JP2001235430A - Optical inspection instrument and optical surface inspection instrument - Google Patents

Optical inspection instrument and optical surface inspection instrument

Info

Publication number
JP2001235430A
JP2001235430A JP2000048659A JP2000048659A JP2001235430A JP 2001235430 A JP2001235430 A JP 2001235430A JP 2000048659 A JP2000048659 A JP 2000048659A JP 2000048659 A JP2000048659 A JP 2000048659A JP 2001235430 A JP2001235430 A JP 2001235430A
Authority
JP
Japan
Prior art keywords
inspection
optical
container
illumination light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000048659A
Other languages
Japanese (ja)
Inventor
Noriyuki Koide
範幸 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000048659A priority Critical patent/JP2001235430A/en
Priority to KR1020000029549A priority patent/KR20010007152A/en
Publication of JP2001235430A publication Critical patent/JP2001235430A/en
Priority to US10/304,787 priority patent/US20030112428A1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To eliminate the generation of cloudiness on an optical member caused by illumination light for inspecting an ultraviolet range without heating the optical member. SOLUTION: Ultraviolet rays with a wavelength of below 400 nm are emitted from a superhigh pressure mercury lamp 101. The ultraviolet rays for inspection irradiate a wafer 103 by a condenser lens 102. The emission light of the wafer 103 forms an image with an objective lens 104 and an imaging lens 105 on a CCD 106. The optical members are arranged in a container 108 filled with a nitrogen gas. The nitrogen gas contains none of sulfur dioxide, ammonium, oxygen and the like which forms ammonium sulfate. This can prevent the ammonium sulfate from adhering to the surface of the optical members such as lens even under a prolonged use of the ultraviolet rays.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、検査用照明光を検
査対象に照射して種々の検査を行う装置、好ましくは、
半導体ウエハや液晶表示パネルなどの検査対象にレーザ
光などの検査用照明光を照射して表面を検査する装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for performing various inspections by irradiating an inspection object with inspection illumination light,
The present invention relates to an apparatus for inspecting a surface by irradiating an inspection object such as a semiconductor wafer or a liquid crystal display panel with illumination light for inspection such as a laser beam.

【0002】[0002]

【従来の技術】この種の表面検査装置は、例えば特開平
10-232122号公報に開示されているように、超
高圧水銀ランプと、超高圧水銀ランプからの照明光を検
査対象表面に照射する光学系と、検査対象表面からの出
射光を受光して光電変換するCCDと、CCDで光電変
換された画像信号に所定の処理を施す画像処理装置とを
有している。画像処理装置での画像処理結果に基づい
て、CPUなどがあらかじめ定めた所定の評価アルゴリ
ズムにより検査対象表面の状態を評価する。
2. Description of the Related Art A surface inspection apparatus of this type irradiates an ultra-high pressure mercury lamp and illumination light from the ultra-high pressure mercury lamp to a surface to be inspected as disclosed in, for example, Japanese Patent Application Laid-Open No. 10-232232. It has an optical system, a CCD that receives light emitted from the surface to be inspected and photoelectrically converts the light, and an image processing device that performs a predetermined process on an image signal photoelectrically converted by the CCD. Based on the image processing result of the image processing apparatus, the state of the surface to be inspected is evaluated by a predetermined evaluation algorithm determined in advance by a CPU or the like.

【0003】従来の表面検査装置には可視光が用いられ
てきたが、ウエハ上に形成される回路の微細化に伴い、
より短い波長である400nm以下の紫外光を用いる必
要性がでてきている。従来の表面検査装置のように、光
学系が空気中に配置されていると、紫外光の照射により
光学系を構成する光学部材の表面に硫酸アンモニウム
((NH4) 2S04)などが付着し、透過率または反射率が低
下してしまうという問題があった。
[0003] Conventional surface inspection devices have used visible light, but with the miniaturization of circuits formed on wafers,
There is a need to use ultraviolet light having a shorter wavelength of 400 nm or less. When the optical system is placed in the air as in a conventional surface inspection device, the surface of the optical member that composes the optical system by irradiating ultraviolet light has ammonium sulfate.
((NH 4) 2 S0 4 ) , etc. is deposited, the transmittance or reflectance is disadvantageously lowered.

【0004】空気中には、極微量ながら二酸化硫黄(S
O2)やアンモニア(NH4)などの物質が存在する。これは半
導体製造工場のクリーンルーム内でも同様である。そし
て、これらの物質が、紫外光のエネルギーをもとに空気
中の酸素(O2)および水蒸気(H2O)と結びつき、硫酸アン
モニウム((NH4)2S04)が生成され、光学部材表面に付着
すると考えられている。
[0004] In the air, a very small amount of sulfur dioxide (S
There are substances such as O 2 ) and ammonia (NH 4 ). This is the same in a clean room of a semiconductor manufacturing plant. Then, these substances, based on the energy of the ultraviolet light combines with oxygen in the air (O 2) and water vapor (H 2 O), ammonium sulfate ((NH 4) 2 S0 4 ) is generated, the optical member surface It is believed to adhere to.

【0005】この問題を回避するため、特開平4-128
702号公報や特開平5-582号公報に開示されてい
るものでは、硫酸アンモニウムの分解温度以上に光学部
材を加熱し、光学部材の表面に硫酸アンモニウムが付着
することを防いでいる。
To avoid this problem, Japanese Patent Laid-Open No. 4-128
No. 702 and Japanese Patent Laid-Open No. 5-582, an optical member is heated to a temperature higher than the decomposition temperature of ammonium sulfate to prevent ammonium sulfate from adhering to the surface of the optical member.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の方法は光学部材を加熱するため、光学部材の変形や屈
折率の変化など、光学性能に悪影響を与えるおそれがあ
る。とくに、厳重な温度管理を必要とする半導体製造工
程では、装置を加熱する操作は極力避けることが望まし
く、光学性能に影響を与えにくい装置の開発が急務とな
ってきた。
However, these methods heat the optical member, and may adversely affect the optical performance such as deformation of the optical member and change in the refractive index. In particular, in a semiconductor manufacturing process that requires strict temperature control, it is desirable to avoid the operation of heating the device as much as possible, and there is an urgent need to develop a device that hardly affects optical performance.

【0007】本発明の目的は、光学部材を加熱すること
なく検査用照明光の照射により光学部材に曇りが発生し
ないようにした光学式検査装置および光学式表面検査装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical inspection apparatus and an optical surface inspection apparatus which prevent the optical member from being fogged by the irradiation of inspection illumination light without heating the optical member.

【0008】[0008]

【課題を解決するための手段】一実施の形態の図1に対
応づけて本発明を説明する。 (1)請求項1の発明による光学式検査装置は、検査雰
囲気中の原因物質により光学部材の表面に曇り現象を発
生させる波長域の検査用照明光を出射する照明用光源1
01と、検査用照明光を検査対象103に照射する光学
系102,104,105と、検査用照明光の照射によ
り検査対象103から出射される出射光を受光する受光
装置106と、照明用光源101、光学系102,10
4,105、および受光装置106を不活性ガス雰囲気
中もしくは真空中に配置する容器108とを具備するこ
とにより、上記目的を達成する。 (2)請求項2による光学式表面検査装置は、波長40
0nm以下の紫外光を含む検査用照明光を出射する照明
用光源101と、検査用照明光を検査対象103に照射
する光学系102,104,105と、検査用照明光の
照射により検査対象103の表面から出射される出射光
を検出する検出装置106と、照明用光源101、光学
系102,104,105、および検出装置106を不
活性ガス雰囲気中もしくは真空中に配置する容器108
とを具備することにより、上記目的を達成する。 (3)請求項3による光学式表面検査装置は、請求項2
に記載の光学式表面検査装置において、容器108の外
側に配置された酸素濃度計測装置112bと、酸素濃度
計測装置112bからの計測信号に基づいて容器108
の外側の酸素濃度が所定の基準値以下になったときに警
報を出力する警報装置111とをさらに備えることを特
徴とする。
The present invention will be described with reference to FIG. 1 showing one embodiment. (1) The optical inspection apparatus according to the first aspect of the present invention is an illumination light source 1 for emitting inspection illumination light in a wavelength range in which a fogging phenomenon occurs on the surface of an optical member due to a causative substance in an inspection atmosphere.
01, an optical system 102, 104, 105 for irradiating the inspection target 103 with the illumination light for inspection, a light receiving device 106 for receiving light emitted from the inspection target 103 by the irradiation of the inspection illumination light, and a light source for illumination 101, optical systems 102 and 10
The above object is achieved by providing the container 4, 105, and the container 108 in which the light receiving device 106 is placed in an inert gas atmosphere or vacuum. (2) The optical surface inspection apparatus according to claim 2 has a wavelength of 40
An illumination light source 101 that emits inspection illumination light including ultraviolet light of 0 nm or less, an optical system 102, 104, and 105 that irradiates the inspection target 103 with the inspection illumination light, and an inspection target 103 that is irradiated with the inspection illumination light. Detecting device 106 for detecting the light emitted from the surface of the light source, illumination light source 101, optical systems 102, 104, 105, and container 108 for disposing detecting device 106 in an inert gas atmosphere or vacuum.
The above object is achieved by providing the following. (3) The optical surface inspection apparatus according to claim 3 is claim 2.
In the optical surface inspection device described in the above, the oxygen concentration measuring device 112b disposed outside the container 108 and the container 108 based on the measurement signal from the oxygen concentration measuring device 112b.
And an alarm device 111 for outputting an alarm when the oxygen concentration outside the device becomes equal to or less than a predetermined reference value.

【0009】以上の課題を解決するための手段の項で
は、実施の形態の図を用いて発明を説明したが、これに
より本発明が実施の形態に限定されるものではない。
In the section of the means for solving the problems described above, the present invention has been described with reference to the embodiments, but the present invention is not limited to the embodiments.

【0010】[0010]

【発明の実施の形態】−第1の実施の形態− 本発明による光学式表面検査装置の第1の実施の形態を
図1に基づいて説明する。この表面検査装置は、照明用
光源すなわち超高圧水銀ランプ101と、光学系すなわ
ちコンデンサレンズ102、対物レンズ104、および
結像レンズ105と、受光装置すなわちCCD106
と、画像処理装置107とを備え、検査用照明光により
検査対象であるウエハ103の表面を検査する。ウエハ
103はステージST上に保持される。ステージSTを
操作することにより、ウエハ103の表面を揺動させて
検査用照明光の入射角が変更できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment A first embodiment of an optical surface inspection apparatus according to the present invention will be described with reference to FIG. This surface inspection apparatus includes an illumination light source, that is, an ultra-high pressure mercury lamp 101, an optical system, that is, a condenser lens 102, an objective lens 104, and an imaging lens 105, and a light receiving device, that is, a CCD 106.
And an image processing device 107 for inspecting the surface of the wafer 103 to be inspected by inspection illumination light. Wafer 103 is held on stage ST. By operating the stage ST, the surface of the wafer 103 can be swung to change the incident angle of the inspection illumination light.

【0011】密閉容器108内には、超高圧水銀ランプ
101と、コンデンサレンズ102と、対物レンズ10
4と、結像レンズ105と、CCD106とが配置され
ている。容器108に配置されるこれらの構成要素を便
宜的に光学部材と呼ぶ。容器108には窒素ガス供給装
置109が接続され、容器108の内部は窒素ガスで置
換される。たとえば、検査開始前に所定の窒素ガス濃度
になるまで窒素ガスを充填し、検査中、窒素ガス供給装
置109は容器108と遮断する。検査中も窒素ガスを
連続して容器108へ供給してもよい。
In the closed container 108, an ultra-high pressure mercury lamp 101, a condenser lens 102, and an objective lens 10
4, an imaging lens 105 and a CCD 106 are arranged. These components arranged in the container 108 are called optical members for convenience. A nitrogen gas supply device 109 is connected to the container 108, and the inside of the container 108 is replaced with nitrogen gas. For example, before starting the inspection, nitrogen gas is filled until a predetermined nitrogen gas concentration is reached. During the inspection, the nitrogen gas supply device 109 shuts off the container 108. During the inspection, the nitrogen gas may be continuously supplied to the container 108.

【0012】密閉容器108内には圧力計測装置110
と、酸素濃度計測装置112aも設けられている。密閉
容器108外には、酸素濃度計測装置112bと、警報
装置111とが設けられている。密閉容器108の外側
を作業室と呼ぶ。作業室はいわゆるクリーンルームであ
り、作業者は作業室内で容器108に対してウエハ10
3を搬入、搬出するとともに、表面検査時にウエハ10
3を揺動操作する。
A pressure measuring device 110 is provided in the closed container 108.
, An oxygen concentration measuring device 112a is also provided. Outside the sealed container 108, an oxygen concentration measuring device 112b and an alarm device 111 are provided. The outside of the closed container 108 is called a working room. The working room is a so-called clean room, and an operator places a wafer 10 in a container 108 in the working room.
3 is loaded and unloaded, and the wafer 10 is
3 is rocked.

【0013】圧力計測装置110は容器108内の圧力
を計測する。酸素濃度計測装置112aは容器108の
内側の酸素濃度を測定する。酸素濃度計測装置112b
は容器108の外側の、すなわち作業室の酸素濃度を測
定する。圧力計測装置110と、酸素濃度計測装置11
2aおよび112bはそれぞれ警報装置111と接続さ
れている。
The pressure measuring device 110 measures the pressure inside the container 108. The oxygen concentration measuring device 112a measures the oxygen concentration inside the container 108. Oxygen concentration measuring device 112b
Measures the oxygen concentration outside the container 108, i.e. in the working chamber. Pressure measuring device 110 and oxygen concentration measuring device 11
2a and 112b are each connected to the alarm device 111.

【0014】このように構成された表面検査装置では、
超高圧水銀ランプ101から波長365nmのi線や波
長313nmのj線などの紫外光域の検査用照明光が出
射される。この照明光は、コンデンサレンズ102によ
ってウエハ103上に均一に照射される。ウエハ103
上に異物や傷があると、その部分の反射光強度や回折光
強度はそれ以外の部分と異なって出射される。ウエハ1
03から出射された光は、対物レンズ104および結像
レンズ105を通ってCCD106で受光される。CC
D106は、受光されたウエハ103からの光をその強
度に応じた電気信号に変換して画像処理装置107へ出
力する。画像処理装置107は、CCD106から出力
される画像信号に所定の画像処理を施し、画像処理後の
画像信号に基づいてウエハ103の表面状態を評価す
る。たとえば、画像処理装置107はCPUを有し、あ
らかじめ定めた所定の評価アルゴリズムによりウエハ1
03の表面の欠陥を検出する。
In the surface inspection apparatus configured as described above,
Ultra-high pressure mercury lamp 101 emits inspection illumination light in the ultraviolet region such as an i-line having a wavelength of 365 nm and a j-line having a wavelength of 313 nm. This illumination light is uniformly irradiated on the wafer 103 by the condenser lens 102. Wafer 103
If there is a foreign substance or a scratch on the upper part, the reflected light intensity or the diffracted light intensity of that part is emitted differently from the other parts. Wafer 1
The light emitted from 03 passes through the objective lens 104 and the imaging lens 105 and is received by the CCD 106. CC
D106 converts the received light from wafer 103 into an electric signal corresponding to the intensity and outputs the electric signal to image processing apparatus 107. The image processing device 107 performs predetermined image processing on the image signal output from the CCD 106 and evaluates the surface state of the wafer 103 based on the image signal after the image processing. For example, the image processing apparatus 107 has a CPU, and the wafer 1 is processed by a predetermined evaluation algorithm.
No. 03 surface defect is detected.

【0015】上述したように、超高圧水銀ランプ101
からは、波長365nmのi線や波長313nmのj線
などの紫外光域の検査用照明光が出射される。そのた
め、従来のように光学部材を空気中に配置した場合に
は、コンデンサレンズ102、対物レンズ104、結像
レンズ105、およびCCD106の表面には硫酸アン
モニウムなどが付着する。
As described above, the ultra-high pressure mercury lamp 101
The inspection illumination light in the ultraviolet light range, such as an i-line having a wavelength of 365 nm and a j-line having a wavelength of 313 nm, is emitted. Therefore, when the optical member is disposed in the air as in the related art, ammonium sulfate or the like adheres to the surfaces of the condenser lens 102, the objective lens 104, the imaging lens 105, and the CCD 106.

【0016】そこで、この実施の形態では、このような
光学部材の曇り現象を避けるため、光学部材を密閉容器
108の中に配置し、密閉容器108の内部には窒素ガ
ス供給装置109から供給される窒素(N2)ガスを充填す
る。窒素ガスには、硫酸アンモニウムを生成する原因物
質(二酸化硫黄、アンモニア、酸素など)が含まれていな
い。したがって、紫外域の検査用照明光を長時間使用し
ても、光学部材の表面への硫酸アンモニウムの付着を防
止することができる。
Therefore, in this embodiment, in order to avoid such a fogging phenomenon of the optical member, the optical member is arranged in a closed container 108, and the inside of the closed container 108 is supplied from a nitrogen gas supply device 109. Nitrogen (N 2 ) gas. Nitrogen gas does not contain causative substances (sulfur dioxide, ammonia, oxygen, etc.) that form ammonium sulfate. Therefore, even when the inspection illumination light in the ultraviolet region is used for a long time, it is possible to prevent ammonium sulfate from adhering to the surface of the optical member.

【0017】また、密閉容器108の内部を1030h
Pa(ヘクトパスカル)以上に与圧しておくと、窒素ガス
が容器108から漏洩して容器108の内部が減圧した
ことを容易に検出できる。圧力計測装置110はこの圧
力の変化を検知し、警報装置111に警報信号を出力す
る。警報装置111は警報音を発し、作業者は窒素ガス
が漏れたことを知ることができる。
The inside of the sealed container 108 is set at 1030 h.
When the pressure is increased to Pa (hectopascal) or more, it is possible to easily detect that the nitrogen gas leaks from the container 108 and the inside of the container 108 is depressurized. The pressure measuring device 110 detects this change in pressure and outputs an alarm signal to the alarm device 111. The alarm device 111 emits an alarm sound so that the operator can know that the nitrogen gas has leaked.

【0018】一方、容器外側の酸素濃度計測装置112
bで感知される酸素濃度が18.5%未満になると警報装
置11は警報を発し、作業室内の酸素濃度が低下したこ
とを作業者に報知する。酸素濃度計測装置112aは容
器108内の酸素濃度を検出し、容器108内へ酸素が
流入したこと、あるいは、容器108内が窒素ガスで十
分に満たされたことを検出することができる。したがっ
て、酸素濃度計測装置112aを作業室内に設置した表
示装置113と接続し、逐次、容器108内の酸素濃度
を表示する。
On the other hand, the oxygen concentration measuring device 112 outside the container
When the oxygen concentration detected in b becomes less than 18.5%, the alarm device 11 issues an alarm and notifies the worker that the oxygen concentration in the work room has decreased. The oxygen concentration measurement device 112a detects the oxygen concentration in the container 108 and can detect that oxygen has flowed into the container 108 or that the container 108 has been sufficiently filled with nitrogen gas. Therefore, the oxygen concentration measuring device 112a is connected to the display device 113 installed in the work room, and the oxygen concentration in the container 108 is sequentially displayed.

【0019】作業室内の酸素濃度は、作業室内の気流に
より局所的に変動することがある。そのため、密閉容器
108の外側の作業室内には、酸素濃度計測装置112
bとは別の箇所に、警報装置111と接続された酸素濃
度計測装置112cを配置するのが好ましい。この場
合、作業室内に配置する酸素濃度計測装置112cの数
量および位置は、作業室内の気流を変化させうる障害
物、すなわち、作業室の大きさ・形状、その他の装置や
換気ダクトの配置などにより適宜決定する必要がある。
The oxygen concentration in the working room may fluctuate locally due to the airflow in the working room. Therefore, the oxygen concentration measuring device 112 is provided in the working room outside the closed container 108.
It is preferable to dispose the oxygen concentration measuring device 112c connected to the alarm device 111 at a location different from b. In this case, the quantity and position of the oxygen concentration measuring device 112c arranged in the working room depend on obstacles that can change the airflow in the working room, that is, the size and shape of the working room, the arrangement of other devices and ventilation ducts, and the like. It has to be determined appropriately.

【0020】密閉容器108内に満たす気体には、本発
明に用いた窒素以外に、ヘリウム(He)やアルゴン(Ar)な
どの不活性ガスを用いることができる。なお、本明細書
では窒素以外に、ヘリウム(He)やアルゴン(Ar)などこれ
らのガスを総称して不活性ガスと呼ぶ。容器108内に
不活性ガスを充填、供給することに代えて、容器内を真
空雰囲気にしてもよい。
As the gas filled in the closed vessel 108, an inert gas such as helium (He) or argon (Ar) can be used in addition to the nitrogen used in the present invention. In this specification, these gases such as helium (He) and argon (Ar) are collectively referred to as an inert gas in addition to nitrogen. Instead of filling and supplying the container 108 with the inert gas, a vacuum atmosphere may be set in the container.

【0021】−第2の実施の形態− 本発明による光学式表面検査装置の第2の実施の形態を
図2に基づいて説明する。この表面検査装置は、照明用
光源すなわち低圧水銀ランプ201と、光学系すなわち
凹面鏡202、凹面鏡204、および結像レンズ205
と、受光装置すなわちCCD206と、画像処理装置2
07とを備える。第2の実施の形態では、低圧水銀ラン
プ201と、凹面鏡202と、凹面鏡204と、結像レ
ンズ205と、CCD206を光学部材と呼び、これら
は密閉容器208内に配設されている。
Second Embodiment An optical surface inspection apparatus according to a second embodiment of the present invention will be described with reference to FIG. This surface inspection apparatus includes an illumination light source, that is, a low-pressure mercury lamp 201, an optical system, that is, a concave mirror 202, a concave mirror 204, and an imaging lens 205.
, A light receiving device, that is, a CCD 206, and an image processing device 2
07. In the second embodiment, the low-pressure mercury lamp 201, the concave mirror 202, the concave mirror 204, the imaging lens 205, and the CCD 206 are referred to as optical members, and these are disposed in a closed vessel 208.

【0022】密閉容器208は窒素ガス供給装置209
と接続され、密閉容器208内は窒素ガスで置換され
る。第2の実施の形態では、窒素ガス供給装置209は
ガス供給管路L1から容器208へ窒素ガスを供給し、
ガス戻り管路L2から容器208内の窒素ガスを回収す
る。すなわち、窒素ガスを容器208の内部に循環させ
る。密閉容器208内には、酸素濃度計測装置212a
と、気流計測装置210とが設けられている。密閉容器
208外には、警報装置211と、酸素濃度計測装置2
12bとが設けられている。
The closed vessel 208 is provided with a nitrogen gas supply device 209.
And the inside of the closed vessel 208 is replaced with nitrogen gas. In the second embodiment, the nitrogen gas supply device 209 supplies nitrogen gas from the gas supply line L1 to the container 208,
The nitrogen gas in the container 208 is recovered from the gas return line L2. That is, the nitrogen gas is circulated inside the container 208. An oxygen concentration measuring device 212a is provided in the closed container 208.
And an airflow measuring device 210 are provided. Outside the sealed container 208, an alarm device 211 and an oxygen concentration measurement device 2
12b.

【0023】気流計測装置210は容器208内の気流
を計測する。酸素濃度計測装置212aは容器208の
内側の酸素濃度を測定する。酸素濃度計測装置212b
は容器208の外側の作業室の酸素濃度を測定する。気
流計測装置210、酸素濃度計測装置212aおよび2
12bはそれぞれ警報装置211と接続されている。
The airflow measuring device 210 measures the airflow in the container 208. The oxygen concentration measuring device 212a measures the oxygen concentration inside the container 208. Oxygen concentration measuring device 212b
Measures the oxygen concentration in the working chamber outside the container 208. Airflow measuring device 210, oxygen concentration measuring devices 212a and 212
12b are each connected to the alarm device 211.

【0024】低圧水銀ランプ201から出射された光
は、凹面鏡202によってウエハ203をテレセントリ
ックに照明する。ウエハ203上に異物や傷があると、
その部分の反射光強度や回折光強度はそれ以外の部分と
異なって出射される。ウエハ203から出射された0次
光(反射光)を含む回折光は、凹面鏡204および結像レ
ンズ205を通ってCCD206上に結像する。CCD
206で受光した光像は光強度に応じた電気信号に変換
され、画像処理装置207に入力される。画像処理装置
207は入力される画像信号に基づいてウエハ203上
の欠陥を検出する。また、上述したように、ウエハ20
3はステージSTにより揺動され、ウエハ203に対す
る検査用照明光の入射角が変更できる。
The light emitted from the low-pressure mercury lamp 201 illuminates the wafer 203 telecentrically by the concave mirror 202. If there is any foreign matter or scratch on the wafer 203,
The reflected light intensity and the diffracted light intensity at that portion are emitted differently from the other portions. The diffracted light including the zero-order light (reflected light) emitted from the wafer 203 passes through the concave mirror 204 and the imaging lens 205 to form an image on the CCD 206. CCD
The light image received at 206 is converted into an electric signal corresponding to the light intensity and input to the image processing device 207. The image processing device 207 detects a defect on the wafer 203 based on the input image signal. Also, as described above, the wafer 20
The stage 3 is swung by the stage ST, and the incident angle of the illumination light for inspection with respect to the wafer 203 can be changed.

【0025】低圧水銀ランプ201からは遠紫外光(波
長248nm)を含む検査用照明光が出射されているた
め、第1の実施の形態と同様に、検査用照明光を空気中
で長時間照射すると、凹面鏡202、凹面鏡204、結
像レンズ205、CCD206の表面に硫酸アンモニウ
ムが付着する。
Since the inspection illumination light including far ultraviolet light (wavelength 248 nm) is emitted from the low-pressure mercury lamp 201, the inspection illumination light is irradiated in the air for a long time as in the first embodiment. Then, ammonium sulfate adheres to the surfaces of the concave mirror 202, the concave mirror 204, the imaging lens 205, and the CCD 206.

【0026】この現象を避けるため、光学部材を窒素(N
2)ガスが充填されている密閉容器208の中に配置す
る。容器208の内部には窒素ガス供給装置209から
窒素(N 2)ガスを供給・循環させる。容器208内に窒素
を供給することにより、硫酸アンモニウムを生成する原
因物質(二酸化硫黄、アンモニア、酸素など)を容器内2
08内から除去することができる。したがって、紫外域
の検査用照明光を長時間使用しても、光学部材表面への
硫酸アンモニウムの付着を防止することができる。
In order to avoid this phenomenon, the optical member is replaced with nitrogen (N
Two) Place in a closed vessel 208 filled with gas.
You. A nitrogen gas supply device 209 is provided inside the container 208.
Nitrogen (N Two) Supply and circulate gas. Nitrogen in container 208
To produce ammonium sulfate by supplying
Ingredients (sulfur dioxide, ammonia, oxygen, etc.) in container 2
08 can be removed. Therefore, the ultraviolet region
Even if the inspection illumination light is used for a long time,
The adhesion of ammonium sulfate can be prevented.

【0027】上述したように、気流計測装置210は容
器208内部の気流を計測する。例えば容器208に穴
が開き、その穴から窒素が漏洩して容器208内の気流
が変化すると、気流計測装置210はその気流の変化を
計測する。気流計測装置210が気流の変化を検出する
と、警報装置211が駆動されて警報音が鳴動する。容
器208の内側には酸素濃度計測装置212aが、外側
には酸素濃度計測装置212bが警報装置222に接続
されて設置されており、それぞれ、第1の実施の形態の
酸素濃度計測装置112a、酸素濃度計測装置112b
と同様の機能を果たす。
As described above, the airflow measuring device 210 measures the airflow inside the container 208. For example, when a hole is opened in the container 208 and nitrogen leaks from the hole to change the airflow in the container 208, the airflow measuring device 210 measures the change in the airflow. When the airflow measuring device 210 detects a change in the airflow, the alarm device 211 is driven and an alarm sounds. An oxygen concentration measurement device 212a is installed inside the container 208, and an oxygen concentration measurement device 212b is installed outside the container 208, connected to the alarm device 222. The oxygen concentration measurement device 112a and the oxygen concentration measurement device 112a of the first embodiment are respectively provided. Concentration measuring device 112b
Performs the same function as.

【0028】第2の実施の形態でも、容器208が設置
される作業室内に複数の酸素濃度計測装置を設けるのが
好ましい。
Also in the second embodiment, it is preferable to provide a plurality of oxygen concentration measuring devices in the work room where the container 208 is installed.

【0029】―第3の実施の形態 本発明による第3の実施の形態の光学式表面検査装置を
図3に基づいて説明する。図3に示す表面検査装置は、
エキシマレーザ301と、回転多面鏡301aと、凹面
鏡302と、凹面鏡304と、結像レンズ305と、C
CD306と、画像処理装置307とを備えている。回
転多面鏡301aと凹面鏡302は密閉容器308a内
に収容され、凹面鏡303は密閉容器308b内に収容
され、結像レンズ305とCCD306は密閉容器30
8c内に収容されている。なお、密閉容器308a,3
08b,308cの入射および射出窓には石英ガラスが
取り付けられている。
Third Embodiment An optical surface inspection apparatus according to a third embodiment of the present invention will be described with reference to FIG. The surface inspection device shown in FIG.
Excimer laser 301, rotating polygon mirror 301a, concave mirror 302, concave mirror 304, imaging lens 305, C
A CD 306 and an image processing device 307 are provided. The rotating polygon mirror 301a and the concave mirror 302 are accommodated in a sealed container 308a, the concave mirror 303 is accommodated in a sealed container 308b, and the imaging lens 305 and the CCD 306 are sealed in the sealed container 308b.
8c. In addition, the closed containers 308a, 3
Quartz glass is attached to the entrance and exit windows of 08b and 308c.

【0030】第3の実施の形態における表面検査装置で
は、波長193mmのエキシマレーザ301からレーザビ
ームが出射される。このレーザビームのビーム径は不図
示のビームエキスパンダで拡大され、凹面鏡302の焦
点面上に配置された回転多面鏡301aで偏向され、凹
面鏡302で反射される。凹面鏡302で反射したレー
ザ光はウエハ303を走査し、これにより、ウエハ30
3全面にレーザビームが照射される。ウエハ303から
出射された光は、凹面鏡304および結像レンズ305
を通ってCCD306によって光強度に応じた電気信号
に変換され、画像処理装置307によってウエハ303
上の欠陥を検出する。ウエハ303は上述した各実施の
形態と同様にステージST上に保持されている。
In the surface inspection apparatus according to the third embodiment, a laser beam is emitted from an excimer laser 301 having a wavelength of 193 mm. The beam diameter of the laser beam is enlarged by a beam expander (not shown), deflected by a rotating polygon mirror 301 a disposed on the focal plane of the concave mirror 302, and reflected by the concave mirror 302. The laser beam reflected by the concave mirror 302 scans the wafer 303, thereby
3 The entire surface is irradiated with a laser beam. Light emitted from the wafer 303 is transmitted to the concave mirror 304 and the imaging lens 305.
The light is converted into an electric signal corresponding to the light intensity by the CCD 306 through the
Detect the above defects. The wafer 303 is held on the stage ST as in the above embodiments.

【0031】第3の実施の形態で使用するレーザ光の波
長は遠紫外光であるため、第1の実施の形態および第2
の実施の形態と同様、レーザ光を空気中で長時間使用す
ると、凹面鏡302,凹面鏡304、結像レンズ30
5、CCD306で構成される光学部材の表面に硫酸ア
ンモニウムが付着してしまう。
Since the wavelength of the laser light used in the third embodiment is far-ultraviolet light, the first embodiment and the second embodiment
When the laser beam is used for a long time in the air, the concave mirror 302, the concave mirror 304, the imaging lens 30
5. Ammonium sulfate adheres to the surface of the optical member constituted by the CCD 306.

【0032】この現象を避けるため、エキシマレーザ3
01、回転多面鏡301aを密閉容器308a内に、凹
面鏡304を密閉容器308b内に、結像レンズ30
5、CCD306を密閉容器308c内に配置する。そ
して、それぞれの密閉容器308a〜308cの内部を
窒素ガスで満たしておくことにより、各容器内の硫酸ア
ンモニウムを生成する原因物質(二酸化硫黄、アンモニ
ア、酸素など)を除去する。これにより、エキシマレー
ザを長時間使用しても光学部材表面への硫酸アンモニウ
ムの付着を防止することができる。
To avoid this phenomenon, the excimer laser 3
01, the rotating polygon mirror 301a in the closed container 308a, the concave mirror 304 in the closed container 308b, the imaging lens 30
5. The CCD 306 is placed in the closed container 308c. Then, by filling the inside of each of the closed containers 308a to 308c with nitrogen gas, the causative substances (sulfur dioxide, ammonia, oxygen, etc.) that generate ammonium sulfate in each container are removed. Thereby, even if the excimer laser is used for a long time, it is possible to prevent ammonium sulfate from adhering to the optical member surface.

【0033】各密閉容器308a〜308cに窒素ガス
や不活性ガスを供給・循環させるようにしてもよい。第
1および第2の実施の形態と同様に光学部材のすべてを
単一の密閉容器に収容してもよい。第2の実施の形態で
も、容器308a〜308cが設置される作業室内に複
数の酸素濃度計測装置を設けるのが好ましい。
A nitrogen gas or an inert gas may be supplied and circulated to each of the closed containers 308a to 308c. As in the first and second embodiments, all of the optical members may be housed in a single closed container. Also in the second embodiment, it is preferable to provide a plurality of oxygen concentration measuring devices in the work room where the containers 308a to 308c are installed.

【0034】本発明は以上説明した表面検査装置に限定
されない。すなわち、空気中の原因物質により光学部材
の表面に曇り現象を発生させる波長域の検査用照明光を
出射する照明用光源と、検査用照明光を検査対象に照射
する光学部材と、照明用光源と光学系とを不活性ガス雰
囲気中もしくは真空中に配置する容器とを備える種々の
光学式検査装置に本発明を適用できる。
The present invention is not limited to the surface inspection apparatus described above. That is, an illumination light source that emits inspection illumination light in a wavelength range that causes a fogging phenomenon on the surface of an optical member due to a causative substance in the air, an optical member that irradiates the inspection object with inspection illumination light, and an illumination light source The present invention can be applied to various optical inspection apparatuses including a container in which an optical system and an optical system are arranged in an inert gas atmosphere or in a vacuum.

【0035】[0035]

【発明の効果】本発明によれば、光学部材を窒素(N2),
アルゴンあるいはヘリウムなどの不活性雰囲気中または
真空中に配置することにより、容器内は、すなわち検査
用照明光の光路雰囲気中には曇り物質を生成するための
原因物質が含まれなくなる。その結果、紫外光などの検
査用照明光が照射されても曇り物質が生成されることが
なく、装置内に配置された光学部材の表面に不純物が付
着しない。したがって、紫外光などの検査用照明光を利
用したときに光学部材の透過率および反射率を低下させ
ることがない。換言すると、光学部材の光学性能の劣化
を防ぐことが可能となり、半導体ウエハなどの検査対象
表面などの検査を効果的に行うことができる。また、従
来のように光学部材の曇りを防止する目的で光学部材を
加熱する必要がなく、熱による光学性能の低下を防止で
きる。さらに、容器外側の酸素濃度が所定の基準値以下
のときに警報するようにしたので、容器から窒素ガスあ
るいは不活性ガスが漏れても作業者の安全性が確保され
る。
According to the present invention, the optical member is made of nitrogen (N 2 ),
By arranging in an inert atmosphere such as argon or helium or in a vacuum, a causative substance for generating a cloudy substance is not contained in the container, that is, in the optical path atmosphere of the inspection illumination light. As a result, no fogging substance is generated even when the illumination light for inspection such as ultraviolet light is irradiated, and no impurities adhere to the surface of the optical member arranged in the apparatus. Therefore, when the inspection illumination light such as ultraviolet light is used, the transmittance and the reflectance of the optical member are not reduced. In other words, it is possible to prevent the optical performance of the optical member from deteriorating, and it is possible to effectively inspect a surface to be inspected such as a semiconductor wafer. Further, unlike the conventional case, it is not necessary to heat the optical member for the purpose of preventing the optical member from fogging, so that the deterioration of the optical performance due to heat can be prevented. Further, since the alarm is issued when the oxygen concentration outside the container is equal to or less than the predetermined reference value, the safety of the worker is ensured even if nitrogen gas or inert gas leaks from the container.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明による光学式検査装置の第1の
実施の形態を示す概略図である。
FIG. 1 is a schematic diagram showing a first embodiment of an optical inspection apparatus according to the present invention.

【図2】図2は、本発明による光学式検査装置の第2の
実施の形態を示す概略図である。
FIG. 2 is a schematic diagram showing a second embodiment of the optical inspection apparatus according to the present invention.

【図3】図3は、本発明による光学式検査装置の第3の
実施の形態を示す概略図である。
FIG. 3 is a schematic view showing a third embodiment of the optical inspection apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

101:超高圧水銀ランプ 102:コ
ンデンサレンズ 103,203,303:ウエハ 104:対
物レンズ 105、205,305:結像レンズ 106、206,305:CCD 107、207,307:画像処理装置 108,2
08:密閉容器 109、209:窒素ガス供給装置 110:
圧力計測装置 111,211,311:警報装置 212a,212b,212c:酸素濃度計測装置 201:低圧水銀ランプ 202,204:凹
面鏡 210:気流計測装置 301:エ
キシマレーザ 301a:回転多面鏡 302,3
04:凹面鏡 308a,308b,308c:密閉容器
101: ultra-high pressure mercury lamp 102: condenser lens 103, 203, 303: wafer 104: objective lens 105, 205, 305: imaging lens 106, 206, 305: CCD 107, 207, 307: image processing device 108, 2
08: closed container 109, 209: nitrogen gas supply device 110:
Pressure measuring devices 111, 211, 311: Alarm devices 212a, 212b, 212c: Oxygen concentration measuring device 201: Low pressure mercury lamp 202, 204: Concave mirror 210: Air flow measuring device 301: Excimer laser 301a: Rotating polygon mirror 302, 3
04: concave mirror 308a, 308b, 308c: sealed container

フロントページの続き Fターム(参考) 2F065 AA49 CC19 CC25 DD11 DD15 FF01 FF04 FF63 GG03 GG04 GG21 HH04 HH12 HH18 JJ08 LL09 LL14 LL19 LL62 MM16 PP12 QQ31 2G051 AA51 AB01 AB07 BA05 CA04 CB05 CD09 2G086 EE10 4M106 AA01 BA07 CA41 CA46 DB02 DB07 DB12 DH12 DH31 DH38 DH49 DH60 DJ02 Continued on the front page F-term (reference) 2F065 AA49 CC19 CC25 DD11 DD15 FF01 FF04 FF63 GG03 GG04 GG21 HH04 HH12 HH18 JJ08 LL09 LL14 LL19 LL62 MM16 PP12 QQ31 2G051 AA51 AB01 AB07 BA05 CA04 CB86 DB01 BA092 DH12 DH31 DH38 DH49 DH60 DJ02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】検査雰囲気中の原因物質により光学部材の
表面に曇り現象を発生させる波長域の検査用照明光を出
射する照明用光源と、前記検査用照明光を検査対象に照
射する光学系と、前記検査用照明光の照射により前記検
査対象から出射される出射光を受光する受光装置と、前
記照明用光源、前記光学系、および前記受光装置を不活
性ガス雰囲気中もしくは真空中に配置する容器とを具備
することを特徴とする光学式検査装置。
An illumination light source for emitting illumination light for inspection in a wavelength range where a fogging phenomenon occurs on the surface of an optical member due to a causative substance in an inspection atmosphere, and an optical system for irradiating the inspection illumination light to an inspection object And a light receiving device for receiving light emitted from the inspection object by irradiation of the inspection illumination light, and arranging the illumination light source, the optical system, and the light receiving device in an inert gas atmosphere or vacuum. An optical inspection device, comprising:
【請求項2】波長400nm以下の紫外光を含む検査用
照明光を出射する照明用光源と、前記検査用照明光を検
査対象に照射する光学系と、前記検査用照明光の照射に
より前記検査対象の表面から出射される出射光を受光す
る受光装置と、前記照明用光源、前記光学系、および受
光装置を不活性ガス雰囲気中もしくは真空中に配置する
容器とを具備することを特徴とする光学式表面検査装
置。
2. An inspection light source for emitting inspection illumination light including ultraviolet light having a wavelength of 400 nm or less, an optical system for irradiating the inspection illumination light to an inspection target, and the inspection by irradiation of the inspection illumination light. A light receiving device for receiving light emitted from a surface of an object, and a container for arranging the light source for illumination, the optical system, and the light receiving device in an inert gas atmosphere or vacuum are provided. Optical surface inspection device.
【請求項3】請求項2に記載の光学式表面検査装置にお
いて、 前記容器の外側に配置された酸素濃度計測装置と、前記
酸素濃度計測装置からの計測信号に基づいて前記容器の
外側の酸素濃度が所定の基準値以下になったときに警報
を出力する警報装置とをさらに備えることを特徴とする
光学式表面検査装置。
3. The optical surface inspection apparatus according to claim 2, wherein the oxygen concentration measuring device disposed outside the container and oxygen outside the container based on a measurement signal from the oxygen concentration measuring device. An optical surface inspection device, further comprising: an alarm device for outputting an alarm when the concentration becomes equal to or less than a predetermined reference value.
JP2000048659A 1999-06-01 2000-02-25 Optical inspection instrument and optical surface inspection instrument Pending JP2001235430A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000048659A JP2001235430A (en) 2000-02-25 2000-02-25 Optical inspection instrument and optical surface inspection instrument
KR1020000029549A KR20010007152A (en) 1999-06-01 2000-05-31 Apparatus and method for defect inspection
US10/304,787 US20030112428A1 (en) 1999-06-01 2002-11-27 Method and apparatus for surface inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048659A JP2001235430A (en) 2000-02-25 2000-02-25 Optical inspection instrument and optical surface inspection instrument

Publications (1)

Publication Number Publication Date
JP2001235430A true JP2001235430A (en) 2001-08-31

Family

ID=18570713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048659A Pending JP2001235430A (en) 1999-06-01 2000-02-25 Optical inspection instrument and optical surface inspection instrument

Country Status (1)

Country Link
JP (1) JP2001235430A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075072B2 (en) 2001-09-10 2006-07-11 Ebara Corporation Detecting apparatus and device manufacturing method
WO2015079514A1 (en) * 2013-11-27 2015-06-04 株式会社ニレコ Edge position detection sensor
TWI493175B (en) * 2008-07-22 2015-07-21 Orbotech Ltd System and method for optically inspecting an object
US10622232B2 (en) 2017-08-23 2020-04-14 Samsung Electronics Co., Ltd. Semiconductor manufacturing apparatus and method of manufacturing semiconductor device using the same
WO2020115112A3 (en) * 2018-12-07 2020-08-13 Carl Zeiss Smt Gmbh Wafer inspection system having a water-terminated optics
IT202100008405A1 (en) * 2021-04-02 2022-10-02 Nexan srl VISION SYSTEM FOR USE IN HIGH HUMIDITY AND ALKALINE/ACID ENVIRONMENTS

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038582A (en) * 1973-08-08 1975-04-10
JPS61231343A (en) * 1985-04-05 1986-10-15 Matsushita Electric Ind Co Ltd Room air monitoring device
JPS6324493A (en) * 1986-07-17 1988-02-01 株式会社神戸製鋼所 Gas leak detector/alarm
JPH07221148A (en) * 1994-02-03 1995-08-18 Fujitsu Ltd Surface contamination evaluator and evaluation of surface contamination
JPH07280721A (en) * 1994-04-15 1995-10-27 Nikon Corp Optical device in vacuum ultraviolet area prevented from pollution
JPH08334585A (en) * 1995-06-07 1996-12-17 Hitachi Ltd Reactor equipment and its operation method
JPH10160572A (en) * 1996-12-02 1998-06-19 Nikon Corp Spectrophotometer for ultraviolet region
JPH11211613A (en) * 1998-01-21 1999-08-06 Nikon Corp Method and apparatus for measuring inner loss coefficient
JPH11274256A (en) * 1998-03-25 1999-10-08 Advantest Corp Sample checking device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5038582A (en) * 1973-08-08 1975-04-10
JPS61231343A (en) * 1985-04-05 1986-10-15 Matsushita Electric Ind Co Ltd Room air monitoring device
JPS6324493A (en) * 1986-07-17 1988-02-01 株式会社神戸製鋼所 Gas leak detector/alarm
JPH07221148A (en) * 1994-02-03 1995-08-18 Fujitsu Ltd Surface contamination evaluator and evaluation of surface contamination
JPH07280721A (en) * 1994-04-15 1995-10-27 Nikon Corp Optical device in vacuum ultraviolet area prevented from pollution
JPH08334585A (en) * 1995-06-07 1996-12-17 Hitachi Ltd Reactor equipment and its operation method
JPH10160572A (en) * 1996-12-02 1998-06-19 Nikon Corp Spectrophotometer for ultraviolet region
JPH11211613A (en) * 1998-01-21 1999-08-06 Nikon Corp Method and apparatus for measuring inner loss coefficient
JPH11274256A (en) * 1998-03-25 1999-10-08 Advantest Corp Sample checking device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075072B2 (en) 2001-09-10 2006-07-11 Ebara Corporation Detecting apparatus and device manufacturing method
TWI493175B (en) * 2008-07-22 2015-07-21 Orbotech Ltd System and method for optically inspecting an object
WO2015079514A1 (en) * 2013-11-27 2015-06-04 株式会社ニレコ Edge position detection sensor
JPWO2015079514A1 (en) * 2013-11-27 2017-03-16 株式会社ニレコ Edge position detection sensor
US10622232B2 (en) 2017-08-23 2020-04-14 Samsung Electronics Co., Ltd. Semiconductor manufacturing apparatus and method of manufacturing semiconductor device using the same
WO2020115112A3 (en) * 2018-12-07 2020-08-13 Carl Zeiss Smt Gmbh Wafer inspection system having a water-terminated optics
IT202100008405A1 (en) * 2021-04-02 2022-10-02 Nexan srl VISION SYSTEM FOR USE IN HIGH HUMIDITY AND ALKALINE/ACID ENVIRONMENTS

Similar Documents

Publication Publication Date Title
US7305015B2 (en) Ultraviolet laser-generating device and defect inspection apparatus and method therefor
US6665065B1 (en) Defect detection in pellicized reticles via exposure at short wavelengths
TWI428587B (en) Method of inspecting a translucent object, translucent substrate for mask blank and manufacturing method thereof, mask blank and manufacturing method thereof, mask blank for exposure and manufacturing method thereof, manufacturing method of a semiconduct
US9983144B2 (en) Plasma light source and inspection apparatus including the same
JP2003042967A (en) Inspection device for pattern defect
KR20160042993A (en) System and method for imaging a sample with a laser sustained plasma illumination output
JP2003228163A (en) Method and apparatus for replacing inert gas, exposure device, reticle cabinet, reticle inspection apparatus, reticle conveyance box, and method of manufacturing device
US9244290B2 (en) Method and system for coherence reduction
JP2001235430A (en) Optical inspection instrument and optical surface inspection instrument
JP3978307B2 (en) Ultraviolet laser beam generator, defect inspection apparatus and method thereof
KR102644770B1 (en) Rotating lamp for laser continuous plasma illumination source
JPWO2005064322A1 (en) Defect inspection apparatus and defect inspection method
JP2005094018A (en) Lithography apparatus and device manufacturing method
US7629583B2 (en) Method and apparatus for analyzing a photoresist film
JP2003344601A (en) Device and method for cleaning optical element and method for manufacturing it
JPH11260688A (en) Projection aligner
US20190287785A1 (en) System and Method for Pumping Laser Sustained Plasma and Enhancing Selected Wavelengths of Output Illumination
KR20070105523A (en) Apparatus for inspecting glass substrate
TWI807089B (en) Vapor as a protectant and lifetime extender in optical systems
JPH11191525A (en) Projection aligner
TW202329201A (en) Laser-sustained plasma lamps with graded concentration of hydroxyl radical
JP2004061254A (en) Pattern defect inspection device and pattern defect inspection method
JP2000173893A (en) Projection exposure system and contamination discriminating method of optical element
JP2009150777A (en) Surface inspection device
JP2008298832A (en) Wavelength conversion device and mask inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929