JP2001237147A - Solid-state electrolytic capacitor - Google Patents

Solid-state electrolytic capacitor

Info

Publication number
JP2001237147A
JP2001237147A JP2001066627A JP2001066627A JP2001237147A JP 2001237147 A JP2001237147 A JP 2001237147A JP 2001066627 A JP2001066627 A JP 2001066627A JP 2001066627 A JP2001066627 A JP 2001066627A JP 2001237147 A JP2001237147 A JP 2001237147A
Authority
JP
Japan
Prior art keywords
electrode foil
capacitor element
solid
oxidizing agent
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001066627A
Other languages
Japanese (ja)
Other versions
JP4642257B2 (en
Inventor
Toshiyuki Murakami
敏行 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2001066627A priority Critical patent/JP4642257B2/en
Publication of JP2001237147A publication Critical patent/JP2001237147A/en
Application granted granted Critical
Publication of JP4642257B2 publication Critical patent/JP4642257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a solid-state electrolytic capacitor in which a solid-state electrolytic layer composed of fine uniform conductive high molecules is formed into a winding type capacitor element and which has excellent electrical characteristics and large capacitance. SOLUTION: A capacitor element 10 in which an anode electrode foil 1 and a cathode electrode foil 2 are wound through separators 3 is impregnated with a polymerizable monomer and an oxidizing agent having concentration exceeding 40 wt.% to a solvent, and conductive high molecules formed by a chemical polymerization reaction are held by the separators 3. The degree of polymerization is improved by the oxidizing agent, and the solid electrolytic layer consisting of fine uniform conductive high molecules is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、固体電解コンデ
ンサおよびその製造方法にかかり、特に導電性高分子を
電解質に用いた固体電解コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same, and more particularly to a solid electrolytic capacitor using a conductive polymer as an electrolyte.

【0002】[0002]

【従来の技術】電解コンデンサは、タンタル、アルミニ
ウム等の弁作用金属からなるとともに微細孔やエッチン
グピットを備える陽極電極の表面に、誘電体となる酸化
皮膜層を形成し、この酸化皮膜層から電極を引き出した
構成からなる。
2. Description of the Related Art An electrolytic capacitor is formed by forming an oxide film layer serving as a dielectric on the surface of an anode electrode made of a valve metal such as tantalum or aluminum and having fine holes and etching pits. Is drawn out.

【0003】そして、酸化皮膜層からの電極の引出し
は、導電性を有する電解質層により行っている。したが
って、電解コンデンサにおいては電解質層が真の陰極を
担うことになる。例えば、アルミニウム電解コンデンサ
では、液状の電解質を真の電極として用い、陰極電極は
この液状電解質と外部端子との電気的な接続を担ってい
るにすぎない。
[0003] The extraction of the electrode from the oxide film layer is performed by a conductive electrolyte layer. Therefore, in the electrolytic capacitor, the electrolyte layer serves as a true cathode. For example, in an aluminum electrolytic capacitor, a liquid electrolyte is used as a true electrode, and a cathode electrode merely serves to electrically connect the liquid electrolyte to an external terminal.

【0004】真の陰極として機能する電解質層は、酸化
皮膜層との密着性、緻密性、均一性などが求められる。
特に、陽極電極の微細孔やエッチングピットの内部にお
ける密着性が電気的な特性に大きな影響を及ぼしてお
り、従来数々の電解質層が提案されている。
[0004] The electrolyte layer functioning as a true cathode is required to have adhesion, denseness, uniformity, etc. with the oxide film layer.
In particular, the adhesion in the fine holes of the anode electrode and the inside of the etching pits has a great effect on the electrical characteristics, and a number of electrolyte layers have been proposed.

【0005】固体電解コンデンサは、イオン伝導である
ために高周波領域でのインピーダンス特性に欠ける液状
の電解質の替わりに導電性を有する固体の電解質を用い
るもので、なかでも二酸化マンガンや7、7、8、8−
テトラシアノキノジメタン(TCNQ)錯体が知られて
いる。
The solid electrolytic capacitor uses a solid electrolyte having conductivity instead of a liquid electrolyte which lacks impedance characteristics in a high frequency range because of ionic conduction. Among them, manganese dioxide, 7, 7, and 8 are used. , 8-
Tetracyanoquinodimethane (TCNQ) complexes are known.

