JP4472092B2 - Induction synchronous reluctance motor - Google Patents

Induction synchronous reluctance motor Download PDF

Info

Publication number
JP4472092B2
JP4472092B2 JP2000039530A JP2000039530A JP4472092B2 JP 4472092 B2 JP4472092 B2 JP 4472092B2 JP 2000039530 A JP2000039530 A JP 2000039530A JP 2000039530 A JP2000039530 A JP 2000039530A JP 4472092 B2 JP4472092 B2 JP 4472092B2
Authority
JP
Japan
Prior art keywords
magnetic
slit
core stack
strength member
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000039530A
Other languages
Japanese (ja)
Other versions
JP2001231230A (en
Inventor
正哉 井上
哲 藤村
洋一 田宮
道夫 中本
典弘 阿知和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000039530A priority Critical patent/JP4472092B2/en
Publication of JP2001231230A publication Critical patent/JP2001231230A/en
Application granted granted Critical
Publication of JP4472092B2 publication Critical patent/JP4472092B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Synchronous Machinery (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は誘導同期で始動可能なリラクタンス型同期回転機に関する。
【0002】
【従来の技術】
突極型の多層スリット穴にアルミをダイキャストした誘導同期型のリラクタンスモータでは、効率・力率の改善のために多層スリット構造でかつ、外周部付近においてスリット穴の最外周位置と回転子外径との距離(以下、スリットブリッジ幅という)を細幅化することが求められる。
【0003】
しかし、スリットブリッジ部を細幅化すると、遠心力によってスリットブリッジ部に応力が加わり、回転数(速度)の上昇と共に回転子が破壊する。あるいは回転数が上昇したときただちに破壊せずとも、起動・停止を繰り返すことによっては疲労破壊する場合がある。
【0004】
このような課題を解決する例としては、特開平11−146615号公報に記載のように誘導同期型のリラクタンスモータでは2次導体がスリット穴を貫通するのでこれとエンドリングを併せて補強部材として利用することが行なわれている。
【0005】
【発明が解決しようとする課題】
しかしながら、前記の従来の方法ではエンドリング部や2次導体の熱膨張に対する配慮がなされていない。このため誘導電動機などで一般的に用いられているアルミダイキャストなどで2次導体を形成すると、アルミ材料と積層鋼板との熱膨張率の差からくる熱疲労サイクルによってスリットブリッジ部、特にエンドリング部付近の積層磁性鋼板に加わる熱応力が大きく、スリットブリッジ部が破壊する場合がある。
【0006】
また、モータ軸長が長い場合には、2次導体自体も遠心力によって太鼓状に脹らみ、積層鋼板の保持に十分な強度を確保できず、大型機や高速機などでは遠心力が大きくなると、回転子の軸中心部の強度が不足する。
【0007】
本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、2次導体を鉄よりもアルミなどの熱膨張率の大きな金属でダイキャストしても熱応力に耐え、また高速で回転した場合でも遠心力に耐える堅牢な回転子を有する誘導同期型リラクタンスモータを提供することを目的としている。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明のうちで請求項1に記載の誘導同期型リラクタンスモータは、2極以上の進行磁界を発生する多相コイル巻線を有する固定子と、
該固定子の極数と同数組の逆円弧状の4層以上の多層スリット穴を施し、かつ該多層スリット穴の各層の回転子最外周部において形成されたブリッジ部が細幅化された薄板磁性鋼板を積層して磁気突極性を形成した磁性コアスタックで構成される回転子と、
積層コアスタックの両端部に前記磁性コアスタックの薄板磁性鋼板より拡幅化したスリットブリッジ部を有し、かつ薄板磁性鋼板の各多層スリット部と軸方向に貫通する穴部を有する非磁性強度部材を配置し
さらに、アルミダイキャストによって多層スリット部にアルミを充填して作成されかつ、多層スリット部の一体に形成された軸端部の環状のエンドリングからなる2次導体と、 を有する構成において、前記非磁性強度部材の配置が軸方向に対して該積層コアスタック、と環状のエンドリングの間に挟み込まれた位置に配置されている
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。
【0011】
実施の形態1.
図1は本発明の実施の形態1にかかる誘導同期型リラクタンスモータの回転子の積層の構成を示す斜視図である。1は薄板磁性鋼板5(電磁鋼板)を積層した磁性コアスタック、2は該コアスタックの軸両端部に配置した非磁性の強度部材で、3はアルミニウムなどのダイキャストによって1、2を貫通する2次導体と一体成形されたエンドリングである。また、4は回転子の軸である。誘導同期型リラクタンスモータでは、図1に示すコアスタックが、2極以上の進行磁界を発生する多相コイル巻線を有する固定子内で回転する。
【0012】
ここで、コアスタック1を成す薄板の磁性鋼板5の断面図を図2(a)に示す。図2(b)は、図2(a)のA部拡大図である。図2(a)において、7はフラックスバリアとなるスリット、8はスリットの両端部の薄肉部であるスリットブリッジ部である。図2(a)に示すように、磁性鋼板5には固定子の極数と同数組の、外周円に対して逆円弧形状の多層スリットを形成し、磁気突極性を形成する。図2(b)中のδで示すスリットブリッジ部の幅は、板厚とほぼ同程度以下にまで薄幅化することにより回転子の突極性を確保し、効率、力率の高い回転子を得ている。
【0013】
非磁性材強度部材2の断面図を図3に示す。図示するように各多相スリットを分割する補強部を設けるとともにスリットブリッジ部を拡幅化している。したがって遠心力や熱応力に対して強度が増している。具体的な非磁性強度部材としてはオーステナイト系のSUS例えばSUS304、SUS301などの薄板材を積層して用いる。SUS材は一般的な電磁鋼板よりも引っ張りに対して高い強度を有するために、材料面でも強度が増している。また、アルミニウムに比べて熱膨張率が電磁鋼板に近いので、電磁鋼板とのあいだでの熱応力の発生が小さく、アルミニウムの熱変形が電磁鋼板に及ぼす熱応力を吸収することができる。また、SUS材の薄板材を積層せずとも一体化したブロックなどで作成しても同様の効果が得られる。
【0014】
また、非磁性の強度部材2には薄板磁性鋼板5の多層スリットと軸方向に貫通する位置にスリットを設けている。特に内周部の大きな断面積を有するスリットに対してもほぼ同等の面積をもたせているので、薄板磁性鋼板5を積層したコアスタックの軸端に本材料2を挟み込んでダイキャストした場合でも、ダイキャストによるアルミニウムの流動の圧力で強度部材2が破損したり、ダイキャストが不十分で2次導体の形成が不完全になることを防ぐことが出来る。
【0015】
このように配置した非磁性強度部材2はエンドリング部3が熱膨張した場合でも熱応力に抗してエンドリングを保持するので、薄板磁性鋼板5のスリットブリッジ部が変形することを防ぐことが出来る。また強度部材は非磁性材料であるために軸端に配置しても漏れ磁路を形成することがなく、リラクタンスモータの性能を低下させることがない。特に図1に示すように、回転子内周付近までアルミエンドリング部を設けるとともに、コアスタックのスリット部全てにアルミを充填すると、遠心力に対して強固な構造を得ることが出来る。しかし一方で、エンドリングによって生じる熱応力もこれに応じて増大する。しかしこの場合でもエンドリング部の熱応力を保持する非磁性強度部材2があるために、熱応力を抑制することができる。したがって熱応力、遠心力双方に対しても強度を満足した誘導同期型リラクタンスモータ用の回転子を得ることが出来る。
【0016】
実施の形態2.
図4は本発明の実施の形態2にかかる誘導同期型リラクタンスモータの回転子の側面からみた積層の構成を示している。軸端部の構成は、前述の実施の形態1に示す図1と同様である。
【0017】
本発明では、さらに高速機や大型機などで回転により2次導体が太鼓状に脹らむ場合に対する補強の方法を示す。図4に示すように、軸中央部における非磁性強度部材6を配置する。本強度部材6の断面形状は軸端の非磁性強度部材2と同様であるが、SUS304、SUS301などの非磁性薄板材で作成する。そして、非磁性強度部材6を薄板磁性鋼板5と交互に積層して配置する。
【0018】
軸中央部の非磁性強度部材6を薄板磁性鋼板5と交互に積層して分散配置するのは、非磁性強度部材6に発生する渦電流損を小さくするためである。この際に、磁性コアスタック1を形成する薄板磁性鋼板5の両面に絶縁処理が施された電磁鋼板を用いることにより、絶縁処理が施されていない非磁性強度部材6を間に挟み込んだ場合でも積層による渦電流を薄板磁性鋼板5の絶縁材が防ぐために、固定子スロット高調波などの高調波磁束による渦電流損失を防ぐことができる。
【0019】
もちろん、図4に示す軸端の非磁性強度部材2と軸中央部の非磁性強度部材6が同一の材料から構成されていても良い。例えば、軸端には図3の断面形状を有する厚さ0.5mmのSUS304材を6枚積層して厚さ3mmの非磁性強度部材2とし、軸中央部には、強度部材6としておなじく厚さ0.5mmのSUS304材を薄板磁性鋼板5と交互に4〜5枚挟み込み、積層して作成する。この場合には、同一部材で軸中央部の非磁性強度部材6と軸端部の非磁性強度部材2を得ることが出来るために、部品の共用化が計れ、プレス打ち抜きなどでこれを作成するときには金型の数を減らすことができるために量産性に優れた安価な回転子を得ることが出来る。
【0020】
【発明の効果】
本発明は以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0021】
本発明の請求項1にかかわる誘導同期型リラクタンスモータによれば、2極以上の進行磁界を発生する多相コイル巻線を有する固定子と、該固定子の極数と同数組の逆円弧状の4層以上の多層スリット穴を施し、かつ該多層スリット穴の各層の回転子最外周部において形成されたブリッジ部が細幅化された薄板磁性鋼板を積層して磁気突極性を形成した磁性コアスタックで構成される回転子に該コアスタックの薄板磁性鋼板より拡幅化したブリッジ部を有し、かつ薄板磁性鋼板の各多層スリット部と軸方向に貫通する穴部を有する非磁性強度部材を該積層コアスタックの両端に積層配置した後に、アルミダイキャストによって多層スリット部にアルミを充填するとともに軸端部には環状のエンドリングを同時に一体成形した2次導体を有する手段を設けている。
【0022】
したがって、エンドリング部の熱応力を非磁性強度部材で保持して、薄板磁性鋼板のスリットブリッジ部の熱応力による破壊を防ぐとともに遠心力に対しては、非磁性強度部材がダイキャストされた2次導体とともに、かご状の補強部材となるために、コアスタックの遠心力による膨張を抑制することができ、堅牢な誘導同期型リラクタンスモータ用の回転子を得ることができる。
【0024】
また薄板状の非磁性強度部材を絶縁された薄板電磁鋼板と交互に積層しているので、渦電流による損失も抑制することができ、堅牢で損失の少ない誘導同期型リラクタンスモータの回転子を得ることが出来る。
【図面の簡単な説明】
【図1】 本発明の実施の形態1にかかわるリラクタンスモータの回転子の構成を示す斜視図である。
【図2】 磁性コアスタック1を形成する薄板磁性鋼板5の断面図である。
【図3】 非磁性強度部材2の断面図である。
【図4】 本発明の実施の形態2にかかわるリラクタンスモータの回転子の構成を示す側面図である
【符号の説明】
1 磁性コアスタック、2 非磁性強度部材、3 エンドリング、4 軸、
5 薄板磁性鋼板、6 非磁性強度部材、7 スリット、8 スリットブリッジ部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reluctance type synchronous rotating machine that can be started by induction synchronization.
[0002]
[Prior art]
The induction synchronous type reluctance motor in which aluminum is die-cast into salient pole type multi-layer slit holes has a multi-layer slit structure to improve the efficiency and power factor. It is required to reduce the distance from the diameter (hereinafter referred to as slit bridge width).
[0003]
However, if the slit bridge portion is narrowed, stress is applied to the slit bridge portion due to centrifugal force, and the rotor is destroyed as the rotational speed (speed) increases. Or even if it does not break immediately when the rotation speed increases, it may break down due to repeated starting and stopping.
[0004]
As an example to solve such a problem, as described in Japanese Patent Application Laid-Open No. 11-146615, an induction-synchronous reluctance motor has a secondary conductor that passes through a slit hole. It is being used.
[0005]
[Problems to be solved by the invention]
However, in the conventional method, no consideration is given to the thermal expansion of the end ring portion and the secondary conductor. For this reason, when the secondary conductor is formed by aluminum die casting or the like generally used in induction motors, the slit bridge part, especially the end ring, is caused by the thermal fatigue cycle caused by the difference in thermal expansion coefficient between the aluminum material and the laminated steel sheet. The thermal stress applied to the laminated magnetic steel sheet in the vicinity of the part is large, and the slit bridge part may be destroyed.
[0006]
In addition, when the motor shaft length is long, the secondary conductor itself expands in a drum shape due to centrifugal force, and sufficient strength for holding the laminated steel sheet cannot be secured, and centrifugal force is large in large machines and high speed machines. If it becomes, the intensity | strength of the axial center part of a rotor will run short.
[0007]
The present invention has been made in view of such problems of the prior art. The secondary conductor can withstand thermal stress even if it is die-cast with a metal having a higher coefficient of thermal expansion such as aluminum than iron. An object of the present invention is to provide an induction-synchronous reluctance motor having a robust rotor that can withstand centrifugal force even when rotating at high speed.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, an induction-synchronous reluctance motor according to claim 1 of the present invention includes a stator having a multiphase coil winding that generates a traveling magnetic field of two or more poles,
A thin plate in which four or more layers of multi-layer slit holes having the same number of pairs as the number of poles of the stator are provided, and the bridge portion formed in the outermost peripheral portion of the rotor of each layer of the multi-layer slit holes is narrowed A rotor composed of a magnetic core stack in which magnetic saliency is formed by laminating magnetic steel plates;
Magnetic strength member having a hole which has a slit bridge portion which is wider reduction than thin magnetic steel plates of the magnetic core stack at both ends of the laminated core stack, and penetrates into the multilayered slit portions and the axial direction of the thin magnetic steel plates Place
Furthermore, and it is created by filling the aluminum multilayer slit portion by aluminum die-casting, and secondary conductor comprising a circular end ring shaft end portion which is formed integrally of the multilayer slit portion, in a configuration having the non The magnetic strength member is disposed at a position sandwiched between the laminated core stack and the annular end ring in the axial direction .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
Embodiment 1.
FIG. 1 is a perspective view showing the configuration of the lamination of rotors of an induction synchronous reluctance motor according to the first exemplary embodiment of the present invention. 1 is a magnetic core stack in which thin magnetic steel plates 5 (electromagnetic steel plates) are laminated, 2 is a non-magnetic strength member disposed at both ends of the shaft of the core stack, and 3 is passed through 1 and 2 by die casting such as aluminum. An end ring integrally formed with the secondary conductor. Reference numeral 4 denotes a rotor shaft. In the induction-synchronous reluctance motor, the core stack shown in FIG. 1 rotates in a stator having a multiphase coil winding that generates a traveling magnetic field of two or more poles.
[0012]
Here, a cross-sectional view of a thin magnetic steel plate 5 constituting the core stack 1 is shown in FIG. FIG. 2B is an enlarged view of a portion A in FIG. In FIG. 2A, 7 is a slit serving as a flux barrier, and 8 is a slit bridge portion which is a thin portion at both ends of the slit. As shown in FIG. 2 (a), the magnetic steel plate 5 is formed with magnetic saliency by forming the same number of pairs of stator poles as the number of poles of the stator in the form of reverse arc-shaped multilayer slits with respect to the outer circumference circle. The width of the slit bridge portion indicated by δ in FIG. 2B is reduced to about the same as or less than the plate thickness to ensure the saliency of the rotor, and a rotor with high efficiency and power factor is obtained. It has gained.
[0013]
A cross-sectional view of the nonmagnetic material strength member 2 is shown in FIG. As shown in the figure, a reinforcing portion for dividing each multiphase slit is provided and the slit bridge portion is widened. Therefore, the strength is increased against centrifugal force and thermal stress. As a specific nonmagnetic strength member, an austenitic SUS, for example, SUS304, SUS301 or the like is used by being laminated. Since the SUS material has a higher strength against pulling than a general electromagnetic steel plate, the strength is also increased in terms of material. Moreover, since the coefficient of thermal expansion is close to that of an electromagnetic steel sheet as compared with aluminum, the generation of thermal stress with the electromagnetic steel sheet is small, and the thermal stress exerted on the electromagnetic steel sheet by thermal deformation of aluminum can be absorbed. Further, the same effect can be obtained even if the SUS material is made of an integrated block without being laminated.
[0014]
Further, the nonmagnetic strength member 2 is provided with a slit at a position penetrating the multilayer slit of the thin magnetic steel plate 5 in the axial direction. In particular, since the slits having a large cross-sectional area of the inner peripheral portion have almost the same area, even when the material 2 is sandwiched between the axial ends of the core stack in which the thin magnetic steel plates 5 are laminated, It is possible to prevent the strength member 2 from being damaged by the pressure of aluminum flow caused by die casting, or the formation of the secondary conductor from being incomplete due to insufficient die casting.
[0015]
Since the nonmagnetic strength member 2 arranged in this way holds the end ring against thermal stress even when the end ring part 3 is thermally expanded, it is possible to prevent the slit bridge part of the thin magnetic steel sheet 5 from being deformed. I can do it. Further, since the strength member is made of a nonmagnetic material, a leakage magnetic path is not formed even if it is disposed at the shaft end, and the performance of the reluctance motor is not deteriorated. In particular, as shown in FIG. 1, when an aluminum end ring portion is provided near the inner periphery of the rotor and all the slit portions of the core stack are filled with aluminum, a structure strong against centrifugal force can be obtained. However, on the other hand, the thermal stress caused by the end ring also increases accordingly. However, even in this case, since there is the nonmagnetic strength member 2 that holds the thermal stress of the end ring portion, the thermal stress can be suppressed. Therefore, a rotor for an induction-synchronous reluctance motor that satisfies both thermal stress and centrifugal force can be obtained.
[0016]
Embodiment 2. FIG.
FIG. 4 shows the configuration of the layers as seen from the side of the rotor of the induction synchronous reluctance motor according to the second embodiment of the present invention. The configuration of the shaft end is the same as that of FIG. 1 shown in the first embodiment.
[0017]
In the present invention, a reinforcing method for a case where the secondary conductor expands in a drum shape by rotation on a high speed machine or a large machine will be described. As shown in FIG. 4, the nonmagnetic strength member 6 is disposed at the central portion of the shaft. The cross-sectional shape of the strength member 6 is the same as that of the nonmagnetic strength member 2 at the shaft end, but is made of a nonmagnetic thin plate material such as SUS304 or SUS301. The nonmagnetic strength members 6 are alternately laminated with the thin magnetic steel plates 5.
[0018]
The reason why the nonmagnetic strength members 6 in the central portion of the shaft are alternately laminated and distributed with the thin magnetic steel plates 5 is to reduce the eddy current loss generated in the nonmagnetic strength members 6. At this time, even when the non-magnetic strength member 6 not subjected to the insulation treatment is sandwiched between the both sides of the thin magnetic steel plate 5 forming the magnetic core stack 1 by using the electromagnetic steel plates. Since the insulating material of the thin magnetic steel plate 5 prevents eddy currents due to lamination, eddy current loss due to harmonic magnetic flux such as stator slot harmonics can be prevented.
[0019]
Of course, the nonmagnetic strength member 2 at the shaft end and the nonmagnetic strength member 6 at the center of the shaft shown in FIG. 4 may be made of the same material. For example, six SUS304 materials having a cross-sectional shape shown in FIG. 3 are laminated on the shaft end to form a nonmagnetic strength member 2 having a thickness of 3 mm, and the same thickness as the strength member 6 is provided at the center of the shaft. 4 to 5 SUS304 materials having a thickness of 0.5 mm are alternately sandwiched between the thin magnetic steel plates 5 and laminated. In this case, since the non-magnetic strength member 6 at the center of the shaft and the non-magnetic strength member 2 at the shaft end can be obtained with the same member, the parts can be shared and created by press punching or the like. Sometimes the number of molds can be reduced, so that an inexpensive rotor excellent in mass productivity can be obtained.
[0020]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0021]
According to the induction-synchronous reluctance motor according to claim 1 of the present invention, a stator having a multi-phase coil winding that generates a traveling magnetic field of two or more poles, and a reverse arc shape having the same number of sets as the number of poles of the stator. The magnetic saliency is formed by laminating thin magnetic steel plates each having four or more multilayer slit holes, and the bridge portion formed at the outermost peripheral portion of the rotor of each layer of the multilayer slit holes having a narrow width. A non-magnetic strength member having a bridge portion wider than the thin magnetic steel plate of the core stack on the rotor constituted by the core stack, and having a multi-hole slit portion of the thin magnetic steel plate and a hole penetrating in the axial direction. After the laminated core stack is laminated on both ends, the multilayer slit portion is filled with aluminum by aluminum die casting, and the shaft end portion has a secondary conductor in which an annular end ring is integrally formed at the same time. It is provided with a stage.
[0022]
Therefore, the thermal stress of the end ring portion is held by the nonmagnetic strength member to prevent the slit bridge portion of the thin magnetic steel plate from being damaged due to the thermal stress, and the nonmagnetic strength member is die-casted for centrifugal force 2 Since it becomes a cage-shaped reinforcing member together with the secondary conductor, expansion due to the centrifugal force of the core stack can be suppressed, and a robust rotor for an induction-synchronous reluctance motor can be obtained.
[0024]
Also, thin plate-like non-magnetic strength members are alternately laminated with insulated thin magnetic steel sheets, so that loss due to eddy currents can be suppressed, and a rotor of an induction synchronous reluctance motor that is robust and has little loss can be obtained. I can do it.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a rotor of a reluctance motor according to a first embodiment of the present invention.
2 is a cross-sectional view of a thin magnetic steel plate 5 forming a magnetic core stack 1. FIG.
3 is a cross-sectional view of a nonmagnetic strength member 2. FIG.
FIG. 4 is a side view showing a configuration of a rotor of a reluctance motor according to Embodiment 2 of the present invention.
1 Magnetic core stack, 2 Non-magnetic strength member, 3 End ring, 4 shaft,
5 Thin magnetic steel plate, 6 Nonmagnetic strength member, 7 Slit, 8 Slit bridge.

Claims (1)

2極以上の進行磁界を発生する多相コイル巻線を有する固定子と、
該固定子の極数と同数組の逆円弧状の4層以上の多層スリット穴を施し、かつ該多層スリット穴の各層の回転子最外周部において形成されたブリッジ部が細幅化された薄板磁性鋼板を積層して磁気突極性を形成した磁性コアスタックで構成される回転子と、
該積層コアスタックの両端部に前記磁性コアスタックの薄板磁性鋼板より拡幅化したスリットブリッジ部を有し、かつ薄板磁性鋼板の各多層スリット部と軸方向に貫通する穴部を有する非磁性強度部材を配置し
さらに、アルミダイキャストによって多層スリット部にアルミを充填して作成されかつ、多層スリット部の一体に形成された軸端部の環状のエンドリングからなる2次導体と、 を有する構成において、前記非磁性強度部材の配置が軸方向に対して該積層コアスタック、と環状のエンドリングの間に挟み込まれた位置に配置されていることを特徴とする誘導同期型リラクタンスモータ。
A stator having a multiphase coil winding that generates a traveling magnetic field of two or more poles;
A thin plate in which four or more layers of multi-layer slit holes having the same number of pairs as the number of poles of the stator are provided, and the bridge portion formed in the outermost peripheral portion of the rotor of each layer of the multi-layer slit holes is narrowed A rotor composed of a magnetic core stack in which magnetic saliency is formed by laminating magnetic steel plates;
A non-magnetic strength member having slit bridge portions wider than the thin magnetic steel plate of the magnetic core stack at both ends of the laminated core stack , and a hole penetrating in the axial direction with each multilayer slit portion of the thin magnetic steel plate Place
Furthermore, and it is created by filling the aluminum multilayer slit portion by aluminum die-casting, and secondary conductor comprising a circular end ring shaft end portion which is formed integrally of the multilayer slit portion, in a configuration having the non An induction-synchronous reluctance motor characterized in that the magnetic strength member is disposed at a position sandwiched between the laminated core stack and the annular end ring in the axial direction .
JP2000039530A 2000-02-17 2000-02-17 Induction synchronous reluctance motor Expired - Fee Related JP4472092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039530A JP4472092B2 (en) 2000-02-17 2000-02-17 Induction synchronous reluctance motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039530A JP4472092B2 (en) 2000-02-17 2000-02-17 Induction synchronous reluctance motor

Publications (2)

Publication Number Publication Date
JP2001231230A JP2001231230A (en) 2001-08-24
JP4472092B2 true JP4472092B2 (en) 2010-06-02

Family

ID=18563078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039530A Expired - Fee Related JP4472092B2 (en) 2000-02-17 2000-02-17 Induction synchronous reluctance motor

Country Status (1)

Country Link
JP (1) JP4472092B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101819848B1 (en) 2014-03-05 2018-01-17 미쓰비시덴키 가부시키가이샤 Synchronous reluctance motor
JP6824032B2 (en) * 2016-12-28 2021-02-03 東芝産業機器システム株式会社 How to assemble a reluctance rotary electric machine and a reluctance rotary electric machine
CN108768015B (en) * 2018-07-20 2020-04-17 珠海格力电器股份有限公司 Rotor assembly and motor
CN110880818B (en) * 2018-09-05 2022-07-19 日本电产株式会社 Rotor and motor having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3486300B2 (en) * 1995-10-30 2004-01-13 オークマ株式会社 Synchronous motor and motor rotor
JP3517319B2 (en) * 1996-03-25 2004-04-12 オークマ株式会社 Synchronous motor rotor
JP4081870B2 (en) * 1997-08-22 2008-04-30 松下電器産業株式会社 Rotor core
JPH11146615A (en) * 1997-11-11 1999-05-28 Matsushita Electric Ind Co Ltd Reluctance motor
JPH11178296A (en) * 1997-12-05 1999-07-02 Aichi Emerson Electric Co Ltd Rotor for motor

Also Published As

Publication number Publication date
JP2001231230A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
US7804216B2 (en) Permanent-magnet reluctance electrical rotary machine
JP5259927B2 (en) Permanent magnet rotating electric machine
US20060131986A1 (en) Axial gap permanent magnet reluctance motor and method
JP2875497B2 (en) Motor stator
JP2004056907A (en) Synchronous machine
US10749385B2 (en) Dual magnetic phase material rings for AC electric machines
JP2000197325A (en) Reluctance motor
JP2001238418A (en) Reluctance motor
JP4984347B2 (en) Electric motor
JP2003259615A (en) Reluctance motor
JP2003319575A (en) Stator core for synchronous machine
JP2006166679A (en) Structure of stator for axial gap type dynamo-electric machine
JP4058576B2 (en) Reluctance motor
JP4472092B2 (en) Induction synchronous reluctance motor
JP7283361B2 (en) Rotor of rotary electric machine
JP4193726B2 (en) Synchronous induction motor rotor and compressor
JP4038633B2 (en) Reluctance motor
JPH11285186A (en) Permanent-magnet motor
WO2019187205A1 (en) Rotary electric machine
JPH05122877A (en) Rotor for permanent magnet type synchronous motor
JP4206611B2 (en) Self-starting permanent magnet synchronous motor
JPH11178296A (en) Rotor for motor
JP3161176B2 (en) Rotor structure of synchronous machine and synchronous motor
JP2011193627A (en) Rotor core and rotary electric machine
JP2002136073A (en) Switched reluctance motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100303

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees