vickers hardness (Hv) of about 200 and is poor in wear resistance.
Conventionally, surface treatment techniques have been developed to improve these properties. However, aluminum and the like have a strong affinity with oxygen in the air and easily bond with oxygen to form an extremely stable and dense layer of thin alumina (Al 2 O 3 ). It is difficult to diffuse and infiltrate the surface hardening element or to form a hard film having good adhesion. Therefore, surface treatment methods such as anodic oxidation or chrome plating are limited. However, the hardness of this anodic oxide film varies depending on the processing conditions, but Hv varies from 200 to 1000, and does not always have sufficient wear resistance. In addition, there is a disadvantage that the film is easily peeled off even if Cr plating is performed.

【0003】窒化アルミニウムそれ自体は、非常に高温
まで安定であり、Hvが約1400であり、耐摩耗性に
優れ、熱伝導度が大きくかつ電気絶縁性に優れている物
質である。
[0003] Aluminum nitride itself is a material that is stable up to a very high temperature, has an Hv of about 1400, has excellent wear resistance, high thermal conductivity, and excellent electrical insulation.

【0004】またアルミニウムは、窒素との親和力も強
く、アルミニウムの溶融温度以上では、窒素と容易に結
合して窒化アルミニウムを形成する。この性質を利用し
てアルミニウム等の部材の一部をアルミニウムの溶融点
以上に加熱し、窒素と反応させる方法により窒化アルミ
ニウムをアルミニウム等の表面に形成させる方法(溶融
法)が報告されている(特開昭56−25963)。し
かし、溶融法では、溶融に伴い部材自体の変形があり、
窒化アルミニウム層が形成される表層部は窒化アルミニ
ウムとアルミニウムの混合層であるため、Hvも200
以下と低い。
[0004] Aluminum also has a strong affinity for nitrogen, and at temperatures above the melting temperature of aluminum, easily bonds with nitrogen to form aluminum nitride. A method has been reported in which a part of a member such as aluminum is heated to a temperature higher than the melting point of aluminum by utilizing this property, and aluminum nitride is formed on the surface of aluminum or the like by a method of reacting with nitrogen (melting method) ( JP-A-56-25963). However, in the melting method, there is deformation of the member itself with melting,
Since the surface layer on which the aluminum nitride layer is formed is a mixed layer of aluminum nitride and aluminum, Hv is also 200.
Below and low.

【0005】一方、反応性スパッタリング或いは蒸着法
によってアルミニウム等の表面に窒化アルミニウムを形
成する方法もあるが、該層と母材との結合が機械的結合
または分子間結合であるため密着性に乏しい、また大量
処理が難しくしかも処理コストが高い等という問題があ
った。
On the other hand, there is a method in which aluminum nitride is formed on the surface of aluminum or the like by reactive sputtering or vapor deposition. However, adhesion between the layer and the base material is poor due to mechanical or intermolecular bonding. In addition, there is a problem that mass processing is difficult and the processing cost is high.

【0006】また、大量処理が可能で被処理材を溶融す
ることなく、かつ耐摩耗性に優れた窒化アルミニウム層
を形成できる方法として、従来より鉄系金属材料の窒化
処理に用いられてきたイオン窒化方法の適用が試みられ
たが、前記した試料の表面に形成されたアルミナ層のた
めに困難とされていた。
As a method capable of forming an aluminum nitride layer which can be processed in a large amount, does not melt the material to be processed, and has excellent wear resistance, an ion-implanting method which has been conventionally used for nitriding iron-based metallic materials has been used. Attempts have been made to apply the nitriding method, but it has been difficult because of the alumina layer formed on the surface of the sample.

【0007】本発明者等は、先に、窒化処理の前にアル
ゴンや少量の窒素等が添加された希ガスとの混合ガスに
よるプレスパッタリングを行なうことにより、アルミニ
ウム等の表面に高硬度で耐摩耗性に優れた窒化アルミニ
ウム層を形成し得るイオン窒化方法を発明し出願(特開
昭60−211061、特願昭63−15045)し
た。この方法によりほとんどのアルミニウム実用合金表
面に窒化アルミニウム層を形成できるようになった。し
かし、窒化アルミニウム層を厚くしようとするとアルミ
ニウム合金母材と窒化アルミニウム層との熱膨張の差
(前者の熱膨張係数は約26×10-6/℃、後者のそれ
は5×10-6/℃)により処理後の冷却過程で層が剥離
しやすくなり、厚い窒化アルミニウム層を得るのが難し
かった。また、剥離をさせずに窒化層を厚くしようとす
ると、より低い温度で長時間窒化処理をしなければなら
なかった。
The inventors of the present invention have performed a pre-sputtering process using a mixed gas with a rare gas to which argon, a small amount of nitrogen or the like has been added before the nitriding treatment, so that the surface of aluminum or the like has high hardness and high resistance. The inventors of the present invention invented an ion nitriding method capable of forming an aluminum nitride layer having excellent wear properties (Japanese Patent Application Laid-Open No. Sho 60-211061 and Japanese Patent Application No. 63-15045). By this method, it has become possible to form an aluminum nitride layer on most aluminum practical alloy surfaces. However, if an attempt is made to increase the thickness of the aluminum nitride layer, the difference in thermal expansion between the aluminum alloy base material and the aluminum nitride layer (the thermal expansion coefficient of the former is about 26 × 10 −6 / ° C., and that of the latter is 5 × 10 −6 / ° C.) ), The layer was easily peeled off during the cooling process after the treatment, and it was difficult to obtain a thick aluminum nitride layer. In addition, if an attempt is made to increase the thickness of the nitrided layer without peeling, it has been necessary to perform the nitriding treatment at a lower temperature for a long time.

【0008】また、アルミニウム等のようにそれ自体の
硬さが低い部材の耐摩耗性をより効果的に向上させるに
は、表面硬化層をより厚くすることが重要であり、その
ためより厚い窒化層を密着性よくアルミニウム等の表面
に形成させることが実用上重要となる。特に高荷重下
で、長時間使用される場合には、一層重要となる。
In order to more effectively improve the wear resistance of a member having a low hardness such as aluminum, it is important to make the surface hardened layer thicker. It is practically important to form a film on a surface of aluminum or the like with good adhesion. In particular, when used under a high load for a long time, it becomes even more important.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明者等は
上述の如き従来技術の問題点を解決すべく、鋭意研究し
各種の系統的実験を重ねた結果、本発明を成すに至った
のである。すなわち、本発明は厚い窒化アルミニウム層
が形成されてもアルミニウム合金母材との密着性に優
れ、層の剥離が発生しない表面処理部材およびその製造
方法を提供することを目的とする。
The inventors of the present invention have conducted intensive research and conducted various systematic experiments in order to solve the above-mentioned problems of the prior art. As a result, the present inventors have achieved the present invention. is there. That is, an object of the present invention is to provide a surface-treated member which is excellent in adhesion to an aluminum alloy base material even when a thick aluminum nitride layer is formed and does not cause peeling of the layer, and a method of manufacturing the same.

【0010】[0010]

【課題を解決するための手段】(第1発明の構成)第1
発明(請求項1に記載の発明)の表面処理部材はアルミ
ニウム中における拡散係数がアルミニウムの自己拡散係
数よりも小さな4B、5B、7B、8族の元素を1種以
上含むアルミニウム合金母材と、その表面に形成した窒
化アルミニウム層と、前記母材と窒化アルミニウム層と
の境界近傍に多数分散形成した前記元素の金属間化合物
の微粒子とからなる。
Means for Solving the Problems (Configuration of the First Invention) First
The surface-treated member of the invention (the invention according to claim 1) includes an aluminum alloy base material containing at least one element of group 4B, 5B, 7B, or 8 whose diffusion coefficient in aluminum is smaller than the self-diffusion coefficient of aluminum; An aluminum nitride layer formed on the surface thereof and fine particles of the intermetallic compound of the element dispersed and formed in a large number in the vicinity of a boundary between the base material and the aluminum nitride layer.

【0011】(第2発明の構成)第2発明(請求項2に
記載の発明)の表面処理部材の製造方法は、アルミニウ
ム中における拡散係数がアルミニウムの自己拡散係数よ
りも小さな4B、5B、7B、8族の元素を1種以上含
むアルミニウム合金母材に窒化処理を施し、前記母材表
面に窒化アルミニウム層を形成する際に、前記母材と窒
化アルミニウム層との境界近傍に窒化処理によって前記
元素の金属間化合物の微粒子を多数分散形成するもので
ある。
(Structure of the Second Invention) In the method of manufacturing a surface-treated member according to the second invention (the second invention), the diffusion coefficient in aluminum is smaller than that of aluminum by 4B, 5B, 7B. Performing a nitriding treatment on an aluminum alloy base material containing at least one group 8 element to form an aluminum nitride layer on the surface of the base material, by nitriding near a boundary between the base material and the aluminum nitride layer; A large number of fine particles of an intermetallic compound of an element are dispersed and formed.

【0012】[0012]

【作用】(第1発明の作用)本第1発明に係る表面処理
部材はアルミニウム合金母材と、窒化アルミニウム層と
の境界近傍に前記アルミニウム合金に添加された合金元
素の金属間化合物の微粒子が多数分散している点に特徴
を有し、該金属間化合物が窒化アルミニウム層の密着性
を著しく向上させるものである。その理由は今のところ
明確ではないが微細に析出した金属間化合物が多数分散
して存在する窒化アルミニウム層と母材との境界近傍は
入り組んだ状態となりアンカー(投錯効果)によって、
アルミニウム窒化層の密着性が高まるものと推定され
る。
The surface-treated member according to the first aspect of the present invention has fine particles of an intermetallic compound of an alloy element added to the aluminum alloy near the boundary between the aluminum alloy base material and the aluminum nitride layer. It is characterized in that it is dispersed in a large number, and the intermetallic compound remarkably improves the adhesion of the aluminum nitride layer. The reason is not clear at present, but the vicinity of the boundary between the aluminum nitride layer and the base material, in which a large number of finely precipitated intermetallic compounds are dispersed, becomes intricate, and the anchor (interpolation effect)
It is estimated that the adhesion of the aluminum nitride layer is enhanced.

【0013】(第2発明の作用)本第2発明に係る表面
処理部材の製造方法はアルミニウム合金母材に添加され
ている合金元素の金属間化合物の微粒子を窒化処理によ
って前記母材と窒化アルミニウム層との境界近傍に分散
析出させる点に特徴を有する。
(Function of the Second Invention) In the method for manufacturing a surface-treated member according to the second invention, fine particles of an intermetallic compound of an alloy element added to an aluminum alloy base material are nitrided to form the base material and aluminum nitride. It is characterized in that it is dispersed and deposited near the boundary with the layer.

【0014】アルミニウム中の拡散係数がアルミニウム
の自己拡散係数よりも小さな4B、5B、7B、8族に
属する元素は、α相中の固溶限が2重量%以下と比較的
小さな値を有する。したがって、窒化処理前にα相中に
固溶していた前記元素は窒化の過程で窒化アルミニウム
層の形成に伴って該層直下の母材中のアルミニウムの消
耗が起きると、窒化アルミニウム中への固溶量が極めて
少ないためその付近でこれら元素の組成が相対的に高ま
るが、これらの元素はアルミニウム中の拡散速度がアル
ミニウムの自己拡散速度よりも遅いため母材中への拡散
量が少ないので、窒化アルミニウム層と母材との境界近
傍に濃縮化される。さらに前記元素のα相中の固溶限が
2重量%以下と小さいので容易にこの固溶限を越えるま
で濃縮化が進み前記元素が境界近傍に金属間化合物とし
て微細に析出することになる。また、窒化処理の過程で
析出してきた金属間化合物は析出成長する過程で母材で
あるアルミニウム合金ならびに窒化アルミニウムとある
程度金属的結合関係を有していると考えられ、このこと
も密着性向上の一因と推定される。
Elements belonging to Groups 4B, 5B, 7B and 8 whose diffusion coefficient in aluminum is smaller than the self-diffusion coefficient of aluminum have a relatively small solid solubility limit in the α phase of 2% by weight or less. Therefore, when the element which was dissolved in the α phase before the nitriding treatment was consumed in the base material immediately below the aluminum nitride layer during the nitridation process along with the formation of the aluminum nitride layer, the element was converted into the aluminum nitride. Since the amount of solid solution is extremely small, the composition of these elements relatively increases in the vicinity, but since the diffusion rate of these elements in aluminum is slower than the self-diffusion rate of aluminum, the amount of diffusion into the base material is small. Is concentrated near the boundary between the aluminum nitride layer and the base material. Furthermore, since the solid solubility limit of the element in the α phase is as small as 2% by weight or less, the concentration easily proceeds until the solid solubility limit is exceeded, and the element is finely precipitated as an intermetallic compound near the boundary. In addition, it is considered that the intermetallic compound precipitated in the process of nitriding has a certain degree of metallic bonding with the aluminum alloy and aluminum nitride as the base material during the process of deposition and growth, which also improves the adhesion. Presumed to be a factor.

【0015】[0015]

【発明の効果】【The invention's effect】

(第1発明の効果)本第1発明の表面処理部材は、アル
ミニウム合金母材と窒化アルミニウム層との境界近傍に
金属間化合物の微粒子が多数分散形成されているので窒
化アルミニウム層のアルミニウム合金母材への密着性が
極めて優れており窒化アルミニウム層の厚さが5μm以
上と厚い場合でも剥離することがない。
(Effect of the First Invention) In the surface treatment member of the first invention, since a large number of fine particles of an intermetallic compound are dispersedly formed near the boundary between the aluminum alloy base material and the aluminum nitride layer, the aluminum alloy base of the aluminum nitride layer is formed. The adhesion to the material is extremely excellent, and the aluminum nitride layer is not peeled off even when the thickness is 5 μm or more.

【0016】該窒化アルミニウム層はビッカー硬度が1
000〜1600と高いので優れた耐摩耗性を有するが
厚い層を有する場合には、特に高荷重下での耐摩耗性が
向上する。
The aluminum nitride layer has a Vicker hardness of 1
Although it has excellent wear resistance since it is as high as 000 to 1600, when it has a thick layer, the wear resistance particularly under a high load is improved.

【0017】(第2発明の効果)本第2発明の表面処理
部材の製造方法は金属間化合物の微粒子を窒化処理によ
って形成させるので、前記微粒子の分散状態等の制御が
容易で窒化アルミニウム層の密着性をより向上させるこ
とができる。
(Effect of the Second Invention) In the method for producing a surface-treated member according to the second invention, fine particles of an intermetallic compound are formed by nitriding treatment, so that the dispersion state of the fine particles can be easily controlled and the aluminum nitride layer can be easily formed. Adhesion can be further improved.

【0018】[0018]

【実施例】【Example】

(第1発明の具体例)第1発明をさらに具体化した具体
例について説明する。
(Specific Example of First Invention) A specific example that further embodies the first invention will be described.

【0019】本具体例に係る表面処理部材で用いるアル
ミニウム合金は合金元素として4B、5B、7B、8族
に属する元素で、アルミニウム中の拡散係数がアルミニ
ウムの自己拡散係数よりも小さく、かつα相中の固溶限
が2重量%以下のチタン、バナジウム、マンガン、ニッ
ケル、鉄等の元素を用いる。これらの元素は金属間化合
物の主構成元素である。前記合金元素の添加量は、0.
01〜5重量%が望ましく、0.01%以下だと金属間
化合物の量が少なくなって、密着性向上効果が不十分と
なり、逆に5%を越えても密着性が良好であるがアルミ
ニウム合金母材の靱性が損なわれ、かつ、合金製造の際
に鋳造性を害することになるので好ましくない。アルミ
ニウム合金は前記元素を1種以上含有していれば窒化ア
ルミニウム層の密着性が向上するので、さらにこれら合
金元素以外にマグネシウム、亜鉛、銅、珪素等の元素が
少量添加されていてもよい。
The aluminum alloy used in the surface treatment member according to this embodiment is an element belonging to Group 4B, 5B, 7B or 8 as an alloy element. The aluminum alloy has a diffusion coefficient smaller than the self-diffusion coefficient of aluminum and an α phase. Elements such as titanium, vanadium, manganese, nickel, iron and the like having a solid solubility limit of 2% by weight or less are used. These elements are the main constituent elements of the intermetallic compound. The amount of the alloying element added is set to 0.1.
The content is preferably 0.01 to 5% by weight, and if it is 0.01% or less, the amount of the intermetallic compound becomes small, so that the effect of improving the adhesion becomes insufficient. It is not preferable because the toughness of the alloy base material is impaired and the castability is impaired during the production of the alloy. If the aluminum alloy contains one or more of the above-mentioned elements, the adhesion of the aluminum nitride layer is improved. Therefore, in addition to these alloy elements, a small amount of an element such as magnesium, zinc, copper, or silicon may be added.

【0020】窒化アルミニウム層と部材との境界近傍に
形成されている金属間化合物はチタン(Ti)ではTi
Al3 、ジルコニウム(Zr)、ハフニウム(Hf)、
トリウム(Th)、バナジウム(V)、ニオビウム(N
b)、タンタル(Ta)、マンガン(Mn)、ニッケル
(Ni)、鉄(Fe)の場合は夫々ZrAl3 、HfA
3 、ThAl3 、VAl6 、NbAl3 、TaAl3
であり前記元素が2種以上含有される場合ならびにAl
合金中に他の元素が添加されている場合は、これらの元
素が前記金属間化合物に固溶し3元以上の金属間化合物
の場合もある。金属間化合物の形状は断面が円形でも凹
凸を有していてもよく特に制限はない。その大きさは平
均径で0.1〜20μmが望ましく、この範囲外である
とアンカー効果が小さくなる。粒同士の間隔は前記した
平均径程度が望ましく、0.1μmより小さいとアルミ
ニウムの拡散が阻害されて、窒化反応が抑制され、20
μmより大きいとアンカー効果が小さくなるため好まし
くない。前記合金元素のうちTiおよびVは濃縮化傾向
が特に強く析出する金属間化合物の量が多いため、密着
性の向上に特に優れている。
The intermetallic compound formed near the boundary between the aluminum nitride layer and the member is Ti (Ti).
Al 3 , zirconium (Zr), hafnium (Hf),
Thorium (Th), vanadium (V), niobium (N
b), tantalum (Ta), manganese (Mn), nickel (Ni), and iron (Fe) for ZrAl 3 and HfA, respectively.
l 3 , ThAl 3 , VAl 6 , NbAl 3 , TaAl 3
And when two or more of the above elements are contained,
When other elements are added to the alloy, these elements may form a solid solution in the intermetallic compound and may be a ternary or more intermetallic compound. The shape of the intermetallic compound may have a circular cross section or may have irregularities, and is not particularly limited. Its size is preferably 0.1 to 20 μm in average diameter, and if it is out of this range, the anchor effect will be small. The distance between the grains is desirably about the above-mentioned average diameter. If the distance is smaller than 0.1 μm, the diffusion of aluminum is inhibited, and the nitriding reaction is suppressed.
If it is larger than μm, the anchor effect becomes small, which is not preferable. Among the alloying elements, Ti and V are particularly excellent in improving adhesion since the amount of the intermetallic compound which precipitates particularly strongly tends to be large.

【0021】アルミニウム合金母材の表面に形成されて
いる窒化アルミニウム層はウルツ鉱型の窒化アルミニウ
ム(AlN)であり、その組成はアルミニウム量が40
〜60原子%、窒素量が40〜50原子%である。この
アルミニウムの代わりにマグネシウムやジルコニウム、
窒素の代わりに酸素や炭素が一部置き変わっていてもよ
い。層の厚さは用途によって異なり特に限定はしない。
ただし、荷重下において耐摩耗性が要求される場合に
は、5μm以上が望ましく、その剥離防止のために本具
体例の如く、アルミニウム合金中の合金元素の選定なら
びに窒化アルミニウム層と母材との境界近傍に微細に分
散した金属間化合物の存在が必要になるのである。
The aluminum nitride layer formed on the surface of the aluminum alloy base material is wurtzite type aluminum nitride (AlN).
6060 at% and the nitrogen content is 404050 at%. Instead of aluminum, magnesium or zirconium,
Oxygen or carbon may be partially substituted for nitrogen. The thickness of the layer depends on the application and is not particularly limited.
However, when abrasion resistance is required under a load, the thickness is desirably 5 μm or more. In order to prevent the peeling, the selection of alloy elements in the aluminum alloy and the connection between the aluminum nitride layer and the base material are performed as in this example. This requires the presence of finely dispersed intermetallic compounds near the boundaries.

【0022】(第2発明の具体例)第2発明をさらに具
体化した具体例について説明する。
(Specific Example of Second Invention) A specific example which further embodies the second invention will be described.

【0023】本具体例の表面処理部材の製造方法で使用
する窒化処理方法には、特に限定はないが、イオン窒化
処理が望ましい。イオン窒化処理は例えば図1に示す装
置を用い、以下のような操作によって行なう。真空容器
内に設けた基台等に試料であるアルミニウム合金部材を
配設し、該容器内を真空ポンプで減圧した後、試料をグ
ロー放電等によって昇温する。昇温後、イオン窒化処理
の前処理として試料表面に対してプレスパッタリングを
施す。該プレスパッタリングは窒化アルミニウム層形成
部分の表面を該層が生成しやすい表面性状となるように
粗面化するもので、酸素や窒素等の粗面化促進ガスを5
〜2000ppm含有するアルゴンやヘリウム等の希ガ
ス中でグロー放電やイオンビームスパッタリングによっ
て行なうものである。プレスパッタリングにおいて真空
容器内の圧力は10-3〜5Torr、処理温度は550
℃以下とするのが望ましい。また、イオン窒化処理は真
空容器内に窒素ガスまたは窒素含有ガスを導入し、グロ
ー放電によって所定の時間行い、その際の真空容器内の
圧力は10-1〜20Torr、処理温度は300〜60
0℃の範囲で行なうのが望ましい。
The nitriding method used in the method for manufacturing a surface-treated member of this embodiment is not particularly limited, but ion nitriding is preferred. The ion nitriding treatment is performed by the following operation using, for example, the apparatus shown in FIG. An aluminum alloy member, which is a sample, is provided on a base or the like provided in a vacuum vessel. After the inside of the vessel is depressurized by a vacuum pump, the temperature of the sample is raised by glow discharge or the like. After the temperature is raised, pre-sputtering is performed on the sample surface as a pretreatment for the ion nitriding treatment. The pre-sputtering is to roughen the surface of the aluminum nitride layer forming portion so as to have a surface property in which the layer is easily formed.
Glow discharge or ion beam sputtering is performed in a rare gas such as argon or helium containing up to 2000 ppm. In pre-sputtering, the pressure in the vacuum vessel is 10 −3 to 5 Torr, and the processing temperature is 550.
It is desirable that the temperature be lower than or equal to ° C. In addition, the ion nitriding treatment is performed by introducing a nitrogen gas or a nitrogen-containing gas into a vacuum vessel for a predetermined time by glow discharge. At that time, the pressure in the vacuum vessel is 10 -1 to 20 Torr, and the treatment temperature is 300 to 60.
It is desirable to carry out in the range of 0 ° C.

