JP2001237533A - Circuit board and circuit device using the same - Google Patents

Circuit board and circuit device using the same

Info

Publication number
JP2001237533A
JP2001237533A JP2000046437A JP2000046437A JP2001237533A JP 2001237533 A JP2001237533 A JP 2001237533A JP 2000046437 A JP2000046437 A JP 2000046437A JP 2000046437 A JP2000046437 A JP 2000046437A JP 2001237533 A JP2001237533 A JP 2001237533A
Authority
JP
Japan
Prior art keywords
solder
circuit board
thickness
thin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000046437A
Other languages
Japanese (ja)
Other versions
JP4593717B2 (en
Inventor
Mineo Isokami
峯男 磯上
Ryuji Yoneda
竜司 米田
Michiaki Hiraoka
通明 平岡
Shirou Sakujima
史朗 作島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000046437A priority Critical patent/JP4593717B2/en
Publication of JP2001237533A publication Critical patent/JP2001237533A/en
Application granted granted Critical
Publication of JP4593717B2 publication Critical patent/JP4593717B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a circuit board wherein adhesion of an electronic component and a circuit board is superior while height precision is maintained, and high precision and high reliability are ensured by holding stable composition after solder is fused, and a circuit device using the circuit board. SOLUTION: In the circuit board S1 wherein a laminated solder H constituted of an alternate multilayer film 4 of Au thin films and Su thin films is formed on a board 1, the uppermost layer 5 and the lowermost layer 3 of the laminated solder H are made of Au thin films, and the total film thickness of the Sn thin films is greater than that of the Au thin films. In this circuit device, an optical semiconductor element is mounted on the laminated solder of the circuit board S1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、抵抗,コンデン
サ,発光素子,受光素子等の電子部品を積層はんだを介
して実装するための回路基板(実装基板)、及び電子部
品を回路基板に実装した回路装置に関し、特に、積層は
んだとしてAu(金)−Sn(錫)系はんだを用いた回
路基板に関し、光通信用装置に使用される回路基板に発
光素子や受光素子等の光半導体素子を実装して成る回路
装置(光回路・電子回路混在装置)に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit board (mounting board) for mounting electronic components such as a resistor, a capacitor, a light emitting element, a light receiving element, etc. via laminated solder, and an electronic component mounted on the circuit board. For a circuit device, particularly for a circuit board using Au (Sn) -tin (tin) solder as a laminated solder, an optical semiconductor element such as a light emitting element or a light receiving element is mounted on a circuit board used for an optical communication device. Circuit device (mixed device of optical circuit and electronic circuit).

【0002】[0002]

【従来の技術】従来、回路基板上へのレーザダイオード
(以下、LDという)やフォトダイオード(以下、PD
という)等の光半導体素子の接合には、AuSn共晶は
んだが使用されてきた。
2. Description of the Related Art Conventionally, a laser diode (hereinafter referred to as LD) or a photodiode (hereinafter referred to as PD) is mounted on a circuit board.
AuSn eutectic solder has been used for joining optical semiconductor elements such as

【0003】しかし、AuSn共晶はんだは酸化し易い
ため、還元雰囲気中で回路基板と光半導体素子とを接合
させなければならない。また、光半導体素子と回路基板
との接合において、その微小な接合部に対応して安定な
はんだを供給しつつ、サブミクロンオーダの高精度でか
つ高信頼性の位置決め固定が要求される。
However, since the AuSn eutectic solder is easily oxidized, the circuit board and the optical semiconductor element must be joined in a reducing atmosphere. Further, in joining an optical semiconductor element and a circuit board, it is required to provide a highly accurate and highly reliable positioning and fixing of submicron order while supplying a stable solder corresponding to the minute joint.

【0004】これら要求に対応するため、AuSn共晶
はんだとして、Au−Sn系合金の単層膜を用いること
や、Au薄膜とSn薄膜とを交互に積層し多層はんだと
することが提案されている。
In order to meet these requirements, it has been proposed to use a single-layer film of an Au--Sn alloy as an AuSn eutectic solder, or to form a multilayer solder by alternately laminating Au thin films and Sn thin films. I have.

【0005】このような多層はんだは、中間層を形成し
ているSn薄膜の厚みを0.3μm以下にすることで表
面粗さを改善し、はんだの溶融時に生起する溶融はんだ
の合金以前の酸化を防止したり(例えば特開平10−6073
号公報を参照)、Au薄膜及びSn薄膜の各1層分の膜
厚を0.001〜1.0μmとし、はんだ組成をSn過
剰に設定することで濡れ性を向上させている(例えば特
開平9−283909号公報を参照)。そして、これらの例で
は、いずれも高精度位置決めの必要性から多層はんだの
総膜厚を1.0〜2.0μmに設定している。
[0005] In such a multilayer solder, the surface roughness is improved by reducing the thickness of the Sn thin film forming the intermediate layer to 0.3 μm or less, and the oxidation of the molten solder prior to alloying that occurs when the solder is melted. Or (for example, Japanese Patent Laid-Open No. 10-6073)
Japanese Patent Application Laid-Open No. H11-27139), the wettability is improved by setting the thickness of each layer of the Au thin film and the Sn thin film to 0.001 to 1.0 μm and setting the solder composition to excessive Sn. 9-283909). In each of these examples, the total thickness of the multilayer solder is set to 1.0 to 2.0 μm from the necessity of high-precision positioning.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、本発明
者等は光半導体素子の回路基板への数多くの実装実験か
らはんだ厚みの考察を行った結果、上記例のような2μ
m以下のはんだ膜厚では、以下に示す主に2つの問題が
生じることが明らかになった。
However, the present inventors have studied the solder thickness from a number of experiments on mounting an optical semiconductor element on a circuit board, and as a result, have found that the thickness of the 2 μm is not as shown in the above example.
It has been found that the following two main problems occur when the solder film thickness is less than m.