【0006】二酸化マンガンからなる固体電解質層は、
硝酸マンガン水溶液に、タンタルの焼結体からなる陽極
素子を浸漬し、300℃〜400℃前後の温度で熱分解
して生成している。このような固体電解質層を用いたコ
ンデンサでは、硝酸マンガンの熱分解の際に酸化皮膜層
が破損し易く、そのため漏れ電流が大きくなる傾向が見
られ、また二酸化マンガン自体の比抵抗も高いためにイ
ンピーダンス特性において充分満足できる特性を得るこ
とは困難であった。また熱処理によるリード線の損傷も
あり、後工程として接続用の外部端子を別途設ける必要
があった。
[0006] The solid electrolyte layer made of manganese dioxide is
The anode element made of a sintered body of tantalum is immersed in an aqueous solution of manganese nitrate, and is produced by thermal decomposition at a temperature of about 300 to 400 ° C. In such a capacitor using a solid electrolyte layer, the oxide film layer is easily damaged during the thermal decomposition of manganese nitrate, which tends to increase the leakage current, and the specific resistance of manganese dioxide itself is high. It has been difficult to obtain sufficiently satisfactory impedance characteristics. In addition, the lead wire was damaged by the heat treatment, and it was necessary to separately provide an external terminal for connection as a later process.

【0007】TCNQ錯体を用いた固体電解コンデンサ
としては、特開昭58−191414号公報に記載され
たものなどが知られており、TCNQ錯体を熱溶融して
陽極電極に浸漬、塗布して固体電解質層を形成してい
る。このTCNQ錯体は、導電性が高く、周波数特性や
温度特性において良好な結果を得ることができる。
As a solid electrolytic capacitor using a TCNQ complex, one disclosed in Japanese Patent Application Laid-Open No. 58-191414 is known. An electrolyte layer is formed. This TCNQ complex has high conductivity and can obtain good results in frequency characteristics and temperature characteristics.

【0008】しかし、TCNQ錯体は溶融したのち短時
間で絶縁体に移行する性質があるため、コンデンサの製
造過程における温度管理が困難であるほか、TCNQ錯
体自体が耐熱性に欠けるため、プリント基板に実装する
際の半田熱により著しい特性変動が見られる。
However, since the TCNQ complex has a property of being transferred to an insulator in a short time after being melted, it is difficult to control the temperature in the manufacturing process of the capacitor. A remarkable characteristic change is seen due to solder heat at the time of mounting.

【0009】これら二酸化マンガンやTCNQ錯体の持
つ不都合を解決するため、ポリピロール等の導電性高分
子を固体電解質層として用いることが試みられている。
In order to solve the disadvantages of the manganese dioxide and the TCNQ complex, attempts have been made to use a conductive polymer such as polypyrrole as the solid electrolyte layer.

【0010】ポリピロールに代表される導電性高分子
は、主に化学的酸化重合法(化学重合)や電解酸化重合
法(電解重合)により生成されるが、化学重合では、強
度の強い皮膜を緻密に生成することは困難であった。一
方、電解重合では、皮膜を生成する対象物に電圧を印加
する必要があり、そのため表面に絶縁体である酸化皮膜
層が形成された電解コンデンサ用の陽極電極に適用する
ことは困難で、酸化皮膜層の表面に、予め導電性のプレ
コート層、例えば酸化剤を用いて化学重合した導電性高
分子膜をプレコート層とし、その後このプレコート層を
電極として電解重合による電解質層を形成する方法など
が提案されている(特開昭63−173313号公報、
特開昭63−158829号公報:二酸化マンガンをプ
レコート層とする)。
[0010] The conductive polymer represented by polypyrrole is mainly produced by a chemical oxidation polymerization method (chemical polymerization) or an electrolytic oxidation polymerization method (electrolysis polymerization). Was difficult to produce. On the other hand, in the case of electrolytic polymerization, it is necessary to apply a voltage to an object on which a film is to be formed, and therefore, it is difficult to apply the method to an anode electrode for an electrolytic capacitor having an oxide film layer as an insulator formed on the surface. On the surface of the coating layer, there is a method in which a conductive precoat layer, for example, a conductive polymer film chemically polymerized using an oxidizing agent is used as a precoat layer, and then the electrolyte layer is formed by electrolytic polymerization using the precoat layer as an electrode. It has been proposed (JP-A-63-173313,
JP-A-63-158829: Manganese dioxide is used as a precoat layer).

【0011】しかし、予めプレコート層を形成するため
製造工程が煩雑となるほか、電解重合では、陽極電極の
被皮膜面に配置した重合用の外部電極の近傍から固体電
解質層が生成されるため、広範囲にわたって均一な厚さ
の導電性高分子膜を連続的に生成することは非常に困難
であった。
However, the manufacturing process becomes complicated because the pre-coat layer is formed in advance, and in the electrolytic polymerization, a solid electrolyte layer is generated from the vicinity of the external electrode for polymerization arranged on the surface of the anode electrode to be coated. It has been very difficult to continuously produce a conductive polymer film having a uniform thickness over a wide range.

【0012】そこで、箔状の陽極電極及び陰極電極を、
セパレータを介して巻き取って、いわゆる巻回型のコン
デンサ素子を形成し、このコンデンサ素子にピロール等
のモノマー溶液と酸化剤を含浸して化学重合のみにより
生成した導電性高分子膜からなる電解質層を形成するこ
とを試みた。
Therefore, a foil-like anode electrode and a cathode electrode are
An electrolyte layer consisting of a conductive polymer film formed only by chemical polymerization by impregnating a monomer solution such as pyrrole and an oxidizing agent into this capacitor element by winding it up through a separator to form a so-called winding type capacitor element Tried to form

【0013】このような巻回型のコンデンサ素子は、ア
ルミニウム電解コンデンサにおいて周知であるが、導電
性高分子層をセパレータで保持することで電解重合の煩
雑さを回避するとともに、併せて表面積の大きい箔状の
電極により容量を拡大させることが期待された。更に、
巻回型のコンデンサ素子を用いることで、両極の電極と
セパレータが一定の緊締力で保持され、両極の電極と電
解質層との密着性に貢献することが期待された。
[0013] Such a wound type capacitor element is well known for an aluminum electrolytic capacitor, but by holding a conductive polymer layer with a separator, it is possible to avoid the complication of electrolytic polymerization and also to increase the surface area. It was expected that the capacity would be expanded by the foil-like electrode. Furthermore,
It was expected that the use of a wound-type capacitor element would maintain both electrodes and the separator with a constant tightening force and contribute to the adhesion between the electrodes and the electrolyte layer.

【0014】しかし、モノマー溶液と酸化剤とを混合し
た混合溶液をコンデンサ素子に含浸したところ、コンデ
ンサ素子の内部にまで固体電解質層が形成されておら
ず、期待された電気的特性を得ることはできないことが
判明した。
However, when a capacitor element is impregnated with a mixed solution obtained by mixing a monomer solution and an oxidizing agent, the solid electrolyte layer is not formed inside the capacitor element, and the expected electrical characteristics cannot be obtained. It turned out to be impossible.

【0015】[0015]

【発明が解決しようとする課題】そこで、モノマー溶液
と酸化剤を別々に含浸したり、反応の際の溶液の重合温
度を低くしたところ、ある程度良好な電気的特性を得る
ことができたが、さらに優れた電気的特性を有する固体
電解コンデンサが要望されており、なおESR特性にお
いて満足できるものではない。また、静電容量や寿命特
性のバラツキがなお大きいことから、その原因として
は、導電性高分子の重合度がなお十分ではなく、コンデ
ンサ素子内での固体電解質層が十分に緻密かつ均一に生
成されていないことが考えられる。
Therefore, when the monomer solution and the oxidizing agent were separately impregnated or the polymerization temperature of the solution during the reaction was lowered, good electrical characteristics could be obtained to some extent. There has been a demand for a solid electrolytic capacitor having more excellent electric characteristics, and it is still not satisfactory in ESR characteristics. In addition, because the variation in capacitance and life characteristics is still large, the cause is that the degree of polymerization of the conductive polymer is still insufficient, and the solid electrolyte layer in the capacitor element is sufficiently dense and uniform. It may not have been done.

【0016】そこで、この発明は、コンデンサ素子内で
の固体電解質層を緻密で均一に生成することによりES
R特性を向上させることを目的としている。そのため、
本発明者は実験研究した結果、一定濃度以上の酸化剤を
用いることにより、コンデンサ素子内で充分に重合反応
をせしめることが可能であり、よって緻密で均一な固体
電解質層を形成することができるという知見を得た。
Therefore, the present invention provides a method for forming a solid electrolyte layer in a capacitor element in a dense and uniform manner, thereby improving the ES.
The purpose is to improve the R characteristic. for that reason,
The present inventor has conducted experimental studies, and as a result of using an oxidizing agent having a certain concentration or more, it is possible to sufficiently cause a polymerization reaction in a capacitor element, and thus it is possible to form a dense and uniform solid electrolyte layer. I got the knowledge.

【0017】[0017]

【課題を解決するための手段】この発明は、陽極電極箔
と陰極電極箔とをセパレータを介して巻回したコンデン
サ素子に、重合性モノマーと溶媒に対して40重量%を
超える濃度の酸化剤とを含浸して化学重合反応により生
成した導電性高分子をセパレータで保持したことを特徴
としている。
According to the present invention, an oxidizing agent having a concentration exceeding 40% by weight based on a polymerizable monomer and a solvent is provided on a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator. And a conductive polymer produced by a chemical polymerization reaction by impregnation with the above is held by a separator.

【0018】[0018]

【発明の実施の形態】次いで、本発明の実施の形態を図
面を用いて説明する。図1は、本発明の固体電解コンデ
ンサで、アルミニウム等の弁作用金属からなり表面に酸
化皮膜層が形成された陽極電極箔1と、陰極電極箔2と
を、ビニロン繊維を主体とする不織布からなるセパレー
タ3を介して巻回してコンデンサ素子10を形成する。
そして、このコンデンサ素子10に重合性モノマーであ
る3,4−エチレンジオキシチオフェンと溶媒中の酸化
剤とを含浸し、コンデンサ素子10中での化学重合反応
により生成した導電性高分子であるポリエチレンジオキ
シチオフェンを固体電解質層5としてセパレータ3で保
持している。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a solid electrolytic capacitor of the present invention, in which an anode electrode foil 1 made of a valve metal such as aluminum and having an oxide film layer formed on its surface, and a cathode electrode foil 2 are made of a non-woven fabric mainly composed of vinylon fibers. The capacitor element 10 is formed by being wound with the separator 3 interposed therebetween.
The capacitor element 10 is impregnated with a polymerizable monomer, 3,4-ethylenedioxythiophene, and an oxidizing agent in a solvent, and is a conductive polymer, polyethylene, formed by a chemical polymerization reaction in the capacitor element 10. Dioxythiophene is held by the separator 3 as a solid electrolyte layer 5.

【0019】陽極電極箔1は、アルミニウム等の弁作用
金属からなり、図2に示すように、その表面を、塩化物
水溶液中での電気化学的なエッチング処理により粗面化
して多数のエッチングピット8を形成している。更にこ
の陽極電極箔1の表面には、ホウ酸アンモニウム等の水
溶液中で電圧を印加して誘電体となる酸化皮膜層4を形
成している。
The anode electrode foil 1 is made of a valve metal such as aluminum. As shown in FIG. 2, the surface of the anode electrode foil 1 is roughened by electrochemical etching in a chloride aqueous solution to form a large number of etching pits. 8 are formed. Further, on the surface of the anode electrode foil 1, a voltage is applied in an aqueous solution of ammonium borate or the like to form an oxide film layer 4 serving as a dielectric.

【0020】陰極電極箔2は、陽極電極箔1と同様にア
ルミニウム等からなり、表面にエッチング処理のみが施
されているものを用いる。
The cathode electrode foil 2 is made of aluminum or the like in the same manner as the anode electrode foil 1 and has only a surface subjected to etching.

【0021】陽極電極箔1及び陰極電極箔2にはそれぞ
れの電極を外部に接続するためのリード線6、7が、ス
テッチ、超音波溶接等の公知の手段により接続されてい
る。このリード線6、7は、アルミニウム等からなり、
陽極電極箔1、陰極電極箔2との接続部と外部との電気
的な接続を担う外部接続部からなり、巻回したコンデン
サ素子10の端面から導出される。
Lead wires 6 and 7 for connecting the respective electrodes to the outside are connected to the anode electrode foil 1 and the cathode electrode foil 2 by known means such as stitching and ultrasonic welding. The lead wires 6 and 7 are made of aluminum or the like,
It comprises an external connection portion for electrically connecting the connection portion between the anode electrode foil 1 and the cathode electrode foil 2 and the outside, and is led out from the end face of the wound capacitor element 10.

【0022】セパレータ3は、ビニロン繊維を主体とす
る不織布で、この他にビニロン繊維と、ガラス繊維、ポ
リエステル繊維、ナイロン繊維、レーヨン繊維、マニラ
紙等の紙繊維などとを混抄した不織布を用いることもで
きる。なお、上記不織布は、坪量が6〜36g/m2
繊維径5〜30μm、厚さ30〜150μm、密度0.
2〜0.5g/cm3 のものを用いている。
The separator 3 is a non-woven fabric mainly composed of vinylon fibers. In addition, a non-woven fabric obtained by mixing vinylon fibers with paper fibers such as glass fibers, polyester fibers, nylon fibers, rayon fibers, and manila paper is used. Can also. The nonwoven fabric has a basis weight of 6 to 36 g / m 2 ,
Fiber diameter 5-30 μm, thickness 30-150 μm, density 0.
Those having a density of 2 to 0.5 g / cm 3 are used.

【0023】コンデンサ素子10は、上記の陽極電極箔
1と陰極電極箔2とを、セパレータ3を間に挟むように
して巻き取って形成している。両極電極箔1、2の寸法
は、製造する固体電解コンデンサの仕様に応じて任意で
あり、セパレータ3も両極電極箔1、2の寸法に応じて
これよりやや大きい幅寸法のものを用いればよい。
The capacitor element 10 is formed by winding the above-mentioned anode electrode foil 1 and cathode electrode foil 2 with the separator 3 interposed therebetween. The dimensions of the bipolar electrode foils 1 and 2 are arbitrary according to the specifications of the solid electrolytic capacitor to be manufactured, and the separator 3 may have a width slightly larger than this according to the dimensions of the bipolar electrode foils 1 and 2. .

【0024】重合性モノマーである3,4−エチレンジ
オキシチオフェンは、特開平2−15611号公報等に
より開示された公知の製法により得ることができる。ま
た、ブタノールなどの溶媒に溶解したp−トルエンスル
ホン酸第二鉄などの酸化剤を用いており、酸化剤は溶媒
に対して40重量%を超える濃度であると良好な結果が
得られた。その理由は明らかではないが、高濃度の酸化
剤が化学重合反応を促進して重合度を高め、結果として
導電性高分子からなる固体電解質層の導電性が改善され
るためと思われる。
3,4-Ethylenedioxythiophene as a polymerizable monomer can be obtained by a known production method disclosed in Japanese Patent Application Laid-Open No. 2-15611. Further, an oxidizing agent such as ferric p-toluenesulfonate dissolved in a solvent such as butanol was used, and good results were obtained when the oxidizing agent had a concentration exceeding 40% by weight based on the solvent. Although the reason is not clear, it is considered that a high concentration of the oxidizing agent promotes the chemical polymerization reaction to increase the degree of polymerization, and as a result, the conductivity of the solid electrolyte layer made of a conductive polymer is improved.

【0025】溶媒に対する酸化剤の配分は、40重量%
を超える濃度としたが、40重量%以下では十分な静電
容量特性やESR特性が得られない。また実質的な上限
は60重量%程度で、これを超える酸化剤は合成が著し
く困難になる。所望の特性が得られ、かつ合成も容易な
範囲としては50重量%ないし55重量%の配分が望ま
しい。
The distribution of the oxidizing agent to the solvent is 40% by weight.
However, if the concentration exceeds 40% by weight, sufficient capacitance characteristics and ESR characteristics cannot be obtained. Further, the substantial upper limit is about 60% by weight, and the oxidizing agent exceeding the upper limit makes the synthesis extremely difficult. A range of 50% by weight to 55% by weight is desirable as a range in which desired characteristics can be obtained and synthesis is easy.

【0026】[0026]

【実施例】次に、発明における固体電解コンデンサの製
造方法と、それによって得られる固体電解コンデンサに
ついて具体的に説明する。陽極電極箔1及び陰極電極箔
2は、弁作用金属、例えばアルミニウム、タンタルから
なり、その表面には予めエッチング処理が施されて表面
積が拡大されている。陽極電極箔1については、更に化
成処理が施され、表面に酸化アルミニウムからなる酸化
皮膜層4が形成されている。この陽極電極箔1及び陰極
電極箔2を、ビニロン繊維を主体とする不織布からなる
セパレータ3を介して巻回し、コンデンサ素子10を得
る。
Next, a method for manufacturing a solid electrolytic capacitor according to the present invention and a solid electrolytic capacitor obtained by the method will be specifically described. The anode electrode foil 1 and the cathode electrode foil 2 are made of a valve metal, for example, aluminum or tantalum, and their surfaces are subjected to an etching process in advance to increase the surface area. The anode electrode foil 1 is further subjected to a chemical conversion treatment to form an oxide film layer 4 made of aluminum oxide on the surface. The anode electrode foil 1 and the cathode electrode foil 2 are wound via a separator 3 made of a non-woven fabric mainly composed of vinylon fibers to obtain a capacitor element 10.

【0027】この実施例において、コンデンサ素子10
は、径寸法が4φ、縦寸法が7mm、また定格電圧は
6.3WV、定格静電容量は33μFのものを用いてい
る。なおコンデンサ素子10の陽極電極箔1、陰極電極
箔2にはそれぞれリード線6、7が電気的に接続され、
コンデンサ素子10の端面から突出している。
In this embodiment, the capacitor element 10
Has a diameter of 4φ, a vertical dimension of 7 mm, a rated voltage of 6.3 WV, and a rated capacitance of 33 μF. Note that lead wires 6 and 7 are electrically connected to the anode electrode foil 1 and the cathode electrode foil 2 of the capacitor element 10, respectively.
It protrudes from the end face of the capacitor element 10.

【0028】次いで、コンデンサ素子10に、重合性モ
ノマーとして3,4−エチレンジオキシチオフェンと酸
化剤とを含浸する。酸化剤は、ブタノールを溶媒とし、
このブタノールに対して52重量%の配分で溶解したp
−トルエンスルホン酸第二鉄を用い、3,4−エチレン
ジオキシチオフェンに対して酸化剤を1:5で含浸して
導電性高分子からなる固体電解質であるポリエチレンジ
オキシチオフェンを生成する。
Next, the capacitor element 10 is impregnated with 3,4-ethylenedioxythiophene as a polymerizable monomer and an oxidizing agent. The oxidizing agent uses butanol as a solvent,
P dissolved in the butanol in a distribution of 52% by weight
Using ferric toluenesulfonate to impregnate 3,4-ethylenedioxythiophene with an oxidizing agent at a ratio of 1: 5 to produce polyethylenedioxythiophene, which is a solid electrolyte made of a conductive polymer;

【0029】このようにして陽極電極箔1と陰極電極箔
2との間に介在したセパレータ3に導電性高分子からな
る固体電解質層5が形成されたコンデンサ素子10は、
例えばその外周に外装樹脂を被覆して固体電解コンデン
サを形成する。
The capacitor element 10 in which the solid electrolyte layer 5 made of a conductive polymer is formed on the separator 3 interposed between the anode electrode foil 1 and the cathode electrode foil 2 as described above,
For example, a solid electrolytic capacitor is formed by coating the outer periphery with an exterior resin.

【0030】次に、実施例による固体電解コンデンサに
おいて、溶媒中の酸化剤の配合による特性の変化を示
す。ここでは、実施例によるコンデンサ素子に、溶媒と
してブタノールを用い、このブタノールに40重量%〜
60重量%の配分で溶解したp−トルエンスルホン酸第
二鉄を酸化剤として用いた。その結果を以下に示す。
Next, in the solid electrolytic capacitor according to the embodiment, a change in characteristics due to the blending of the oxidizing agent in the solvent will be described. Here, butanol was used as a solvent for the capacitor element according to the example, and the butanol contained 40% by weight or less.
Ferric p-toluenesulfonate dissolved in a distribution of 60% by weight was used as oxidizing agent. The results are shown below.

【0031】[0031]

【表1】 [Table 1]

【0032】表1から明らかなように、溶媒に対して4
0重量%溶解した酸化剤では十分なESR特性が得られ
ず、また静電容量特性においても、定格静電容量に対し
て93%程度の出現率しかない。一方、40重量%を超
える濃度の酸化剤では、ESR特性が飛躍的に向上して
おり、コンデンサ素子内の固体電解質層が緻密で均一に
生成されていることが理解される。
As is clear from Table 1, 4
With an oxidizing agent dissolved at 0% by weight, sufficient ESR characteristics cannot be obtained, and the capacitance characteristics are only about 93% of the rated capacitance. On the other hand, when the oxidizing agent has a concentration of more than 40% by weight, the ESR characteristics are remarkably improved, and it is understood that the solid electrolyte layer in the capacitor element is dense and uniform.

【0033】[0033]

【発明の効果】この発明は、固体電解質として、重合性
モノマーと、溶媒に対して40重量%を超える濃度の酸
化剤とによる化学重合反応により生成した導電性高分子
をセパレータで保持しているので、コンデンサ素子の内
部における導電性高分子からなる固体電解質層が緻密か
つ均一であり、その結果としてESR特性に優れた固体
電解コンデンサを得ることができる。
According to the present invention, a conductive polymer produced by a chemical polymerization reaction between a polymerizable monomer and an oxidizing agent having a concentration exceeding 40% by weight with respect to a solvent is held as a solid electrolyte by a separator. Therefore, the solid electrolyte layer made of a conductive polymer inside the capacitor element is dense and uniform, and as a result, a solid electrolytic capacitor having excellent ESR characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いるコンデンサ素子の分解斜視図で
ある。
FIG. 1 is an exploded perspective view of a capacitor element used in the present invention.

【図2】本発明で用いる陽極電極箔の概念図である。FIG. 2 is a conceptual diagram of an anode electrode foil used in the present invention.

【符号の説明】[Explanation of symbols]

1 陽極電極箔 2 陰極電極箔 3 セパレータ 4 酸化皮膜層 5 固体電解質層 6、7 リード線 8 エッチングピット 10 コンデンサ素子 DESCRIPTION OF SYMBOLS 1 Anode electrode foil 2 Cathode electrode foil 3 Separator 4 Oxide film layer 5 Solid electrolyte layer 6, 7 Lead wire 8 Etching pit 10 Capacitor element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 陽極電極箔と陰極電極箔とをセパレータ
を介して巻回したコンデンサ素子に、重合性モノマー
と、溶媒に対して40重量%を超える濃度の酸化剤とを
含浸して化学重合反応により生成した導電性高分子をセ
パレータで保持した固体電解コンデンサ。
1. A method in which a capacitor element in which an anode electrode foil and a cathode electrode foil are wound via a separator is impregnated with a polymerizable monomer and an oxidizing agent having a concentration of more than 40% by weight with respect to a solvent. A solid electrolytic capacitor in which a conductive polymer generated by the reaction is held by a separator.
JP2001066627A 2001-03-09 2001-03-09 Solid electrolytic capacitor Expired - Lifetime JP4642257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066627A JP4642257B2 (en) 2001-03-09 2001-03-09 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066627A JP4642257B2 (en) 2001-03-09 2001-03-09 Solid electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16523197A Division JP3978544B2 (en) 1997-06-06 1997-06-06 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JP2001237147A true JP2001237147A (en) 2001-08-31
JP4642257B2 JP4642257B2 (en) 2011-03-02

Family

ID=18925091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066627A Expired - Lifetime JP4642257B2 (en) 2001-03-09 2001-03-09 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP4642257B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186617A (en) * 1989-01-13 1990-07-20 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JPH03198316A (en) * 1989-12-27 1991-08-29 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH05175082A (en) * 1991-12-20 1993-07-13 Asahi Glass Co Ltd Manufacture of solid electrolytic capacitor
JPH0645197A (en) * 1992-07-24 1994-02-18 Nippon Chemicon Corp Manufacture of solid-state electrolytic capacitor
JPH06204099A (en) * 1993-01-05 1994-07-22 Nec Corp Solid-state electrolytic capacitor
JPH06234852A (en) * 1992-09-11 1994-08-23 Nec Corp Production of polyaniline or its derivative and solution thereof, method for making polyaniline or its derivative highly conductive and production of solid electrolyte condenser
JPH0737764A (en) * 1993-07-22 1995-02-07 Nec Corp Manufacture of solid electrolyte capacitor
JPH09320898A (en) * 1996-05-30 1997-12-12 Nec Corp Manufacture of solid-electrolytic capacitor
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JPH10308116A (en) * 1997-05-09 1998-11-17 Matsushita Electric Ind Co Ltd Capacitor and manufacture thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02186617A (en) * 1989-01-13 1990-07-20 Nippon Chemicon Corp Solid electrolytic capacitor and manufacture thereof
JPH03198316A (en) * 1989-12-27 1991-08-29 Nippon Chemicon Corp Manufacture of solid electrolytic capacitor
JPH05175082A (en) * 1991-12-20 1993-07-13 Asahi Glass Co Ltd Manufacture of solid electrolytic capacitor
JPH0645197A (en) * 1992-07-24 1994-02-18 Nippon Chemicon Corp Manufacture of solid-state electrolytic capacitor
JPH06234852A (en) * 1992-09-11 1994-08-23 Nec Corp Production of polyaniline or its derivative and solution thereof, method for making polyaniline or its derivative highly conductive and production of solid electrolyte condenser
JPH06204099A (en) * 1993-01-05 1994-07-22 Nec Corp Solid-state electrolytic capacitor
JPH0737764A (en) * 1993-07-22 1995-02-07 Nec Corp Manufacture of solid electrolyte capacitor
JPH09320898A (en) * 1996-05-30 1997-12-12 Nec Corp Manufacture of solid-electrolytic capacitor
JPH1064761A (en) * 1996-08-22 1998-03-06 Sanyo Electric Co Ltd Method of manufacturing solid electrolytic capacitor
JPH10308116A (en) * 1997-05-09 1998-11-17 Matsushita Electric Ind Co Ltd Capacitor and manufacture thereof

Also Published As

Publication number Publication date
JP4642257B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP3705306B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100442073B1 (en) Solid Electrolyte Capacitor and its Manufacture
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
WO1998056021A1 (en) Solid electrolytic capacitor and process for producing the same
JP3319501B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3515938B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3399515B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001110685A (en) Solid electrolytic capacitor
JPH10340831A (en) Manufacture of solid electrolytic capacitor
JP3978544B2 (en) Solid electrolytic capacitor
JP3030054B2 (en) Method for manufacturing solid electrolytic capacitor
JP2007180404A (en) Solid electrolytic capacitor and manufacturing method thereof
JP4642257B2 (en) Solid electrolytic capacitor
JP3911785B2 (en) Manufacturing method of solid electrolytic capacitor
JP3469756B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3891304B2 (en) Manufacturing method of solid electrolytic capacitor
JP4513044B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JP2001230155A (en) Solid electrolytic capacitor
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JP2000150314A (en) Solid-state electrolytic capacitor and its manufacture
JP2001237145A (en) Manufacturing method of solid-state electrolytic capacitor
JP2000150313A (en) Solid-state electrolytic capacitor and its manufacture
JP4484084B2 (en) Manufacturing method of solid electrolytic capacitor
JP4678094B2 (en) Solid electrolytic capacitor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080221

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

EXPY Cancellation because of completion of term