JP2001237550A - Multilayered printed board and its manufacturing method - Google Patents

Multilayered printed board and its manufacturing method

Info

Publication number
JP2001237550A
JP2001237550A JP2000372659A JP2000372659A JP2001237550A JP 2001237550 A JP2001237550 A JP 2001237550A JP 2000372659 A JP2000372659 A JP 2000372659A JP 2000372659 A JP2000372659 A JP 2000372659A JP 2001237550 A JP2001237550 A JP 2001237550A
Authority
JP
Japan
Prior art keywords
metal foil
resin
hole
inner layer
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000372659A
Other languages
Japanese (ja)
Inventor
Satoshi Maezawa
聡 前澤
Masa Tachibana
雅 立花
Kazuya Oishi
一哉 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000372659A priority Critical patent/JP2001237550A/en
Publication of JP2001237550A publication Critical patent/JP2001237550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayered printed wiring board having high parts mounting reliability by improving the strength of adhesion between conducting patterns for external layer and insulating layers, in the mounting of the parts on small-diameter lands represented by a narrow-pitch BGA with a very high arrangement for laying space of wiring. SOLUTION: Internal layer material conducting patterns 2 are formed on both sides of each insulating substrate 3 having conductive holes filled up with conductive paste 4 by screen printing or photography method. Metal foil 5 coated with an insulating resin is superposed upon both surfaces of an internal layer material obtained by laminating the insulating substrates 3 thus obtained upon another and pressurized to the material 1 by heat pressing. Then the metal foil is etched off from the portions where the non-through holes 6 of the outermost layer are formed. Thereafter, the non-through holes 6 are formed with a laser beam having a diameter larger than the inside diameters of the holes 6. After the formation of the holes 6, the whole surface of the laminate is plated with a metal and, thereafter, this multilayered printed wiring board 9 on which SVHs 7 and conductive patterns 8 for external layers are formed is manufactured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パソコン、移動体
通信用電話機、ビデオカメラ等の各種電子機器に用いら
れる多層プリント配線板およびその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer printed wiring board used for various electronic devices such as a personal computer, a mobile communication telephone, and a video camera, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】近年、電子機器の高機能化、高密度化に
伴い、電子部品、中でもその中枢となる半導体は、益々
小型化、高集積化、高速化、多ピン化の傾向にある。
2. Description of the Related Art In recent years, as electronic devices have become more sophisticated and higher in density, electronic components, especially semiconductors as the center of the electronic components, have tended to become smaller, more highly integrated, operate at higher speeds, and have more pins.

【0003】それに伴い多層プリント配線板へは、配線
収容性、表面実装密度の向上だけではなく、さらにはん
だ付けランドの小径化に伴う部品と基板の接合強度の信
頼性の向上が要求されてきている。具体的には、0.5
mmピッチボールグリッドアレイ(以下BGAと称す)
に代表されるような高密度かつ小径ランド(φ0.3m
m以下)の実装(特に落下衝撃などの機械的ストレス)
に対応するためのプリント配線板が要求されてきてい
る。
Accordingly, multilayer printed wiring boards are required not only to improve the wiring accommodating property and the surface mounting density, but also to improve the reliability of the joining strength between components and a board due to the reduction in the diameter of a soldering land. I have. Specifically, 0.5
mm pitch ball grid array (hereinafter referred to as BGA)
High-density and small-diameter land (φ0.3m
m or less) (particularly mechanical stress such as drop impact)
There is a demand for a printed wiring board to meet the requirements.

【0004】これらに応える手段として、全層間をイン
タースティシャルバイアホール(以下IVHと称す)で
電気的に接続した樹脂多層プリント配線板を内層材と
し、この内層材の両面に感光性樹脂やフィルム状の絶縁
層を塗布またはラミネートし、これに非貫通孔を設け金
属めっきにて層間を電気的に接続した構造の多層プリン
ト配線板である。
As a means for responding to these problems, a resin multilayer printed wiring board in which all layers are electrically connected by interstitial via holes (hereinafter referred to as IVH) is used as an inner layer material, and a photosensitive resin or a film is provided on both surfaces of the inner layer material. A multi-layer printed wiring board having a structure in which a non-through hole is formed by applying or laminating an insulating layer in a shape, and the layers are electrically connected by metal plating.

【0005】この多層プリント配線板における製造方法
について以下に説明する。
A method for manufacturing the multilayer printed wiring board will be described below.

【0006】図3(a)〜(d)、図4(e)(f)は
従来の最外層に感光性タイプの樹脂などを絶縁層とし
て、塗布またはラミネートした構造の多層プリント配線
板の製造方法を示すものである。図3、図4において、
11は外層用の導体パターン、12は絶縁層、13は内
層材、14は絶縁基板、11aは絶縁層に形成された非
貫通穴を金属めっきしたサーフェイスバイアホール(以
下SVHと称す)、12aはSVHを形成するために絶
縁層12に露光・現像やレーザで形成した非貫通穴、1
4aは内層材用の導体パターン、14bは内層材用の導
電性ペースト、14cはプリプレグ、14dは銅はく、
15は内外部に導体パターンを有する多層プリント配線
板である。以上のように構成された多層プリント配線板
の製造方法について以下説明する。
FIGS. 3 (a) to 3 (d) and FIGS. 4 (e) and 4 (f) show a conventional multi-layer printed wiring board having a structure in which a photosensitive resin or the like is coated or laminated on the outermost layer as an insulating layer. It shows the method. 3 and 4,
11 is a conductor pattern for an outer layer, 12 is an insulating layer, 13 is an inner layer material, 14 is an insulating substrate, 11a is a surface via hole (hereinafter referred to as SVH) in which a non-through hole formed in the insulating layer is metal-plated, and 12a is Non-through holes formed by exposure / development or laser on insulating layer 12 to form SVH
4a is a conductor pattern for the inner layer material, 14b is a conductive paste for the inner layer material, 14c is prepreg, 14d is copper foil,
Reference numeral 15 denotes a multilayer printed wiring board having conductor patterns inside and outside. A method for manufacturing the multilayer printed wiring board configured as described above will be described below.

【0007】まず、図3(a)に示すようにプリプレグ
14cに穴加工を施し、その穴内に導電性ペースト14
bを充填した絶縁基板14の両側に銅張積層板を形成す
るための銅はくを重ね合わせ、熱プレスなどで接着した
後公知のスクリーン印刷法や写真法などの手段を用い
て、内層材用の導体パターン14aを形成する。
First, as shown in FIG. 3A, a hole is formed in a prepreg 14c, and a conductive paste 14 is formed in the hole.
A copper foil for forming a copper-clad laminate is overlapped on both sides of the insulating substrate 14 filled with b and adhered by a hot press or the like, and then the inner layer material is formed by using a known screen printing method or photographic method. Conductor pattern 14a is formed.

【0008】次に、図3(b)に示すように、上記
(a)で形成した絶縁基板14上に、同様の方法により
プリプレグ14cに穴加工を施しその穴内に導電性ペー
スト14bを充填したものと銅はく14dを重ね合わ
せ、熱プレスにより加熱・加圧する。
Next, as shown in FIG. 3B, a hole is formed in the prepreg 14c by the same method on the insulating substrate 14 formed in the above step (a), and the hole is filled with the conductive paste 14b. The object and the copper foil 14d are overlapped and heated and pressed by a hot press.

【0009】次に、上記(b)で形成された銅張積層板
の銅はくを公知のスクリーン法や写真法などの手段を用
いて、導体パターン14aを形成し、図3(c)に示す
ように内層材13を得る。
Next, the copper foil of the copper-clad laminate formed in the above (b) is formed into a conductor pattern 14a by using a known method such as a screen method or a photographic method, and FIG. As shown, an inner layer material 13 is obtained.

【0010】次に、図3(d)に示すように内層材13
上に感光性タイプの樹脂などの絶縁層12を半硬化状態
で塗布またはラミネートなどにより形成した後、図4
(e)に示すように所定の位置に非貫通穴12aを、露
光、現像やレーザなどにより形成する。
Next, as shown in FIG.
After an insulating layer 12 of a photosensitive type resin or the like is formed thereon by coating or laminating in a semi-cured state, FIG.
As shown in (e), a non-through hole 12a is formed at a predetermined position by exposure, development, laser, or the like.

【0011】次に図4(f)に示すように、非貫通穴を
形成した後、金属めっきにより、内外層を電気的に接続
するSVH11aを含む外層用の導体パターン11を形
成し、多層プリント配線板15を得る。
Next, as shown in FIG. 4 (f), after a non-through hole is formed, a conductor pattern 11 for an outer layer including an SVH 11a for electrically connecting the inner and outer layers is formed by metal plating, and a multilayer print is formed. The wiring board 15 is obtained.

【0012】その後、写真法などの公知の方法によりソ
ルダレジスト形成、外形加工などを行う。
Thereafter, solder resist formation, outer shape processing, and the like are performed by a known method such as a photographic method.

【0013】[0013]

【発明が解決しようとする課題】上記従来の多層プリン
ト配線板の構造では、内層材は全層しかも任意の位置に
IVHを有し、さらに外層の非貫通穴も50〜100μ
mと小さい穴が形成でき、配線収容性および表面高密度
実装という点においては非常に優れた特長を有していた
が、近年のBGAの高集積化・高密度化に伴うはんだ付
けランドの小径化の進行により外層用の導体パターンと
基材の接着強度の向上が不可欠となってきており、この
従来構造では絶縁樹脂上に金属めっきにて導体パターン
を形成しているため、樹脂上へのめっきのみでは、金属
との接着力は強いものではなく、高密度部品を実装した
場合(小径ランド上にはんだ付けを施した場合)に特に
機械的ストレスでこの導体パターンが絶縁層からはく離
する可能性もあった。
In the structure of the above-mentioned conventional multilayer printed wiring board, the inner layer material has an IVH in all layers and at an arbitrary position, and the outer layer has a non-through hole of 50 to 100 μm.
It can form a hole as small as m, and has very excellent features in terms of wiring accommodation and surface high-density mounting, but the small diameter of the soldering land accompanying the recent high integration and high density of BGA It has become essential to improve the bonding strength between the outer layer conductor pattern and the base material due to the progress of the process.In this conventional structure, the conductor pattern is formed by metal plating on the insulating resin. With only plating, the adhesion to metal is not strong, and this conductor pattern can peel off from the insulating layer due to mechanical stress especially when high-density components are mounted (soldering on small-diameter lands). There was also nature.

【0014】また、内層材を形成する樹脂と最外層を形
成する絶縁層12の硬化プロセスが異なることによる物
理的特性の差が大きく、内層材と最外層との密着が弱く
あるいは、部品実装工程のはんだ付け時の熱によって、
熱膨張係数の違いからクラックや内層材と最外層との層
間に剥離が生じる可能性もあった。
Also, the difference in physical characteristics due to the difference in the curing process between the resin forming the inner layer material and the insulating layer 12 forming the outermost layer is large, and the adhesion between the inner layer material and the outermost layer is weak, or the component mounting process is difficult. Heat during soldering
Cracks and delamination between the inner layer material and the outermost layer may occur due to the difference in thermal expansion coefficient.

【0015】本発明は上記従来の問題点を解決するもの
であり、配線収容性および表面高密度実装においては従
来の特長を維持したまま、外層導体パターンと絶縁層の
接着強度を向上し、0.5mmピッチBGAなどの高集
積・高密度部品に対する機械的ストレスなどに対しても
良好な実装信頼性を有する多層プリント配線板を提供す
ることを目的とする。
The present invention solves the above-mentioned conventional problems, and improves the bonding strength between the outer conductor pattern and the insulating layer while maintaining the conventional features in the wiring accommodating property and the surface high-density mounting. It is an object of the present invention to provide a multilayer printed wiring board having good mounting reliability against mechanical stress on highly integrated and high density components such as a 0.5 mm pitch BGA.

【0016】[0016]

【課題を解決するための手段】この目的を達成するため
に本発明の多層プリント配線板は、従来の全層IVH構
造の内層材の両面に、予め金属はくに、金属に対し強い
接着性を有する絶縁樹脂を塗布している、絶縁樹脂付き
金属はくを張り合わせ加熱加圧した後、非貫通穴を設
け、金属めっきを施し、内層材用導電パターンと外層用
導電パターンを電気的に接続する工程からなる構成を有
している。
In order to achieve this object, a multilayer printed wiring board according to the present invention has a strong adhesion to metal, in advance, on both surfaces of the inner layer material of the conventional all-layer IVH structure. After applying and heating and pressing a metal foil with an insulating resin, which is coated with an insulating resin, a non-through hole is provided, metal plating is applied, and the conductive pattern for the inner layer material and the conductive pattern for the outer layer are electrically connected. It has a configuration consisting of steps.

【0017】この発明によれば、内層材は金属めっきで
はなく導電ペーストにてIVHを形成する構造のため、
内層材のIVH部のランドは上下共に平坦に形成するこ
とができ、このランド上に、外層からの金属めっきによ
るSVHが容易に形成できるため、非常に高い配線収容
性を有し、かつ上記のような絶縁樹脂付き金属はくを外
層材料として使用しているため、絶縁樹脂と金属はくの
接着強度を飛躍的に向上させ、外層用導体パターンが小
径になっても良好な部品実装強度が保持できることを特
長としている。
According to the present invention, the inner layer material has a structure in which the IVH is formed not by metal plating but by a conductive paste.
The land of the IVH portion of the inner layer material can be formed flat both up and down, and the SVH by metal plating from the outer layer can be easily formed on this land. Since the metal foil with insulating resin is used as the outer layer material, the adhesive strength between the insulating resin and metal foil is dramatically improved, and good component mounting strength is obtained even when the outer conductor pattern has a small diameter. The feature is that it can be held.

【0018】[0018]

【発明の実施の形態】本発明の請求項1に記載した発明
は、シート状の樹脂含浸基材に形成した貫通穴に導電性
ペーストを充填し、両面に張り合わせた金属はくで導電
パターンを形成した内層材と、この内層材の両面に形成
された絶縁樹脂付き金属はく層に形成された非貫通穴
と、この非貫通穴に外表面に形成した導電パターンと内
層材用の導電パターンを接続するインタースティシャル
バイアホールを設けてなる多層プリント配線板とする構
成であり、この構成とすることにより非常に高い配線収
容性を有し、かつ外層用導電パターンと基材の接着強度
が極めて強く、小径ランドにおいても高度な実装信頼性
を実現する多層プリント配線板とすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the first aspect of the present invention, a conductive paste is filled in a through-hole formed in a sheet-shaped resin-impregnated base material, and a conductive pattern is formed by a metal foil bonded on both surfaces. An inner layer material formed, a non-through hole formed in a metal foil layer with an insulating resin formed on both surfaces of the inner layer material, a conductive pattern formed on the outer surface of the non-through hole, and a conductive pattern for the inner layer material. The structure is a multi-layer printed wiring board provided with interstitial via holes that connect to each other. With this structure, it has a very high wiring capacity, and the adhesive strength between the outer layer conductive pattern and the base material is improved. The multilayer printed wiring board is extremely strong and realizes high mounting reliability even in a small-diameter land.

【0019】請求項2に記載の発明は、シート状の樹脂
含浸基材に貫通穴を形成する工程と、この貫通穴の導電
性ペーストを充填する工程と、前記樹脂含浸基材の両面
に金属はくを張り合わせ加熱加圧する工程と、回路形成
して両面に導電パターンを有する内層材を形成する工程
と、この内層材の両面最外層に絶縁樹脂付き金属はく層
を張り合わせ加熱加圧する工程と、前記最外層の絶縁樹
脂付き金属はく層に非貫通穴を設ける工程と、内層材に
形成した導電パターンと最外層金属はく層を前記非貫通
穴を介して電気的に接続する工程からなる多層プリント
配線板の製造方法としたものであり、この方法によっ
て、内層材用導電パターンどうしを導電性ペーストによ
り形成された貫通穴で電気接続し、また内層材用と外層
用の導電パターンをレーザにより形成された非貫通穴に
金属めっきを施し電気接続することにより、内層材のI
VHランド上に外層のSVHを形成できる構造が容易と
なるため非常に高い配線収容性が得られるという作用を
有する。さらに外層材料には、金属に対し強い接着性を
有する絶縁樹脂を塗布している、絶縁樹脂付き金属はく
を使用するため、外層用導体パターンと絶縁樹脂との接
着強度を向上するという作用を有する。
According to a second aspect of the present invention, a step of forming a through hole in a sheet-shaped resin-impregnated base material, a step of filling a conductive paste in the through-hole, and a step of forming metal on both surfaces of the resin-impregnated base material are provided. A step of laminating and heating and pressing the foil, a step of forming a circuit to form an inner layer material having conductive patterns on both surfaces, and a step of laminating and heating and pressing a metal foil layer with an insulating resin on both outermost layers of the inner layer material. A step of providing a non-through hole in the outermost metal-insulated metal foil layer with an insulating resin, and a step of electrically connecting a conductive pattern formed in the inner layer material and the outermost metal foil layer through the non-through hole. In this method, the conductive patterns for the inner layer material are electrically connected to each other through the through holes formed by the conductive paste, and the conductive patterns for the inner layer material and the outer layer are formed by this method. By electrically connecting subjected to metal plating on the non-through hole formed by over THE, the inner layer material I
Since the structure in which the SVH of the outer layer can be formed on the VH land becomes easy, there is an effect that a very high wiring accommodating property is obtained. Furthermore, the outer layer material is coated with an insulating resin that has strong adhesiveness to the metal.Since a metal foil with an insulating resin is used, it has the effect of improving the adhesive strength between the outer layer conductor pattern and the insulating resin. Have.

【0020】請求項3に記載の発明は、貫通穴、非貫通
穴をレーザ加工により形成する請求項2記載の多層プリ
ント配線板の製造方法としたものであり、この方法によ
って、従来のドリル加工に比べ小径の非貫通穴を高い生
産性で形成することができるという作用を有する。
According to a third aspect of the present invention, there is provided a method for manufacturing a multilayer printed wiring board according to the second aspect, wherein the through holes and the non-through holes are formed by laser processing. This has the effect that non-through holes having a smaller diameter can be formed with higher productivity.

【0021】請求項4に記載の発明は、最外層の絶縁樹
脂付き金属はく層に非貫通穴を形成する際に、その形成
する部分の金属はくを予め除去しておく請求項2記載の
多層プリント配線板の製造方法としたものであり、この
方法によって、非貫通穴径よりも大きいレーザ径で加工
でき、レーザ加工位置精度の管理を各非貫通穴でする必
要がなく、小径の非貫通穴を高い生産性で形成すること
ができる。
According to a fourth aspect of the present invention, when a non-through hole is formed in the outermost metal-laminated metal-laminated layer, the metal-laminated portion is removed in advance. With this method, it is possible to process with a laser diameter larger than the diameter of the non-through hole, and it is not necessary to control the laser processing position accuracy in each non-through hole. Non-through holes can be formed with high productivity.

【0022】請求項5に記載の発明は、電気的に接続す
る工程は、金属めっきであることを特徴とする請求項2
記載の多層プリント配線板の製造方法としたものであ
り、この方法によって、金属めっきによって抵抗値を低
くし、信頼性を向上するという作用を有する。
According to a fifth aspect of the present invention, the step of electrically connecting is metal plating.
According to the method for manufacturing a multilayer printed wiring board described above, the method has an effect of lowering a resistance value by metal plating and improving reliability.

【0023】請求項6に記載の発明は、最外層の絶縁樹
脂付き金属はく層に非貫通穴を設ける工程は、その形成
する部分の金属はくを予め除去し、その穴径より大きい
径のレーザービームを有するレーザー加工にて行うこと
を特徴とする請求項2に記載の多層プリント配線板の製
造方法というものであり、金属はくに予め除去した位置
へのレーザー加工のズレをレーザービーム径を大きくす
ることによって吸収し、確実に非貫通穴を形成するとい
うものである。
According to a sixth aspect of the present invention, in the step of providing a non-through hole in the outermost metal foil layer with insulating resin, the metal foil in the portion to be formed is removed in advance, and the diameter is larger than the diameter of the hole. 3. The method for manufacturing a multilayer printed wiring board according to claim 2, wherein the laser processing is performed by a laser beam having a laser beam having a laser beam diameter. Is absorbed by increasing the size, and a non-through hole is reliably formed.

【0024】請求項7及び8に記載の発明は、シート状
の樹脂含浸基材の樹脂と、絶縁樹脂付き金属はくの樹脂
は同一材料であることを特徴とする多層プリント配線板
及び製造方法というものであり、絶縁樹脂付き金属はく
の樹脂をエポキシ樹脂として、内層材のプリプレグと同
成分のものを使用した場合、リフロー後のそりや、耐熱
性(層間はく離)に最も良好な特性が得られるという効
果を有する。
According to a seventh aspect of the present invention, there is provided a multilayer printed wiring board and a method of manufacturing, wherein the resin of the sheet-shaped resin-impregnated base material and the resin of the metal foil with the insulating resin are the same material. If the same resin as the prepreg of the inner layer material is used as the epoxy resin using the resin of the metal foil with the insulating resin as the epoxy resin, the most favorable characteristics are the warpage after reflow and the heat resistance (layer separation). It has the effect of being obtained.

【0025】請求項9及び10に記載の発明は、シート
状の樹脂含浸基材が熱硬化性樹脂を含浸した芳香族ポリ
アミドからなる被圧縮性の多孔質基材である多層プリン
ト配線板及び製造方法としたものであり、軽量かつ高耐
熱性を有する基材を用いることで信頼性を高め、さらに
被圧縮性の多孔質基材を用いることにより、導体突起と
金属はくとの接続信頼性を向上させるという作用を有す
る。
According to the ninth and tenth aspects of the present invention, there is provided a multilayer printed wiring board wherein the sheet-shaped resin-impregnated substrate is a compressible porous substrate made of an aromatic polyamide impregnated with a thermosetting resin. The reliability is improved by using a lightweight and highly heat-resistant base material, and the connection reliability between the conductor protrusions and the metal foil is increased by using a compressible porous base material. Has the effect of improving

【0026】請求項11に記載の発明は、導電性金属は
くの所定位置に円錐または角錐状の導体突起が形成さ
れ、前記導体突起形成面に、シート状の樹脂含浸基材
と、導電性金属はくが加熱積層され、前記導体突起が前
記樹脂含浸基材を貫通し、両側の導電性金属はくが電気
的に導通され、導体回路が形成された内層板に、絶縁樹
脂付き金属はくが積層され、前記絶縁樹脂付き金属はく
層にレーザ加工により形成された非貫通穴にこの層の外
表面に形成した外層用の導電パターンと内層材用の導電
パターンを接続するインタースティシャルバイアホール
を設けてなる多層プリント配線板としたものであり、内
層板の構成を請求項1記載の構成と異なる構造とするこ
とにより選択肢を拡げ、要求仕様に応じて簡易な製造プ
ロセスで形成することができ、さらにこの構成とするこ
とにより、非常に高い配線収容性を有し、かつ外層用導
電パターンと基材の接着強度が極めて強く、小径ランド
においても高度な実装信頼性を実現する多層プリント配
線板とすることができる。
According to the eleventh aspect of the present invention, a conical or pyramid-shaped conductor projection is formed at a predetermined position of the conductive metal foil, and a sheet-shaped resin-impregnated base material is formed on the conductor projection formation surface. A metal foil is laminated by heating, the conductor protrusion penetrates the resin-impregnated base material, the conductive metal foils on both sides are electrically conducted, and the inner layer plate on which the conductor circuit is formed has a metal with an insulating resin. An interstitial that connects an outer layer conductive pattern and an inner layer material conductive pattern formed on the outer surface of this layer to a non-through hole formed by laser processing in the metal foil with the insulating resin. This is a multilayer printed wiring board provided with via holes. The configuration of the inner layer board is different from the configuration described in claim 1, so that the options are expanded, and the inner layer board is formed by a simple manufacturing process according to required specifications. thing Multilayer printed wiring with very high wiring capacity, extremely strong bonding strength between the outer layer conductive pattern and the base material, and high mounting reliability even in small-diameter lands. It can be a plate.

【0027】請求項12に記載の発明は、導体突起が導
電性ペーストを硬化して形成されている請求項11記載
の多層プリント配線板としたものであり、簡易なプロセ
スで多数の導体突起を形成でき、突起形状が均一かつ安
定した多層プリント配線板を提供することができる。
According to a twelfth aspect of the present invention, there is provided the multilayer printed wiring board according to the eleventh aspect, wherein the conductive protrusions are formed by curing a conductive paste. A multilayer printed wiring board which can be formed and has a uniform and stable protrusion shape can be provided.

【0028】請求項13に記載の発明は、導電性金属は
くの所定位置に円錐または角錐状の導体突起を形成する
工程と、前記導体突起形成面に、シート状の樹脂含浸基
材と、導電性金属はくを加熱積層し、前記導体突起が前
記樹脂含浸基材を貫通させた内層用積層板を形成する工
程と、前記積層板に内層用導体回路を形成する工程と、
前記内層用積層板に絶縁樹脂付き金属はくを積層する工
程と、前記絶縁樹脂付き金属はくの層に非貫通孔を形成
する工程と、内層用導体回路と絶縁樹脂付き金属はくを
非貫通孔を介して電気的接続する工程からなる多層プリ
ント配線板の製造方法としたものであり、この方法によ
って、内層材用導電パターンどうしを導体突起により電
気接続し、また内層材用と外層用の導電パターンをレー
ザにより形成された非貫通穴に金属めっきを施し電気接
続することにより、内層材のIVHランド上に外層のS
VHを形成できる構造が容易となるため非常に高い配線
収容性が得られるという作用を有する。さらに外層材料
には、金属に対し強い接着性を有する絶縁樹脂を塗布し
ている、絶縁樹脂付き金属はくを使用するため、外層用
導体パターンと絶縁樹脂との接着強度を向上するという
作用を有する。
According to a thirteenth aspect of the present invention, a step of forming a conical or pyramid-shaped conductor projection at a predetermined position of the conductive metal foil, a sheet-shaped resin-impregnated base material on the conductor projection formation surface, A step of heating and laminating a conductive metal foil to form an inner layer laminate in which the conductor projections penetrate the resin-impregnated base material, and a step of forming an inner layer conductor circuit on the laminate.
A step of laminating a metal foil with an insulating resin on the laminate for the inner layer, a step of forming a non-through hole in the layer of the metal foil with the insulating resin, A method for manufacturing a multilayer printed wiring board, comprising the steps of electrically connecting via a through-hole. In this method, the conductive patterns for the inner layer material are electrically connected to each other by conductive protrusions, and the inner layer material and the outer layer are electrically connected. By applying metal plating to the non-through holes formed by the laser and electrically connecting the conductive patterns, the S layer of the outer layer is placed on the IVH lands of the inner layer material.
Since the structure in which the VH can be formed becomes easy, there is an effect that a very high wiring accommodating property can be obtained. Furthermore, the outer layer material is coated with an insulating resin that has strong adhesiveness to the metal.Since a metal foil with an insulating resin is used, it has the effect of improving the adhesive strength between the outer layer conductor pattern and the insulating resin. Have.

【0029】以下、本発明の一実施の形態について、図
面を参照しながら説明する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

【0030】(実施の形態1)図1(a)〜(d)は本
発明の一実施の形態における多層プリント配線板の製造
方法を示す断面図である。図1において、1は内層材、
2は内層材用導電パターン、3は内層材用の絶縁基板、
4は内層材用の導電性ペースト、5は絶縁樹脂付き金属
はく、6は絶縁樹脂付き金属はくにレーザ加工した非貫
通穴、7はその非貫通穴に金属めっきを施したSVH、
8は外層用導電パターン、9は内層材にIVH、外層に
SVH、全層に導電パターンを有する多層プリント配線
板である。
(Embodiment 1) FIGS. 1A to 1D are cross-sectional views showing a method for manufacturing a multilayer printed wiring board according to an embodiment of the present invention. In FIG. 1, 1 is an inner layer material,
2 is a conductive pattern for the inner layer material, 3 is an insulating substrate for the inner layer material,
4 is a conductive paste for the inner layer material, 5 is a metal foil with an insulating resin, 6 is a non-through hole formed by laser processing a metal foil with an insulating resin, 7 is an SVH in which the non-through hole is plated with metal,
Reference numeral 8 denotes a conductive pattern for an outer layer, 9 denotes a multilayer printed wiring board having an IVH in an inner layer material, an SVH in an outer layer, and a conductive pattern in all layers.

【0031】以上のように構成された多層プリント配線
板の製造方法について以下説明する。
A method for manufacturing the multilayer printed wiring board configured as described above will be described below.

【0032】まず、本発明は、半硬化状態の被圧縮性を
有するアラミド不織布基材エポキシ樹脂プリプレグを用
意する。
First, according to the present invention, an aramid nonwoven fabric-based epoxy resin prepreg in a semi-cured state and having compressibility is prepared.

【0033】そして図1(a)に示すように、アラミド
不織布基材エポキシ樹脂プリプレグに炭酸ガスレーザー
にて穴加工を施す。
Then, as shown in FIG. 1A, a hole is formed in the aramid nonwoven fabric-based epoxy resin prepreg by a carbon dioxide gas laser.

【0034】その穴内に導電性ペースト4を充填した絶
縁基板3の両側に銅張積層板を形成するための銅はくを
重ね合わせ、熱プレスなどで接着した後公知のスクリー
ン印刷法や写真法などの手段を用いて、内層材用の導電
パターン2を形成し、この絶縁基板3上に、同様の方法
によりプリプレグ穴加工を施しその穴内に導電性ペース
トを充填したものと銅はくを重ね合わせ、熱プレスによ
り加熱・加圧する。このようにして形成された銅張積層
板の銅はくを公知のスクリーン法や写真法などの手段を
用いて、導体パターンを形成し、図1(a)に示すよう
な内層材1を得る。
A copper foil for forming a copper-clad laminate is overlapped on both sides of the insulating substrate 3 in which the conductive paste 4 is filled in the holes and bonded by a hot press or the like, and then a known screen printing method or photographic method is used. The conductive pattern 2 for the inner layer material is formed by using such means as described above, and a prepreg hole is formed on the insulating substrate 3 by the same method, and the hole filled with the conductive paste and the copper foil are laminated. Combined and heated and pressed by a hot press. The copper foil of the copper-clad laminate thus formed is formed with a conductor pattern by using a known method such as a screen method or a photographic method to obtain an inner layer material 1 as shown in FIG. .

【0035】次に図1(b)に示すように、内層材1の
両面に、絶縁樹脂付き金属はく5(半硬化状態の絶縁樹
脂を金属はくに塗布したもの)を積層し、熱プレスによ
り加熱・加圧する。
Next, as shown in FIG. 1B, a metal foil 5 with an insulating resin (a metal foil coated with a semi-cured insulating resin) is laminated on both surfaces of the inner layer material 1 and hot pressed. Heating and pressurizing.

【0036】内層材1と絶縁樹脂付き金属はく5との積
層に先立って、内層材1の銅はくをソフトエッチング等
の表面粗化処理および防錆処理、あるいはベーキング処
理を施すことによって、密着性の向上および内層材と最
外層の熱収縮による内部応力の低減を図ることができ
る。
Prior to laminating the inner layer material 1 and the metal foil 5 with insulating resin, the copper foil of the inner layer material 1 is subjected to a surface roughening treatment such as soft etching and a rust prevention treatment, or a baking treatment. It is possible to improve the adhesion and reduce the internal stress due to the heat shrinkage of the inner layer material and the outermost layer.

【0037】また、内部応力の低減は、絶縁樹脂付き金
属はく5の絶縁樹脂を内層材を構成するアラミド不織布
基材エポキシ樹脂プリプレグのエポキシ樹脂と同一の材
料とすることによってさらに有効である。
The internal stress can be further reduced by using the same insulating resin as the epoxy resin of the aramid nonwoven fabric base epoxy resin prepreg constituting the inner layer material.

【0038】本発明の実施の形態として上記の構成を採
用する理由は、次の通りである。
The reason for adopting the above configuration as an embodiment of the present invention is as follows.

【0039】(1)紙基材−フェノール、エポキシ樹脂
積層板、ポリエステル等、の通常の硬質基板を使用する
と、レーザー加工するのは生産性の観点から実用的では
ない。
(1) Paper base material-When a normal hard substrate such as phenol, epoxy resin laminate, polyester or the like is used, laser processing is not practical from the viewpoint of productivity.

【0040】(2)また、アラミド不織布のもつ優れた
レーザー加工性を生かす。すなわち通常アラミド不織布
はガラス不織布と比較してレーザー加工孔を小径とする
ことができ、さらに導電性ペーストの充填も安定して行
うことができる。特にガラス布基材に比較する小径孔加
工および導電性ペースト充填は著しく優れている。
(2) The excellent laser processability of the aramid nonwoven fabric is utilized. That is, the laser processing hole of the aramid nonwoven fabric can be made smaller than that of the glass nonwoven fabric, and the conductive paste can be stably filled. In particular, small-diameter hole processing and conductive paste filling are significantly superior to glass cloth substrates.

【0041】(3)直径30〜50μmの小径の非貫通
孔を表層最外層に形成することが可能であったとして
も、内層材の貫通孔が小径の加工でなければ、多層プリ
ント配線板の配線収容性が向上するものではないため、
アラミド不織布にレーザー加工を施す。
(3) Even if it is possible to form a small diameter non-through hole having a diameter of 30 to 50 μm in the outermost layer of the surface layer, unless the through hole of the inner layer material is processed with a small diameter, the multilayer printed wiring board can be formed. Because it does not improve wiring accommodation,
Laser processing is applied to the aramid nonwoven fabric.

【0042】(4)本発明は、最外層に絶縁樹脂付き金
属はく層を形成する構成とすることから、内層材に物理
的、機械的強度の高いアラミド基材を用い、さらに最外
層の本硬化時に最外層と内層材の境界の熱応力の影響を
極力低下させることができるよう耐熱性に優れたアラミ
ド基材を用いることによって実用化に適した多層プリン
ト配線板を提供する。
(4) In the present invention, since a metal foil layer with an insulating resin is formed on the outermost layer, an aramid base material having high physical and mechanical strength is used for the inner layer material. Provided is a multilayer printed wiring board suitable for practical use by using an aramid base material having excellent heat resistance so that the influence of thermal stress at the boundary between the outermost layer and the inner layer material can be reduced as much as possible during full curing.

【0043】(5)被圧縮性を有するアラミド不織布基
材エポキシ樹脂プリプレグを用いて、加熱・加圧して内
層材を形成し、その後前記内層材の両面に絶縁樹脂付き
金属はく5を積層し、加熱・加圧するという複数回の圧
縮を要する工程において内部応力を緩和することにおい
て有効であり、さらに内層材の導電性ペーストと銅はく
との導通抵抗を小さくすることにおいても効果がある。
(5) Using an aramid nonwoven fabric epoxy resin prepreg having compressibility, heat and pressure are applied to form an inner layer material, and then a metal foil 5 with an insulating resin is laminated on both surfaces of the inner layer material. It is effective in alleviating the internal stress in a step requiring a plurality of compressions such as heating and pressurizing, and is also effective in reducing the conduction resistance between the conductive paste of the inner layer material and the copper foil.

【0044】次に、絶縁樹脂付き金属はく5全面に感光
性エッチングレジストを形成し、露光、現像にて非貫通
穴を形成する部分の感光性エッチングレジストを除去し
た後、図1(c)に示すように、最外層の非貫通穴を形
成する部分の金属はく5を塩化第2銅等のエッチング液
により予め除去しておき、その穴径より5〜10%大き
い径のレーザビームにて穴加工を施し、非貫通穴6を得
る。
Next, a photosensitive etching resist is formed on the entire surface of the metal foil 5 with an insulating resin, and the photosensitive etching resist in a portion where a non-through hole is to be formed is removed by exposure and development. As shown in the figure, the metal foil 5 in the portion forming the non-through hole in the outermost layer is removed in advance with an etching solution such as cupric chloride to form a laser beam having a diameter 5 to 10% larger than the hole diameter. To form a non-through hole 6.

【0045】その後、前記非貫通穴6の内部を過マンガ
ン酸溶液等で処理し、露出した内層材1の金属はく表面
の樹脂を除去する。この処理は、必要に応じて複数回行
うことも可能である。
Thereafter, the inside of the non-through hole 6 is treated with a permanganate solution or the like to remove the resin on the exposed surface of the metal foil of the inner layer material 1. This processing can be performed a plurality of times as needed.

【0046】そして図1(d)に示すように、レーザ穴
加工後、全面に、無電解めっきおよび電気めっきの金属
めっきを施し、その後スクリーン印刷法や写真法などの
手段を用いてSVH7や外層用導電パターン8が形成さ
れた多層プリント配線板9を得る。
Then, as shown in FIG. 1 (d), after the laser hole processing, metal plating such as electroless plating and electroplating is applied to the entire surface, and then the SVH7 or the outer layer is formed by using a method such as a screen printing method or a photographic method. Multilayer printed wiring board 9 on which conductive pattern 8 is formed.

【0047】上記の非貫通穴への金属めっきは、穴径が
30〜50μmの場合は、金属めっきにより埋設するこ
とも可能であり、50〜100μmの場合は、非貫通穴
内の50%程度を埋設することによって、SVH7と絶
縁樹脂層との接着強度を高めることができ、さらにSV
H7を部品実装用のはんだ付け用のランドを構成する導
体パターンとして使用することも可能となり、部品実装
密度を高めることができる。
The metal plating on the non-through hole can be buried by metal plating when the hole diameter is 30 to 50 μm, and when the hole diameter is 50 to 100 μm, about 50% of the inside of the non-through hole is reduced. By embedding, the adhesive strength between the SVH 7 and the insulating resin layer can be increased, and
H7 can also be used as a conductor pattern constituting a land for soldering for component mounting, and the component mounting density can be increased.

【0048】(実施の形態2)図1(b)、(c)、
(d)についてさらに詳細な内容について以下説明す
る。
(Embodiment 2) FIGS. 1 (b), (c),
The details of (d) will be described below.

【0049】図1(b)、(c)、(d)について、内
層材は金属めっきではなく導電ペーストにてIVHを形
成する構造のためIVH部のランドは平滑に形成でき、
このランド上に容易に外層からの金属めっきによるSV
Hを形成することができる。絶縁樹脂付き金属はくにお
ける絶縁樹脂についてはエポキシ樹脂を使用したが、内
層材の両面に、従来の構成である最外層に絶縁層を形成
してから非貫通穴のSVHや外層用導電パターンを金属
めっきにて形成するものと比較し、本発明におけるSV
H部のランドや導電パターンの絶縁層との接着強度は約
2〜5倍の強度を実現できた(表1参照)。
Referring to FIGS. 1B, 1C and 1D, the land of the IVH portion can be formed smoothly because the inner layer material has a structure in which the IVH is formed not by metal plating but by a conductive paste.
SV on the land easily by metal plating from the outer layer
H can be formed. Epoxy resin was used for the insulating resin in the metal foil with the insulating resin. However, the insulating layer was formed on the outermost layer of the conventional structure on both surfaces of the inner layer material, and then the SVH of the non-through hole and the conductive pattern for the outer layer were formed. Compared to those formed by metal plating, SV in the present invention
The bonding strength between the land of the H portion and the insulating layer of the conductive pattern could be realized about 2 to 5 times (see Table 1).

【0050】[0050]

【表1】 [Table 1]

【0051】さらに本発明は半硬化状態の絶縁樹脂を熱
プレスにより加熱・加圧する工法のため、従来の絶縁樹
脂を内層材の表面に塗布またはラミネートする工法と比
較し、最外層の塗布工程時のバラツキがなく、表面の平
坦性についても飛躍的に良好となる結果が得られた。
Further, in the present invention, the semi-cured insulating resin is heated and pressurized by a hot press. Therefore, compared with the conventional method of applying or laminating the insulating resin on the surface of the inner layer material, the present invention provides a method of applying the outermost layer during the coating step. And the result was that the flatness of the surface was significantly improved.

【0052】さらにこのエポキシ樹脂を内層材のプリプ
レグと同成分のものを使用した場合、リフロー後のそり
や、耐熱性(層間はく離)に最も良好な特性が得られ
た。
Further, when the epoxy resin used had the same composition as the prepreg of the inner layer material, the most favorable characteristics were obtained in the warpage after reflow and the heat resistance (interlaminar peeling).

【0053】以上のように本実施の形態によれば、非常
に高い配線収容性を有し、かつ飛躍的にSVHや導電パ
ターンと絶縁層の接着強度を向上することができ、小径
ランドにおける部品実装にも高信頼性が得られる多層配
線板を提供することができる。
As described above, according to the present embodiment, it is possible to significantly improve the adhesive strength between the SVH and the conductive pattern and the insulating layer while having a very high wiring accommodating property. It is possible to provide a multilayer wiring board that can achieve high reliability in mounting.

【0054】(実施の形態3)上記の実施形態とは異な
る内層材の形成方法について説明する。
(Embodiment 3) A method of forming an inner layer material different from the above embodiment will be described.

【0055】図2(a)に示すように、導電性金属はく
としての銅はく21aの所定位置に円錐または角錐状の
導体突起22を印刷法または転写法の方法で形成し、図
2(b)に示すように、アラミド不織布基材エポキシ樹
脂プリプレグ23と銅はく21bを重ね合わせ、図2
(c)に示すような導体突起22がアラミド不織布基材
エポキシ樹脂プリプレグ23を貫通させた構造の内層用
積層板24を形成する。
As shown in FIG. 2A, a conical or pyramid-shaped conductor projection 22 is formed at a predetermined position on a copper foil 21a as a conductive metal foil by a printing method or a transfer method. As shown in FIG. 2 (b), the aramid non-woven fabric epoxy resin prepreg 23 and the copper foil 21b are overlapped, and FIG.
An inner layer laminate 24 having a structure in which the conductor projections 22 penetrate the aramid nonwoven fabric epoxy resin prepreg 23 as shown in FIG.

【0056】その後内層用積層板24に内層用導体回路
25を形成し(図2(d))、実施の形態1で示した図
1(b)〜図1(d)と同じ工程を経て多層プリント配
線板を形成する。
Thereafter, an inner-layer conductor circuit 25 is formed on the inner-layer laminate 24 (FIG. 2D), and the multilayer circuit is formed through the same steps as in FIGS. 1B to 1D shown in the first embodiment. Form a printed wiring board.

【0057】この方法を採用することによって、要求仕
様に応じて簡易な製造プロセスで形成することができ、
さらにこの構成とすることにより、非常に高い配線収容
性を有し、かつ外層用導電パターンと基材の接着強度が
極めて強く、小径ランドにおいても高度な実装信頼性を
実現する多層プリント配線板とすることができる。
By adopting this method, it can be formed by a simple manufacturing process according to the required specifications.
Further, by adopting this configuration, a multilayer printed wiring board having extremely high wiring accommodation capacity, having extremely strong adhesive strength between the outer layer conductive pattern and the base material, and achieving high mounting reliability even in a small-diameter land. can do.

【0058】尚、上記の実施の形態においては、内層用
積層板24を両面構造として説明したが、内層用積層板
24上の所定位置に導体突起22を形成し、図2(b)
〜図2(c)の工程を繰り返すことによって内層積層板
を多層構造とすることもできる。
In the above embodiment, the inner-layer laminate 24 has been described as a double-sided structure. However, the conductor protrusions 22 are formed at predetermined positions on the inner-layer laminate 24, and FIG.
By repeating the steps of FIG. 2C, the inner laminate may have a multilayer structure.

【0059】[0059]

【発明の効果】以上のように本発明は、内層材は金属め
っきではなく導電ペーストにてIVHを形成する構造の
ため、内層材のIVH部のランドは平滑に形成でき、こ
のランド上に容易に外層からの金属めっきによるSVH
を形成できるため、非常に高い配線収容性を有し、かつ
金属に対し強い接着性を有する絶縁樹脂を塗布してい
る、絶縁樹脂付き金属はくを外層材料として使用してい
るため、絶縁樹脂と金属はくの接着強度を飛躍的に向上
させ、外層用導体パターンが小径になっても良好な部品
実装強度が保持できる多層プリント配線板を実現できる
ものである。
As described above, according to the present invention, since the inner layer material has a structure in which the IVH is formed by conductive paste instead of metal plating, the land of the IVH portion of the inner layer material can be formed smoothly, and the land can be easily formed on this land. SVH by metal plating from outer layer
It has a very high wiring accommodating capacity and has applied an insulating resin with strong adhesiveness to metal.The metal foil with insulating resin is used as the outer layer material, so the insulating resin The present invention can realize a multilayer printed wiring board capable of dramatically improving the adhesive strength of a metal foil and maintaining good component mounting strength even when the outer layer conductor pattern has a small diameter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)〜(d)は本発明の実施の形態における
多層プリント配線板の製造過程の断面図
FIGS. 1A to 1D are cross-sectional views illustrating a process of manufacturing a multilayer printed wiring board according to an embodiment of the present invention.

【図2】(a)〜(d)は本発明の他の実施の形態にお
ける多層プリント配線板の製造過程の断面図
FIGS. 2A to 2D are cross-sectional views illustrating a process of manufacturing a multilayer printed wiring board according to another embodiment of the present invention.

【図3】(a)〜(d)は従来の多層プリント配線板の
製造過程の断面図
3 (a) to 3 (d) are cross-sectional views of a manufacturing process of a conventional multilayer printed wiring board.

【図4】(e)(f)は従来の多層プリント配線板の製
造過程の断面図
FIGS. 4 (e) and 4 (f) are cross-sectional views of a manufacturing process of a conventional multilayer printed wiring board.

【符号の説明】[Explanation of symbols]

1 内層材 2 内層材用導電パターン 3 内層材用の絶縁基板 4 内層材用の導電性ペースト 5 絶縁樹脂付き金属はく 6 5にレーザ加工した非貫通穴 7 6に金属めっきを施したSVH 8 外層用導電パターン 9 多層プリント配線板 21a,21b 銅はく 22 導体突起 23 アラミド不織布基材エポキシ樹脂プリプレグ 24 内層用積層板 25 内層用導体回路 REFERENCE SIGNS LIST 1 inner layer material 2 conductive pattern for inner layer material 3 insulating substrate for inner layer material 4 conductive paste for inner layer material 5 metal foil with insulating resin Conductive pattern for outer layer 9 Multilayer printed wiring board 21a, 21b Copper foil 22 Conductive protrusion 23 Aramid non-woven fabric base material epoxy resin prepreg 24 Inner layer laminate 25 Inner layer conductor circuit

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05K 3/40 H05K 3/40 K (72)発明者 大石 一哉 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5E317 AA21 AA24 CC25 CD27 CD32 5E346 AA43 CC05 CC10 DD12 EE09 FF04 FF18 FF24 GG15 HH11 HH25 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H05K 3/40 H05K 3/40 K (72) Inventor Kazuya Oishi 1006 Odakadoma, Kadoma City, Osaka Matsushita Electric Industrial F term in reference (reference) 5E317 AA21 AA24 CC25 CD27 CD32 5E346 AA43 CC05 CC10 DD12 EE09 FF04 FF18 FF24 GG15 HH11 HH25

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 シート状の樹脂含浸基材に形成した貫通
穴に導電性ペーストを充填し、両面に張り合わせた金属
はくで導電パターンを形成した内層材と、この内層材の
両面に形成された絶縁樹脂付き金属はく層に形成された
非貫通穴と、この非貫通穴に外表面に形成した導電パタ
ーンと内層材用の導電パターンを接続するインターステ
ィシャルバイアホールを設けてなる多層プリント配線
板。
1. An inner layer material having a conductive pattern formed by filling a through hole formed in a sheet-shaped resin-impregnated base material with a conductive paste and bonding a metal foil to both surfaces, and formed on both surfaces of the inner layer material. Multi-layer printing with a non-through hole formed in a metal foil layer with insulating resin, and an interstitial via hole connecting the conductive pattern formed on the outer surface and the conductive pattern for the inner layer material to the non-through hole Wiring board.
【請求項2】 シート状の樹脂含浸基材に貫通穴を形成
する工程と、この貫通穴の導電性ペーストを充填する工
程と、前記樹脂含浸基材の両面に金属はくを張り合わせ
加熱加圧する工程と、回路形成して両面に導電パターン
を有する内層材を形成する工程と、この内層材の両面最
外層に絶縁樹脂付き金属はく層を張り合わせ加熱加圧す
る工程と、前記最外層の絶縁樹脂付き金属はく層に非貫
通穴を設ける工程と、内層材に形成した導電パターンと
最外層金属はく層を前記非貫通穴を介して電気的に接続
する工程からなる多層プリント配線板の製造方法。
2. A step of forming a through hole in a sheet-shaped resin-impregnated base material, a step of filling the through-hole with a conductive paste, and bonding and heating and pressing metal foils on both surfaces of the resin-impregnated base material. A step of forming an inner layer material having conductive patterns on both surfaces by forming a circuit, a step of bonding a metal foil layer with an insulating resin to the outermost layers on both surfaces of the inner layer material, and applying heat and pressure; Manufacturing a multi-layer printed wiring board comprising the steps of: providing a non-through hole in a metal foil layer with a metal layer; and electrically connecting the conductive pattern formed on the inner layer material and the outermost metal foil layer via the non-through hole. Method.
【請求項3】 貫通穴、非貫通穴をレーザ加工により形
成する請求項2に記載の多層プリント配線板の製造方
法。
3. The method according to claim 2, wherein the through holes and the non-through holes are formed by laser processing.
【請求項4】 最外層の絶縁樹脂付き金属はく層に非貫
通穴を形成する際に、その形成する部分の金属はくを予
め除去しておく請求項2に記載の多層プリント配線板の
製造方法。
4. The multi-layer printed wiring board according to claim 2, wherein when the non-through hole is formed in the outermost metal-laminated metal foil layer, the metal foil is removed in advance at the portion where the non-through hole is formed. Production method.
【請求項5】 電気的に接続する工程は、金属めっきで
あることを特徴とする請求項2に記載の多層プリント配
線板の製造方法。
5. The method for manufacturing a multilayer printed wiring board according to claim 2, wherein the step of electrically connecting is metal plating.
【請求項6】 最外層の絶縁樹脂付き金属はく層に非貫
通穴を設ける工程は、その形成する部分の金属はくを予
め除去し、その穴径より大きい径のレーザービームを有
するレーザー加工にて行うことを特徴とする請求項2に
記載の多層プリント配線板の製造方法。
6. The step of providing a non-through hole in the outermost metal-laminated metal foil layer with an insulating resin includes removing a metal foil in a portion to be formed in advance and using a laser beam having a laser beam having a diameter larger than the diameter of the hole. The method according to claim 2, wherein the method is performed.
【請求項7】 シート状の樹脂含浸基材の樹脂と、絶縁
樹脂付き金属はくの樹脂は同一材料であることを特徴と
する請求項1に記載の多層プリント配線板。
7. The multilayer printed wiring board according to claim 1, wherein the resin of the sheet-shaped resin-impregnated base material and the resin of the metal foil with the insulating resin are the same material.
【請求項8】 シート状の樹脂含浸基材の樹脂と、絶縁
樹脂付き金属はくの樹脂は同一材料であることを特徴と
する請求項2に記載の多層プリント配線板の製造方法。
8. The method according to claim 2, wherein the resin of the sheet-shaped resin-impregnated base material and the resin of the metal foil with the insulating resin are the same material.
【請求項9】 シート状の樹脂含浸基材が熱硬化性樹脂
を含浸した芳香族ポリアミドからなる被圧縮性の多孔質
基材である請求項1に記載の多層プリント配線板。
9. The multilayer printed wiring board according to claim 1, wherein the sheet-shaped resin-impregnated substrate is a compressible porous substrate made of an aromatic polyamide impregnated with a thermosetting resin.
【請求項10】 シート状の樹脂含浸基材が熱硬化性樹
脂を含浸した芳香族ポリアミドからなる被圧縮性の多孔
質基材である請求項2に記載の多層プリント配線板の製
造方法。
10. The method for producing a multilayer printed wiring board according to claim 2, wherein the sheet-shaped resin-impregnated substrate is a compressible porous substrate made of an aromatic polyamide impregnated with a thermosetting resin.
【請求項11】 導電性金属はくの所定位置に円錐また
は角錐状の導体突起が形成され、前記導体突起形成面
に、シート状の樹脂含浸基材と、導電性金属はくが加熱
積層され、前記導体突起が前記樹脂含浸基材を貫通し、
両側の導電性金属はくが電気的に導通され、導体回路が
形成された内層板に、絶縁樹脂付き金属はくが積層さ
れ、前記絶縁樹脂付き金属はく層にレーザ加工により形
成された非貫通穴にこの層の外表面に形成した外層用の
導電パターンと内層材用の導電パターンを接続するイン
タースティシャルバイアホールを設けてなる多層プリン
ト配線板。
11. A conical or pyramid-shaped conductor projection is formed at a predetermined position of a conductive metal foil, and a sheet-shaped resin-impregnated base material and a conductive metal foil are heated and laminated on the conductor projection forming surface. The conductor projections penetrate the resin-impregnated base material,
The conductive metal foils on both sides are electrically conducted, the metal foil with the insulating resin is laminated on the inner layer plate on which the conductor circuit is formed, and the metal foil with the insulating resin is formed by laser processing on the metal foil with the insulating resin. A multilayer printed wiring board comprising a through hole provided with an interstitial via hole for connecting a conductive pattern for an outer layer formed on the outer surface of the layer and a conductive pattern for an inner layer material.
【請求項12】 導体突起が導電性ペーストを硬化して
形成されている請求項11に記載の多層プリント配線
板。
12. The multilayer printed wiring board according to claim 11, wherein the conductive protrusions are formed by curing a conductive paste.
【請求項13】 導電性金属はくの所定位置に円錐また
は角錐状の導体突起を形成する工程と、前記導体突起形
成面に、シート状の樹脂含浸基材と、導電性金属はくを
加熱積層し、前記導体突起が前記樹脂含浸基材を貫通さ
せた内層用積層板を形成する工程と、前記積層板に内層
用導体回路を形成する工程と、前記内層用積層板に絶縁
樹脂付き金属はくを積層する工程と、前記絶縁樹脂付き
金属はくの層に非貫通孔を形成する工程と、内層用導体
回路と絶縁樹脂付き金属はくを非貫通孔を介して電気的
接続する工程からなる多層プリント配線板の製造方法。
13. A step of forming a conical or pyramid-shaped conductor projection at a predetermined position of a conductive metal foil, and heating a sheet-shaped resin-impregnated base material and a conductive metal foil on the conductor projection formation surface. Laminating, forming a laminate for an inner layer in which the conductor protrusions penetrate the resin-impregnated base material, forming a conductor circuit for the inner layer on the laminate, and forming a metal with an insulating resin on the laminate for the inner layer. A step of laminating a foil, a step of forming a non-through hole in the layer of the metal foil with the insulating resin, and a step of electrically connecting the inner layer conductor circuit and the metal foil with the insulating resin through the non-through hole. A method for manufacturing a multilayer printed wiring board comprising:
JP2000372659A 1999-12-14 2000-12-07 Multilayered printed board and its manufacturing method Pending JP2001237550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372659A JP2001237550A (en) 1999-12-14 2000-12-07 Multilayered printed board and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-354307 1999-12-14
JP35430799 1999-12-14
JP2000372659A JP2001237550A (en) 1999-12-14 2000-12-07 Multilayered printed board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001237550A true JP2001237550A (en) 2001-08-31

Family

ID=26580030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372659A Pending JP2001237550A (en) 1999-12-14 2000-12-07 Multilayered printed board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001237550A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346678C (en) * 2002-05-30 2007-10-31 株式会社电装 Enhancement of current-carrying capacity of a multilayer circuit board
JP2008060609A (en) * 2003-02-13 2008-03-13 Fujikura Ltd Multilayer substrate and its manufacturing method
JP2008108880A (en) * 2006-10-25 2008-05-08 Matsushita Electric Ind Co Ltd Multilayer printed circuit board and its manufacturing method
JPWO2006118059A1 (en) * 2005-04-27 2008-12-18 日立化成工業株式会社 Composite, prepreg, metal foil-clad laminate, circuit board connecting material, multilayer printed wiring board, and manufacturing method thereof
JP2010278380A (en) * 2009-06-01 2010-12-09 Murata Mfg Co Ltd Method of manufacturing wiring board, and wiring board
JP5196056B1 (en) * 2012-06-14 2013-05-15 パナソニック株式会社 Composite multilayer wiring board and manufacturing method thereof
WO2013186966A1 (en) * 2012-06-14 2013-12-19 パナソニック株式会社 Composite multilayer wiring board and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100346678C (en) * 2002-05-30 2007-10-31 株式会社电装 Enhancement of current-carrying capacity of a multilayer circuit board
JP2008060609A (en) * 2003-02-13 2008-03-13 Fujikura Ltd Multilayer substrate and its manufacturing method
JP4538486B2 (en) * 2003-02-13 2010-09-08 株式会社フジクラ Multilayer substrate and manufacturing method thereof
US8726495B2 (en) 2003-02-13 2014-05-20 Fujikura Ltd. Multi-layer board manufacturing method thereof
JPWO2006118059A1 (en) * 2005-04-27 2008-12-18 日立化成工業株式会社 Composite, prepreg, metal foil-clad laminate, circuit board connecting material, multilayer printed wiring board, and manufacturing method thereof
US8440285B2 (en) 2005-04-27 2013-05-14 Hitachi Chemical Company, Ltd. Composite, prepreg, laminated plate clad with metal foil, material for connecting circuit board, and multilayer printed wiring board and method for manufacture thereof
JP2008108880A (en) * 2006-10-25 2008-05-08 Matsushita Electric Ind Co Ltd Multilayer printed circuit board and its manufacturing method
JP2010278380A (en) * 2009-06-01 2010-12-09 Murata Mfg Co Ltd Method of manufacturing wiring board, and wiring board
JP5196056B1 (en) * 2012-06-14 2013-05-15 パナソニック株式会社 Composite multilayer wiring board and manufacturing method thereof
WO2013186966A1 (en) * 2012-06-14 2013-12-19 パナソニック株式会社 Composite multilayer wiring board and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3241605B2 (en) Wiring board manufacturing method and wiring board
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
JP2004311736A (en) Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JPH11186698A (en) Manufacture of circuit board, and circuit board
JP2007288022A (en) Multilayer printed wiring board and its manufacturing method
JP2010157664A (en) Circuit substrate with electric and electronic component incorporated therein, and method of manufacturing the same
JP2004228165A (en) Multilayer wiring board and its manufacturing method
JPH10284841A (en) Manufacture of multilayer printed wiring board
JP2004079773A (en) Multilayer printed wiring substrate and its production method
JP2001237550A (en) Multilayered printed board and its manufacturing method
JP4161604B2 (en) Printed wiring board and manufacturing method thereof
JPH1154926A (en) One-sided circuit board and its manufacture
JP3705370B2 (en) Manufacturing method of multilayer printed wiring board
JP2002368364A (en) Printed wiring board and its manufacturing method
JP2008182071A (en) Electronic-component embedded wiring board and manufacturing method therefor, and electronic equipment
JP2006165242A (en) Printed-wiring board and its manufacturing method
JP3155565B2 (en) Manufacturing method of printed wiring board
JP2005045187A (en) Circuit board, method for manufacturing the same, and multi-layered circuit board
JP5483921B2 (en) Method for manufacturing printed circuit board
JP2001237542A (en) Wiring board
JP3304061B2 (en) Manufacturing method of printed wiring board
JP3238901B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2006147748A (en) Multilayered printed wiring board and its manufacturing method
JPH10321970A (en) Printed wiring board and manufacture thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Effective date: 20050318

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD01 Notification of change of attorney

Effective date: 20050630

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A02 Decision of refusal

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050901

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20050908

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20051028