【0007】平行度の問題 光半導体素子を回路基板にダイボンドする際に、両者の
平行度が重要となるが、例えば、光半導体素子の実装部
分のサイズが1mm角の場合、平行度を1μmに抑える
ためには、およそ1×10-3radの機械精度(ボンデ
ィングする前の回路基板の配置精度)が必要となる。す
なわち、はんだを薄くした場合、回路基板に光半導体素
子を密着させるためにはかかる機械精度が必要となるの
で、多層はんだの厚みが2μm以下では対応が困難であ
り、接合ムラが発生する。
The problem of parallelism When an optical semiconductor device is die-bonded to a circuit board, the parallelism between the two is important. For example, when the size of the mounting portion of the optical semiconductor device is 1 mm square, the parallelism is reduced to 1 μm. In order to suppress this, a mechanical accuracy of approximately 1 × 10 −3 rad (an arrangement accuracy of the circuit board before bonding) is required. That is, when the thickness of the solder is reduced, such mechanical precision is required in order to bring the optical semiconductor element into close contact with the circuit board. Therefore, if the thickness of the multilayer solder is 2 μm or less, it is difficult to cope with the problem and uneven bonding occurs.

【0008】この機械精度は光半導体素子の実装機の性
能に依存し、実装機の機械精度が向上すれば、はんだの
厚みを薄くすることは高さ精度の点で有利である。しか
し、機械精度を上記精度で常時確保することは容易では
ない。従って、実際の工程でははんだの厚みをある程度
厚くすることが不可欠となる。
The mechanical accuracy depends on the performance of the mounting device for the optical semiconductor element. If the mechanical accuracy of the mounting device is improved, it is advantageous to reduce the thickness of the solder in terms of height accuracy. However, it is not easy to always secure the mechanical precision with the above-mentioned precision. Therefore, it is essential to increase the thickness of the solder to some extent in the actual process.

【0009】適正組成の問題 通常、回路基板や光半導体素子のメタライズ厚みは0.
5μm程度であり、これに対しはんだを薄くすること
は、メタライズに対しスケール的には同程度となる。す
なわち、メタライズの量がはんだに対して無視できなく
なり、溶融時におけるAuの組成が変動する。
Problem of Proper Composition Usually, the metallized thickness of a circuit board or an optical semiconductor device is about 0.1.
On the other hand, making the solder thinner is comparable in scale to metallization. That is, the amount of metallization cannot be ignored with respect to the solder, and the composition of Au during melting changes.

【0010】したがって、従来のはんだの厚みでは、は
んだを溶融した場合にメタライズが食われるため、はん
だ組成がAuリッチになる等の組成シフトが生じる。こ
れにより、予想できない合金相が生じたり、均質にAu
やSnが溶融しない等の問題が発生する。
[0010] Therefore, in the conventional solder thickness, when the solder is melted, metallization is eaten, and a composition shift such as Au-rich in the solder composition occurs. As a result, an unexpected alloy phase is formed or the Au
And Sn do not melt.

【0011】これらの点から、はんだの体積はできるだ
け大きいことが望まれる。勿論、この場合は高さ精度と
いう点では不利となる。このように組成の安定化のため
にも、はんだの厚みはある程度の厚みを有することが必
要となる。
From these points, it is desired that the volume of the solder is as large as possible. Of course, this case is disadvantageous in terms of height accuracy. In order to stabilize the composition, it is necessary that the solder has a certain thickness.

【0012】そこで本発明は、高さ精度を維持しつつ、
電子部品と回路基板の密着強度にも優れ、しかもはんだ
の溶融後も安定した組成を保持することで高精度かつ高
信頼性を有する回路基板、及びそれを用いた回路装置を
提供することを目的とする。
Accordingly, the present invention provides a method for maintaining height accuracy.
It is an object of the present invention to provide a circuit board which has excellent adhesion strength between an electronic component and a circuit board, and has high precision and high reliability by maintaining a stable composition even after melting of solder, and a circuit device using the same. And

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、本発明の回路基板は、基板上(基板に直接、又は基
板に被着形成された下地接着層上)に、Au薄膜とSn
薄膜の交互多層膜から成る積層はんだを形成した回路基
板において、積層はんだの最上層及び最下層をAu薄膜
にするとともに、Au薄膜の合計膜厚よりSn薄膜の合
計膜厚が大であることを特徴とする。
In order to achieve the above object, a circuit board according to the present invention comprises an Au thin film and a Sn thin film on a substrate (directly on the substrate or on a base adhesive layer formed on the substrate).
In a circuit board on which a laminated solder composed of alternating thin layers of thin films is formed, the uppermost layer and the lowermost layer of the laminated solder are made Au thin films, and the total thickness of the Sn thin films is larger than the total thickness of the Au thin films. Features.

【0014】特に、積層はんだの最上層の膜厚が、積層
はんだのそれ以外の層を構成するAu薄膜と同等以上で
あること。積層はんだの最上層の膜厚が0.2μm以上
であること。積層はんだの全体の厚みが3〜5μmであ
り、かつ交互多層膜の積層数が7以上であること。積層
はんだの重量組成比Au:Snが70〜80:30〜2
0の範囲内であることを特徴とする。
In particular, the thickness of the uppermost layer of the laminated solder is equal to or greater than that of the Au thin film constituting the other layers of the laminated solder. The thickness of the uppermost layer of the laminated solder is 0.2 μm or more. The total thickness of the laminated solder is 3 to 5 μm, and the number of laminated alternate multilayer films is 7 or more. The weight composition ratio Au: Sn of the laminated solder is 70-80: 30-2.
It is characterized by being within the range of 0.

【0015】また、本発明の回路装置は、上記回路基板
上に、前記積層はんだを介して電子部品を載置したこと
を特徴とする。すなわち、上記積層はんだを溶融せし
め、該積層はんだを介して電子部品を回路基板上に載置
し、溶融している積層はんだを固化させて成る。
Further, a circuit device according to the present invention is characterized in that electronic components are mounted on the circuit board via the laminated solder. That is, the laminated solder is melted, an electronic component is mounted on a circuit board via the laminated solder, and the molten laminated solder is solidified.

【0016】ここで、交互多層膜における中間層のAu
薄膜の膜厚を最上層及び最下層のAu薄膜と同等以下と
したのは、経済的な理由の他に合金化を容易にするため
であり、Sn薄膜の総厚みをAu薄膜の総厚みより大に
設定したのは上記と同様な理由と濡れ性を良くするため
である。
Here, Au of the intermediate layer in the alternating multilayer film is used.
The reason why the thickness of the thin film is made equal to or less than that of the Au thin film of the uppermost layer and the lowermost layer is to facilitate alloying in addition to economic reasons, and the total thickness of the Sn thin film is set to be smaller than the total thickness of the Au thin film. The reason why the value is set to a large value is the same as the above and for improving the wettability.

【0017】また、最上層のAu薄膜の膜厚を0.2μ
m以上としたのは、その下層にあるSn薄膜の酸化防止
のため最低限必要な膜厚としたからである。また、最下
層のAu薄膜を交互多層膜における中間層のAu薄膜よ
り厚くしたのは、その直上に位置するの薄膜のSn成分
が下地電極のAu等と混合するのを防止するためであ
り、このAu薄膜の膜厚が薄いと下地接着層の食われが
多くなり、組成比管理が困難になるためである。
The thickness of the uppermost Au thin film is 0.2 μm.
The reason why the thickness is set to m or more is that the minimum thickness is required to prevent oxidation of the Sn thin film underneath. The reason why the lowermost Au thin film is thicker than the intermediate Au thin film in the alternate multilayer film is to prevent the Sn component of the thin film located immediately above the Au thin film from mixing with Au or the like of the base electrode. This is because if the thickness of the Au thin film is small, the base adhesive layer is eroded more frequently, and it becomes difficult to control the composition ratio.

【0018】さら、重量組成比Au:Snを70〜8
0:30〜20の範囲内に設定したのは、接合すべき電
子部品の搭載(配設)面でのメタライズ状態に大きく依
存するが、たいていの場合、上記範囲内であれば、濡れ
性を考慮しても十分実用レベルの安定した実装が可能で
あることによる。
Furthermore, the weight composition ratio Au: Sn is set to 70-8.
The setting within the range of 0:30 to 20 largely depends on the metallized state on the mounting (arrangement) surface of the electronic component to be joined, but in most cases, the wettability is within the above range. This is because stable implementation at a practical level is possible even if consideration is given.

【0019】上述したように、実際の電子部品のフリッ
プチップ実装において、その回路基板(実装基板)の加
熱、電子部品への加圧圧着により、通常、約1μm前後
の電子部品の沈み込みが生じることから、はんだ付け時
の実装条件のバラツキを考慮し、積層はんだの厚みは3
〜5μmを好適範囲とする。なお、5μm以上では電子
部品の高精度実装が困難となる。
As described above, in actual flip-chip mounting of electronic parts, the sinking of the electronic parts by about 1 μm usually occurs due to the heating of the circuit board (mounting board) and the pressure bonding to the electronic parts. Therefore, considering the variation of the mounting conditions at the time of soldering, the thickness of the laminated solder should be 3
55 μm is a preferred range. If the thickness is 5 μm or more, it is difficult to mount electronic components with high accuracy.

【0020】また、交互多層膜における積層数が7以下
では、Sn薄膜の合計膜厚よりAu薄膜の合計膜厚を大
きくする構成としているため、溶融時にかなりSnリッ
チな組成となり、濡れ性が良すぎて表面へのSn成分の
露出による酸化やAuSn化合物層の形成を抑制でき
ず、電子部品の高精度で高信頼性の実装ができない。
When the number of stacked layers in the alternate multilayer film is 7 or less, the total thickness of the Au thin film is set to be larger than the total thickness of the Sn thin film. As a result, oxidation due to exposure of the Sn component to the surface and formation of the AuSn compound layer cannot be suppressed, and the electronic component cannot be mounted with high accuracy and high reliability.

【0021】一般的には交互多層膜における積層数が多
い方が良いが、あまり積層数が多いと生産性とコスト面
で問題があるため、積層数は10程度が適当である。
In general, it is better to have a large number of stacked layers in the alternate multilayer film, but if the number of stacked layers is too large, there are problems in productivity and cost.

【0022】[0022]

【発明の実施の形態】以下、図面に基づき本発明の実施
形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0023】図1に示すように、基板1上又は基板1上
に被着形成された下地接着層2上に、Au薄膜とSn薄
膜の交互多層膜(図中、3,4,5)から成る積層はん
だHを形成した回路基板S1は、積層はんだHの最上層
5及び最下層3をAu薄膜にし、積層はんだHを構成す
るAu薄膜の合計膜厚より、積層はんだHを構成するS
n薄膜の合計膜厚が大としている。
As shown in FIG. 1, an alternate multilayer film of Au thin film and Sn thin film (3, 4, 5 in the figure) is formed on a substrate 1 or a base adhesive layer 2 formed on the substrate 1. In the circuit board S1 on which the laminated solder H is formed, the uppermost layer 5 and the lowermost layer 3 of the laminated solder H are formed into an Au thin film, and the total thickness of the Au thin films constituting the laminated solder H is determined by S
The total thickness of the n thin films is large.

【0024】また、積層はんだHの最上層5の膜厚を、
積層はんだHの最上層5以外の層を構成するAu薄膜と
同等以上としている。また、積層はんだHの最上層5の
膜厚は0.2μm以上である。また、積層はんだHの厚
みは3〜5μmが好適範囲であり、かつ交互多層膜の積
層数は7〜10が好適範囲である。さらに、積層はんだ
Hの重量組成比Au:Snは70〜80:30〜20の
範囲内としている。なお、図中4は、最下層2上に形成
された交互多層膜の中間層であり、4aはSn薄膜、4
bはAu薄膜である。
The thickness of the uppermost layer 5 of the laminated solder H is
It is equal to or more than the Au thin film constituting the layers other than the uppermost layer 5 of the laminated solder H. The thickness of the uppermost layer 5 of the laminated solder H is 0.2 μm or more. The preferred range of the thickness of the laminated solder H is 3 to 5 μm, and the preferred range of the number of laminated alternate multilayer films is 7 to 10. Further, the weight composition ratio Au: Sn of the laminated solder H is in the range of 70 to 80:30 to 20. In the figure, reference numeral 4 denotes an intermediate layer of the alternate multilayer film formed on the lowermost layer 2;
b is an Au thin film.

【0025】ここで、基板1はアルミナなどのセラミッ
ク基板や単結晶Siなどから成る半導体基板等が用いら
れる。また、この上に積層はんだHを密着性良好に被着
形成させるため、下地接着層2として金属薄膜が単層若
しく2種以上の金属からなる複数層で形成される。下地
接着層2は、例えば下層/上層がCr/AuやTi/P
t/Au等が適宜選択して用いられる。積層のための成
膜方法としてはスパッタリング法やEB蒸着法が採用さ
れ、ArやN2などの不活性雰囲気下で薄膜形成を行
う。
Here, as the substrate 1, a ceramic substrate such as alumina, a semiconductor substrate made of single crystal Si or the like is used. In addition, in order to form a laminated solder H on this with good adhesion, a metal thin film is formed as the base adhesive layer 2 in a single layer or a plurality of layers made of two or more kinds of metals. The base adhesive layer 2 may be, for example, a lower / upper layer made of Cr / Au or Ti / P
t / Au or the like is appropriately selected and used. As a film forming method for lamination, a sputtering method or an EB vapor deposition method is employed, and a thin film is formed in an inert atmosphere such as Ar or N 2 .

【0026】このようにして、下地接着層2が形成され
た後、最下層3のAu薄膜が同様な成膜方法でその上に
積層される。Au薄膜から成る最下層3の膜厚は直下の
下地接着層2の厚さと同等以上の厚みが望ましい。これ
は最下層3の膜厚があまり薄いと溶融合金化の際に下地
接着層2の影響を直接受け、接合不良を惹起するためで
ある。
After the base adhesive layer 2 is thus formed, the Au thin film of the lowermost layer 3 is laminated thereon by a similar film forming method. The thickness of the lowermost layer 3 made of an Au thin film is desirably equal to or greater than the thickness of the underlying adhesive layer 2 immediately below. This is because if the thickness of the lowermost layer 3 is too small, it is directly affected by the base adhesive layer 2 at the time of forming a molten alloy, thereby causing poor bonding.

【0027】最下層3の形成に引き続き、Sn薄膜4a
とAu薄膜4bが交互に積層される。交互積層膜の最後
は最上層5のAu薄膜が成膜される。最上層5は上述し
たように、接合する素子等の電子部品のメタライジング
状態によりその膜厚は制約を受けるが、基本的には最上
層5の直下のSn薄膜4aの酸化を防止することができ
る程度の膜厚が必要である。
Following the formation of the lowermost layer 3, the Sn thin film 4a
And the Au thin film 4b are alternately stacked. At the end of the alternate laminated film, the Au thin film of the uppermost layer 5 is formed. As described above, the thickness of the uppermost layer 5 is restricted by the metallizing state of the electronic component such as the element to be joined, but basically, the oxidation of the Sn thin film 4a immediately below the uppermost layer 5 is prevented. The film thickness must be as large as possible.

【0028】本発明では、鋭意実験の結果、接合する電
子部品側の最上層5を構成するAu薄膜の膜厚を0.2
μm以上とすれば、Sn薄膜4bの膜厚をそれほど薄層
化せずとも、大抵の電子部品(特に光半導体素子)に対
応可能であることを見出した。
In the present invention, as a result of intensive experiments, it was found that the thickness of the Au thin film forming the uppermost layer 5 on the side of the electronic component to be joined was 0.2 μm.
It has been found that if the thickness is at least μm, it can be used for most electronic components (especially optical semiconductor elements) even if the thickness of the Sn thin film 4b is not so reduced.

【0029】次に、電子回路装置として光通信分野で使
用される光モジュールを適用した場合の一例について図
4に基づいて説明する。なお、図中Lは光軸であり、図
4(b)は図4(a)における光軸Lを含む断面線A−
Aでの端面図である。
Next, an example in which an optical module used in the optical communication field is applied as an electronic circuit device will be described with reference to FIG. Note that L in the drawing is the optical axis, and FIG. 4B is a sectional line A- including the optical axis L in FIG.
It is an end elevation in A.

【0030】図4(a),(b)に示す光回路・電子回
路混在装置である回路装置は光送信用の光モジュールM
であり、シリコン単結晶等の異方性エッチングが可能な
材料から成る基板11には、水酸化ナトリウムや水酸化
カリウム等の水溶液であるアルカリ性水溶液の異方性エ
ッチングで光導波体用溝12(深いV溝)、反射溝13
(浅いV溝)が設けられている。そして、光導波体用溝
12に光ファイバや光導波路体などの光導波体14を実
装し、この光導波体14の一端部で反射溝13の一端部
にはLD(半導体レーザ)等の発光素子15を、導体パ
ターンである下地接着層16及び上記Hと同様な積層は
んだ17を介して基板11上に配設している。反射溝1
3には内部の全面もしくは一部の面がAuのメタライズ
等で反射膜が形成され、この反射溝13を跨ぐようにし
て面受光型のモニター用PDである受光素子18を発光
素子15と同様にして下地接着層16及び積層はんだ1
7を介して配設している。
The circuit device, which is a mixed optical circuit / electronic circuit device shown in FIGS. 4A and 4B, is an optical module M for optical transmission.
A substrate 11 made of a material capable of anisotropic etching such as silicon single crystal is formed on an optical waveguide groove 12 by anisotropic etching of an alkaline aqueous solution which is an aqueous solution of sodium hydroxide or potassium hydroxide. Deep V groove), reflection groove 13
(Shallow V-groove). Then, an optical waveguide 14 such as an optical fiber or an optical waveguide is mounted in the optical waveguide groove 12, and one end of the optical waveguide 14 and one end of the reflection groove 13 emit light such as an LD (semiconductor laser). The element 15 is disposed on the substrate 11 via a base adhesive layer 16 which is a conductor pattern and a laminated solder 17 similar to the above H. Reflection groove 1
3, a reflection film is formed on the entire surface or a part of the surface by metallizing Au or the like. The light receiving element 18 which is a surface light receiving type monitoring PD is formed so as to straddle the reflection groove 13 like the light emitting element 15. And the base adhesive layer 16 and the laminated solder 1
7 are arranged.

【0031】ここで、発光素子15は、例えばInGa
AsPを用い、受光素子18は、例えばGe,InGa
As,InGaAsP,AlGaAsSb,InGaS
b等から成るIII-V族多元半導体多結晶を用いた面受光
型のPDを用いるものとする。
Here, the light emitting element 15 is made of, for example, InGa.
The light receiving element 18 is made of, for example, Ge, InGa using AsP.
As, InGaAsP, AlGaAsSb, InGaAs
It is assumed that a surface-light-receiving type PD using a III-V group multiple semiconductor polycrystal composed of b or the like is used.

【0032】以上のように構成された光モジュールMに
おいて、発光素子15は前方及び後方に光を出射する
が、後方への出射光は受光素子18により検出され、こ
の検出により発光素子15の前方への出射光を制御し、
この出射光を光導波体14へ光結合させる。
In the optical module M configured as described above, the light emitting element 15 emits light forward and rearward, but the light emitted backward is detected by the light receiving element 18, and by this detection, the front of the light emitting element 15 is detected. Control the outgoing light to
The emitted light is optically coupled to the optical waveguide 14.

【0033】かくして、発光素子15及び受光素子18
が安定した積層はんだ17上に載置されることになるの
で、発光素子15と光導波体14、発光素子15と受光
素子18とが正確に光結合されるので、結合効率の優れ
た光モジュールMを提供できる。
Thus, the light emitting element 15 and the light receiving element 18
Is mounted on the stable laminated solder 17, so that the light emitting element 15 and the optical waveguide 14, and the light emitting element 15 and the light receiving element 18 are accurately optically coupled with each other. M can be provided.

【0034】なお、本実施形態では光回路と電子回路を
混在させた光モジュールを例にとり説明したが、光回路
だけの回路装置や電子回路だけの回路装置でも適用可能
である。
In this embodiment, an optical module in which an optical circuit and an electronic circuit are mixed has been described as an example. However, a circuit device having only an optical circuit or a circuit device having only an electronic circuit can be applied.

【0035】[0035]

【実施例】以下に本発明のより具体的な実施例について
説明する。 [実施例1]図2に示すように、光回路用として用いる
Si単結晶から成る基板(厚み約500μm)1の上
に、300μm角で接合部分が約250μm角のLD素
子(不図示)をフリップチップ実装した回路基板S2と
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, more specific embodiments of the present invention will be described. Example 1 As shown in FIG. 2, an LD element (not shown) having a 300 μm square and a joint portion of about 250 μm square was formed on a substrate (thickness: about 500 μm) 1 made of Si single crystal used for an optical circuit. The circuit board S2 was flip-chip mounted.

【0036】この際、基板1は前もって熱酸化処理を行
い、表面に約1μm厚みの熱酸化膜1aを施した。この
上にスパッタ法でCr薄膜から成る第1下地接着層2a
を0.05μm、Au薄膜から成る第2下地接着層2b
を0.5μmの厚みで成膜し下地接着層2を形成した。
At this time, the substrate 1 was previously subjected to a thermal oxidation treatment, and a thermal oxide film 1a having a thickness of about 1 μm was applied to the surface. On this, a first base adhesive layer 2a made of a Cr thin film by a sputtering method
With a thickness of 0.05 μm and a second underlying adhesive layer 2b made of an Au thin film.
Was formed in a thickness of 0.5 μm to form a base adhesive layer 2.

【0037】ついで、Au薄膜から成る最下層3を0.
2μm、AuSn交互層の中間層4においてSn薄膜4
aを0.3μm、Au薄膜4bを0.2μm、そしてA
u薄膜から成る最上層5を0.5μmの厚みで成膜し、
合計11層で3μm厚のAuSn積層はんだHを形成し
た。また、比較のため、7層で2μm厚(最下層0.1
μm、交互積層膜の中間層におけるSn薄膜0.33μ
m、交互積層膜の中間層におけるAu薄膜0.25μ
m、最上層0.4μm)のサンプル(以下、2μm/7
層サンプルという)と、7層で3μm厚(最下層0.2
33μm、交互積層膜の中間層におけるSn薄膜0.5
μm、交互積層膜の中間層におけるAu薄膜0.233
μm、最上層0.8μm)のサンプル(以下、3μm/
7層サンプルという)の積層はんだも同様なプロセスで
形成した。重量組成比Au:Suは80:20とした。
Next, the lowermost layer 3 made of an Au thin film is set to a thickness of 0.1 mm.
2 μm, the Sn thin film 4 in the intermediate layer 4 of the AuSn alternate layers
a of 0.3 μm, Au thin film 4 b of 0.2 μm, and A
The uppermost layer 5 composed of a u thin film is formed with a thickness of 0.5 μm,
AuSn laminated solder H having a thickness of 3 μm was formed with a total of 11 layers. For comparison, seven layers are 2 μm thick (the lowermost layer is 0.1 μm).
μm, Sn thin film 0.33μ in the intermediate layer of the alternately laminated film
m, Au thin film 0.25μ in the intermediate layer of the alternately laminated film
m, uppermost layer 0.4 μm) (hereinafter, 2 μm / 7
Layer sample) and 3 layers of 7 μm thickness (the lowermost layer 0.2
33 μm, Sn thin film 0.5 in the intermediate layer of the alternately laminated film
μm, 0.233 Au thin film in the intermediate layer of the alternately laminated film
μm, 0.8 μm of the uppermost layer) (hereinafter, 3 μm /
A laminated solder of 7 layers sample) was formed by the same process. The weight composition ratio Au: Su was 80:20.

【0038】また、実装条件を同一にし、条件毎に10
個のサンプルを作製した。素子のはんだ接合強度をせん
断強度評価装置にて測定したところ、360℃での加熱
条件下では、2μm/7層サンプルは平均2.88Nと
高いシェア強度を示すものの、その反面、バラツキがσ
=124.2と大きく安定した強度は得られなかった。
The mounting conditions are made the same, and 10
Samples were made. When the solder joint strength of the element was measured by a shear strength evaluation device, under a heating condition at 360 ° C., the 2 μm / 7-layer sample showed a high shear strength of 2.88 N on average, but the variation was σ.
= 124.2, and a large and stable strength could not be obtained.

【0039】また、3μm/7層サンプルは第1層目か
ら積層が困難となり、結果成膜後の平均シェア強度は
0.59Nと最低であり、実用レベルの強度は得られな
かった。
Further, it was difficult to laminate the 3 μm / 7-layer sample from the first layer. As a result, the average shear strength after film formation was as low as 0.59 N, and a practical level of strength was not obtained.

【0040】これらの比較サンプルに比べて本実施品
は、実用レベルを上回る平均強度2.61Nを示し、か
つ強度のバラツキもσ=38.9と小さかった。
As compared with these comparative samples, the product of the present invention exhibited an average strength of 2.61 N, which was higher than the practical level, and the variation in strength was as small as σ = 38.9.

【0041】[実施例2]図3に示すように、アルミナ
から成るPDキャリアである基板1にAuSn積層はん
だHを形成し、その実装性能を評価した。使用したチッ
プサイズは500×300μmで、接合面は約100μ
m角とした。
Example 2 As shown in FIG. 3, AuSn laminated solder H was formed on a substrate 1 which is a PD carrier made of alumina, and its mounting performance was evaluated. The chip size used was 500 × 300 μm and the bonding surface was about 100 μm
m square.

【0042】AuSn積層はんだを形成するため、まず
基板1にメタライズを行った。メタライズは膜厚2μm
の下層/上層がMo膜2a/Mn膜2b、膜厚1μmの
Ni膜2c、そして密着性向上のため膜厚1μmのAu
膜2dさらにバリヤー層として膜厚0.4μmのPt膜
2eを順に成膜して下地接着層2を形成した。
In order to form the AuSn laminated solder, the substrate 1 was first metallized. Metallization is 2μm thick
The lower / upper layer is a Mo film 2a / Mn film 2b, a 1 μm thick Ni film 2c, and a 1 μm thick Au film for improving adhesion.
A base adhesive layer 2 was formed by sequentially forming a film 2d and a Pt film 2e having a thickness of 0.4 μm as a barrier layer.

【0043】このように形成した下地接着層2に、実施
例1と同様にAu薄膜とSn薄膜を交互に積層した。本
実施例では、11層で5μm厚(最下層3を0.28μ
m、中間部4の交互多層膜のSn薄膜4aを0.6μ
m、中間部4の交互多層膜のAu薄膜4bを0.28μ
m、最上層5を0.6μm)のAuSn積層はんだHを
形成した。この場合は下地接着層2が厚いため、濡れ広
がり性を考慮してあらかじめ重量組成比Au:Snは7
5:25とSnリッチの組成とした。
The Au thin film and the Sn thin film were alternately laminated on the base adhesive layer 2 thus formed in the same manner as in the first embodiment. In this embodiment, 11 layers have a thickness of 5 μm (the lowermost layer 3 has a thickness of 0.28 μm).
m, the Sn thin film 4a of the alternate multilayer film of the intermediate portion 4 is 0.6 μm.
m, the Au thin film 4b of the alternate multilayer film of the intermediate portion 4 is 0.28 μm.
m, the AuSn laminated solder H having the uppermost layer 5 of 0.6 μm) was formed. In this case, since the base adhesive layer 2 is thick, the weight composition ratio Au: Sn is set to 7 in advance in consideration of the wet spreading property.
5:25 and Sn-rich composition.

【0044】また、比較のため11層で3μm厚のサン
プル(以下3μm/11層サンプルという)と7〜9層
で3μm厚のサンプル(以下3μm/7〜9層サンプル
という)を作製した。これらサンプルは、最下層0.4
μm、Sn薄膜層0.36μm、Au薄膜層0.125
μm、最上層0.4μmとした。また、これらサンプル
では重量組成比Au:Snは80:20〜70:30ま
で変化させた。
For comparison, a 11 μm-thick sample having a thickness of 3 μm (hereinafter referred to as a 3 μm / 11-layer sample) and a 7 to 9-layer sample having a thickness of 3 μm (hereinafter referred to as a 3 μm / 7 to 9-layer sample) were prepared. These samples have a lower layer of 0.4
μm, Sn thin film layer 0.36 μm, Au thin film layer 0.125
μm, and the uppermost layer was 0.4 μm. In these samples, the weight composition ratio Au: Sn was changed from 80:20 to 70:30.

【0045】以上のように作製した基板1にPDをフリ
ップチップ実装し、その濡れ性と接合強度を評価した。
The PD was flip-chip mounted on the substrate 1 manufactured as described above, and its wettability and bonding strength were evaluated.

【0046】その結果、本発明の実施例では、濡れ広が
り性が良好で実用レベルの強度0.49Nに対し、安定
した平均接合強度約0.69Nが得られた。これに対し
て3μm/11層の比較サンプルでは、濡れ広がり性に
やや劣り平均接合強度は0.44Nであった。
As a result, in the embodiment of the present invention, a stable average bonding strength of about 0.69 N was obtained, while the wet-spreading property was good and the practical level strength was 0.49 N. On the other hand, in the comparative sample of 3 μm / 11 layers, the wettability was slightly inferior and the average bonding strength was 0.44N.

【0047】また、3μm/7〜9層サンプルの場合
は、積層が困難でかつ平均接合強度も0.1N以下と小
さく使用に耐えないものであった。また、重量組成比A
u:Snは、Snリッチ組成の場合、加熱温度が高い
程、加熱時間を極短時間に抑えれば、70:30付近で
も実用レベルのはんだ付けには問題ないことが分かっ
た。
In the case of the sample having a thickness of 3 μm / 7 to 9 layers, the lamination was difficult and the average bonding strength was as low as 0.1 N or less, so that the sample could not be used. In addition, the weight composition ratio A
In the case of u: Sn, in the case of Sn-rich composition, it was found that there was no problem in soldering at a practical level even at around 70:30 if the heating time was reduced to an extremely short time as the heating temperature was increased.

【0048】[0048]

【発明の効果】以上詳述したように、本発明の回路基板
及びそれを用いた電子回路装置によれば、大抵の電子部
品、特に光半導体素子を回路基板上に1μm程度の高精
度でかつ実用レベルの接合強度を維持しながら安定して
はんだ付けを行うことができ、ひいては、電子部品と回
路基板の密着強度にも優れ、しかも積層はんだの溶融後
も安定したはんだ組成を保持する、高精度で高信頼性を
有する回路基板及びそれを用いた電子回路装置を提供で
きる。
As described above in detail, according to the circuit board of the present invention and the electronic circuit device using the same, most of the electronic components, especially the optical semiconductor elements, can be formed on the circuit board with a high precision of about 1 μm. Solder can be stably soldered while maintaining a practical level of bonding strength, and as a result, the adhesive strength between the electronic component and the circuit board is excellent, and a stable solder composition is maintained even after the multilayer solder is melted. A circuit board having high accuracy and high reliability and an electronic circuit device using the same can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る回路基板の一実施形態を模式的に
説明する断面図である。
FIG. 1 is a cross-sectional view schematically illustrating one embodiment of a circuit board according to the present invention.

【図2】本発明に係る回路基板の一実施例を模式的に説
明する断面図である。
FIG. 2 is a cross-sectional view schematically illustrating one embodiment of a circuit board according to the present invention.

【図3】本発明に係る回路基板の他の実施例を模式的に
説明する断面図である。
FIG. 3 is a cross-sectional view schematically illustrating another embodiment of the circuit board according to the present invention.

【図4】本発明に係る電子回路装置の一実施形態を説明
する模式図であり、(a)は斜視図、(b)は(a)の
A−A線端面図である。
4A and 4B are schematic diagrams illustrating an embodiment of an electronic circuit device according to the present invention, wherein FIG. 4A is a perspective view, and FIG. 4B is an end view taken along line AA of FIG.

【符号の説明】[Explanation of symbols]

1 :基板 2 :下地接着層 2a:第1下地接着層 2b:第2下地接着層3 :最
下層 4 :交互多層膜 4a :Sn薄膜層 4b :Au薄膜層 5 :最上層 H:積層はんだ S1〜S3:回路基板 M:光モジュール(回路装置)
1: Substrate 2: base adhesive layer 2a: first base adhesive layer 2b: second base adhesive layer 3: bottom layer 4: alternate multilayer film 4a: Sn thin layer 4b: Au thin layer 5: top layer H: laminated solder S1 To S3: Circuit board M: Optical module (circuit device)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 作島 史朗 京都府相楽郡精華町光台3丁目5番地 京 セラ株式会社中央研究所内 Fターム(参考) 5E319 AC01 BB01 GG03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shiro Sakushima 3-5 Kodai, Seika-cho, Soraku-gun, Kyoto F-term in Kyocera Corporation Central Research Laboratory 5E319 AC01 BB01 GG03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 基板上にAu薄膜とSn薄膜の交互多層
膜から成る積層はんだを形成した回路基板において、前
記積層はんだの最上層及び最下層をAu薄膜にするとと
もに、Au薄膜の合計膜厚よりSn薄膜の合計膜厚が大
であることを特徴とする回路基板。
1. A circuit board having a multilayer solder comprising an alternate multilayer film of an Au thin film and a Sn thin film formed on a substrate, wherein the uppermost layer and the lowermost layer of the multilayer solder are made Au thin films, and the total thickness of the Au thin films is A circuit board, wherein the total thickness of the Sn thin film is larger.
【請求項2】 前記積層はんだの最上層の膜厚が、前記
積層はんだの他の層を構成するAu薄膜と同等以上であ
ることを特徴とする請求項1に記載の回路基板。
2. The circuit board according to claim 1, wherein the thickness of the uppermost layer of the laminated solder is equal to or greater than the thickness of the Au thin film constituting another layer of the laminated solder.
【請求項3】 前記積層はんだの最上層の膜厚が0.2
μm以上であることを特徴とする請求項1に記載の回路
基板。
3. The thickness of the uppermost layer of the laminated solder is 0.2.
The circuit board according to claim 1, wherein the thickness is not less than μm.
【請求項4】 前記積層はんだの厚みが3〜5μmであ
り、かつ前記交互多層膜の積層数が7以上であることを
特徴とする請求項1に記載の回路基板。
4. The circuit board according to claim 1, wherein the thickness of the laminated solder is 3 to 5 μm, and the number of layers of the alternate multilayer film is 7 or more.
【請求項5】 前記積層はんだの重量組成比Au:Sn
が70〜80:30〜20の範囲内であることを特徴と
する請求項1に記載の回路基板。
5. The weight composition ratio Au: Sn of the laminated solder.
The circuit board according to claim 1, wherein is within a range of 70 to 80:30 to 20.
【請求項6】 請求項1乃至5に記載の回路基板上に、
前記積層はんだを介して電子部品を載置したことを特徴
とする回路装置。
6. The circuit board according to claim 1, wherein
A circuit device, wherein an electronic component is mounted via the laminated solder.
JP2000046437A 2000-02-23 2000-02-23 Circuit board and circuit device using the same Expired - Fee Related JP4593717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046437A JP4593717B2 (en) 2000-02-23 2000-02-23 Circuit board and circuit device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046437A JP4593717B2 (en) 2000-02-23 2000-02-23 Circuit board and circuit device using the same

Publications (2)

Publication Number Publication Date
JP2001237533A true JP2001237533A (en) 2001-08-31
JP4593717B2 JP4593717B2 (en) 2010-12-08

Family

ID=18568845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046437A Expired - Fee Related JP4593717B2 (en) 2000-02-23 2000-02-23 Circuit board and circuit device using the same

Country Status (1)

Country Link
JP (1) JP4593717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423217C (en) * 2003-08-26 2008-10-01 德山株式会社 Substrate for device bonding, device bonded substrate, and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315338A (en) * 1992-05-06 1993-11-26 Sumitomo Electric Ind Ltd Semiconductor chip
JPH09283909A (en) * 1996-04-19 1997-10-31 Hitachi Ltd Electronic circuit device and its manufacture
JPH106073A (en) * 1996-06-13 1998-01-13 Japan Aviation Electron Ind Ltd An-sn multi-layer solder
JPH11204884A (en) * 1998-01-07 1999-07-30 Mitsubishi Electric Corp Solder forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05315338A (en) * 1992-05-06 1993-11-26 Sumitomo Electric Ind Ltd Semiconductor chip
JPH09283909A (en) * 1996-04-19 1997-10-31 Hitachi Ltd Electronic circuit device and its manufacture
JPH106073A (en) * 1996-06-13 1998-01-13 Japan Aviation Electron Ind Ltd An-sn multi-layer solder
JPH11204884A (en) * 1998-01-07 1999-07-30 Mitsubishi Electric Corp Solder forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100423217C (en) * 2003-08-26 2008-10-01 德山株式会社 Substrate for device bonding, device bonded substrate, and method for producing same

Also Published As

Publication number Publication date
JP4593717B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
KR100957669B1 (en) Submount and semiconductor device
KR101045507B1 (en) Light emitting element mounting member, and semiconductor device using the same
KR100940164B1 (en) Submount and semiconductor device
KR20050061452A (en) Submount and semiconductor device
KR20100059987A (en) Submount and method for manufacturing same
EP1672685B1 (en) Substrate for device bonding, device bonded substrate, and method for producing same
JP5028217B2 (en) Optical device mounting method
JP5122098B2 (en) Metallized substrate, semiconductor device
KR20040014475A (en) Substrate for use in joining element
JP2006278463A (en) Sub-mount
JP3912130B2 (en) Submount
JP2001237533A (en) Circuit board and circuit device using the same
WO2003069743A1 (en) Sub-mount and semiconductor device
JP2004327982A (en) Semiconductor device and its manufacturing method
JP2007134744A (en) Submount and semiconductor device
JPH11204884A (en) Solder forming method
JP2006216766A (en) Ceramics wiring board and semiconductor device using it
US20060057404A9 (en) Solder film manufacturing method, heat sink furnished with solder film, and semiconductor-device-and-heat-sink junction
JP2003198024A (en) Heat sink submount and its manufacturing method
JPH0249442A (en) Die bonding of optical semiconductor element
JPH02208032A (en) Metallic plate for circuit substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees