JP2009005572A - Magnetic inductor type synchronous rotating machine and automobile supercharger using the same - Google Patents

Magnetic inductor type synchronous rotating machine and automobile supercharger using the same Download PDF

Info

Publication number
JP2009005572A
JP2009005572A JP2007249389A JP2007249389A JP2009005572A JP 2009005572 A JP2009005572 A JP 2009005572A JP 2007249389 A JP2007249389 A JP 2007249389A JP 2007249389 A JP2007249389 A JP 2007249389A JP 2009005572 A JP2009005572 A JP 2009005572A
Authority
JP
Japan
Prior art keywords
magnetic
rotating machine
partition wall
type synchronous
synchronous rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007249389A
Other languages
Japanese (ja)
Other versions
JP5159228B2 (en
Inventor
Hideaki Arita
秀哲 有田
Masaya Inoue
正哉 井上
Masahiro Iesawa
雅宏 家澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007249389A priority Critical patent/JP5159228B2/en
Publication of JP2009005572A publication Critical patent/JP2009005572A/en
Application granted granted Critical
Publication of JP5159228B2 publication Critical patent/JP5159228B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a magnetic inductor type synchronous rotating machine capable of enhancing motor efficiency by reducing a windage loss and wind noise at the time of high speed rotation. <P>SOLUTION: The machine is provided with first and second magnetic bodies 4, 5 where salient poles are disposed at an equiangular pitch in the circumferential direction at the circumference of cylindrical base sections 4a, 5a each having a rotation axis insertion hole at the position of an axial center and that are coaxially disposed by deviating the salient poles 4b, 5b by a half salient pole pitch in the circumferential direction and being spaced out at a predetermined distance in the axial direction, a division wall 6 that has a rotation axis insertion hole at the position of the axial center is prepared in a disk of a diameter bigger than those of the base sections 4a, 5a, and is coaxially interposed by closely contacting with the first and the second magnetic bodies 4, 5 at a gap therebetween, the rotation axis 2 that inserts the first and the second magnet bodies 4, 5 and the division wall 6 into each rotation axis insertion hole and fixes them therein, a multi-phase coil 11 that generates rotational torque around stator cores 9, 10 enclosing the first and the second magnet bodies 4, 5 and the first and the second magnet bodies 4, 5, and a field coil 12 that excites the salient poles 4b, 5b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、磁気誘導子形同期回転機およびそれを用いた自動車用過給機に関し、特に回転子風損が深刻となる回転数が100,000rpmを超える超高速回転が要求される用途に適用される磁気誘導子形同期回転機およびそれを用いた自動車用過給機に関するものである。   TECHNICAL FIELD The present invention relates to a magnetic inductor type synchronous rotating machine and a supercharger for an automobile using the same, and particularly to applications that require ultra-high speed rotation exceeding 100,000 rpm where the rotor windage becomes serious. The present invention relates to a magnetic inductor type synchronous rotating machine and an automobile supercharger using the same.

従来のホモポーラ型モータは、所定の間隔を有して直列に回転軸に装着され、かつそれぞれの突極を備える2個の回転子と、2個の回転子それぞれを囲繞するように配置され、かつ回転子にトルクを発生させるトルク発生用駆動コイルを備えた固定子と、固定子の外側に配置され、突極を励磁する界磁起磁力発生手段とを備えていた(例えば、特許文献1参照)。この従来のホモポーラ型モータは、界磁起磁力発生手段により突極を励磁して磁極とする構成であるので、単純な形状の鉄心を利用できると共に、磁石などの遠心力に問題のある部材が不要となり、高速回転に適用できる。   A conventional homopolar motor is mounted on a rotary shaft in series with a predetermined interval, and is arranged so as to surround each of the two rotors including the respective salient poles, And a stator having a torque generating drive coil for generating torque in the rotor, and a field magnetomotive force generating means arranged outside the stator and exciting the salient poles (for example, Patent Document 1). reference). Since this conventional homopolar motor has a configuration in which salient poles are excited by means of field magnetomotive force generating means to form magnetic poles, a simple-shaped iron core can be used and a member having a problem with centrifugal force such as a magnet can be used. It becomes unnecessary and can be applied to high-speed rotation.

特開平10−136622号公報JP-A-10-136622

しかし、従来のホモポーラ型モータでは、突極が回転子の軸方向に延在しているので、高速回転時に、相当量の風損が生じて、モータ効率が低下するとともに、回転子の風切り音が大きくなるという不具合があった。   However, in the conventional homopolar motor, the salient poles extend in the axial direction of the rotor, so a considerable amount of windage loss occurs during high-speed rotation, and the motor efficiency is reduced and the rotor wind noise is reduced. There was a problem that became larger.

この発明は、このような課題を解決するためになされたものであり、高速回転時の風損および風切り音を低減して、モータ効率を高めることができる磁気誘導子形同期回転機およびそれを用いた自動車用過給機を得ることを目的とする。   The present invention has been made to solve such a problem, and a magnetic inductor type synchronous rotating machine capable of reducing the windage loss and wind noise during high-speed rotation and increasing the motor efficiency, and the same. It aims at obtaining the used supercharger for cars.

この発明による磁気誘導子形同期回転機は、それぞれ突極が軸心位置に回転軸挿入孔を有する円筒状の基部の外周に周方向に等角ピッチで配設され、該突極を周方向に半突極ピッチずらして、かつ軸方向に所定間隔離間して同軸に配置された第1および第2磁性体と、軸心位置に回転軸挿入孔を有し、上記基部より大径の円盤状に作製され、上記第1および第2磁性体間に互いに密接して同軸に介装された隔壁と、上記第1および第2磁性体および上記隔壁をそれぞれの回転軸挿入孔に挿通して固着する回転軸と、上記第1および第2磁性体のそれぞれを囲繞する固定子鉄心および上記第1および第2磁性体に回転トルクを発生させるトルク発生用駆動コイルを有する固定子と、上記固定子に配設され、上記突極を励磁する界磁起磁力発生用コイルと、を備えたものである。   In the magnetic inductor type synchronous rotating machine according to the present invention, the salient poles are arranged at an equiangular pitch in the circumferential direction on the outer circumference of the cylindrical base portion having the rotation shaft insertion hole at the axial center position. Discs having a larger diameter than the base portion, the first and second magnetic bodies being arranged coaxially with a half salient pole pitch shifted to each other and spaced apart by a predetermined distance in the axial direction, and a rotary shaft insertion hole at the axial center position And a partition wall closely and coaxially interposed between the first and second magnetic bodies, and the first and second magnetic bodies and the partition wall are inserted into the respective rotation shaft insertion holes. A stator having a rotating shaft to be fixed, a stator core surrounding each of the first and second magnetic bodies, and a torque generating drive coil for generating rotational torque in the first and second magnetic bodies, and the fixing For generating magnetomotive force of the field, which is arranged on the child and excites the salient pole. And yl are those with a.

この発明によれば、第1および第2磁性体の間に介装された隔壁が第1および第2磁性体の基部より大径に形成されているので、第1および第2磁性体の突極が周方向に半突極ピッチずれて軸方向に存在していることに起因する第1磁性体から第2磁性体に流れる気流が隔壁により遮断される。この軸方向に流れる気流による風損が低減され、モータ効率が高められる。さらに、軸方向に流れる気流による風切り音が低減され、風騒音が小さくなる。   According to the present invention, the partition wall interposed between the first and second magnetic bodies is formed with a larger diameter than the bases of the first and second magnetic bodies. The airflow flowing from the first magnetic body to the second magnetic body due to the poles being shifted in the circumferential direction by the half salient pole pitch is blocked by the partition walls. Wind loss due to the airflow flowing in the axial direction is reduced, and motor efficiency is increased. Furthermore, wind noise caused by the airflow flowing in the axial direction is reduced, and wind noise is reduced.

実施の形態1.
図1はこの発明の実施の形態1に係る磁気誘導子形同期回転機の構成を示す一部破断斜視図、図2はこの発明の実施の形態1に係る磁気誘導子形同期回転機に適用される回転子の構成を示す斜視図である。なお、図1では、便宜上、1対のティースに集中巻きに巻回された1相のコイルのみを示している。
Embodiment 1 FIG.
FIG. 1 is a partially broken perspective view showing the configuration of a magnetic inductor type synchronous rotating machine according to Embodiment 1 of the present invention, and FIG. 2 is applied to the magnetic inductor type synchronous rotating machine according to Embodiment 1 of the present invention. It is a perspective view which shows the structure of the rotor performed. In FIG. 1, for convenience, only one phase coil wound in a concentrated manner around a pair of teeth is shown.

図1および図2において、磁気誘導子形同期回転機1は、回転軸2に同軸に固着された回転子3と、回転子3を囲繞するように配設された固定子鉄心8にトルク発生用駆動コイルとしての多相コイル11を巻装してなる固定子7と、界磁起磁力発生用コイルとしての界磁コイル12と、回転子3、固定子7および界磁コイル12を収納するケース13とを備えている。   1 and 2, a magnetic inductor type synchronous rotating machine 1 generates torque in a rotor 3 fixed coaxially to a rotating shaft 2 and a stator core 8 disposed so as to surround the rotor 3. A stator 7 wound with a multiphase coil 11 as a drive coil, a field coil 12 as a field magnetomotive force generating coil, and the rotor 3, the stator 7 and the field coil 12. Case 13 is provided.

回転子3は、所定形状に成形された多数枚の磁性鋼板を積層一体化して作製された第1および第2磁性体4,5と、所定枚の磁性鋼板を積層一体化して作製され、軸心位置に回転時挿入孔(図示せず)が穿設された円盤状の隔壁6とを備える。第1および第2磁性体4,5は、同一形状に作製され、軸心位置に回転軸挿入孔4c,5cが穿設された円筒状の基部4a,5aと、基部4a,5aの外周面から径方向外方に突設され、かつ軸方向に延設されて、周方向に等角ピッチで4つ設けられた突極4b,5bとから構成されている。第1および第2磁性体4,5は、周方向に半突極ピッチずらして、隔壁6を介して相対して互いに密接して配置され、それらの回転軸挿入孔に挿通された回転軸2に固着されて構成されている。隔壁6の外径は第1および第2磁性体4,5の外径(突極4b、5bの外径)に一致している。   The rotor 3 is produced by laminating and integrating a predetermined number of magnetic steel plates and the first and second magnetic bodies 4 and 5 produced by laminating and integrating a large number of magnetic steel plates formed in a predetermined shape. And a disk-shaped partition wall 6 in which an insertion hole (not shown) is formed at the center position. The first and second magnetic bodies 4 and 5 are formed in the same shape, and cylindrical base portions 4a and 5a having rotation shaft insertion holes 4c and 5c drilled at the axial center positions, and outer peripheral surfaces of the base portions 4a and 5a Is formed from four salient poles 4b and 5b that are provided radially outwardly and extend in the axial direction, and are provided at equiangular pitches in the circumferential direction. The first and second magnetic bodies 4 and 5 are arranged with a semi-saliency pitch shift in the circumferential direction, are arranged in close contact with each other via the partition wall 6, and the rotary shaft 2 inserted through the rotary shaft insertion holes. It is fixed and configured. The outer diameter of the partition 6 corresponds to the outer diameter of the first and second magnetic bodies 4 and 5 (outer diameter of the salient poles 4b and 5b).

固定子鉄心8は、所定形状に成形された多数枚の磁性鋼板を積層一体化して作製された第1および第2固定子鉄心9,10を備える。第1および第2固定子鉄心9,10は、同一形状に作製され、円筒状のコアバック9a,10aと、コアバック9a、10aの内周面から径方向内方に突設されて周方向に等角ピッチで6つ設けられたティース9b,10bとを備える。第1および第2固定子鉄心9,10は、ティース9b,10bの周方向位置を一致させて、隔壁6の軸方向厚み分離間して配置され、それぞれ第1および第2磁性体4,5を囲繞する。図1では、1対のティース9b、10bに集中巻きに巻回された1相のコイルのみを示しているが、多相コイル11は、実際には、6対のティース9b、10bに対して順次U,V,Wの3相を2回繰り返して集中巻きに巻回して構成されている。   The stator core 8 includes first and second stator cores 9 and 10 that are manufactured by laminating and integrating a large number of magnetic steel plates formed in a predetermined shape. The first and second stator cores 9 and 10 are made in the same shape, and are projected radially inward from the inner peripheral surfaces of the cylindrical core backs 9a and 10a and the core backs 9a and 10a in the circumferential direction. And 6 teeth 9b and 10b provided at an equiangular pitch. The first and second stator cores 9 and 10 are disposed between the axial thickness separations of the partition wall 6 with the circumferential positions of the teeth 9b and 10b coincided with each other, and the first and second magnetic bodies 4 and 5, respectively. Go. In FIG. 1, only one phase coil wound in a concentrated manner around a pair of teeth 9b and 10b is shown. However, the multi-phase coil 11 is actually used for six pairs of teeth 9b and 10b. The three phases U, V, and W are sequentially repeated twice and wound into a concentrated winding.

界磁コイル12は、導体線を円筒状に巻回したものであり、第1および第2固定子鉄心9,10のコアバック9a,10a間に介装されている。第1および第2磁性体4,5と隔壁6とを一体に固着する回転軸2が軸受部(図示せず)に支持される。   The field coil 12 is formed by winding a conductor wire in a cylindrical shape, and is interposed between the core backs 9 a and 10 a of the first and second stator cores 9 and 10. The rotary shaft 2 that integrally fixes the first and second magnetic bodies 4 and 5 and the partition wall 6 is supported by a bearing portion (not shown).

ついで、このように構成された磁気誘導子形同期回転機1の動作について説明する。
界磁コイル12に通電されると、図1に矢印で示されるように、第1磁性体4の突極4bから第1固定子鉄心9に流れ、その後軸方向に流れ、第2固定子鉄心10から第2磁性体5の突極5bに戻る磁束が形成される。この時、第1および第2磁性体4,5の突極4b,5bが周方向に半突極ピッチずれているので、磁束は、軸方向から見ると、N極とS極とが周方向に交互に配置されたように作用する。これにより、磁気誘導子形同期回転機1は、無整流子モータであり、磁気的には、8極6スロットの集中巻き方式の永久磁石式回転電機と同様に動作する。但し、界磁コイル12により磁束を発生させているので、界磁コイル12への通電を停止することで、逆起電力を取り去ることができる。この磁気誘導子形同期回転機1も、界磁制御式の回転電機である。
Next, the operation of the magnetic inductor type synchronous rotating machine 1 configured as described above will be described.
When the field coil 12 is energized, it flows from the salient pole 4b of the first magnetic body 4 to the first stator core 9 and then flows in the axial direction, as indicated by an arrow in FIG. A magnetic flux returning from 10 to the salient pole 5b of the second magnetic body 5 is formed. At this time, since the salient poles 4b and 5b of the first and second magnetic bodies 4 and 5 are shifted by a half salient pole pitch in the circumferential direction, when viewed from the axial direction, the magnetic flux is in the circumferential direction. It acts as if they were arranged alternately. Thus, the magnetic inductor type synchronous rotating machine 1 is a non-commutator motor, and magnetically operates in the same manner as an 8-pole 6-slot concentrated winding type permanent magnet rotating electrical machine. However, since the magnetic flux is generated by the field coil 12, the back electromotive force can be removed by stopping the energization to the field coil 12. This magnetic inductor type synchronous rotating machine 1 is also a field control type rotating electric machine.

なお、磁気誘導子形同期回転機1では、多相コイル11が集中巻き方式で第1および第2固定子鉄心9,10に巻装されているものとしているが、多相コイル11は分布巻き方式で第1および第2固定子鉄心9,10に巻装されてもよい。
また、磁気誘導子形同期回転機1は、界磁極数とスロット数との比が8:6、即ち極スロット比が4:3であるが、極スロット比は4:3に限定されるものではなく、例えば2:3であってもよい。
In the magnetic inductor type synchronous rotating machine 1, the multiphase coil 11 is wound around the first and second stator cores 9 and 10 in a concentrated winding method, but the multiphase coil 11 is distributed winding. It may be wound around the first and second stator cores 9 and 10 in a manner.
In the magnetic inductor type synchronous rotating machine 1, the ratio of the number of field poles to the number of slots is 8: 6, that is, the pole slot ratio is 4: 3, but the pole slot ratio is limited to 4: 3. Instead, it may be 2: 3, for example.

ここで、隔壁6を第1および第2磁性体4,5間に介装することによる効果について説明する。
まず、隔壁6が省略された比較例としての回転子20を用いた場合の風損について説明する。回転子20は、図3に示されるように、第1および第2磁性体4,5を周方向に半突極ピッチずらして軸方向に互いに密接して配置し、それらの軸心位置に挿通された回転軸2に固着されて構成されている。この回転子20を高速回転させた場合、図4に矢印で示されるように、気流Aが周方向に隣り合う突極4b間に渦を巻くように流れる。図示していないが、周方向に隣り合う突極5b間にも渦を巻くように気流Aが流れる。この時、突極4b,5bが周方向に半突極ピッチずれて軸方向に存在しているので、図5に矢印で示されるように、軸方向に流れる気流Bが生じる。この種の回転機においては、この軸方向に流れる気流Bが風損となる。風損は、一般的に、回転数の3乗に比例するために、高速回転で運転される回転機では無視できない。
Here, the effect obtained by interposing the partition wall 6 between the first and second magnetic bodies 4 and 5 will be described.
First, the windage loss in the case of using the rotor 20 as a comparative example in which the partition wall 6 is omitted will be described. As shown in FIG. 3, the rotor 20 has the first and second magnetic bodies 4, 5 arranged in close contact with each other in the axial direction with a half salient pole pitch shifted in the circumferential direction, and inserted into the axial center position thereof. It is configured to be fixed to the rotating shaft 2 formed. When the rotor 20 is rotated at a high speed, as indicated by an arrow in FIG. 4, the air current A flows in a vortex between the salient poles 4 b adjacent in the circumferential direction. Although not shown, the airflow A flows so as to wind a vortex between the salient poles 5b adjacent in the circumferential direction. At this time, since the salient poles 4b and 5b are shifted in the circumferential direction by a half salient pole pitch and exist in the axial direction, an airflow B flowing in the axial direction is generated as indicated by an arrow in FIG. In this type of rotating machine, the airflow B flowing in the axial direction becomes a windage loss. The windage loss is generally proportional to the third power of the rotation speed, and thus cannot be ignored in a rotating machine operated at high speed.

本構造の回転子3では、第1および第2磁性体4,5間に介装された隔壁6が、図6に示されるように、軸方向の流れる気流Bを遮断する。これにより、気流Bに起因する風損が低減され、回転機としての損失が低減されるので、モータ効率が高められる。さらに、風切り音が低減され、風騒音が小さくなる。   In the rotor 3 having this structure, the partition wall 6 interposed between the first and second magnetic bodies 4 and 5 blocks the airflow B flowing in the axial direction, as shown in FIG. Thereby, since the wind loss resulting from the airflow B is reduced and the loss as a rotating machine is reduced, the motor efficiency is increased. Furthermore, wind noise is reduced and wind noise is reduced.

ここでは、隔壁6の外径が第1および第2磁性体4,5の外径(突極4b、5bの外径)に一致しているものとしているが、風損低減の観点から、隔壁6の外径は、必ずしも第1および第2磁性体4,5の突極4b、5bの外径に一致している必要はなく、固定子鉄心8に巻装されている多相コイル11の内径より小さく、第1および第2磁性体4,5の基部4a,5aの外径より大きくなっていればよい。   Here, it is assumed that the outer diameter of the partition wall 6 is the same as the outer diameter of the first and second magnetic bodies 4 and 5 (outer diameter of the salient poles 4b and 5b). 6 does not necessarily have to coincide with the outer diameters of the salient poles 4b and 5b of the first and second magnetic bodies 4 and 5, and the outer diameter of the multiphase coil 11 wound around the stator core 8 It is only necessary to be smaller than the inner diameter and larger than the outer diameter of the base portions 4a and 5a of the first and second magnetic bodies 4 and 5.

つぎに、隔壁6を磁性体で作製することによる効果について説明する。
従来の同期回転電機21では、図7に示されるように、回転子3に換えて、第1および第2磁性体4,5が軸方向に離間して回転軸2に固着されている回転子22を用いている。そこで、界磁コイル12に通電されると、図7に矢印で示されるように、第1磁性体4の突極4bから第1固定子鉄心9に流れ、その後軸方向に流れ、第2固定子鉄心10から第2磁性体5に流れ、回転軸2を軸方向に流れて第1磁性体4に戻る磁束が形成される。このように、従来の回転子22を用いた場合、第2磁性体5から第1磁性体4に戻る磁路が回転軸2のみで構成される。
Next, the effect of manufacturing the partition wall 6 with a magnetic material will be described.
In the conventional synchronous rotating electrical machine 21, as shown in FIG. 7, instead of the rotor 3, the first and second magnetic bodies 4, 5 are separated from each other in the axial direction and fixed to the rotating shaft 2. 22 is used. Therefore, when the field coil 12 is energized, as indicated by an arrow in FIG. 7, it flows from the salient poles 4b of the first magnetic body 4 to the first stator core 9, and then flows in the axial direction to be second fixed. A magnetic flux that flows from the core 10 to the second magnetic body 5, flows in the axial direction on the rotating shaft 2, and returns to the first magnetic body 4 is formed. As described above, when the conventional rotor 22 is used, the magnetic path returning from the second magnetic body 5 to the first magnetic body 4 is constituted only by the rotary shaft 2.

回転数が100,000rpmを超えるような高速回転機では、軸受部の周速限界から、回転軸の直径が6〜8mmに制限される。そこで、回転数が100,000rpmを超えるような高速回転機で1Kw程度の出力を得ようとした場合に、直径が6〜8mmに制限された回転軸のみでは磁路断面積が狭く、磁気飽和によって所望の磁束量が確保できない。   In a high-speed rotating machine with a rotational speed exceeding 100,000 rpm, the diameter of the rotating shaft is limited to 6 to 8 mm due to the peripheral speed limit of the bearing portion. Therefore, when trying to obtain an output of about 1 Kw with a high-speed rotating machine whose rotational speed exceeds 100,000 rpm, the magnetic path cross-sectional area is narrow only with the rotating shaft whose diameter is limited to 6 to 8 mm, and magnetic saturation Therefore, a desired amount of magnetic flux cannot be secured.

本構造の回転子3では、隔壁6が磁性体で作製されているので、界磁コイル12に通電されると、第1磁性体4の突極4bから第1固定子鉄心9に流れ、その後軸方向に流れ、第2固定子鉄心10から第2磁性体5に流れ、回転軸2および隔壁6を軸方向に流れて第1磁性体4に戻る磁束が形成される。このように、回転子3を用いた場合では、第2磁性体5から第1磁性体4に戻る磁路が回転軸2および隔壁6で構成される。そこで、回転軸2のみの場合に比べ、第2磁性体5から第1磁性体4に戻る磁路断面積が、基部4a、5aの断面積分大きくなるので、磁気飽和が緩和され、所望の磁束量を確保できる。従って、本構造の回転子3を採用することにより、回転数が100,000rpmを超えるような高速回転機においても1Kw程度の出力を得ることができる。   In the rotor 3 of this structure, since the partition wall 6 is made of a magnetic material, when the field coil 12 is energized, it flows from the salient pole 4b of the first magnetic material 4 to the first stator core 9, and thereafter A magnetic flux that flows in the axial direction, flows from the second stator core 10 to the second magnetic body 5, flows in the axial direction through the rotating shaft 2 and the partition wall 6, and returns to the first magnetic body 4 is formed. As described above, when the rotor 3 is used, the magnetic path returning from the second magnetic body 5 to the first magnetic body 4 is constituted by the rotating shaft 2 and the partition wall 6. Therefore, the magnetic path cross-sectional area returning from the second magnetic body 5 to the first magnetic body 4 is larger than that of the rotary shaft 2 alone, so that the cross-sectional integral of the base portions 4a and 5a is increased. The amount can be secured. Therefore, by adopting the rotor 3 having this structure, an output of about 1 Kw can be obtained even in a high-speed rotating machine whose rotational speed exceeds 100,000 rpm.

この実施の形態1による磁気誘導子形同期回転機1は、風損が低減され、回転機としての損失を低減できるので、同じ電力で、従来の磁気誘導子形同期回転機21に比べて高速回転が可能となる。そこで、この磁気誘導子形同期回転機1を超高速で回転する自動車用過給機の回転機や高速主軸工作機のスピンドルを稼働するスピンドルモータに適用すれば、自動車用過給機の回転機やスピンドルモータのさらなる高速化を実現できる。なお、自動車用過給機は、例えばエンジンの排気系統に配設されたタービンと、タービンの回転軸に固着され、エンジンの吸気系統に配設されたコンプレッサと、その回転軸に同軸に固着された回転機と、を備えている。この回転機には、超高速回転が要求されるので、超高速を実現できる本願の磁気誘導子形同期回転機1を適用することは、特に有効である。   Since the magnetic inductor type synchronous rotating machine 1 according to the first embodiment has reduced windage loss and can reduce loss as a rotating machine, the same electric power can be used as compared with the conventional magnetic inductor type synchronous rotating machine 21. Rotation is possible. Therefore, if this magnetic inductor type synchronous rotating machine 1 is applied to a rotating machine for an automobile supercharger that rotates at an ultra-high speed or a spindle motor that operates a spindle of a high-speed spindle machine tool, the rotating machine for an automotive supercharger is used. And higher speed spindle motor. The automobile supercharger is, for example, fixed to the turbine disposed in the exhaust system of the engine, the compressor disposed in the rotating shaft of the turbine, and coaxially secured to the rotating shaft. And a rotating machine. Since this rotating machine is required to rotate at an ultra-high speed, it is particularly effective to apply the magnetic inductor type synchronous rotating machine 1 of the present application that can realize an ultra-high speed.

つぎに、磁気的な観点から、隔壁6の外径について検討する。ここで、隔壁6の外径を変えて出力(トルク)を測定した結果を図8に示す。図8において、横軸は回転子外径(第1および第2磁性体の突極の外径)に対する隔壁外径の相対値を示し、縦軸は隔壁外径を回転子外径としたときのトルクに対するトルクの相対値を示している。つまり、隔壁外径の相対値が100とは、隔壁外径が回転子外径に一致し、トルクの相対値が100とは、隔壁外径を回転子外径としたときのトルクに一致することを意味する。また、図8中、実線が隔壁外径の相対値とトルクの相対値との関係を示している。   Next, the outer diameter of the partition wall 6 will be examined from a magnetic point of view. Here, the result of measuring the output (torque) by changing the outer diameter of the partition wall 6 is shown in FIG. In FIG. 8, the horizontal axis represents the relative value of the partition outer diameter with respect to the rotor outer diameter (the outer diameter of the salient poles of the first and second magnetic bodies), and the vertical axis represents the rotor outer diameter as the rotor outer diameter. The relative value of the torque with respect to the torque is shown. That is, when the relative value of the partition outer diameter is 100, the partition outer diameter matches the rotor outer diameter, and the relative torque value of 100 corresponds to the torque when the partition outer diameter is the rotor outer diameter. Means that. In FIG. 8, the solid line indicates the relationship between the relative value of the partition outer diameter and the relative value of the torque.

図8から、隔壁6の外径が大きくなると、得られるトルクが漸次大きくなり、隔壁6の外径が回転子外径の92%前後の場合に最大値をとり、隔壁6の外径がさらに大きくなると、トルクは漸次小さくなることが分かった。これは、隔壁6の外径が小さくなると、隔壁6での磁路断面積が小さくなり、所望の磁束量が得られなくなってトルクが小さくなり、一方、隔壁6の外径が回転子外径より大きくなると、隔壁6と固定子鉄心8との間の隙間が回転子外径と固定子鉄心8との間のギャップ長より短くなり、界磁コイル12の作る磁界による磁束が第2固定子鉄心10から隔壁6を介して第1固定子鉄心9に流れ、このトルクに寄与しない磁束、即ち漏れ磁束が多くなることに起因するものと推考される。   From FIG. 8, when the outer diameter of the partition wall 6 is increased, the torque obtained is gradually increased. When the outer diameter of the partition wall 6 is around 92% of the rotor outer diameter, the maximum value is obtained, and the outer diameter of the partition wall 6 is further increased. It was found that the torque gradually decreased as it increased. This is because when the outer diameter of the partition wall 6 is reduced, the cross-sectional area of the magnetic path in the partition wall 6 is reduced, the desired amount of magnetic flux cannot be obtained, and the torque is reduced. On the other hand, the outer diameter of the partition wall 6 is the rotor outer diameter. When it becomes larger, the gap between the partition wall 6 and the stator core 8 becomes shorter than the gap length between the rotor outer diameter and the stator core 8, and the magnetic flux generated by the magnetic field generated by the field coil 12 is increased by the second stator. It is assumed that the magnetic flux that flows from the iron core 10 to the first stator iron core 9 via the partition wall 6 and does not contribute to this torque, that is, the leakage magnetic flux increases.

ここで、隔壁の磁束密度B[T]は式(1)で表される。 Here, the magnetic flux density B s [T] of the partition is expressed by the formula (1).

Figure 2009005572
Figure 2009005572

なお、μ:真空透磁率[H/m]、AT:界磁アンペアターン[AT]、S:回転子磁極の面積[m]、l:回転子と固定子との間のギャップ長[m]、S:隔壁の軸方向と直交する断面積[m]である。
ここで、回転子外径が10.0mm、回転子の磁極の角度が30deg、磁極の軸方向長さが12.5mmとした場合の隔壁の磁束密度を算出し、図8中点線で示す。なお、μを4π×10−7[H/m]、ATを1440[AT]、lを0.55mm、Sを10.0×10−3×π×{30(deg)/360(deg)}×12.5×10−3[m]とした。
Μ 0 : vacuum permeability [H / m], AT: field ampere turn [AT], S s : area of rotor magnetic pole [m 2 ], l g : gap between rotor and stator Length [m], S r : cross-sectional area [m 2 ] perpendicular to the axial direction of the partition wall.
Here, the magnetic flux density of the partition wall when the rotor outer diameter is 10.0 mm, the rotor magnetic pole angle is 30 deg, and the magnetic pole axial length is 12.5 mm is calculated and shown by the dotted line in FIG. Incidentally, mu 0 and 4π × 10 -7 [H / m ], the AT 1440 [AT], 0.55mm to l g, S s and 10.0 × 10 -3 × π × { 30 (deg) / 360 (Deg)} × 12.5 × 10 −3 [m 2 ].

図8から、隔壁6の外径が小さくなるほど、磁束密度が大きくなることが分かる。
例えば、隔壁6の外径が8.35mmの場合、隔壁の磁束密度Bは、1.703[T]となる。一般に、磁束密度が1.7Tを超えると磁気飽和し、トルクが得られにくくなる。従って、隔壁6での磁気飽和を回避して、大きなトルクを確保するためには、隔壁6の外径を回転子外径の83.5%以上とすることが好ましい。また、隔壁6の外径を回転子外径の83.5%とした場合には、隔壁6の外径を回転子外径とした場合と同等のトルクが得られる。
また、図8から、隔壁6の外径を回転子外径より大きくすると、トルクが低下することから、隔壁6の外径は回転子外径以下にすることが好ましい。
このことから、磁気的な観点からは、隔壁6の外径は、回転子外径の100%以下、83.5%以上とすることが好ましい。
FIG. 8 shows that the magnetic flux density increases as the outer diameter of the partition wall 6 decreases.
For example, when the outer diameter of the partition wall 6 is 8.35 mm, the magnetic flux density B s of the partition wall is 1.703 [T]. In general, when the magnetic flux density exceeds 1.7 T, magnetic saturation occurs and it is difficult to obtain torque. Therefore, in order to avoid magnetic saturation in the partition wall 6 and ensure a large torque, the outer diameter of the partition wall 6 is preferably 83.5% or more of the rotor outer diameter. Further, when the outer diameter of the partition wall 6 is 83.5% of the rotor outer diameter, the same torque as that obtained when the outer diameter of the partition wall 6 is the rotor outer diameter can be obtained.
Further, from FIG. 8, when the outer diameter of the partition wall 6 is made larger than the outer diameter of the rotor, the torque is reduced.
From this point of view, it is preferable from the magnetic point of view that the outer diameter of the partition wall 6 is 100% or less and 83.5% or more of the rotor outer diameter.

なお、上記実施の形態1では、隔壁6を磁性体で作製するものとしているが、隔壁6は磁性体で作製される必要はなく、ステンレス、アルミニウム、銅などの金属材料やエポキシなどの樹脂材料などの非磁性体で作製してもよい。この場合でも、風損および風切り音の低減効果が得られる。   In the first embodiment, the partition wall 6 is made of a magnetic material. However, the partition wall 6 is not necessarily made of a magnetic material, and a metal material such as stainless steel, aluminum, or copper, or a resin material such as epoxy. You may produce with nonmagnetic materials, such as. Even in this case, the effect of reducing windage loss and wind noise can be obtained.

また、上記実施の形態1では、第1および第2磁性体4,5が磁性鋼板を積層一体化したものとしているが、第1および第2磁性体は磁性鋼板の積層体に限定されるものではなく、例えばS10Cなどの低炭素鋼の塊状体で作製されてもよい。
また、上記実施の形態1では、隔壁6が磁性鋼板を積層一体化したものとしているが、隔壁は磁性鋼板の積層体に限定されるものではない。隔壁6が磁性体であれば、例えばS10Cなどの低炭素鋼の塊状体で作製してもよい。この場合、第1および第2磁性体4,5および隔壁6を低炭素鋼の塊状体を用いて一体に成形してもよい。さらに、隔壁6が非磁性体であれば、ステンレス、アルミニウム、銅などの金属材料やエポキシなどの樹脂材料などの塊状体で作製してもよい。
In the first embodiment, the first and second magnetic bodies 4 and 5 are formed by laminating and integrating magnetic steel sheets. However, the first and second magnetic bodies are limited to a laminated body of magnetic steel sheets. Instead, it may be made of a lump of low carbon steel such as S10C.
In the first embodiment, the partition walls 6 are formed by laminating and integrating magnetic steel plates. However, the partition walls are not limited to a laminate of magnetic steel plates. If the partition 6 is a magnetic body, it may be made of a lump of low carbon steel such as S10C. In this case, the first and second magnetic bodies 4 and 5 and the partition 6 may be integrally formed using a low-carbon steel lump. Further, if the partition wall 6 is a non-magnetic material, it may be made of a lump such as a metal material such as stainless steel, aluminum or copper, or a resin material such as epoxy.

実施の形態2.
図9はこの発明の実施の形態2に係る磁気誘導子形同期回転機に適用される回転子構造を示す斜視図である。
図9において、回転子3Aでは、隔壁6と同等の外径を有し、回転軸挿入孔14aが軸心位置に穿設された円盤状のリング体14が第1および第2磁性体4,5の軸方向両側に密接して同軸に配置され、回転軸挿入孔14aに挿通された回転軸2に固着されている。なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 2. FIG.
FIG. 9 is a perspective view showing a rotor structure applied to a magnetic inductor type synchronous rotating machine according to Embodiment 2 of the present invention.
In FIG. 9, in the rotor 3A, the disk-shaped ring body 14 having the same outer diameter as the partition wall 6 and having the rotation shaft insertion hole 14a drilled at the axial center position is formed by the first and second magnetic bodies 4, The shaft 5 is closely and coaxially arranged on both sides in the axial direction, and is fixed to the rotating shaft 2 inserted through the rotating shaft insertion hole 14a. Other configurations are the same as those in the first embodiment.

上記実施の形態1の回転子3を高速回転させた場合、図6に示されるように、周方向に隣り合う突極4b間に生じる渦を巻くような気流Aに加え、軸方向外方から突極4b間に流れ込み、隔壁6側に流れ、その後折り返されて突極4b間から軸方向外方に流れ出る気流Cが生じる。図示していないが、周方向に隣り合う突極5b間にも、気流A,Cが生じる。   When the rotor 3 of the first embodiment is rotated at a high speed, as shown in FIG. 6, in addition to the air current A that creates a vortex between the salient poles 4b adjacent in the circumferential direction, The airflow C flows between the salient poles 4b, flows toward the partition wall 6, and then is folded back to flow outwardly between the salient poles 4b in the axial direction. Although not shown, air currents A and C are also generated between the salient poles 5b adjacent in the circumferential direction.

この実施の形態2による回転子3Aでは、一対のリング体14が第1および第2磁性体4,5の軸方向両側に密接して配置されているので、軸方向外方から突極4b,5b間に流れ込み、その後突極4b,5b間から軸方向外方に流れ出る気流Cの発生が阻止される。これにより、その分風損が低減され、回転機としての損失が低減されるので、モータ効率がさらに高められる。ここで、リング体14は、磁性体あるいは非磁性体のいずれの材料で作製されてもよく、隔壁6と同材料で作製すれば、材料コストを低減できる。   In the rotor 3A according to the second embodiment, the pair of ring bodies 14 are arranged in close contact with both axial sides of the first and second magnetic bodies 4 and 5, so that the salient poles 4b, Generation of the airflow C that flows between 5b and then flows axially outward from between the salient poles 4b and 5b is prevented. Thereby, the wind loss is reduced by that amount, and the loss as a rotating machine is reduced, so that the motor efficiency is further increased. Here, the ring body 14 may be made of either a magnetic material or a non-magnetic material. If the ring body 14 is made of the same material as the partition wall 6, the material cost can be reduced.

なお、上記実施の形態2では、リング体14が隔壁6と同等の外径を有するものとしているが、リング体14の外径は、必ずしも隔壁6の外径に一致している必要はなく、固定子鉄心8に巻装されている多相コイル11の内径より小さく、第1および第2磁性体4,5の基部4a,5aの外径より大きくなっていればよい。   In the second embodiment, the ring body 14 has an outer diameter equivalent to that of the partition wall 6. However, the outer diameter of the ring body 14 does not necessarily need to coincide with the outer diameter of the partition wall 6. It is only necessary to be smaller than the inner diameter of the multiphase coil 11 wound around the stator core 8 and larger than the outer diameters of the base portions 4 a and 5 a of the first and second magnetic bodies 4 and 5.

実施の形態3.
この実施の形態3では、図10に示されるように、回転子3Bのバランス取り部15を隔壁6の一部を加工して形成している。なお、他の構成は上記実施の形態1と同様に構成されている。
このように構成された回転子3Bでは、回転子3Bのバランス取りを磁路に影響のない隔壁6で行っているので、従来行われていたバランス取りを回転子端部で行う場合に比べ、バランス取りに起因する磁気特性の悪化を抑制できる。
Embodiment 3 FIG.
In the third embodiment, as shown in FIG. 10, the balancing portion 15 of the rotor 3 </ b> B is formed by processing a part of the partition wall 6. Other configurations are the same as those in the first embodiment.
In the rotor 3B configured as described above, the balancing of the rotor 3B is performed by the partition wall 6 that does not affect the magnetic path, so compared to the case where the balancing is performed at the end of the rotor, which is conventionally performed. Deterioration of magnetic characteristics due to balancing can be suppressed.

実施の形態4.
この実施の形態4では、図11に示されるように、回転子3Cのバランス取り部を隔壁6およびリング体14に形成している。なお、他の構成は上記実施の形態2と同様に構成されている。
このように構成された回転子3Cでは、回転子3Cのバランス取りを磁路に影響を与えることなく多数の箇所で行うことができるので、上記実施の形態3の効果に加え、高次を含む機械共振を避けることができる。
Embodiment 4 FIG.
In the fourth embodiment, as shown in FIG. 11, the balancing portion of the rotor 3 </ b> C is formed in the partition wall 6 and the ring body 14. Other configurations are the same as those in the second embodiment.
In the rotor 3C configured as described above, since the balancing of the rotor 3C can be performed at a number of locations without affecting the magnetic path, in addition to the effects of the third embodiment, higher order is included. Mechanical resonance can be avoided.

実施の形態5.
図12はこの発明の実施の形態5に係る磁気誘導子形同期回転機に適用される回転子を示す分解斜視図である。
図12において、突極位置決め部材16は、軸心位置に回転軸挿入孔17aを有する円盤状の隔壁17と、隔壁17の両端面に突設され、第1および第2磁性体4,5の突極4b,5bの周方向の両側面に当接して第1および第2磁性体4,5を周方向に半突極ピッチずらした状態に位置決めする突起部18と、を備えている。なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 5 FIG.
FIG. 12 is an exploded perspective view showing a rotor applied to the magnetic inductor type synchronous rotating machine according to the fifth embodiment of the present invention.
In FIG. 12, the salient pole positioning member 16 has a disk-shaped partition wall 17 having a rotation shaft insertion hole 17a at the axial center position, and projects from both end surfaces of the partition wall 17, and the first and second magnetic bodies 4, 5 And a protrusion 18 for positioning the first and second magnetic bodies 4 and 5 in a state shifted by a half salient pole pitch in the circumferential direction by contacting both side surfaces of the salient poles 4b and 5b in the circumferential direction. Other configurations are the same as those in the first embodiment.

この実施の形態5では、第1磁性体4を軸方向一側から突極位置決め部材16に組み付けられ、第2磁性体5が軸方向他側から突極位置決め部材16に組み付けられる。この時、突極4bの周方向両側面が周方向に隣り合う一対の突起部18の相対する側面に密接し、第1磁性体4の突極位置決め部材16に対する軸心周りの回転が阻止される。同様に、突極5bの周方向両側面が周方向に隣り合う一対の突起部18の相対する側面に密接し、第2磁性体5の突極位置決め部材16に対する軸心周りの回転が阻止される。これにより、第1および第2磁性体4,5が周方向に半磁極ピッチずれた状態で突極位置決め部材16に組み付けられる。そして、第1および第2磁性体4,5および突極位置決め部材16がそれらの回転軸挿入孔4c,17a,5cに挿通された回転軸2に固着されて、回転子3Dが構成される。   In the fifth embodiment, the first magnetic body 4 is assembled to the salient pole positioning member 16 from one side in the axial direction, and the second magnetic body 5 is assembled to the salient pole positioning member 16 from the other side in the axial direction. At this time, both side surfaces of the salient pole 4b in the circumferential direction are in close contact with opposite side surfaces of the pair of projecting portions 18 adjacent to each other in the circumferential direction, and rotation of the first magnetic body 4 around the axis with respect to the salient pole positioning member 16 is prevented. The Similarly, both side surfaces in the circumferential direction of the salient pole 5b are in close contact with opposite side surfaces of the pair of protrusions 18 adjacent in the circumferential direction, and rotation of the second magnetic body 5 around the axis with respect to the salient pole positioning member 16 is prevented. The As a result, the first and second magnetic bodies 4 and 5 are assembled to the salient pole positioning member 16 in a state where the semimagnetic pole pitch is shifted in the circumferential direction. Then, the first and second magnetic bodies 4 and 5 and the salient pole positioning member 16 are fixed to the rotary shaft 2 inserted through the rotary shaft insertion holes 4c, 17a and 5c to constitute the rotor 3D.

この実施の形態5によれば、第1および第2磁性体4,5を軸方向両側から突極位置決め部材16に組み付けるだけで、突極4b、5bが周方向に半磁極ピッチで配列された状態に第1および第2磁性体4,5を組み上げることができる。また、第1および第2磁性体4,5の突極位置決め部材16の軸心周りの回転が阻止されているので、回転軸2の挿入過程での第1および第2磁性体4,5の周方向の位置ずれの発生が無い。そこで、突極4b、5bの周方向位置が高精度に位置決めされた回転子3Dを、専用の組立治具を用いることなく、簡易に組み立てることができる。このように、突極4b、5bが互いに半磁極ピッチずれて、周方向に等角ピッチで配列されることにより、所望のトルクを得ることができる。   According to the fifth embodiment, the salient poles 4b and 5b are arranged at a half pole pitch in the circumferential direction simply by assembling the first and second magnetic bodies 4 and 5 to the salient pole positioning member 16 from both axial sides. The first and second magnetic bodies 4 and 5 can be assembled in a state. Further, since the rotation of the first and second magnetic bodies 4 and 5 around the axial center of the salient pole positioning member 16 is prevented, the first and second magnetic bodies 4 and 5 in the process of inserting the rotating shaft 2 are prevented. There is no misalignment in the circumferential direction. Therefore, the rotor 3D in which the circumferential positions of the salient poles 4b and 5b are positioned with high accuracy can be easily assembled without using a dedicated assembly jig. In this way, the salient poles 4b and 5b are shifted from each other by a half magnetic pole pitch and arranged at an equiangular pitch in the circumferential direction, whereby a desired torque can be obtained.

実施の形態6.
図13はこの発明の実施の形態6に係る磁気誘導子形同期回転機の構成を示す断面図である。
図13において、回転子3Eでは、上記実施の形態1における第1および第2磁性体4,5および隔壁6に対して、第1および第2磁性体4A,5Aの軸長を長くし、隔壁6Aの軸方向厚みをその分薄くしている。これにより、隔壁6Aの外径が第1および第2磁性体4A,5Aの外径より大きく、かつ隔壁6Aと第1および第2固定子鉄心9,10との間の隙間dが第1および第2磁性体4A,5Aと第1および第2固定子鉄心9,10との間のギャップ長lより長く構成されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 6 FIG.
FIG. 13 is a sectional view showing the configuration of a magnetic inductor type synchronous rotating machine according to Embodiment 6 of the present invention.
In FIG. 13, in the rotor 3E, the axial lengths of the first and second magnetic bodies 4A and 5A are made longer than the first and second magnetic bodies 4 and 5 and the partition 6 in the first embodiment, and the partition The axial thickness of 6A is reduced accordingly. Thereby, the outer diameter of the partition wall 6A is larger than the outer diameters of the first and second magnetic bodies 4A and 5A, and the gap d between the partition wall 6A and the first and second stator cores 9 and 10 is the first and second magnetic bodies 4A and 5A. second magnetic body 4A, is constructed longer than the gap length l g between 5A and the first and second stator core 9 and 10.
Other configurations are the same as those in the first embodiment.

この実施の形態6では、隔壁6Aと第1および第2固定子鉄心9,10との間の隙間dが第1および第2磁性体4A,5Aと第1および第2固定子鉄心9,10との間のギャップ長lより長く構成されている。そこで、第2固定子鉄心10と隔壁6Aとの間の磁気抵抗が、第2固定子鉄心10と第2磁性体5Aとの間の磁気抵抗より大きくなる。同様に、第1固定子鉄心9と隔壁6Aとの間の磁気抵抗が、第1固定子鉄心9と第1磁性体4Aとの間の磁気抵抗より大きくなる。これにより、界磁コイル12の作る磁界による磁束は、第2固定子鉄心10からギャップを通って第2磁性体5Aに流れ、ついで隔壁6Aおよび回転軸2を介して第1磁性体4Aに流れ、その後ギャップを通って第1固定子鉄心9に流れる。 In the sixth embodiment, the gap d between the partition wall 6A and the first and second stator cores 9 and 10 is defined as the first and second magnetic bodies 4A and 5A and the first and second stator cores 9 and 10. It is configured longer than the gap length l g between. Therefore, the magnetic resistance between the second stator core 10 and the partition wall 6A is larger than the magnetic resistance between the second stator core 10 and the second magnetic body 5A. Similarly, the magnetic resistance between the first stator core 9 and the partition wall 6A is larger than the magnetic resistance between the first stator core 9 and the first magnetic body 4A. Thereby, the magnetic flux generated by the magnetic field generated by the field coil 12 flows from the second stator core 10 through the gap to the second magnetic body 5A, and then flows to the first magnetic body 4A via the partition 6A and the rotating shaft 2. Then, it flows to the first stator core 9 through the gap.

このように、この実施の形態6によれば、隔壁6Aと第1および第2固定子鉄心9,10との間の隙間dが第1および第2磁性体4A,5Aと第1および第2固定子鉄心9,10との間のギャップ長lより長く構成されているので、隔壁6Aの外径を第1および第2磁性体4A,5Aの外径より大きくすることに起因して第2固定子鉄心10から隔壁6Aを介して第1固定子鉄心9に流れる、トルクに寄与しない磁束の流れの発生を抑制できる。従って、隔壁6Aの外径を第1および第2磁性体4A,5Aの外径より大きくしても、トルクに寄与しない漏れ磁束が低減され、大きなトルクを確保することができる。 As described above, according to the sixth embodiment, the gap d between the partition wall 6A and the first and second stator cores 9 and 10 is equal to the first and second magnetic bodies 4A and 5A and the first and second magnetic bodies 4A and 5A. which is configured longer than the gap length l g between the stator core 9 and 10, the outer diameter of the partition walls 6A first and second magnetic bodies 4A, due to larger than the outer diameter of 5A The generation of the flow of magnetic flux that does not contribute to torque flowing from the two stator cores 10 to the first stator core 9 via the partition walls 6A can be suppressed. Therefore, even if the outer diameter of the partition wall 6A is larger than the outer diameters of the first and second magnetic bodies 4A and 5A, the leakage magnetic flux that does not contribute to the torque is reduced, and a large torque can be secured.

ここで、隔壁6Aは、隔壁6Aと第1および第2固定子鉄心9,10との間の隙間dを第1および第2磁性体4A,5Aと第1および第2固定子鉄心9,10との間のギャップ長lより長く構成していれば、第1および第2磁性体4A,5Aの外径より大きく、かつ多相コイル11の内径より小さい外径にすることができる。
また、上記実施の形態6では、上記実施の形態1における回転子3を回転子3Eの構造に代えるものとして説明しているが、本回転子構造を上記実施の形態2〜5における回転子に適用しても、同様の効果が得られる。
Here, the partition wall 6A has a gap d between the partition wall 6A and the first and second stator cores 9 and 10 and the first and second magnetic bodies 4A and 5A and the first and second stator cores 9 and 10. if longer construction than the gap length l g between the first and second magnetic bodies 4A, larger than the outer diameter of 5A, and may be the outer diameter smaller than the inner diameter of the multi-phase coil 11.
Moreover, in the said Embodiment 6, although the rotor 3 in the said Embodiment 1 is demonstrated as replacing the structure of the rotor 3E, this rotor structure is made into the rotor in the said Embodiment 2-5. Even if applied, the same effect can be obtained.

この発明の実施の形態1に係る磁気誘導子形同期回転機の構成を示す一部破断斜視図である。It is a partially broken perspective view which shows the structure of the magnetic inductor type synchronous rotating machine which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る磁気誘導子形同期回転機に適用される回転子の構成を示す斜視図である。It is a perspective view which shows the structure of the rotor applied to the magnetic inductor type synchronous rotating machine which concerns on Embodiment 1 of this invention. 比較例としての回転子の構成を示す斜視図である。It is a perspective view which shows the structure of the rotor as a comparative example. 図3のIV−IV矢視断面図である。FIG. 4 is a cross-sectional view taken along arrow IV-IV in FIG. 3. 比較例としての回転子における気流の流れを説明する斜視図である。It is a perspective view explaining the flow of the airflow in the rotor as a comparative example. この発明の実施の形態1に係る磁気誘導子形同期回転機に適用される回転子における気流の流れを説明する斜視図である。It is a perspective view explaining the flow of the airflow in the rotor applied to the magnetic inductor type synchronous rotating machine which concerns on Embodiment 1 of this invention. 従来の磁気誘導子形同期回転機の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional magnetic inductor type synchronous rotating machine. この発明の磁気誘導子形同期回転機における隔壁外径とトルクとの関係を示す図である。It is a figure which shows the relationship between the partition outer diameter and torque in the magnetic inductor type synchronous rotating machine of this invention. この発明の実施の形態2に係る磁気誘導子形同期回転機に適用される回転子を示す斜視図である。It is a perspective view which shows the rotor applied to the magnetic inductor type synchronous rotary machine which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る磁気誘導子形同期回転機に適用される回転子を示す斜視図である。It is a perspective view which shows the rotor applied to the magnetic inductor type synchronous rotating machine which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る磁気誘導子形同期回転機に適用される回転子を示す斜視図である。It is a perspective view which shows the rotor applied to the magnetic inductor type synchronous rotary machine which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る磁気誘導子形同期回転機に適用される回転子を示す分解斜視図である。It is a disassembled perspective view which shows the rotor applied to the magnetic inductor type synchronous rotating machine which concerns on Embodiment 5 of this invention. この発明の実施の形態6に係る磁気誘導子形同期回転機の構成を示す断面図である。It is sectional drawing which shows the structure of the magnetic inductor type synchronous rotary machine which concerns on Embodiment 6 of this invention.

符号の説明Explanation of symbols

2 回転軸、3,3A,3B,3C,3D,3E 回転子、4,4A 第1磁性体、4a 基部、4b 突極、4c 回転軸挿入孔、5,5A 第2磁性体、5a 基部、5b 突極、5c 回転軸挿入孔、6 隔壁、7 固定子、8 固定子鉄心、9 第1固定子鉄心、10 第2固定子鉄心、11 多相コイル(トルク発生用駆動コイル)、12 界磁コイル(界磁起磁力発生用コイル)、14 リング体、14a 回転軸挿入孔、15 バランス取り部、16 突極位置決め部材、17 隔壁、17a 回転軸挿入孔、18 突起部。   2 Rotating shaft, 3, 3A, 3B, 3C, 3D, 3E Rotor, 4, 4A First magnetic body, 4a base, 4b Salient pole, 4c Rotating shaft insertion hole, 5, 5A Second magnetic body, 5a base, 5b Salient pole, 5c Rotating shaft insertion hole, 6 Bulkhead, 7 Stator, 8 Stator core, 9 First stator core, 10 Second stator core, 11 Multi-phase coil (torque generating drive coil), 12 fields Magnetic coil (field magnetomotive force generating coil), 14 ring body, 14a rotating shaft insertion hole, 15 balancing portion, 16 salient pole positioning member, 17 partition, 17a rotating shaft insertion hole, 18 protrusion.

Claims (8)

それぞれ突極が軸心位置に回転軸挿入孔を有する円筒状の基部の外周に周方向に等角ピッチで配設され、該突極を周方向に半突極ピッチずらして、かつ軸方向に所定間隔離間して同軸に配置された第1および第2磁性体と、
軸心位置に回転軸挿入孔を有し、上記基部より大径の円盤状に作製され、上記第1および第2磁性体間に互いに密接して同軸に介装された隔壁と、
上記第1および第2磁性体および上記隔壁をそれぞれの回転軸挿入孔に挿通して固着する回転軸と、
上記第1および第2磁性体のそれぞれを囲繞する固定子鉄心および上記第1および第2磁性体に回転トルクを発生させるトルク発生用駆動コイルを有する固定子と、
上記固定子に配設され、上記突極を励磁する界磁起磁力発生用コイルと、を備えたことを特徴とする磁気誘導子形同期回転機。
Respective salient poles are arranged on the outer periphery of a cylindrical base portion having a rotation shaft insertion hole at the axial center position at an equiangular pitch in the circumferential direction, the salient poles are shifted in the circumferential direction by a half salient pole pitch, and in the axial direction First and second magnetic bodies disposed coaxially at a predetermined interval;
A partition wall having a rotation shaft insertion hole at the axial center position, made in a disk shape larger in diameter than the base, and closely and coaxially interposed between the first and second magnetic bodies;
A rotation shaft that inserts and fixes the first and second magnetic bodies and the partition wall into the respective rotation shaft insertion holes;
A stator core having a stator core surrounding each of the first and second magnetic bodies and a torque generating drive coil for generating a rotational torque in the first and second magnetic bodies;
A magnetic inductor type synchronous rotating machine, comprising: a field magnetomotive force generating coil disposed on the stator and exciting the salient pole.
それぞれ軸心位置に回転軸挿入孔を有し、上記基部より大径の円盤状に形成され、上記第1および第2磁性体の上記隔壁と反対側の端面に密接して配置され、該回転軸挿入孔に挿通された上記回転軸に同軸に固着された一対のリング体を備えたことを特徴とする請求項1記載の磁気誘導子形同期回転機。   Each has a rotation shaft insertion hole at the axial center position, is formed in a disk shape larger in diameter than the base, and is placed in close contact with the end surfaces of the first and second magnetic bodies opposite to the partition walls, The magnetic inductor type synchronous rotating machine according to claim 1, further comprising a pair of ring bodies fixed coaxially to the rotating shaft inserted through the shaft insertion hole. バランス取り加工が上記隔壁に施されていることを特徴とする請求項1又は請求項2記載の磁気誘導子形同期回転機。   The magnetic inductor type synchronous rotating machine according to claim 1 or 2, wherein balancing is applied to the partition wall. 上記突極の周方向両側面に密接して上記第1および第2磁性体の周方向位置を位置決めする突起部が上記隔壁の軸方向両端面に突設されていることを特徴とする請求項1乃至請求項3のいずれか1項に記載の磁気誘導子形同期回転機。   The projections for positioning the circumferential positions of the first and second magnetic bodies in close contact with both circumferential side surfaces of the salient poles are projected from both axial end surfaces of the partition wall. The magnetic inductor type synchronous rotating machine according to any one of claims 1 to 3. 上記隔壁が磁性材料で作製されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の磁気誘導子形同期回転機。   5. The magnetic inductor type synchronous rotating machine according to claim 1, wherein the partition wall is made of a magnetic material. 上記隔壁の外径が、上記突極の外径の83.5%以上、100%以下であることを特徴とする請求項5記載の磁気誘導子形同期回転機。   6. The magnetic inductor type synchronous rotating machine according to claim 5, wherein the outer diameter of the partition wall is 83.5% to 100% of the outer diameter of the salient pole. 上記隔壁の外径が、上記突極の外径より大きく、上記トルク発生用駆動コイルの内径より小さく、かつ、上記隔壁と上記固定子鉄心との間の隙間が、上記突極と上記固定子鉄心との間のギャップ長より大きいことを特徴とする請求項5記載の磁気誘導子形同期回転機。   The outer diameter of the partition wall is larger than the outer diameter of the salient pole and smaller than the inner diameter of the torque generating drive coil, and the gap between the partition wall and the stator core is the salient pole and stator. 6. The magnetic inductor type synchronous rotating machine according to claim 5, wherein the magnetic inductor type synchronous rotating machine is larger than a gap length between the core and the iron core. 請求項1乃至請求項7のいずれか1項に記載の上記磁気誘導子形同期回転機を用いてタービンを回転駆動することを特徴とする自動車用過給機。   A turbocharger for an automobile, wherein the turbine is driven to rotate using the magnetic inductor type synchronous rotating machine according to any one of claims 1 to 7.
JP2007249389A 2007-05-24 2007-09-26 Magnetic inductor type synchronous rotating machine and automobile supercharger using the same Expired - Fee Related JP5159228B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007249389A JP5159228B2 (en) 2007-05-24 2007-09-26 Magnetic inductor type synchronous rotating machine and automobile supercharger using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007137896 2007-05-24
JP2007137896 2007-05-24
JP2007249389A JP5159228B2 (en) 2007-05-24 2007-09-26 Magnetic inductor type synchronous rotating machine and automobile supercharger using the same

Publications (2)

Publication Number Publication Date
JP2009005572A true JP2009005572A (en) 2009-01-08
JP5159228B2 JP5159228B2 (en) 2013-03-06

Family

ID=40321338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007249389A Expired - Fee Related JP5159228B2 (en) 2007-05-24 2007-09-26 Magnetic inductor type synchronous rotating machine and automobile supercharger using the same

Country Status (1)

Country Link
JP (1) JP5159228B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252423A (en) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp Magnetic inductor type rotating machine
JP2010259290A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Rotating device
JP2011182600A (en) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp Rotary motor
JP2012100502A (en) * 2010-11-05 2012-05-24 Mitsubishi Electric Corp Rotary electric motor
JP2013017345A (en) * 2011-07-06 2013-01-24 Mitsuba Corp Electric motor
WO2013153575A1 (en) * 2012-04-10 2013-10-17 三菱電機株式会社 Electric motor
CN103683771A (en) * 2013-12-05 2014-03-26 东南大学 Like pole type inductor motor hiding salient pole
JP2014509168A (en) * 2010-12-21 2014-04-10 サンテルテク Rotating electric machine with double unipolar structure
JP2014075965A (en) * 2012-09-14 2014-04-24 Mitsubishi Electric Corp Dynamo-electric machine
CN106208446A (en) * 2016-07-15 2016-12-07 珠海凌达压缩机有限公司 Rotor, motor and air-conditioner
CN107872104A (en) * 2017-11-16 2018-04-03 北京航空航天大学 A kind of electrical excitation is the same as polar form electric rotating machine
WO2018163866A1 (en) * 2017-03-06 2018-09-13 株式会社豊田自動織機 Motor
CN109842257A (en) * 2019-03-04 2019-06-04 哈尔滨工业大学 Anti- salient pole type axial direction parallel type multiphase permanent magnet fault-tolerant electric machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222341B2 (en) 2019-11-11 2023-02-15 トヨタ自動車株式会社 Rotating electric machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136622A (en) * 1996-11-01 1998-05-22 Chiba Akira Homopolar reluctance motor
JP2000050548A (en) * 1998-08-03 2000-02-18 Okuma Corp Rotor assembly for synchronous motor
JP2001238418A (en) * 2000-02-25 2001-08-31 Mitsubishi Electric Corp Reluctance motor
JP2003079117A (en) * 2001-09-03 2003-03-14 Toyota Motor Corp Generator
JP2004088880A (en) * 2002-08-26 2004-03-18 Denso Corp Back surface field type inductor rotating machine
JP2005033878A (en) * 2003-07-09 2005-02-03 Nissan Motor Co Ltd Rotor of motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136622A (en) * 1996-11-01 1998-05-22 Chiba Akira Homopolar reluctance motor
JP2000050548A (en) * 1998-08-03 2000-02-18 Okuma Corp Rotor assembly for synchronous motor
JP2001238418A (en) * 2000-02-25 2001-08-31 Mitsubishi Electric Corp Reluctance motor
JP2003079117A (en) * 2001-09-03 2003-03-14 Toyota Motor Corp Generator
JP2004088880A (en) * 2002-08-26 2004-03-18 Denso Corp Back surface field type inductor rotating machine
JP2005033878A (en) * 2003-07-09 2005-02-03 Nissan Motor Co Ltd Rotor of motor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010252423A (en) * 2009-04-10 2010-11-04 Mitsubishi Electric Corp Magnetic inductor type rotating machine
JP2010259290A (en) * 2009-04-28 2010-11-11 Mitsubishi Electric Corp Rotating device
JP2011182600A (en) * 2010-03-03 2011-09-15 Mitsubishi Electric Corp Rotary motor
JP2012100502A (en) * 2010-11-05 2012-05-24 Mitsubishi Electric Corp Rotary electric motor
JP2014509168A (en) * 2010-12-21 2014-04-10 サンテルテク Rotating electric machine with double unipolar structure
JP2013017345A (en) * 2011-07-06 2013-01-24 Mitsuba Corp Electric motor
JP5557971B2 (en) * 2012-04-10 2014-07-23 三菱電機株式会社 Electric motor
WO2013153575A1 (en) * 2012-04-10 2013-10-17 三菱電機株式会社 Electric motor
JP2014075965A (en) * 2012-09-14 2014-04-24 Mitsubishi Electric Corp Dynamo-electric machine
CN103683771A (en) * 2013-12-05 2014-03-26 东南大学 Like pole type inductor motor hiding salient pole
CN106208446A (en) * 2016-07-15 2016-12-07 珠海凌达压缩机有限公司 Rotor, motor and air-conditioner
WO2018163866A1 (en) * 2017-03-06 2018-09-13 株式会社豊田自動織機 Motor
CN107872104A (en) * 2017-11-16 2018-04-03 北京航空航天大学 A kind of electrical excitation is the same as polar form electric rotating machine
CN109842257A (en) * 2019-03-04 2019-06-04 哈尔滨工业大学 Anti- salient pole type axial direction parallel type multiphase permanent magnet fault-tolerant electric machine

Also Published As

Publication number Publication date
JP5159228B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5159228B2 (en) Magnetic inductor type synchronous rotating machine and automobile supercharger using the same
JP5539191B2 (en) Magnetic inductor type rotating machine and fluid transfer device using the same
US7595575B2 (en) Motor/generator to reduce cogging torque
JP4349089B2 (en) Axial gap rotating electric machine
JP5491484B2 (en) Switched reluctance motor
US20090224628A1 (en) Twin rotor type motor
JP5610989B2 (en) Rotating motor
US20050179336A1 (en) Axial gap electric rotary machine
EP1942571A1 (en) Motor with two rotors and apparatus with the same
JP6048191B2 (en) Multi-gap rotating electric machine
JP6671553B1 (en) Rotating electric machine
JP2002252941A (en) Permanent magnet type dynamo electric machine
JP4291517B2 (en) Improved permanent magnet / reluctance variable rotating electrical equipment
JP5653569B2 (en) Rotating motor and supercharger for internal combustion engine
WO2019064801A1 (en) Permanent magnet rotating electric machine
JP2020188611A (en) Rotor and motor having the same
JP6025998B2 (en) Magnetic inductor type electric motor
JP2006271142A (en) Rotary machine
JP3655205B2 (en) Rotating electric machine and electric vehicle using the same
WO2021039581A1 (en) Motor
JP2010098931A (en) Motor
JP5855903B2 (en) Rotor and motor
JP2006025486A (en) Electric electric machine
JP2005124378A (en) Induction motor having annular stator coil
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees