JP2001238418A - Reluctance motor - Google Patents

Reluctance motor

Info

Publication number
JP2001238418A
JP2001238418A JP2000049557A JP2000049557A JP2001238418A JP 2001238418 A JP2001238418 A JP 2001238418A JP 2000049557 A JP2000049557 A JP 2000049557A JP 2000049557 A JP2000049557 A JP 2000049557A JP 2001238418 A JP2001238418 A JP 2001238418A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
slit
magnetic
strength
multilayer
magnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000049557A
Other languages
Japanese (ja)
Inventor
Norihiro Achiwa
Satoru Fujimura
Masaya Inoue
Michio Nakamoto
Yoichi Tamiya
道夫 中本
正哉 井上
洋一 田宮
哲 藤村
典弘 阿知和
Original Assignee
Mitsubishi Electric Corp
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotor
    • H02K1/272Inner rotor where the magnetisation axis of the magnets is radial or tangential
    • H02K1/274Inner rotor where the magnetisation axis of the magnets is radial or tangential consisting of a plurality of circumferentially positioned magnets
    • H02K1/2753Inner rotor where the magnetisation axis of the magnets is radial or tangential consisting of a plurality of circumferentially positioned magnets consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core
    • H02K1/2766Magnets embedded in the magnetic core having a flux concentration effect

Abstract

PROBLEM TO BE SOLVED: To solve the problems of a reluctance motor where the strength at a slit bridge part is deficient in a large machine or a high-speed machine, employing a multilayer slit structure for enhancing efficiency and power factor, and that compatibility between centrifugal resistance and efficiency/power factor is difficulty to attain because magnetic leakage path formed, when the outer circumferential part is reinforced in order to ensure centrifugal strength to cause lowering of the efficiency/power factor. SOLUTION: The reluctance motor has a structure where the rotor is made of magnetic steel plates laminated in multilayer slit structure, the strength member having slit shape of different thickness at the slit bridge part is clamped in the laminating direction of magnetic steel plated, and the strength member is provided with a hole at a position, where the slit shape is shared with other magnetic steel plate. When molten metal is die cast, the molten metal penetrates the slit part, and at the same time, an end ring is formed at the shaft end through die casting. Since each magnetic steel plate is supported by solidified end ring and strength member after the molten metal has solidified, a sufficient centrifugal resistance can be ensured, even for a high speed or large-sized rotating machine. Furthermore, it functions as a synchronous induction reluctance motor can be attained, because the molten metal forms axial conductors and the end ring.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、高速回転機や大型機などにおいて耐遠心力強度を確保したリラクタンスモータ、特に誘導同期型のリラクタンスモータの構造に関する。 The present invention relates to the reluctance motor that ensures the 耐遠 centering forces strength in high-speed rotary machines and large machines, in particular to a structure of the induction synchronous reluctance motor.

【0002】 [0002]

【従来の技術】シンクロナスリラクタンスモータは、多相交流で進行波磁界を生じる固定子内で、これに同期して突極型磁路を有する回転子が回転する原理のモータである。 BACKGROUND ART synchronous reluctance motor, in stator produce traveling wave field in polyphase AC, a rotor having a salient pole magnetic path in synchronism with the thereto a motor principle of rotation. その利点は、誘導機に比して2次銅損や、高調波磁界による漂遊負荷損失などが無いために、誘導機と同等以上の効率を確保できる可能性がある点である。 The advantage is that secondary copper loss and compared to the induction machine, because there is no such stray load losses due to harmonics magnetic field, is that it may be possible to ensure the induction motor equal to or higher than efficiency. しかし現実には磁気的な突極方向(以下d軸という)の磁路と非突極方向(以下q軸という)の磁路の双方の磁路を短絡する漏れ磁路があるためにシンクロナスリラクタンスモータの力率や効率は誘導機より低下することが多い。 However synchronous due to the leakage magnetic path in reality for shorting both of the magnetic path of the magnetic path of the magnetic path and the non-salient pole direction of the magnetic salient pole direction (hereinafter referred to as d-axis) (hereinafter referred to as q-axis) reluctance motor of the power factor and efficiency are often lower than the induction machine. これを改善するためには図1に示すような多層スリット構造によって漏れ磁路を極力排除した構造が考えられている。 To improve this is considered a structure that eliminated as much as possible the leakage magnetic path by the multilayer slit structure as shown in FIG. しかしこの多層スリット構造は、スリットで分断された磁性鋼板をスリット両端部の幅の狭いブリッジ部で支えるため遠心力に対して弱く、効率と耐遠心力強度のバランスを両立することが困難であった。 However, this multilayer slit structure vulnerable to centrifugal force for supporting the magnetic steel plates that are divided by a slit in a narrow bridge portion of the width of the slit both ends, it is difficult to achieve both a balance of efficiency and 耐遠 centering forces strength It was. この点を解決する従来技術の例としては、特開平9−1916 Examples of prior art to solve this problem, JP-A-9-1916
18号公報に記載のような形状として、遠心力に強い強度部材を突極磁路を有する磁性鋼板の間に挟み込み、カシメあるいは接着などの方法で突極性を有する磁性鋼板と接合して強度を確保した例がある。 A shape such as described in 18 JP, sandwiched between the magnetic steel sheet having a salient pole magnetic path strong strength members to the centrifugal force, the strength bonded to the magnetic steel sheet having a salient pole by a method such as caulking or adhesion there is an example that was secured.

【0003】また、特開平11−146615号公報に記載のように、軸方向につながった棒状導体をスリットの最外周部に配置して棒状導体により耐遠心力強度を確保しようとした例もある。 [0003] In addition, as disclosed in JP-A-11-146615, there is an example that was to be allocated to 耐遠 centering forces strength by bar-like conductors by arranging the rod-shaped conductors led axially outermost circumferential portion of the slit .

【0004】 [0004]

【発明が解決しようとする課題】前述の特開平9−19 The object of the invention is to be Solved by the above-mentioned JP-A-9-19
1618号公報に記載のように遠心力に強い強度部材を挟み込む場合には、強度部材と磁性鋼板の接合にカシメ部や面接着などを要するために、回転子の組立て加工が複雑になる。 When sandwiching the high strength member in the centrifugal force as described in 1618 discloses, in order to take a caulking portion or surface bonding to the bonding of the strength member and the magnetic steel plates, the assembly process of the rotor becomes complicated.

【0005】また、スリット部の穴が軸方向に貫通しない構造では、スリット部の穴にアルミなどをダイキャストして誘導同期型のリラクタンスモータを得る場合において、軸方向に貫通した穴がなくなるために2次導体をダイキャストできず、誘導同期型のリラクタンスモータへの適用が困難になるという課題がある。 [0005] In the structure in which the hole of the slit portion does not penetrate in the axial direction, in the case where the aluminum or the like into the hole of the slit portion to obtain a reluctance motor of the induction synchronous and die cast, because the hole is eliminated penetrating in the axial direction there is a problem that the secondary conductor can not be die cast, applicable to the induction synchronous reluctance motor becomes difficult.

【0006】また特開平11−146615号公報に記載のように、細穴スリット部のスリット外周部を棒状導体で補強した場合には、棒状導体が長くなると、軸方向中央部で遠心力に対する保持効果が薄れてしまうため、 [0006] As described in JP-A-11-146615, when reinforced slit outer peripheral portion of the small hole slits in the rod-shaped conductor, when the rod-shaped conductors becomes longer, holding against the centrifugal force in the axial direction central portion because the effect would have faded,
積層鋼板の軸方向の積厚さが厚くなると、遠心力によって回転子の棒状導体は太鼓状に膨らんでしまう。 When the axial direction of the lamination thickness of laminated steel plates is increased, rod-shaped conductors of the rotor would bulges barrel shape by centrifugal force. この時に回転子の膨らみによって固定子と擦ってしまうなどの課題ががある。 Issues such as accidentally rubbed and stator by bulging of the rotor at this time is.

【0007】同時に丸棒状の2次導体の2次抵抗は、かご型の誘導機に比して小さくなる傾向がある。 [0007] At the same time the secondary resistance of the secondary conductor of a round rod-like, tend to be small compared to the squirrel-cage induction machine. この場合誘導原理によってすべりを有するモータの最大トルクを発生するすべりは、周知の比例推移則により Sm=X2/R2 ・・・(1) X2:2次側スロット漏れリアクタンス R2:2次側導体等価抵抗 から容易に理解できるように、最大トルクの発生点は高すべり側へ推移してしまい、同期引き入れに必要な加速トルクが低スリップ側で不足してしまう。 Slip which generates the maximum torque of the motor with a slip by this induction principle, Sm by known proportional transition law = X2 / R2 ··· (1) X2: 2-side slot leakage reactance R2: 2-side conductor equivalent as can be readily appreciated from the resistor, generation point of maximum torque will remained to a high sliding side, the acceleration torque required to pull synchronization becomes insufficient at low slip side. したがって、 Therefore,
補強用の棒状導体と2次導体を兼ねた構造とする場合において、モータ適用対象がファンやポンプのような回転数上昇に伴って負荷トルクが増加するモータに適用する場合、同期引き入れ性が確保できず、突極性を有することによる非同期トルクによって振動し加速しなくなる場合が発生しうるという課題もある。 In the case of a doubling of the rod-shaped conductor and secondary conductor of the reinforcing structure, when the motor Applies applies to a motor load torque increases with the rotation speed increase, such as fans and pumps, synchronization pull resistance ensured can not, there is also a problem that ceasing to accelerate the vibration may be generated by the asynchronous torque by having saliency.

【0008】本発明の目的は、リラクタンスモータと耐遠心力性能を両立した回転子を安価に得ることにある。 An object of the present invention is to provide an inexpensive rotor having both reluctance motor and 耐遠 centrifugal force performance.
また、補強用部材を兼ねた2次導体としてアルミダイキャストを使った場合においては、商用周波数でも誘導起動により高いトルクで加速し、商用周波数に同期が可能であって、引き入れ後も高い効率を有する誘導同期型リラクタンスモータを得ることにある。 Further, in the case of using the aluminum die-casting as a secondary conductor which also serves as a reinforcing member is accelerated with high torque by induction started at a commercial frequency, a possible synchronization to the commercial frequency, even after drawn high efficiency It is to obtain an induction synchronous reluctance motor having.

【0009】 [0009]

【課題を解決するための手段】本発明のリラクタンスモータは、2極以上の多層進行磁界を発生する巻線を有する固定子と、前記固定子の極数に応じて極間に4層以上の多層スリットを設け、前記多層スリットの両端部を幅の狭いブリッジ部で連結した円板状の磁性鋼板を積層したコアスタックと、前記磁性鋼板の多層スリットと軸方向に連通する多層スリットを設け、前記磁性鋼板のブリッジ部より幅の広いブリッジ部を有する円板状をなし、 Reluctance motor of the present invention, in order to solve the problems] includes a stator having a winding for generating a multi-layer progression magnetic field of more than two poles, four or more layers between the electrodes in accordance with the number of poles of said stator the multilayer slits provided a core stack formed by stacking a disc-shaped magnetic steel plates linked, the multilayer slit communicating with the multi-slit and the axial direction of the magnetic steel plates provided at both ends of the multilayer slits in the narrow bridge width, forms a disk shape having a wide bridge portion width than the bridge portion of the magnetic steel plates,
前記コアスタックに挟み込まれた強度部材と、前記コアスタックの多層スリットに封入固化され、コアスタックの両軸端部に円環状に形成されたエンドリングと一体に形成された注型部材とを備えたものである。 Comprising a strength member sandwiched the core stack being enclosed solidified multilayer slit of the core stack, and a cast member formed in the end ring and integrally formed in an annular shape at both axial end portions of the core stack those were.

【0010】また、2極以上の多層進行磁界を発生する巻線を有する固定子と、前記固定子の極数に応じて極間に4層以上の多層スリットを設け、前記多層スリットの両端部を幅の狭いブリッジ部で連結した円板状の磁性鋼板を積層したコアスタックと、前記磁性鋼板の多層スリットと軸方向に連通する複数の孔を設けた円板状をなし、前記コアスタックに挟み込まれた強度部材と、前記コアスタックの多層スリットに封入固化され、コアスタックの両軸端部に円環状に形成されたエンドリングと一体に形成された注型部材とを備えたものである。 Further, a stator having a winding for generating a multi-layer progression magnetic field of more than two poles, the multilayer slit four or more layers between the electrodes in accordance with the number of poles of the stator is provided, both ends of the multilayer slit No core stack formed by stacking a disc-shaped magnetic steel plates connected by a narrow bridge section width, a disk shape provided with a plurality of holes communicating with the multi-slit and the axial direction of the magnetic steel sheets, the core stack and sandwiched strength member, is sealed and solidified in a multilayer slit of the core stack, in which a cast member formed in the end ring and integrally formed in an annular shape at both axial end portions of the core stack .

【0011】また、前記強度部材を非磁性材料で形成したものである。 [0011] is obtained by forming the strength member of a non-magnetic material.

【0012】また、前記強度部材を磁性材料で形成したものである。 [0012] is obtained by forming the strength member of magnetic material.

【0013】また、前記注型部材を非磁性金属材料で形成したものである。 [0013] is obtained by forming the cast member with a non-magnetic metal material.

【0014】 [0014]

【発明の実施の形態】実施の形態1 図1は、本発明の誘導同期型4極リラクタンスモータの回転子のコアシートの平面図を示す。 Embodiment 1 Figure 1 [OF THE PREFERRED EMBODIMENTS OF THE INVENTION embodiment shows a plan view of a core sheet of the induction synchronous 4-pole reluctance motor rotor of the present invention.

【0015】リラクタンスモータの回転子はプレス打ち抜きによって製造された板厚0.2mm〜1mm程度のコアシート(磁性鋼板)1を軸方向に多数積層してコアスタックとし、スリット2に、アルミなどの溶融金属をダイキャストしてリラクタンスモータの回転子とする。 [0015] The rotor of the reluctance motor is a core stack with a number laminating core sheets (magnetic steel plates) 1 about thickness 0.2mm~1mm manufactured by punching in the axial direction, the slit 2, such as aluminum the molten metal was diecast and rotor reluctance motor.

【0016】図1に示したように、多層スリットを設けることにより磁束が通過しやすい方向(以下d軸という)と通過しにくい方向(以下q軸という)を設ける。 [0016] As shown in FIG. 1, provided with a direction in which the magnetic flux tends to pass through by providing a multi-layer slit (hereinafter referred to as d-axis) and passes through difficult direction (hereinafter referred to as q-axis).
これにより、固定子の進行方向磁界に対して回転子が吸引されて回転する。 Thus, the rotor is rotated by being sucked to the traveling direction magnetic field of the stator. その同期出力Pは次式で表わせる。 Its synchronous output P can be expressed by the following equation.

【0017】 P=(1/Xq−1/Xd)V 2 sin2δ ・・・(2) Xq:q軸方向のリアクタンス Xd:d軸方向のリアクタンス V:電圧 δ:回転子突極方向と固定子起磁力中心との位相角 [0017] P = (1 / Xq-1 / Xd) V 2 sin2δ ··· (2) Xq: q -axis reactance Xd: reactance of the d-axis direction V: Voltage [delta]: rotor salient pole direction and the stator the phase angle of the magnetomotive force center

【0018】この時に、図1に示すように各々のスリット2の両端部(最外周部)のブリッジ部3は微小薄肉で連結されている。 [0018] At this time, the bridge portion 3 at both ends of each of the slits 2 (outermost portion) as shown in FIG. 1 is connected with the micro thin. この最外周部の微小薄肉部は、q軸方向の漏れ磁路となる。 Micro thin portion of the outermost periphery, a leakage magnetic path in the q-axis direction. ブリッジ部3の幅(肉厚)を広げると、ここを通過する磁束が多くなり、q軸方向のリアクタンスが上昇してしまい式(2)における(1/Xq When increasing the width of the bridge portion 3 (thickness), the more the magnetic flux passing therethrough, (1 / Xq in the formula (2) will be increased reactance of the q-axis direction
−1/Xd)の差が小さくなってしまうために、同一電圧当たりのモータ出力が低下し、効率が低下する。 To difference -1 / Xd) becomes small, the motor output per same voltage decreases, the efficiency decreases. したがって、モータの効率を高くするには、この最外周部の薄肉連結部のブリッジ幅は極力狭い方が望ましい。 Therefore, in order to increase the efficiency of the motor, the bridge width of the thin connection portion of the outermost peripheral portion as much as possible narrow it is desirable.

【0019】しかし、本モータの遠心力による応力はこの最外周部で最も大きくなり、ブリッジ幅を極力狭くした回転子では、特に高速機や大型機ではブリッジ部が遠心力で変形・断裂して回転子が破壊してしまう。 [0019] However, stress due to the centrifugal force of the motor becomes maximum at the outermost circumference, the rotor bridge width is as narrow as possible, the bridge portion is particularly high-speed machine and large machines is deformed, torn by the centrifugal force the rotor is destroyed.

【0020】したがって、ブリッジ部の設計においてモータ効率と耐遠心力強度と両立することが求められる。 [0020] Therefore, it is necessary to balance the motor efficiency and 耐遠 centripetal force intensity in the design of the bridge section.

【0021】本発明で開示する方法を以下に説明する。 [0021] The method disclosed in the present invention will be described below.
図2は最外周のブリッジ部を厚肉化した強度部材4の平面図。 Figure 2 is a plan view of the strength members 4 that thickening the bridge portion of the outermost. 強度部材4は最外周部ブリッジ部の幅(肉厚)δ Strength member 4 is outermost portion bridging portion of the width (thickness) [delta]
1を厚肉化しているので、遠心力に対する強度は確保される。 Since the thickening 1, strength against centrifugal force is ensured. 強度部材4を回転子の軸方向の中心付近に追加し、その他の積層部は磁性鋼板からなるコアシート1を積層して構成したコアスタックを作成する。 The strength member 4 in addition to near the center of the axial direction of the rotor, the other lamination portion creates a core stack constituted by stacking the core sheets 1 made of a magnetic steel plate.

【0022】さらに、図3に示すよう高耐圧の金型フレーム5、エンドリング用の金型6を設けてコアスタックを保持して積層鋼板高温高圧の溶融アルミ10を図中矢印方向へダイキャストし、スリット部にアルミを充填後固化させる。 Furthermore, die-casting to the direction of the arrow in the drawing a high breakdown voltage of the mold frame 5, the molten aluminum 10 to hold the core stacks of laminated steel high temperature and high pressure to mold 6 is provided for the end rings as shown in FIG. 3 and, solidifying after filling the aluminum in the slit portion.

【0023】このときコアシート1と強度部材4はスリット部の穴が軸方向に貫通しており、貫通する穴の断面積も多くなるよう形成されているので、全スリットに対してアルミは軸方向に貫通して流れることができる。 [0023] In this case the core sheet 1 and the strength member 4 extends through holes in the slit portion in the axial direction, because it is formed to have many cross-sectional area of ​​holes through, the aluminum relative to the total slit axis it can flow through direction. これにより全スロットにアルミがくまなく充填される。 Thus aluminum in all slots are filled throughout. アルミを充填して完成した回転子を図4に示す。 The rotor was completed by filling the aluminum shown in Fig. 図4中のコアスタックの両軸端部には金型6によって整形されたエンドリング7が形成される。 At both axial end portions of the core stacks of FIG. 4 the end ring 7, which is shaped by the mold 6 is formed. 図4の回転子中に固化した状態のアルミ部と補強用の強度部材4の構成を抜き出して示した図を図5に示す。 A diagram showing an extracted configuration of a strength member 4 for reinforcing the aluminum portion of solidified state in the rotor of Figure 4 is shown in FIG.

【0024】図5に示すように、コアスタック中に形成された凹面状の多層のアルミ導体8は周方向に一周連続した円環状のエンドリング7によって両端を固定されている。 As shown in FIG. 5, are fixed at both ends concave multilayer aluminum conductor 8 formed in the core stack by annular end rings 7 around circumferentially continuous. そのため、アルミ導体8に加わる径方向の応力はエンドリング7によって支持され、耐遠心力性を確保できる。 Therefore, the radial stress applied to the aluminum conductor 8 is supported by the end ring 7 can be ensured 耐遠 Kokororyoku properties. 同時に、コアが遠心力により径方向に膨張した場合でも、やはりアルミ導体8を介してエンドリング7によって支持されるために耐遠心力性を維持できる。 At the same time, the core even when expanded in the radial direction by the centrifugal force, can be maintained 耐遠 Kokororyoku properties in order to be supported by the end ring 7 also through an aluminum conductor 8.

【0025】しかし、高速機や大型機では遠心力が大きくなるためにエンドリングの支持部から遠い、軸方向の中心付近のアルミ導体8が周方向に対して膨らんで太鼓状になってしまう場合がある。 [0025] However, in the high-speed machines and large machines away from the support portion of the end ring to the centrifugal force increases, if the aluminum conductor 8 near the center in the axial direction becomes barrel shape bulges relative to the circumferential direction there is.

【0026】その場合でも、本発明では軸方向の中心位置において、円環状のエンドリング7およびアルミ導体8と一体で耐遠心力を確保した強度部材4を軸方向中心付近に配置しているので、遠心力による歪みを強度部材4によって拘束し、耐遠心力強度を確保するすることができ、より強固な回転子を得ることが出来る。 [0026] Even in this case, at the center position in the axial direction in the present invention, since disposed strength member 4 secured to 耐遠 centering forces integrally an annular end ring 7 and the aluminum conductor 8 around the axial center , restraining the distortion due to centrifugal force by the strength member 4, it is possible to ensure the 耐遠 centering forces strength, it is possible to obtain a more robust rotor.

【0027】また、本実施例では中心付近に1個所のみ強度部材4を挟み込む例を示したが、軸長がさらに長い場合や、より高速で使う場合など、さらに耐遠心力性を必要とする場合は、2個所以上に分散して配置することにより、強固な回転子を得ることができる。 Further, although an example in which sandwich the only strength member 4 at one position near the center in this embodiment, such as when axial length or if longer, using faster, requiring additional 耐遠 Kokororyoku property If, by arranging the dispersed two or more positions, it is possible to obtain a solid rotor.

【0028】実施の形態2 本発明の実施の形態1で示した強度部材4の材料特性による差を説明する。 [0028] The difference due to the material properties of the strength member 4 shown in the first embodiment 2 the present invention will be described. リラクタンスモータの力率Pfは説明のため抵抗分を無視した近似式では次式で示される。 The power factor Pf of reluctance motors in approximate equation which ignores the resistance component for explanation are shown in the following equation.

【0029】 [0029]

【数1】 [Number 1]

【0030】Id:d軸(突極)磁束を発生する電流成分 Iq:q軸(非突極)磁束を発生する電流成分 Ld:d軸方向のインダクタンス Lq:q軸方向のインダクタンス [0030] Id: current component to generate a d-axis (salient pole) magnetic flux Iq: q-axis (non-salient) for generating a magnetic flux-current component Ld: d-axis inductance Lq: q-axis inductance

【0031】式(3)より、最大力率PfmaxはId [0031] The equation (3), maximum power factor Pfmax is Id
/Iq=(Ld/Lq) 0.5に制御した場合において Pfmax=(Ld/Lq−1)/(Ld/Lq+1) ・・・(4) となる。 / Iq = Pfmax in the case of controlling the (Ld / Lq) 0.5 = ( Ld / Lq-1) / (Ld / Lq + 1) becomes (4). 式(4)より明らかなように、力率は突極比γ Equation (4) As is apparent from, the power factor is saliency ratio γ
=Lq/Lqによって決まり、γが大きくなるほど1に近づき高力率なモータを得ることが出来る。 = Depends Lq / Lq, gamma can be obtained a high power factor motor approaches larger the 1.

【0032】ここで図5に示す強度部材4を磁性体で構成した場合にはLd、Lq双方に共通な漏れ磁路が形成されるために、Ld→Ld+α、Lq→Lq+βとなり、突極比γはLq/Lqから(Ld+α)/(Lq+ [0032] Ld when configured here the strength member 4 shown in FIG. 5 a magnetic material, in order to common leakage path to both Lq is formed, Ld → Ld + α, Lq → Lq + β, and the salient pole ratio γ from Lq / Lq (Ld + α) / (Lq +
β)となる。 The β).

【0033】ここで、リラクタンス機の磁性鋼板1の構造ではLdは十分大きいため、漏れ磁束によるLdの増加割合は小さい、しかしLqは、もともと小さくなるように設計しているのでわずかな漏れ磁束であったとしてもLqの増加率は大きく、突極比γは大きく低下してしまう。 [0033] Here, because Ld is sufficiently large in the structure of the magnetic steel plates 1 reluctance machine, increasing the proportion of Ld by leakage flux is small, but Lq is a slight leakage flux since the designed originally smaller large Lq increase rate of any, saliency ratio γ is largely reduced.

【0034】そこで、強度部材4をSUS、アルミ、カーボン、エポキシ、銅などの非磁性材料で構成すると強度部材4による漏れ磁束は発生せず、高力率なモータを得ることが出来る。 [0034] Therefore, the strength member 4 SUS, aluminum, carbon, epoxy, leakage magnetic flux due to the strength member 4 to constitute a non-magnetic material such as copper is not generated, it is possible to obtain a high power factor motor.

【0035】実施の形態3 さらに強度部材4の耐遠心力強度を確保するための構造としては、例えば図6に示すような単純な多孔体でかつ、その位置がコアシート1のスリットと軸方向に面積を共有できるような配置とする。 [0035] As a structure for ensuring 耐遠 centering forces strength of the third further strength member 4 embodiment, for example, and a simple porous, as shown in FIG. 6, a slit in the axial direction of the core sheet 1 that position the arrangement can share area. アルミなどの溶融金属をダイキャストするためにコアシート1のスリットと強度部材4の孔とは軸方向に貫通しているが、その貫通用の孔自体を最小限度に形成する構造とする。 Although the slits and the reinforcing member 4 of the holes of the core sheet 1 a molten metal to a die casting such as aluminum penetrates axially, the structure forming the holes themselves for the through to a minimum. これによりダイキャスト性は低下するが、代わりに強度部材4の耐遠心力強度は飛躍的に上昇するために、耐遠心力性に優れた回転子を得ることができる。 Thus die casting property decreases but 耐遠 centrifugal force strength of strength members 4 in place may be to dramatically increase, obtaining excellent rotor 耐遠 Kokororyoku property.

【0036】また、先の実施の形態2と同様に強度部材4をSUS、アルミ、カーボン、エポキシ、銅などの非磁性材料で構成すると強度部材4による漏れ磁束は発生せず、高力率なモータを得ることが出来る。 Further, similarly strength member 4 and Embodiment 2 of the previous embodiment SUS, aluminum, carbon, epoxy, leakage magnetic flux due to the strength member 4 to constitute a non-magnetic material such as copper is not generated, it high power factor it is possible to obtain a motor.

【0037】実施の形態4 以上の実施の形態では高力率を得るための回転子の構造を開示したが、図7に示すように、さらなる高速機などで補強用の強度部材4の軸方向長さXを長くした場合は、強度部材4を非磁性材料で構成すると、これを駆動する固定子11の巻線9において、巻線のうち強度部材4と対向する区間xでは出力に寄与しないために無駄な銅損を発生してしまいモータの効率が低下する。 [0037] Having disclosed the structure of a rotor for obtaining high power factor in the form of 4 or more exemplary embodiments, as shown in FIG. 7, the axial strength member 4 for reinforcement in such a further high-speed machine If you increase the length X, to constitute the strength member 4 in a non-magnetic material, in the winding 9 of the stator 11 for driving it, does not contribute to the interval x in the output faces and strength member 4 of the winding efficiency of the motor is reduced it will be generated useless copper loss for.

【0038】リラクタンスモータのトルクTは T=(Ld−Lq)I 2 sin2δ ・・・(5) で表わされ、一方巻線抵抗をRとするとモータの銅損はI 2 Rで表せる。 The torque T of the reluctance motor is represented by T = (Ld-Lq) I 2 sin2δ ··· (5), whereas when the winding resistance is R copper loss of the motor can be expressed by I 2 R. したがって、トルク当たりの銅損Cu Therefore, copper loss Cu per torque
lossは Culoss ∝ R/(Ld−Lq) ・・・(6) と表わせる。 loss is Culoss α R / (Ld-Lq) can be expressed as (6). したがって、突極差η=Ld−Lqが大なる方が銅損が小さく、モータ効率を高くすることができる。 Therefore, it is possible to better the salient difference η = Ld-Lq becomes larger is smaller copper loss, to increase the motor efficiency.

【0039】そこで、強度部材4を磁性体で構成し、かつ、漏れ磁束の発生が少ないように強度部材4の断面形状を図2、図8、図9に示すような形状とする。 [0039] Therefore, the strength member 4 composed of a magnetic material, and FIG. 2 a cross-sectional shape of the reinforcing member 4 as the occurrence of leakage flux is small, FIG. 8, a shape as shown in FIG.

【0040】補強用の最外周の厚肉ブリッジ部分を遠心力強度に対して必要最小限のブリッジ幅にすることで、 [0040] The thick bridge portion of the outermost periphery for reinforcement by the minimum bridge width relative centrifugal force strength,
電機子によって容易に飽和せしめるようにq軸漏れ磁束の増加を最小限に抑制することができ、強度部材4によるモータ力率低下を最小限度に抑えることが出来る。 Armature by can be suppressed to a minimum increase of the q-axis magnetic flux leakage as allowed to easily saturated, the reduction motor power factor by the strength member 4 can be minimized. 強度部材4の漏れ磁路にはコアスタック全長にわたる漏れ磁束が集中するため、容易に磁気飽和させることができる。 Since the leakage flux across the core stack full length in the leakage path of the strength members 4 are concentrated, it is possible to easily magnetically saturated.

【0041】さらにこのときLd、Lq双方に共通な漏れ磁路が形成されて、Ld→Ld+α、Lq→Lq+β [0041] is further at this time Ld, is common leakage magnetic path in both Lq formation, Ld → Ld + α, Lq → Lq + β
となり、突極差ηはLq−Lqから(Ld−Lq)+ Next, the salient pole difference η from Lq-Lq (Ld-Lq) +
(α−β))となる。 To become (α-β)).

【0042】ここで、漏れ磁路の増加分αとβのうちβ [0042] In this case, of the increase in α and β of the leakage magnetic flux path β
の増分の方が多くなるとηは小さくなってしまい効率低下を招く、そこで図2、図8、図9に示すように漏れ磁束の磁路に対して磁路幅が狭い形状とすればq軸方向の磁束があった場合でも磁気飽和によって漏れ磁路の増加が抑制される。 Leads to the the η becomes many causes efficiency degradation is reduced towards the increment, where FIGS. 2, 8, q-axis when the magnetic path width is narrow shape with respect to the magnetic path of the leakage flux as shown in FIG. 9 increase in leakage magnetic path is suppressed by the magnetic saturation even if a direction of the magnetic flux.

【0043】以下に、q軸方向の漏れ磁路を容易に飽和させる範囲について説明する。 [0043] The following describes the extent to easily saturate the leakage magnetic path of the q-axis direction.

【0044】まず、空隙磁束は通常1T付近にとるので総磁束量は極ピッチτとコア長さの積S程度になる。 Firstly, the air-gap flux is the total magnetic flux amount so taken near normal 1T is about product S pole pitch τ and the core length. リラクタンスモータではq軸磁束とd軸磁束の比は1/3 The ratio of the q-axis magnetic flux and the d-axis magnetic flux in the reluctance motor is 1/3
以下程度でないと力率が50%以下になり、電源の容量が倍増する。 Or less, the non-degree power factor is below 50%, the power capacity of doubles. そこで空隙磁束の1/3程度以下でも磁気飽和するためには、q軸磁束が通過する閉曲面に対して、その磁路断面積の総和Δが極ピッチτとコア長さの積Sに対してΔ<S/6以下程度になる箇所を複数箇所設ける。 Therefore, in order to magnetically saturate even less about 1/3 of the air-gap flux, relative to closed surface q-axis magnetic flux passes, to the product S of the sum Δ is the pole pitch τ and the core length of the magnetic path cross-sectional area Te delta <providing a plurality of locations of the portion which becomes the degree S / 6 or less.

【0045】ここでq軸の磁路断面積総和Δを示す。 [0045] indicates a magnetic path sectional area sum Δ here q-axis. 具体的な例としては、 図2では Δ=δ 1・x 図8では Δ=(δ 2 +δ 3 +δ 4 )・x 図9では Δ=(δ 5 +δ 6 )・x である。 As a specific example, in FIG. 2, Δ = δ 1 · x Figure 8 Δ = (δ 2 + δ 3 + δ 4) · x On Figure 9 Δ = (δ 5 + δ 6) is · x.

【0046】これにより、q軸磁路の磁束密度を2T程度にすることができ、磁気飽和によってβの増加を抑制することができる。 [0046] Thus, the magnetic flux density of the q-axis magnetic path can be approximately 2T, it is possible to suppress an increase in β by the magnetic saturation. したがってq軸磁路に対する漏れ磁束βの増分は頭打ちになり漏れ磁束による効率低下および固定子コアの銅損による効率低下が少なく、高効率で耐遠心力性に優れ、同時に突極比3程度以上で、抵抗分を無視したモータの理想力率を50%以上にした同期リラクタンス機を得ることができる。 Therefore the increment of leakage flux β relative to the q-axis magnetic path is small efficiency reduction due to copper loss of efficiency degradation and the stator core according to become leakage flux plateaued, excellent 耐遠 Kokororyoku properties with high efficiency, at the same time the salient pole ratio about 3 or more in the ideal power factor of ignoring a resistive component motor can be obtained by the synchronous reluctance machine 50% or more.

【0047】実施の形態5 以上の各実施の形態では、支持強度部材としてアルミダイキャストで説明した、これは強度支持部材と誘導同期型のリラクタンスモータの2次導体を同時に得られるという効果があるからである。 [0047] In Embodiment 5 above each embodiment embodiment, described in aluminum die-casting as supporting strength member, which has the effect of obtaining a secondary conductor of the reluctance motor of the induction synchronous with strength support member simultaneously it is from. しかし、回転子位置と電流位相を同期して駆動するインバータ駆動型のリラクタンスモータなどへも適用する場合、かならずしも2次導体が無くとも動作する。 However, even when applying, it operates without the necessarily secondary conductor to such reluctance motor of an inverter-driven to synchronously drive the rotor position and current phase. そのため多層スリット部軸方向に流し込む支持部材としてエポキシなどの樹脂を適用しても耐遠心力強度のみについては同様の効果を期待できる。 Therefore only 耐遠 centripetal force strength by applying a resin such as an epoxy as a supporting member for pouring the multi slit portion axial direction can be expected a similar effect. その場合、アルミダイキャストなどの高温高圧の設備が不要で、比較的簡便な樹脂注型設備で遠心力強度に優れたリラクタンスモータを得る事ができる。 In that case, requires no high-temperature and high-pressure equipment, such as die-cast aluminum, it is possible to obtain a reluctance motor having excellent centrifugal force strength with a relatively simple resin casting equipment.

【0048】 [0048]

【発明の効果】本発明のリラクタンスモータは、2極以上の多層進行磁界を発生する巻線を有する固定子と、前記固定子の極数に応じて極間に4層以上の多層スリットを設け、前記多層スリットの両端部を幅の狭いブリッジ部で連結した円板状の磁性鋼板を積層したコアスタックと、前記磁性鋼板の多層スリットと軸方向に連通する多層スリットを設け、前記磁性鋼板のブリッジ部より幅の広いブリッジ部を有する円板状をなし、前記コアスタックに挟み込まれた強度部材と、前記コアスタックの多層スリットに封入固化され、コアスタックの両軸端部に円環状に形成されたエンドリングと一体に形成された注型部材とを備えたので、効率が高く耐遠心力強度の大きいリラクタンスモータを提供することができる。 Reluctance motor of the present invention exhibits, provided a stator having a winding for generating a multi-layer progression magnetic field of more than two poles, the multilayer slit four or more layers between the electrodes in accordance with the number of poles of said stator a core stack formed by stacking a disc-shaped magnetic steel plates obtained by connecting both end portions in a narrow bridge portion of the width of the multilayer slit, provided the multilayer slit communicating with the multi-slit and the axial direction of the magnetic steel plates, the magnetic steel plates It forms a disk shape having a wide bridge portion width than the bridge portion, and the strength members sandwiched the core stack being enclosed solidified multilayer slit of the core stack, formed in an annular shape at both axial end portions of the core stack since a cast member formed in the end ring and integrally, which is, it is possible to provide a greater reluctance motor of high efficiency 耐遠 centrifugal force strength.

【0049】また、2極以上の多層進行磁界を発生する巻線を有する固定子と、前記固定子の極数に応じて極間に4層以上の多層スリットを設け、前記多層スリットの両端部を幅の狭いブリッジ部で連結した円板状の磁性鋼板を積層したコアスタックと、前記磁性鋼板の多層スリットと軸方向に連通する複数の孔を設けた円板状をなし、前記コアスタックに挟み込まれた強度部材と、前記コアスタックの多層スリットに封入固化され、コアスタックの両軸端部に円環状に形成されたエンドリングと一体に形成された注型部材とを備えたので、効率が高く、 [0049] Further, a stator having a winding for generating a multi-layer progression magnetic field of more than two poles, the multilayer slit four or more layers between the electrodes in accordance with the number of poles of said stator is provided, both ends of the multilayer slit No core stack formed by stacking a disc-shaped magnetic steel plates connected by a narrow bridge section width, a disk shape provided with a plurality of holes communicating with the multi-slit and the axial direction of the magnetic steel sheets, the core stack and sandwiched strength member, said enclosed solidified multilayer slit core stack, since a cast member formed in end rings integrally formed annularly at both axial end portions of the core stack, efficiency high,
耐遠心力強度の大きいリラクタンスモータを提供することができる。 It is possible to provide a greater reluctance motor 耐遠 centrifugal force strength.

【0050】また、前記強度部材を非磁性材料で形成したので、効率が高く、耐遠心力強度の大きいリラクタンスモータを提供することができる。 [0050] Further, since the formation of the strength member in a non-magnetic material, efficiency is high, it is possible to provide a greater reluctance motor 耐遠 centrifugal force strength.

【0051】また、前記強度部材を磁性材料で形成したので、効率が高く、耐遠心力強度の大きいリラクタンスモータを提供することができる。 [0051] Further, since the formation of the strength member of a magnetic material, efficiency is high, it is possible to provide a greater reluctance motor 耐遠 centrifugal force strength.

【0052】また、前記注型部材を非磁性金属材料で形成したので、効率が高く、耐遠心力強度の大きく、商用周波数に同期引き込みが可能なリラクタンスモータを提供することができる。 [0052] Further, since the formation of the cast member with a non-magnetic metal material, high efficiency, large 耐遠 centripetal force strength, it can be synchronous pull the commercial frequency to provide a reluctance motor capable.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 リラクタンスモータの回転子のコアシートの平面図である。 1 is a plan view of a core sheet of reluctance motor rotor.

【図2】 回転子の強度部材の平面図である。 2 is a plan view of the strength member of the rotor.

【図3】 回転子のアルミダイキャストを説明する図である。 3 is a diagram illustrating an aluminum die-cast rotor.

【図4】 回転子の側面図である。 4 is a side view of the rotor.

【図5】 アルミ導体と強度部材の抽出図である。 5 is a extracted view of an aluminum conductor and strength member.

【図6】 回転子の強度部材の平面図である。 6 is a plan view of the strength member of the rotor.

【図7】 リラクタンスモータの側断面図である。 7 is a side sectional view of a reluctance motor.

【図8】 回転子の強度部材の平面図である。 8 is a top view of the strength member of the rotor.

【図9】 回転子の強度部材の平面図である。 9 is a plan view of the strength member of the rotor.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 コアシート、2 スリット、3 ブリッジ部、4 1 core sheet, 2 a slit, 3 bridge portion 4
強度部材、5 金型フレーム、6 エンドリング用金型、7 エンドリング、8 アルミ導体、9 巻線、1 Strength member, 5 the mold frame, 6 end ring mold 7 end ring, 8 aluminum conductors, 9 winding, 1
0 溶融アルミ、11 固定子。 0 molten aluminum, 11 stator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中本 道夫 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 阿知和 典弘 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 田宮 洋一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5H615 AA01 BB01 BB06 BB07 BB14 PP02 PP03 PP06 SS03 SS05 SS12 SS15 SS18 SS44 TT15 TT27 TT34 5H619 AA01 AA03 AA05 BB01 BB22 BB24 PP02 PP04 PP05 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Michio Nakamoto Marunouchi, Chiyoda-ku, tokyo-chome No. 2 No. 3 Mitsubishi electric in Co., Ltd. (72) inventor Achi Norihiro Kazu Marunouchi, Chiyoda-ku, tokyo-chome No. 2 3 issue Mitsubishi electric in Co., Ltd. (72) inventor Yoichi Tamiya, Chiyoda-ku, tokyo Marunouchi 2-chome No. 2 No. 3 Mitsubishi electric Co., Ltd. in the F-term (reference) 5H615 AA01 BB01 BB06 BB07 BB14 PP02 PP03 PP06 SS03 SS05 SS12 SS15 SS18 SS44 TT15 TT27 TT34 5H619 AA01 AA03 AA05 BB01 BB22 BB24 PP02 PP04 PP05

Claims (5)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 2極以上の多層進行磁界を発生する巻線を有する固定子と、前記固定子の極数に応じて極間に4 1. A stator having a winding for generating a multi-layer progression magnetic field of more than two poles, to the machining gap in response to the number of poles of the stator 4
    層以上の多層スリットを設け、前記多層スリットの両端部を幅の狭いブリッジ部で連結した円板状の磁性鋼板を積層したコアスタックと、前記磁性鋼板の多層スリットと軸方向に連通する多層スリットを設け、前記磁性鋼板のブリッジ部より幅の広いブリッジ部を有する円板状をなし、前記コアスタックに挟み込まれた強度部材と、前記コアスタックの多層スリットに封入固化され、コアスタックの両軸端部に円環状に形成されたエンドリングと一体に形成された注型部材とを備えたリラクンタスモータ。 The above multilayer slits layers provided, the core stack formed by stacking a disc-shaped magnetic steel plates obtained by connecting both end portions in a narrow bridge portion of the width of the multilayer slit, multilayer slit communicating with the multi-slit and the axial direction of the magnetic steel plates the provided, the form a disc shape having a wide bridge portion from the bridge portion of the magnetic steel plates, and strength members sandwiched the core stack being enclosed solidified multilayer slit of the core stack, both axes of the core stack reluctance down task motor with a cast member formed in the end ring and integrally formed in an annular shape on the end portion.
  2. 【請求項2】 2極以上の多層進行磁界を発生する巻線を有する固定子と、前記固定子の極数に応じて極間に4 Wherein a stator having a winding for generating a multi-layer progression magnetic field of more than two poles, to the machining gap in response to the number of poles of the stator 4
    層以上の多層スリットを設け、前記多層スリットの両端部を幅の狭いブリッジ部で連結した円板状の磁性鋼板を積層したコアスタックと、前記磁性鋼板の多層スリットと軸方向に連通する複数の孔を設けた円板状をなし、前記コアスタックに挟み込まれた強度部材と、前記コアスタックの多層スリットに封入固化され、コアスタックの両軸端部に円環状に形成されたエンドリングと一体に形成された注型部材とを備えたリラクンタスモータ。 The above multilayer slits layers provided, the core stack formed by stacking a disc-shaped magnetic steel plates obtained by connecting both end portions in a narrow bridge portion of the width of the multilayer slit, a plurality of communicating with the multi-slit and the axial direction of the magnetic steel plates forms a disk shape provided with holes, and strength members sandwiched the core stack, wherein the encapsulated solidified multilayer slit core stack end ring and integrally formed in an annular shape at both axial end portions of the core stack reluctance down task motor with a cast member formed.
  3. 【請求項3】 前記強度部材を非磁性材料で形成した請求項1または2記載のリラクタンスモータ。 3. A reluctance motor according to claim 1 or 2 wherein the formation of the strength member in a non-magnetic material.
  4. 【請求項4】 前記強度部材を磁性材料で形成した請求項1または2記載のリラクタンスモータ。 4. A reluctance motor according to claim 1 or 2 wherein the formation of the strength member of magnetic material.
  5. 【請求項5】 前記注型部材を非磁性金属材料で形成した請求項1、2、3または4記載のリラクタンスモータ。 5. A reluctance motor according to claim 1, 2, 3 or 4, wherein the formation of the cast member with a non-magnetic metal material.
JP2000049557A 2000-02-25 2000-02-25 Reluctance motor Pending JP2001238418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049557A JP2001238418A (en) 2000-02-25 2000-02-25 Reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049557A JP2001238418A (en) 2000-02-25 2000-02-25 Reluctance motor

Publications (1)

Publication Number Publication Date
JP2001238418A true true JP2001238418A (en) 2001-08-31

Family

ID=18571480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049557A Pending JP2001238418A (en) 2000-02-25 2000-02-25 Reluctance motor

Country Status (1)

Country Link
JP (1) JP2001238418A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102259B2 (en) 2001-11-15 2006-09-05 Mitsubishi Denki Kabushiki Kaisha Rotor of a synchronous induction electric motor
JP2009005572A (en) * 2007-05-24 2009-01-08 Mitsubishi Electric Corp Magnetic inductor type synchronous rotating machine and automobile supercharger using the same
CN102545422A (en) * 2010-10-12 2012-07-04 Abb有限公司 Rotor of synchronous reluctance machine and method for manufacturing rotor of synchronous reluctance machine
CN102820742A (en) * 2011-06-06 2012-12-12 环保汽车国际公司 Electric motor rotor
EP2790295A1 (en) 2013-04-11 2014-10-15 Siemens Aktiengesellschaft Rotor for a reluctance motor, method for producing a rotor for a reluctance motor and electrical machine, in particular a reluctance motor
CN104205571A (en) * 2012-02-10 2014-12-10 Ksb 股份公司 The rotor and reluctance motors
EP2928047A1 (en) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Reluctance rotor with mechanical stabilisation
CN105122595A (en) * 2013-04-11 2015-12-02 西门子公司 Reluctance motor and associated rotor
CN105144555A (en) * 2013-04-12 2015-12-09 西门子公司 Reluctance rotor with runup aid
CN105164895A (en) * 2013-04-11 2015-12-16 西门子公司 Reluctance motor comprising a stabilized rotor
US9729035B2 (en) 2009-06-03 2017-08-08 Ecomotors, Inc. Electric motor rotor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191618A (en) * 1995-10-30 1997-07-22 Okuma Mach Works Ltd Synchronous motor and rotor of motor
JPH09261930A (en) * 1996-03-25 1997-10-03 Okuma Mach Works Ltd Rotor of synchronous motor
JPH11127560A (en) * 1997-08-22 1999-05-11 Matsushita Electric Ind Co Ltd Rotor core
JPH11146615A (en) * 1997-11-11 1999-05-28 Matsushita Electric Ind Co Ltd Reluctance motor
JPH11178296A (en) * 1997-12-05 1999-07-02 Aichi Emerson Electric Co Ltd Rotor for motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191618A (en) * 1995-10-30 1997-07-22 Okuma Mach Works Ltd Synchronous motor and rotor of motor
JPH09261930A (en) * 1996-03-25 1997-10-03 Okuma Mach Works Ltd Rotor of synchronous motor
JPH11127560A (en) * 1997-08-22 1999-05-11 Matsushita Electric Ind Co Ltd Rotor core
JPH11146615A (en) * 1997-11-11 1999-05-28 Matsushita Electric Ind Co Ltd Reluctance motor
JPH11178296A (en) * 1997-12-05 1999-07-02 Aichi Emerson Electric Co Ltd Rotor for motor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7102259B2 (en) 2001-11-15 2006-09-05 Mitsubishi Denki Kabushiki Kaisha Rotor of a synchronous induction electric motor
JP2009005572A (en) * 2007-05-24 2009-01-08 Mitsubishi Electric Corp Magnetic inductor type synchronous rotating machine and automobile supercharger using the same
US9729035B2 (en) 2009-06-03 2017-08-08 Ecomotors, Inc. Electric motor rotor
CN102545422A (en) * 2010-10-12 2012-07-04 Abb有限公司 Rotor of synchronous reluctance machine and method for manufacturing rotor of synchronous reluctance machine
US9219387B2 (en) 2010-10-12 2015-12-22 Abb Technology Ag Rotor of a synchronous reluctance machine and the method for manufacturing the rotor of a synchronous reluctance machine
CN102820742A (en) * 2011-06-06 2012-12-12 环保汽车国际公司 Electric motor rotor
GB2492422A (en) * 2011-06-06 2013-01-02 Ecomotors Internat Inc Anti-centrifugal expansion support ring for rotor bars
GB2492422B (en) * 2011-06-06 2018-02-21 Borgwarner Inc Electric motor rotor
CN104205571A (en) * 2012-02-10 2014-12-10 Ksb 股份公司 The rotor and reluctance motors
US9866077B2 (en) 2012-02-10 2018-01-09 Ksb Aktiengesellschaft Rotor and reluctance motor
WO2014166810A2 (en) 2013-04-11 2014-10-16 Siemens Aktiengesellschaft Rotor for a reluctance motor, method for producing a rotor for a reluctance motor, and electric machine, in particular a reluctance motor
EP2790295A1 (en) 2013-04-11 2014-10-15 Siemens Aktiengesellschaft Rotor for a reluctance motor, method for producing a rotor for a reluctance motor and electrical machine, in particular a reluctance motor
CN105164895A (en) * 2013-04-11 2015-12-16 西门子公司 Reluctance motor comprising a stabilized rotor
CN105122595A (en) * 2013-04-11 2015-12-02 西门子公司 Reluctance motor and associated rotor
US10090719B2 (en) 2013-04-11 2018-10-02 Siemens Aktiengesellschaft Reluctance motor and associated rotor
CN105144555A (en) * 2013-04-12 2015-12-09 西门子公司 Reluctance rotor with runup aid
US9800125B2 (en) 2014-03-31 2017-10-24 Siemens Aktiengesellschaft Reluctance rotor with mechanical stabilizing
WO2015150055A1 (en) * 2014-03-31 2015-10-08 Siemens Aktiengesellschaft Reluctance rotor with mechanical stabilizing
EP2928047A1 (en) * 2014-03-31 2015-10-07 Siemens Aktiengesellschaft Reluctance rotor with mechanical stabilisation
RU2653177C2 (en) * 2014-03-31 2018-05-08 Сименс Акциенгезелльшафт Reactive rotor with mechanical stabilization

Similar Documents

Publication Publication Date Title
US4476408A (en) High efficiency, low cost permanent magnet AC machine
US4924130A (en) Reluctance synchronous electric machine having intrinsic phase correction means
US6952068B2 (en) Fabricated components of transverse flux electric motors
US6211593B1 (en) Synchronous motor with permanent magnet provided on magnetic pole end
US20060131986A1 (en) Axial gap permanent magnet reluctance motor and method
US20050140236A1 (en) Rotor structure of multi-layer interior permanent magnet motor
US4888513A (en) Reluctance electric machine having a decreased cross section of rotor ferromagnetic material
US20080272667A1 (en) Interior permanent magnet motor and rotor
US20050156475A1 (en) PMBDCM and two phase SRM motor, two phase SRM rotor and stator, and coil wrap for PMBDCM and SRM motors
US6342745B1 (en) Reluctance type rotating machine with permanent magnets
US6700272B1 (en) Reluctance motor with gearless step-down without electronic control of rotating field
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
JP2001037133A (en) Stator and motor
US3758800A (en) Reluctance synchronous motors and rotors for same
US7741750B1 (en) Induction motor with improved torque density
JPH10164779A (en) Axial gap synchronizer
JPH07255138A (en) Permanent magnet-type synchronous rotating armature
JP2008245384A (en) Permanent magnet type rotary electric machine, and compressor using the same
US20060119203A1 (en) Design of the magnet and webs in interior permanent magnet rotors
JPH0521197U (en) Quillan de motor pump
US3775626A (en) External-rotor reluctance motor
JP2008278553A (en) Rotor of rotating electric machine and rotating electric machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP2000333389A (en) Permanent magnet motor
JPH10150754A (en) Reluctance motor and motor vehicle employing it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406