【0024】(実施例1)本実施例で用いた試料は純A
lに合金元素としてTi、V、Mn、Fe、Niを表1
に示す組成になるように添加し、溶解鋳造し作製した2
元合金(直径19mmφ、長さ10mm)である。ま
た、同様にして、純AlにCr、Mg、Zn、Si、C
uを合金化した2元合金を作製し、比較のための試料と
した。比較試料として純Alならびに実用合金であるJ
IS 6061をも使用した。
(Example 1) The sample used in this example was pure A
l, Ti, V, Mn, Fe, Ni as alloying elements in Table 1
2 prepared by melting and casting to add the composition shown in
It is an original alloy (diameter 19 mmφ, length 10 mm). Similarly, Cr, Mg, Zn, Si, C
A binary alloy prepared by alloying u was prepared and used as a sample for comparison. As a comparative sample, pure Al and practical alloy J
IS 6061 was also used.

【0025】[0025]

【表1】 [Table 1]

【0026】本実施例においては、図1に概略図を示す
イオン窒化装置を用いた。この装置は、ステンレス製の
密閉容器1と、この密閉容器1の中央に設けられた基台
2とを主な構成要素とする。この密閉容器1は、蓋体1
aと反応炉本体1bとからなり、蓋体1aには、窓11
が設けられ、また反応炉本体1bの内部側周には予備加
熱用ヒータ12、その内側にステンレス製陽極板13が
設けられている。更に、この密閉容器1の底部にはガス
導入管14およびガス導出管15、基台2の支持柱21
の内部に冷却水を送る冷却水管16および水銀マノメー
タ圧力計17が取り付けられている。
In this embodiment, an ion nitriding apparatus whose schematic diagram is shown in FIG. 1 was used. This apparatus has a stainless steel sealed container 1 and a base 2 provided at the center of the sealed container 1 as main components. This closed container 1 is a lid 1
a and a reactor main body 1b, and a lid 11a has a window 11
The preheating heater 12 is provided on the inner peripheral side of the reaction furnace main body 1b, and a stainless steel anode plate 13 is provided inside the heater. Further, a gas inlet pipe 14 and a gas outlet pipe 15 are provided at the bottom of
A cooling water pipe 16 for sending cooling water and a mercury manometer pressure gauge 17 are attached to the inside.

【0027】ガス導入管14は、コントロールバルブを
介して高純度窒素ガスボンベ、高純度水素ガスボンベ
(共に図示せず)に連結されている。また、ガス導出管
15には真空ポンプ3が接続されている。
The gas introduction pipe 14 is connected to a high-purity nitrogen gas cylinder and a high-purity hydrogen gas cylinder (both not shown) via a control valve. The gas pump 15 is connected to the vacuum pump 3.

【0028】そして、陽極13と陰極である基台2の間
に直流電源回路4が形成されている。この直流電源回路
4は、試料温度を測定する2色温度計41からの入力に
より電流制御され、試料温度を一定範囲に保つ働きをす
る。
A DC power supply circuit 4 is formed between the anode 13 and the base 2 serving as a cathode. The DC power supply circuit 4 is current-controlled by an input from a two-color thermometer 41 for measuring the sample temperature, and functions to keep the sample temperature within a certain range.

【0029】本装置でのイオン窒化は、先ず基台2の上
に前記試料5を配置し、密閉容器を密閉した後、真空ポ
ンプ3により残留ガス圧を10-3Torrになるまで減
圧した。更に真空引きしながら予備加熱ヒータ12で、
炉壁を30分間加熱した。加熱後、直ちにアルゴンガス
を4Torrまで入れ、ガスを水素ガスに置換し、更に
10-3Torrまで減圧した。このようにアルゴンガス
による置換を2〜3回繰り返し、炉内の残留酸素ガスを
可能な限り取り除いた。
In the ion nitriding in this apparatus, first, the sample 5 was placed on the base 2 and the sealed container was closed. Then, the pressure of the residual gas was reduced by the vacuum pump 3 until the residual gas pressure became 10 -3 Torr. Further, with the preliminary heater 12 while evacuating,
The furnace wall was heated for 30 minutes. Immediately after the heating, argon gas was introduced to 4 Torr, the gas was replaced with hydrogen gas, and the pressure was further reduced to 10 −3 Torr. In this manner, the replacement with the argon gas was repeated two or three times to remove the residual oxygen gas in the furnace as much as possible.

【0030】次に、10-3Torrまで減圧した炉内に
水素ガスを流し、同時に真空引きしながら炉内圧力を
1.3Torrに保つように調整した。そして、両極1
3と2の間に数百ボルトの直流電圧を印加し、放電を開
始し、イオン衝撃による昇温を行なった。試料表面が5
00℃になったところでアルゴンガスを止め、その後、
100ppmの窒素ガスを添加したアルゴンガスを導入
した。このアルゴン窒素混合ガス(以下混合ガスとす
る)の圧力が0.7Torrになるように調整し、該圧
力を0.7Torrに保った状態でさらに放電を1時間
持続させた。その後、混合ガスの導入を止め、次いで窒
素ガスを導入した。炉内の窒素ガスのガス圧が1.4T
orrになるように窒素ガスの流量を調整し、試料の温
度を500℃にした後、その温度を保ちながら放置しイ
オン窒化を所定時間行なった。
Next, hydrogen gas was flowed into the furnace at a reduced pressure of 10 −3 Torr, and the furnace pressure was adjusted to 1.3 Torr while simultaneously evacuating. And both poles 1
A DC voltage of several hundred volts was applied between 3 and 2, discharge was started, and the temperature was increased by ion bombardment. The sample surface is 5
When the temperature reached 00 ° C, the argon gas was stopped.
Argon gas to which 100 ppm of nitrogen gas was added was introduced. The pressure of the argon-nitrogen mixed gas (hereinafter, referred to as a mixed gas) was adjusted to 0.7 Torr, and the discharge was further continued for 1 hour while maintaining the pressure at 0.7 Torr. Thereafter, the introduction of the mixed gas was stopped, and then nitrogen gas was introduced. Gas pressure of nitrogen gas in furnace is 1.4T
The flow rate of the nitrogen gas was adjusted so as to be orr, the temperature of the sample was set to 500 ° C., and the sample was left standing while maintaining the temperature to perform ion nitriding for a predetermined time.

【0031】イオン窒化処理後、放電を止め、試料を減
圧下で冷却し、炉より取り出した。この一連の操作を繰
り返し、イオン窒化処理時間を2〜20時間と種々変化
させ、すなわち、窒化層の厚さの異なる複数の試料を得
た。得られた試料表面には黒色の層が形成され、X線回
折による物質同定の結果これらの層は、いずれもウルツ
鉱型の窒化アルミニウム(AlN)であることが確認さ
れた。これらの試料のうち長時間処理し、厚い窒化アル
ミニウム層を得ようとしたものには剥離が見られた。外
観上剥離が発生せずに得られた窒化アルミニウム層の最
大厚さ(臨界層厚さ)を表2に示す。
After the ion nitriding treatment, the discharge was stopped, and the sample was cooled under reduced pressure and taken out of the furnace. By repeating this series of operations, the ion nitriding time was variously changed to 2 to 20 hours, that is, a plurality of samples having different nitrided layer thicknesses were obtained. A black layer was formed on the surface of the obtained sample, and as a result of substance identification by X-ray diffraction, it was confirmed that each of these layers was wurtzite-type aluminum nitride (AlN). Among these samples, those treated for a long time to obtain a thick aluminum nitride layer showed peeling. Table 2 shows the maximum thickness (critical layer thickness) of the aluminum nitride layer obtained without occurrence of peeling in appearance.

【0032】合金元素としてTi、V、Mn、Fe、N
iを用いた実施例試料1〜7は厚い臨界層厚さを示し
た。特にTiおよびVは純Alの3倍以上の厚い窒化ア
ルミニウム層が得られている。Al−TiおよびAl−
V2元合金で形成された窒化アルミニウム層の断面をE
PMAによって線分析を行なった結果を夫々図2および
図3に示す。両合金ともイオン窒化の過程で窒化アルミ
ニウム層Aと母材Cとの境界近傍BにTi、Vの濃縮化
が見られ、その最大濃度は夫々0.7、0.6重量%
と、いずれも両合金の固溶限である0.55、0.2重
量%を越えたものであった。また各合金の窒化アルミニ
ウム層と母材との境界近傍には金属間化合物の微粒子が
多数分散して形成されているのが見られた。Fe−Mn
2元合金の場合も境界近傍にMnの濃縮化が認められた
が、境界近傍での金属間化合物の析出量がTi、Vの場
合に比べて少ないので層の密着性がやや劣っている。
Ti, V, Mn, Fe, N as alloying elements
Example samples 1 to 7 using i showed a large critical layer thickness. In particular, for Ti and V, an aluminum nitride layer three times or more thicker than pure Al is obtained. Al-Ti and Al-
The cross section of the aluminum nitride layer formed of the V
The results of line analysis performed by PMA are shown in FIGS. 2 and 3, respectively. In both alloys, Ti and V were concentrated in the vicinity B of the boundary between the aluminum nitride layer A and the base material C in the process of ion nitriding, and the maximum concentrations were 0.7 and 0.6% by weight, respectively.
Both exceeded the solid solubility limits of both alloys, 0.55 and 0.2% by weight. In addition, it was observed that a large number of fine particles of an intermetallic compound were dispersed and formed near the boundary between the aluminum nitride layer of each alloy and the base material. Fe-Mn
In the case of the binary alloy, the concentration of Mn was also observed near the boundary, but the adhesion of the layer was slightly inferior since the precipitation amount of the intermetallic compound near the boundary was smaller than in the case of Ti and V.

【0033】[0033]

【表2】 [Table 2]

【0034】また、密着性に寄与するのは窒化処理にお
いて析出形成された金属間化合物であるので、合金元素
としてFe、Niを用いた場合はα相中への固溶量が
0.01重量%以下と少なく、イオン窒化処理前に金属
間化合物がかなり存在していてイオン窒化処理によって
形成される金属間化合物の量がそれほど多くないため、
Ti、Vのような密着性の著しい改善効果は得られてい
ない。
Further, since the intermetallic compound precipitated and formed in the nitriding treatment contributes to the adhesion, when Fe or Ni is used as an alloying element, the solid solution amount in the α phase is 0.01% by weight. % Or less, the intermetallic compound is considerably present before the ion nitriding treatment, and the amount of the intermetallic compound formed by the ion nitriding treatment is not so large.
No remarkable effect of improving adhesion like Ti and V has been obtained.

【0035】Cr、Mg、Zn、Si、Cuを添加した
2元合金(比較試料1〜5)および実用合金JIS 6
061(比較試料7)は窒化アルミニウムの臨界層厚さ
が4〜5μmと純Alとほぼ同じで密着性改善効果はほ
とんど認められない。これらの合金元素はAl中の拡散
速度がAlの自己拡散速度より早かったり、α相中での
固溶限が大きかったりして、これらの元素を合金化した
前記2元合金等は窒化アルミニウム層と母材との境界近
傍に金属間化合物がほとんど形成されないためである。
Al−Cu2元合金で形成された窒化アルミニウム層の
断面をEPMAによって線分析した結果を図4に示す。
Cuの濃縮化がほとんど起こっていないことが分かる。
A binary alloy containing Cr, Mg, Zn, Si, and Cu (Comparative Samples 1 to 5) and a practical alloy JIS 6
No. 061 (Comparative Sample 7) has a critical layer thickness of aluminum nitride of 4 to 5 μm, which is almost the same as pure Al, and shows almost no effect of improving adhesion. These alloy elements have a higher diffusion rate in Al than the self-diffusion rate of Al, or have a higher solid solubility limit in the α phase, and the binary alloy or the like obtained by alloying these elements is an aluminum nitride layer. This is because almost no intermetallic compound is formed near the boundary between the metal and the base material.
FIG. 4 shows the result of linear analysis of the cross section of the aluminum nitride layer formed of the Al—Cu binary alloy by EPMA.
It can be seen that Cu concentration hardly occurred.

【0036】また、図5〜7は試料としてAl−V、純
Al、Al−Cuを用いた場合に形成された窒化アルミ
ニウム層が剥離した部分すなわち、層と母材との境界近
傍の走査電子顕微鏡(SEM)による金属組織を示した
ものである。密着性の優れているAl−Vでは純Al、
Al−Cuに比較して表面がアンカー効果を示すと推定
される金属間化合物による微細な凹凸が形成されている
のが分かる。
FIGS. 5 to 7 show a scanning electron beam at a portion where the aluminum nitride layer formed when Al-V, pure Al, or Al-Cu is peeled off, that is, near the boundary between the layer and the base material. 1 shows a metal structure by a microscope (SEM). Pure Al for Al-V, which has excellent adhesion,
It can be seen that fine irregularities are formed by an intermetallic compound whose surface is presumed to exhibit an anchor effect as compared with Al-Cu.

【0037】(実施例2)本実施例で用いた試料は純A
lに合金元素としてTi、V、Mgを表3に示す組成と
なるように添加し、実施例1と同様にして作製した2
元、3元合金である。これらの試料に実施例1と同様の
イオン窒化処理を行い、各試料における窒化アルミニウ
ム層の臨界層厚さを求め、その結果を表4に示す。3元
系のAl−Mg−Ti、Al−Mg−V合金の方が2元
系のAl−Ti、Al−V合金より臨界層厚さが厚くな
っている。これはMgが窒化速度を大きくする働きがあ
り、そのため窒化過程で窒化アルミニウム層と母材との
境界近傍でのTiとVの濃縮化がより促進されたためと
推定される。
Example 2 The sample used in this example was pure A
1 was prepared in the same manner as in Example 1 except that Ti, V, and Mg were added as alloying elements to l so that the composition shown in Table 3 was obtained.
Original, ternary alloy. These samples were subjected to the same ion nitriding treatment as in Example 1, and the critical layer thickness of the aluminum nitride layer in each sample was determined. The results are shown in Table 4. The critical layer thickness of the ternary Al-Mg-Ti, Al-Mg-V alloy is larger than that of the binary Al-Ti, Al-V alloy. This is presumed to be because Mg has a function of increasing the nitridation rate, and thus the enrichment of Ti and V near the boundary between the aluminum nitride layer and the base material was further promoted during the nitridation process.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るイオン窒化装置の概略図である。FIG. 1 is a schematic view of an ion nitriding apparatus according to the present invention.

【図2】実施例1でAl−Ti2元合金に形成された窒
化アルミニウム層断面のEPMAによる線分析結果を示
した図である。
FIG. 2 is a diagram showing a result of line analysis by EPMA of a cross section of an aluminum nitride layer formed on an Al—Ti binary alloy in Example 1.

【図3】実施例1でAl−V2元合金に形成された窒化
アルミニウム層断面のEPMAによる線分析結果を示し
た図である。
FIG. 3 is a diagram showing a line analysis result by EPMA of a cross section of the aluminum nitride layer formed on the Al-V binary alloy in Example 1.

【図4】実施例1でAl−Cu2元合金に形成された窒
化アルミニウム層断面のEPMAによる線分析結果を示
した図である。
FIG. 4 is a diagram showing a result of line analysis by EPMA of a cross section of the aluminum nitride layer formed on the Al—Cu binary alloy in Example 1.

【図5】実施例1でイオン窒化したAl−V2元合金に
おける窒化アルミニウム層と母材境界近傍の走査電子顕
微鏡による金属組織を示した図である。
FIG. 5 is a diagram showing a metallographic structure of the Al—V binary alloy ion-nitrided in Example 1 near the boundary between the aluminum nitride layer and the base material by a scanning electron microscope.

【図6】実施例1でイオン窒化した純Alにおける窒化
アルミニウム層と母材境界近傍の走査電子顕微鏡による
金属組織を示した図である。
FIG. 6 is a diagram showing a metal structure of a pure Al ionized in Example 1 in the vicinity of a boundary between an aluminum nitride layer and a base material by a scanning electron microscope.

【図7】実施例1でイオン窒化したAl−Cu2元合金
における窒化アルミニウム層と母材境界近傍の走査電子
顕微鏡による金属組織を示した図である。
FIG. 7 is a diagram showing the metal structure of the Al—Cu binary alloy ion-nitrided in Example 1 near the boundary between the aluminum nitride layer and the base material, which is observed by a scanning electron microscope.

【符号の説明】[Explanation of symbols]

1 密閉容器 2 基台 3 真空ポンプ 4 電源回路 5 試料 A 窒化アルミニウム層 B 境界近傍 C 母材 DESCRIPTION OF SYMBOLS 1 Closed container 2 Base 3 Vacuum pump 4 Power supply circuit 5 Sample A Aluminum nitride layer B Near boundary C Base material

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 8/36 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C23C 8/36

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 アルミニウム中における拡散係数がアル
ミニウムの自己拡散係数よりも小さな4B、5B、7
B、8族の元素を1種以上含むアルミニウム合金母材
と、その表面に形成した窒化アルミニウム層と、前記母
材と窒化アルミニウム層との境界近傍に多数分散形成し
た前記元素の金属間化合物の微粒子とからなることを特
徴とする表面処理部材。
1. A method according to claim 1, wherein the diffusion coefficient in aluminum is smaller than the self-diffusion coefficient of aluminum.
B, an aluminum alloy base material containing at least one group 8 element, an aluminum nitride layer formed on the surface thereof, and an intermetallic compound of the element dispersed and formed in the vicinity of a boundary between the base material and the aluminum nitride layer. A surface treatment member comprising fine particles.
【請求項2】 アルミニウム中における拡散係数がアル
ミニウムの自己拡散係数よりも小さな4B、5B、7
B、8族の元素を1種以上含むアルミニウム合金母材に
窒化処理を施し、前記母材表面に窒化アルミニウム層を
形成する際に、前記母材と窒化アルミニウム層との境界
近傍に窒化処理によって前記元素の金属間化合物の微粒
子を多数分散形成することを特徴とする表面処理部材の
製造方法。
2. 4B, 5B, 7 wherein the diffusion coefficient in aluminum is smaller than the self-diffusion coefficient of aluminum.
B, an aluminum alloy base material containing at least one group 8 element is subjected to nitriding treatment, and when an aluminum nitride layer is formed on the surface of the base material, nitriding treatment is performed near the boundary between the base material and the aluminum nitride layer by nitriding treatment. A method for producing a surface-treated member, wherein a large number of fine particles of the intermetallic compound of the element are dispersed and formed.
JP3140835A 1991-05-15 1991-05-15 Surface treatment member and method of manufacturing the same Expired - Fee Related JP3009503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3140835A JP3009503B2 (en) 1991-05-15 1991-05-15 Surface treatment member and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3140835A JP3009503B2 (en) 1991-05-15 1991-05-15 Surface treatment member and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04337062A JPH04337062A (en) 1992-11-25
JP3009503B2 true JP3009503B2 (en) 2000-02-14

Family

ID=15277824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3140835A Expired - Fee Related JP3009503B2 (en) 1991-05-15 1991-05-15 Surface treatment member and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3009503B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094524C (en) * 1999-12-24 2002-11-20 中国科学院上海冶金研究所 Process for growing piezoelectric film of aluminium nitride on substrate of high-sound-velocity material
JP4649419B2 (en) * 2007-01-17 2011-03-09 ジヤトコ株式会社 Surface treatment method of aluminum material
JP5172888B2 (en) * 2010-04-12 2013-03-27 ジヤトコ株式会社 Surface treatment method of aluminum material
CN102560369A (en) * 2010-12-30 2012-07-11 鸿富锦精密工业(深圳)有限公司 Shell and manufacturing method thereof

Also Published As

Publication number Publication date
JPH04337062A (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JPH0338339B2 (en)
JPH0147548B2 (en)
US4799977A (en) Graded multiphase oxycarburized and oxycarbonitrided material systems
CA1324928C (en) Corrosion-resistant and heat-resistant aluminum-based alloy thin film and process for producing the same
Makishi et al. Surface hardening of nickel alloys by means of plasma nitriding
JP3009503B2 (en) Surface treatment member and method of manufacturing the same
JP4537957B2 (en) Aluminum material having AlN region on surface and method for producing the same
JPH05331617A (en) Surface treatment for titanium alloy member
JP2599753B2 (en) R-TM-B permanent magnet with improved corrosion resistance and manufacturing method
JP3009527B2 (en) Aluminum material excellent in wear resistance and method for producing the same
JP3005371B2 (en) Surface treatment method for ferritic stainless steel
JPH0693412A (en) Heat resistant ti-based alloy
JP3083292B1 (en) Aluminum diffusion method to steel surface
JP4097074B2 (en) Method for forming chromium nitride film
JP2533411B2 (en) Electrode material and method of manufacturing electrode material
US3558445A (en) Method of producing coatings on hard metal bodies
JPH1187119A (en) Magnet with surface film
EP3561083B1 (en) Gold-colored steel sheet and manufacturing method therefor
JP2022081765A (en) Erosion resistant steel material and method for manufacture thereof
JPH0578817A (en) Ti-al intermetallic compound material excellent in oxidation resistance and its manufacture
JPH0421756A (en) Production of tial intermetallic compound layer
JP2001240955A (en) Aluminum nitride material and its manufacturing method
JP3403521B2 (en) Melting-resistant metal member and method of manufacturing the same
Principe et al. Observations regarding the effects of nitrogen addition to the aluminum-tungsten system by reactive sputter deposition
JPH0696765B2 (en) Surface hardening method of aluminum alloy material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees