JP2001235417A - Pore size distribution measuring instrument - Google Patents

Pore size distribution measuring instrument

Info

Publication number
JP2001235417A
JP2001235417A JP2000048723A JP2000048723A JP2001235417A JP 2001235417 A JP2001235417 A JP 2001235417A JP 2000048723 A JP2000048723 A JP 2000048723A JP 2000048723 A JP2000048723 A JP 2000048723A JP 2001235417 A JP2001235417 A JP 2001235417A
Authority
JP
Japan
Prior art keywords
condensable gas
gas
size distribution
pore size
supply means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000048723A
Other languages
Japanese (ja)
Other versions
JP3291691B2 (en
Inventor
Masaji Asae
正司 淺枝
Toshiaki Tsuru
稔了 都留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEIKA CORP
Seika Sangyo Co Ltd
Original Assignee
SEIKA CORP
Seika Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18570768&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2001235417(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SEIKA CORP, Seika Sangyo Co Ltd filed Critical SEIKA CORP
Priority to JP2000048723A priority Critical patent/JP3291691B2/en
Publication of JP2001235417A publication Critical patent/JP2001235417A/en
Application granted granted Critical
Publication of JP3291691B2 publication Critical patent/JP3291691B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide pore size distribution measuring instrument capable of accurately measuring the sizes of pores ranging from a meso-pore to a micropore provided in an object to be inspected and the distribution state of them without using an expensive apparatus, and collapsing the shape of the object to be inspected. SOLUTION: The pore size distribution measuring instrument is equipped with a holding means 3 for holding the object 5 to be inspected having pores so that one ends of the pores communicate with a primary chamber 2 and the other ends of them communicate with a secondary chamber 3, an inspection gas supply means 7 for supplying inspection gas mixed with non-condensible gas and condensible gas to primary chamber 2, the regulation means 14, 16 provided in the inspection gas supply means 7 and regulating the mixing ratio of the non-condensible and condensible gases supplied to the primary chamber 2, and the measuring means 40 connected to the secondary chamber 3 and measuring the amount of the inspection gas passed through the object 5 to be inspected with the elapse of time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、フィルタ、膜、中
空糸等の微細な孔の径とその分布状況とを測定する細孔
径分布測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pore size distribution measuring device for measuring the size of fine pores such as a filter, a membrane, a hollow fiber and the like and the distribution thereof.

【0002】[0002]

【従来の技術】フィルタ等の微細な孔の径とその分布状
況とを測定する従来の手段としては、例えば、被検体を
砕いて粉末試料として測定する窒素吸着法や水銀圧入法
等が知られている。
2. Description of the Related Art As conventional means for measuring the diameter of fine pores such as a filter and the distribution thereof, there are known, for example, a nitrogen adsorption method and a mercury intrusion method in which a specimen is crushed and measured as a powder sample. ing.

【0003】また、被検体をそのままの形態で測定しう
るものとしては、透過法であるバブルポイント法を改良
したドライ−ウエットフロー法が知られており、AST
Mで規格化され、測定装置も市販されている。
[0003] In addition, a dry-wet flow method which is an improvement of the bubble point method, which is a transmission method, is known as a method capable of measuring an object in its original form.
M is standardized, and measuring devices are also commercially available.

【0004】さらに、毛管凝縮法として、被検体の上流
側に例えば窒素ガス等の被凝縮性ガスを流し、かつ被検
体の下流側に酸素を流し、その拡散速度から被検体の細
孔径を測定するようにしたものもある。
[0004] Further, as a capillary condensation method, a condensable gas such as nitrogen gas is caused to flow on the upstream side of the subject, and oxygen is caused to flow on the downstream side of the subject, and the pore diameter of the subject is measured from the diffusion rate. Some have tried to do so.

【0005】[0005]

【発明が解決しようとする課題】しかし、窒素吸着法や
水銀圧入法によると、被検体を砕いて粉末試料としなけ
ればならず、透過に寄与しない細孔径、例えば、支持孔
の径や貫通していない細孔の径まで測定してしまい、フ
ィルタ等としての本来の機能に関係する細孔のみの径を
正確に測定することは難しい。
However, according to the nitrogen adsorption method or the mercury intrusion method, the specimen must be crushed into a powder sample, and the pore diameter which does not contribute to the permeation, for example, the diameter of the support hole or the diameter of the penetrating hole. It is difficult to accurately measure the diameter of only the pores related to the original function as a filter, etc.

【0006】ドライ−ウエットフロー法では、測定可能
な細孔径の限界が50nm(50×10-9m)程度であり、フィ
ルタとしての分離選択性が発現するメソボア(2〜50n
m)からマイクロボア(2nm以下)領域の測定ができない。
そのため、被検体の形態を崩すことなく、そのままの形
態で、メソボアからマイクロボアの領域まで正確に測定
できる透過法による細孔径分布測定装置の実現が望まれ
ている。
In the dry-wet flow method, the limit of the measurable pore diameter is about 50 nm (50 × 10 −9 m), and a mesopore (2 to 50 n) exhibiting separation selectivity as a filter.
The measurement in the microbore (2 nm or less) region cannot be performed from m).
Therefore, it is desired to realize a pore size distribution measuring apparatus by a transmission method that can accurately measure a region from a mesopore to a microbore without changing the shape of the subject.

【0007】上述の毛管凝縮法による測定手段では、ガ
スクロマトグラフィー等の高価な装置を用いなければな
らず、また、細孔内での透過のメカニズムが明確に解明
されていないことから、測定自体が困難である。
[0007] In the above-mentioned measuring means by the capillary condensation method, an expensive apparatus such as gas chromatography must be used, and the mechanism of permeation in the pores has not been clearly elucidated. Is difficult.

【0008】本発明は、従来の技術が有する上記のよう
な問題点に鑑み、高価な装置を用いることなく、また被
検体の形態を崩すことなく、被検体のメソボアからマイ
クロボアの領域までの細孔の径及びその分布状況を正確
に測定できるようにした細孔径分布測定装置を提供する
ことを目的としている。
The present invention has been made in consideration of the above-mentioned problems of the conventional technology, and has been developed without using an expensive apparatus and without losing the shape of a subject. It is an object of the present invention to provide a pore diameter distribution measuring device capable of accurately measuring the diameter of a pore and its distribution state.

【0009】また、被検体を通過させる検査ガス中の凝
縮性ガスの量や割合の変動、及びその変動に伴う温度の
変動等を少なくし、安定させることができるとともに、
正確に調節できるようにした細孔径分布測定装置を提供
することをも目的としている。
In addition, it is possible to reduce and stabilize fluctuations in the amount and ratio of condensable gas in the test gas passing through the subject and fluctuations in temperature due to the fluctuations.
It is another object of the present invention to provide a pore size distribution measuring device that can be adjusted accurately.

【0010】[0010]

【課題を解決するための手段】本発明によると、上記課
題は次のようにして解決される。 (1) 細孔を有する被検体を、その細孔の一端が1次チ
ャンバに、かつ細孔の他端が2次チャンバにそれぞれ連
通するようにして、被検体を保持する保持手段と、1次
チャンバに非凝縮性ガスと凝縮性ガスとの混合気体であ
る検査ガスを供給する検査ガス供給手段と、検査ガス供
給手段中に設けられ、1次チャンバに供給される非凝縮
性ガスと凝縮性ガスとの混合割合を調節する調節手段
と、2次チャンバに接続され、被検体を通過した検査ガ
スの量を経時的に測定する測定手段とを備えるものとす
る。
According to the present invention, the above-mentioned problem is solved as follows. (1) holding means for holding a subject, such that one end of the pore communicates with the primary chamber and the other end of the pore communicates with the secondary chamber, and Test gas supply means for supplying a test gas, which is a mixture of a non-condensable gas and a condensable gas, to the next chamber; and a non-condensable gas and a condensate provided in the test gas supply means and supplied to the primary chamber. And a measuring means connected to the secondary chamber and measuring the amount of the test gas that has passed through the subject over time.

【0011】(2) 上記(1)項において、検査ガス供給
手段が、非凝縮性ガスの供給系路と、それから分岐され
たバイパス系路とを有するものとし、このバイパス系路
に、凝縮性ガスの供給手段を設ける。
(2) In the above item (1), it is assumed that the test gas supply means has a non-condensable gas supply system and a bypass system branched from the non-condensable gas supply system. A gas supply means is provided.

【0012】(3) 上記(2)項において、凝縮性ガスの
供給手段が、気化することにより凝縮性ガスとなる液体
を収容して、その中を非凝縮性ガスが通過することによ
り、非凝縮性ガス中に凝縮性ガスが混入するようにした
バブラーを有するものとする。
(3) In the above item (2), the means for supplying the condensable gas contains a liquid which becomes a condensable gas by vaporization, and a non-condensable gas passes through the liquid. It has a bubbler in which the condensable gas is mixed into the condensable gas.

【0013】(4) 上記(3)項において、凝縮性ガスの
供給手段が、バイパス系路に直列に接続した複数のバブ
ラーを有するものとする。
(4) In the above item (3), the condensable gas supply means has a plurality of bubblers connected in series to a bypass system path.

【0014】(5) 上記(2)項において、凝縮性ガスの
供給手段が、気化することにより凝縮性ガスとなる液体
をバイパス系路に微少量ずつ供給するポンプと、バイパ
ス系路における前記ポンプの下流側に設けられ、前記液
体を気化させる蒸発器とを有するものとする。
(5) In the above item (2), the supply means for the condensable gas supplies the liquid which becomes the condensable gas by vaporization to the bypass system by a small amount and the pump in the bypass system. And an evaporator for evaporating the liquid.

【0015】(6) 上記(1)〜(5)項のいずれかにおい
て、検査ガス供給手段に、検査ガスの温度を設定温度に
維持する温度維持手段を設ける。
(6) In any one of the above items (1) to (5), the test gas supply means is provided with a temperature maintaining means for maintaining the temperature of the test gas at a set temperature.

【0016】(7) 上記(1)〜(6)項のいずれかにおい
て、2次チャンバをほぼ大気圧に維持し、かつ1次チャ
ンバを大気圧より大きい値に維持する圧力調整手段を設
ける。
(7) In any one of the above items (1) to (6), a pressure adjusting means for maintaining the secondary chamber at substantially the atmospheric pressure and maintaining the primary chamber at a value higher than the atmospheric pressure is provided.

【0017】(8) 上記(1)〜(7)項のいずれかにおい
て、非凝縮性ガスを窒素とし、かつ凝縮性ガスを水蒸気
とする。
(8) In any one of the above items (1) to (7), the non-condensable gas is nitrogen and the condensable gas is steam.

【0018】[0018]

【発明の実施の形態】以下、本発明の一実施形態を、添
付図面を参照して説明する。図1は、測定装置の外観を
示す。この測定装置は、扉(A1)を備えた上部ケース(A)
と下部ケース(B)とからなり、上部ケース(A)内には、
本体(1)と後述するヒートバス(34)とが設けられ、下部
ケース(B)内には、後述するその他の配管系統と、窒素
ガス源(10)及び水源(28)等が設けられている。上部ケー
ス(A)と下部ケース(B)との内部には、それぞれ制御手
段(図示略)が設けられ、それらは、ケーブル(C)を介し
てコンビュータ(D)に接続され、コンビュータ(D)によ
り制御されるようになっている。
An embodiment of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows the appearance of the measuring device. This measuring device has an upper case (A) with a door (A1).
And the lower case (B). In the upper case (A),
A main body (1) and a heat bath (34) described later are provided, and other piping systems described later, a nitrogen gas source (10) and a water source (28) are provided in the lower case (B). . Control means (not shown) are provided inside the upper case (A) and the lower case (B), respectively, and these are connected to a computer (D) via a cable (C), and the computer (D) Is controlled by the

【0019】図2は、測定装置の本体部分の概略構成と
配管系統とを模式的に示す図である。本体(1)の内部に
は、1次チャンバである密閉されたチャンバ(2)が形成
され、本体(1)の右端壁には、チャンバ(2)内に水平に
突入する円筒状のホルダ(3)の基端部がキャップ(4)を
もって着脱自在に装着されている。ホルダ(3)は、被検
体(5)の保持手段をなすもので、その内部は、2次チャ
ンバ(図示略)となっている。
FIG. 2 is a view schematically showing a schematic configuration of a main body of the measuring apparatus and a piping system. A sealed chamber (2), which is a primary chamber, is formed inside the main body (1), and a cylindrical holder () that protrudes horizontally into the chamber (2) is provided on the right end wall of the main body (1). The base end of 3) is detachably mounted with a cap 4. The holder (3) serves as holding means for the subject (5), and the inside thereof is a secondary chamber (not shown).

【0020】この例では、被検体(5)は、無数の細孔
(図示略)が放射状に形成された円筒状フィルタとしてあ
り、その細孔の一端が1次チャンバであるチャンバ(2)
に、かつ細孔の他端が2次チャンバであるホルダ(3)の
内部にそれぞれ連通するようにして、一端部がホルダ
(3)の先端部に、気密を保つようにしてわずかだけ外嵌
されて保持されている。被検体(5)の他端は、閉塞部材
(6)により気密を保つようにして閉塞されている。
In this example, the subject (5) has numerous pores.
(Not shown) is a cylindrical filter formed radially, and one end of a pore thereof is a primary chamber (2).
And the other end of the pore communicates with the inside of the holder (3), which is a secondary chamber, so that one end is
At the tip of (3), it is slightly fitted and held so as to maintain airtightness. The other end of the subject (5) is a closing member
(6) It is closed to keep the airtight.

【0021】ホルダ(3)は、被検体(5)の形状に応じ
て、それに適合するものに適宜交換される。例えば、被
検体(5)が平膜状のものである場合には、図3に示すよ
うに、先端に拡径段部(3a')を有する円筒状のホルダ
(3')とし、その拡径段部(3a')の開口端部に、平膜状の
被検体(5)を太鼓の皮張りと同様の要領で装着し、その
周囲を適宜シールするのがよい。
The holder (3) is appropriately replaced according to the shape of the subject (5). For example, when the subject (5) is a flat membrane, as shown in FIG. 3, a cylindrical holder having an enlarged diameter step (3a ') at the tip end is used.
(3 '), a flat membrane-shaped subject (5) is attached to the opening end of the enlarged diameter step (3a') in the same manner as the drum skinning, and the periphery thereof is appropriately sealed. Is good.

【0022】チャンバ(2)には、検査ガス供給管(7)と
余剰ガス排出管(8)とが接続され、ホルダ(3)には、通
過ガス排出管(9)が接続されている。
A test gas supply pipe (7) and a surplus gas discharge pipe (8) are connected to the chamber (2), and a passing gas discharge pipe (9) is connected to the holder (3).

【0023】検査ガス供給管(7)には、非凝縮性ガスと
凝縮性ガスとの混合ガスが供給される。非凝縮性ガスと
しては、窒素ガス、アルゴンガス、ヘリウムガス等の不
活性ガスを用いることができるが、ここでは窒素ガスを
用いている。凝縮性ガスとしては、水蒸気、エタノー
ル、四塩化炭素、ヘキサン等を用いることができるが、
ここでは水蒸気を用いている。
A mixed gas of a non-condensable gas and a condensable gas is supplied to the test gas supply pipe (7). As the non-condensable gas, an inert gas such as a nitrogen gas, an argon gas, and a helium gas can be used. Here, a nitrogen gas is used. As the condensable gas, steam, ethanol, carbon tetrachloride, hexane and the like can be used,
Here, steam is used.

【0024】検査ガス供給管(7)には、窒素ガス源(10)
に接続された主供給管(11)が接続され、主供給管(11)に
は、バイパス管(12)が接続されている。
A nitrogen gas source (10) is connected to the inspection gas supply pipe (7).
Is connected to the main supply pipe (11), and a bypass pipe (12) is connected to the main supply pipe (11).

【0025】主供給管(11)におけるバイパス管(12)の接
続部より窒素ガス源(10)側には、主供給管(11)、ひいて
は、バイパス管(12)及びチャンバ(2)を、大気圧よりわ
ずかに大きい値に維持する圧力調整手段をなすレギュレ
ータ(13)が設けられている。なお、チャンバ(2)内の圧
力は、後述する自動圧力コントローラ(36)により正確に
調整される。
On the nitrogen gas source (10) side of the connection portion of the bypass pipe (12) in the main supply pipe (11), the main supply pipe (11), and furthermore, the bypass pipe (12) and the chamber (2) are connected. A regulator (13) is provided as pressure adjusting means for maintaining the pressure slightly higher than the atmospheric pressure. The pressure in the chamber (2) is accurately adjusted by an automatic pressure controller (36) described later.

【0026】主供給管(11)におけるバイパス管(12)と並
列の部分には、流量コントローラ(14)と1個の電磁弁(1
5)とが設けられている。バイパス管(12)の上流側には、
流量コントローラ(16)が、またその下流側には、2個の
電磁弁(17)(18)が設けられている。これらの流量コント
ローラ(14)(16)、電磁弁(15)(17)(18)、及び後述する電
磁弁(26)等により、チャンバ(2)に供給される非凝縮性
ガスと凝縮性ガスとの混合割合を調節する調節手段が形
成されている。
In the part of the main supply pipe (11) parallel to the bypass pipe (12), a flow controller (14) and one solenoid valve (1) are provided.
5) is provided. On the upstream side of the bypass pipe (12),
A flow controller (16) is provided, and two solenoid valves (17) and (18) are provided downstream thereof. The non-condensable gas and the condensable gas supplied to the chamber (2) by the flow controllers (14) (16), the solenoid valves (15) (17) (18), the solenoid valve (26) described later, and the like. And an adjusting means for adjusting the mixing ratio with.

【0027】バイパス管(12)における2個の電磁弁(17)
(18)のそれぞれの上流側と下流側とには、電磁弁(17)(1
8)の数に対応する数、すなわち、ここでは2個のバブラ
ー(19)(20)の入口管(21)と出口管(22)とが、それぞれ接
続されている。このバブラー(19)(20)は、凝縮性ガスの
供給手段をなすものである。
Two solenoid valves (17) in the bypass pipe (12)
Solenoid valves (17) (1) are provided on the upstream and downstream sides of (18), respectively.
The number corresponding to the number 8), that is, here, the inlet pipe (21) and the outlet pipe (22) of the two bubblers (19) and (20) are connected respectively. The bubblers (19) and (20) serve as a means for supplying condensable gas.

【0028】各入口管(21)は、電磁弁(23)を備え、かつ
その下端は、各バブラー(19)(20)における密閉容器(24)
内に収容された、気化することにより凝縮性ガスとなる
液体、すなわち水(25)内に開口している。
Each inlet pipe (21) is provided with a solenoid valve (23), and the lower end thereof is provided in a closed vessel (24) in each bubbler (19) (20).
It is open to a liquid contained in the liquid, which becomes a condensable gas by vaporization, that is, water (25).

【0029】各出口管(22)は、電磁弁(26)を備え、かつ
その下端は、各密閉容器(24)内における水(25)の液位よ
り上方の空間に開口している。
Each outlet pipe (22) is provided with a solenoid valve (26), and its lower end is opened to a space above the level of water (25) in each closed vessel (24).

【0030】(27)は、水源(28)に接続された給水管で、
各バブラー(19)(20)の密閉容器(24)に接続された端部に
設けた電磁弁(29)を開くことにより、各密閉容器(24)に
給水しうるようになっている。
(27) is a water supply pipe connected to the water source (28),
By opening an electromagnetic valve (29) provided at the end connected to the closed vessel (24) of each of the bubblers (19) and (20), water can be supplied to each closed vessel (24).

【0031】各電磁弁(29)は、各密閉容器(24)内の水位
を検出するリミットスイッチ(30)により、水位が予め定
めた下限位置に達することにより開弁し、かつ同じく上
限位置に達することにより閉弁するように制御される。
Each of the solenoid valves (29) is opened when the water level reaches a predetermined lower limit position by a limit switch (30) for detecting the water level in each closed container (24), and is also moved to the upper limit position. The valve is controlled to close when it reaches.

【0032】各密閉容器(24)の底部には、電磁弁(31)を
備えるドレン管(32)が接続されている。また、各密閉容
器(24)内には、水(24)の温度を検出する温度センサ(33)
が配設されている。
A drain pipe (32) having an electromagnetic valve (31) is connected to the bottom of each closed vessel (24). A temperature sensor (33) for detecting the temperature of water (24) is provided in each closed container (24).
Are arranged.

【0033】上述の2個のバブラー(19)(20)、主供給管
(11)、バイパス管(12)等は、温度を、例えば40℃程度の
予め設定された温度に保つ温度維持手段の一種であるヒ
ートバス(34)内に配設され、検査ガス供給管(7)よりチ
ャンバ(2)に供給する検査ガスの温度を一定に保つよう
にしている。
The above-mentioned two bubblers (19) and (20), the main supply pipe
(11), a bypass pipe (12) and the like are provided in a heat bath (34) which is a kind of temperature maintaining means for maintaining a temperature at a preset temperature of, for example, about 40 ° C., and a test gas supply pipe (7 ) To keep the temperature of the test gas supplied to the chamber (2) constant.

【0034】装置の平常の作動時には、電磁弁(17)(18)
(31)(32)を閉じ、電磁弁(15)(23)(26)を開いて、バイパ
ス管(12)に対して、2個のバブラー(19)(20)が直列に接
続された状態としておく。
During normal operation of the device, the solenoid valves (17) (18)
(31) (32) is closed, the solenoid valves (15), (23) and (26) are opened, and two bubblers (19) and (20) are connected in series to the bypass pipe (12). And keep it.

【0035】余剰ガス排出管(8)には、水蒸気を除去す
るトラップ(35)、自動圧力コントローラ(36)及び電磁弁
(37)が順次設けられ、その下流端は排気口(38)に接続さ
れている。
A trap (35) for removing steam, an automatic pressure controller (36), and a solenoid valve are provided in the excess gas discharge pipe (8).
(37) are sequentially provided, and the downstream end thereof is connected to the exhaust port (38).

【0036】通過ガス排出管(9)には、上記のトラップ
(35)と同様のトラップ(39)、被検体(5)を通過した検査
ガスの量を経時的に測定する測定手段である流量計(4
0)、及び電磁弁(41)が順次設けられ、その下流端は、余
剰ガス排出管(8)とともに、排気口(38)に接続され、大
気圧に解放されている。両トラップ(35)(39)のドレン口
は、電磁弁(42)(43)を介して、上述のドレン管(32)に接
続されている。
The passing gas discharge pipe (9) has the trap
A trap (39) similar to (35) and a flow meter (4) which is a measuring means for measuring the amount of test gas passing through the subject (5) with time.
0) and an electromagnetic valve (41) are sequentially provided, and the downstream end thereof is connected to an exhaust port (38) together with an excess gas discharge pipe (8), and is released to the atmospheric pressure. The drain ports of both traps (35) and (39) are connected to the above-mentioned drain pipe (32) via solenoid valves (42) and (43).

【0037】本体(1)内には、温度及び湿度を検出する
温湿度計(RH)が設けられている。なお、この他にも、
本体(1)、及びそこから図1の右方に延出する通過ガス
排出管(9)等にも、温度や圧力を一定とする手段やそれ
らを検出するセンサ等が設けられるが、それらについて
は、説明を簡略化するため、図示及び詳細な説明を省略
する。
A thermo-hygrometer (RH) for detecting temperature and humidity is provided in the main body (1). In addition, besides this,
The body (1) and the passing gas discharge pipe (9) extending to the right in FIG. 1 therefrom are also provided with means for keeping the temperature and pressure constant and sensors for detecting them. , For simplicity of description, illustration and detailed description are omitted.

【0038】この実施形態によると、流量コントローラ
(14)(16)により、主供給管(11)に流れる乾燥した窒素ガ
スの量と、バイパス管(12)に流れる湿気を帯びた窒素ガ
スの量とを調節して、それらを検査ガス供給管(7)より
本体(1)のチャンバ(2)に供給し、被検体(5)を求心方
向に通過して、ホルダ(3)より通過ガス排出管(9)へ流
出した窒素ガスの流量を、流量計(40)により経時的に測
定し、その測定データをコンピュータ(D)に入力して、
既知のいわゆるケルビン径(Kelvin径)と累積無次元透過
係数との比較データと対比して、被検体(5)に、例えば
0.5〜30nm(10-9m)の範囲内の特定の径のものが、どの程
度存在するかを知ることができる。
According to this embodiment, the flow controller
(14) According to (16), the amount of dry nitrogen gas flowing through the main supply pipe (11) and the amount of moist nitrogen gas flowing through the bypass pipe (12) are adjusted to supply them to the test gas. The flow rate of nitrogen gas supplied from the pipe (7) to the chamber (2) of the main body (1), passed through the subject (5) in the centripetal direction, and flowed out of the holder (3) to the passing gas discharge pipe (9). Is measured over time by a flow meter (40), and the measured data is input to a computer (D).
Compared with the comparison data of the known so-called Kelvin diameter (Kelvin diameter) and the cumulative dimensionless transmission coefficient, the subject (5)
It is possible to know how many specific diameters in the range of 0.5 to 30 nm (10 -9 m) exist.

【0039】その測定原理は、凝縮性ガスが微細な細孔
内で毛管凝縮し、非凝縮性ガスの透過を阻止することを
利用したものである。具体的には、凝縮性ガスと非凝縮
性ガスとの混合物である検査ガスを、多孔質体の被検体
(5)に供給すると、小さい径の細孔内では、凝縮性ガス
の相対圧が低い状態でも毛管凝縮し、非凝縮性ガスの透
過を阻止する。一方、大きい径の細孔の場合は、毛管凝
縮により非凝縮性ガスの透過を阻止するには、より高い
凝縮性ガスの相対圧が必要である。
The principle of measurement is based on the fact that condensable gas is capillary-condensed in fine pores and blocks the permeation of non-condensable gas. Specifically, a test gas that is a mixture of a condensable gas and a non-condensable gas
When supplied to (5), the capillary condenses in the small diameter pores even in a state where the relative pressure of the condensable gas is low, thereby preventing the permeation of the non-condensable gas. On the other hand, in the case of large-diameter pores, a higher relative pressure of the condensable gas is required to prevent permeation of the non-condensable gas by capillary condensation.

【0040】この原理に基づき、凝縮性ガスの分圧、す
なわち、凝縮性ガスと非凝縮性ガスとの割合を変化させ
つつ、非凝縮性ガスの透過計数を測定することにより、
どの程度の径の細孔が、どの程度分布しているかを測定
することができる。また、すでに細孔の径とその分布状
況がわかっているサンプルがある場合には、それをマス
ターとして、この測定装置にかけ、その測定値と既知の
値との差を補正値として他の測定値を補正することもあ
る。
Based on this principle, the permeation count of the non-condensable gas is measured while changing the partial pressure of the condensable gas, that is, the ratio of the condensable gas to the non-condensable gas.
It is possible to measure the size of the pores and the distribution thereof. If there is a sample whose pore size and its distribution are already known, the sample is used as a master and applied to this measuring device, and the difference between the measured value and the known value is used as a correction value for other measured values. May be corrected.

【0041】この実施形態においては、2次チャンバで
あるホルダ(3)の内部を、通過ガス排出管(9)を介して
大気圧に解放し、かつ1次チャンバであるチャンバ(2)
を、大気圧よりわずかに大きい圧力に維持するようにし
てあるが、原理的には、2次チャンバの圧力より1次チ
ャンバの圧力を大とさえしておけばよく、例えば、1次
チャンバ側を大気圧程度に維持し、かつ2次チャンバ側
を、大気圧より減圧するようにしてもよい。ただ、上記
実施形態のように、2次チャンバ側を大気圧に解放して
おけば、2次チャンバを減圧した場合のような、毛管凝
縮した凝縮性ガスが再度気化して、測定精度を悪化させ
る等のおそれをなくすことができ、測定精度を向上する
ことができる。
In this embodiment, the interior of the holder (3), which is the secondary chamber, is released to the atmospheric pressure through the passing gas discharge pipe (9), and the chamber (2), which is the primary chamber, is opened.
Is maintained at a pressure slightly higher than the atmospheric pressure. In principle, the pressure in the primary chamber only needs to be higher than the pressure in the secondary chamber. May be maintained at about atmospheric pressure, and the pressure in the secondary chamber may be reduced below atmospheric pressure. However, if the secondary chamber side is released to the atmospheric pressure as in the above embodiment, the condensable gas condensed by the capillary vaporizes again as in the case where the secondary chamber is depressurized, and the measurement accuracy deteriorates. It is possible to eliminate the possibility of causing the measurement and the like, and to improve the measurement accuracy.

【0042】しかして、本実施形態においては、バイパ
ス管(12)に、複数、この例では2個のバブラー(19)(20)
を直列に接続してあるため、バイパス管(12)の下流端に
供給される窒素ガスの湿度を飽和状態に近い値、例えば
95%程度に安定して維持することができ、その変動をほ
とんどなくすことができるとともに、それに伴う温度の
変動を抑制できるので、高精度の測定が可能となる。
In this embodiment, however, a plurality of, in this example, two bubblers (19) (20) are provided in the bypass pipe (12).
Are connected in series, the humidity of the nitrogen gas supplied to the downstream end of the bypass pipe (12) is set to a value close to the saturated state, for example,
It can be stably maintained at about 95%, and its fluctuation can be almost eliminated, and the accompanying fluctuation in temperature can be suppressed, so that highly accurate measurement is possible.

【0043】上記の湿度をより安定化するためには、バ
ブラーを3個以上直列に接続することが望ましいが、経
済性と効率とを勘案すると、2個とするのが最適と思わ
れる。
In order to further stabilize the above-mentioned humidity, it is desirable to connect three or more bubblers in series. However, in consideration of economy and efficiency, it is considered that two bubbles are optimal.

【0044】図4は、凝縮性ガスの供給手段の他の実施
形態を示す。この実施形態では、バイパス管(12)に設け
る凝縮性ガスの供給手段を、気化することにより凝縮性
ガスとなる液体、すなわち水を、バイパス系路に微少量
ずつ供給する、いわゆるシリンジポンプとしたポンプ(4
4)と、バイパス管(12)におけるポンプ(44)の下流側に設
けられ、液体、すなわち水を気化させる蒸発器(45)とに
より構成している。このようにしても、上記と同様の作
用及び効果を奏することができる。
FIG. 4 shows another embodiment of the means for supplying condensable gas. In this embodiment, the supply means for the condensable gas provided in the bypass pipe (12) is a so-called syringe pump, which supplies a liquid that becomes a condensable gas by vaporization, that is, water, to the bypass system path in small quantities. Pump (4
4) and an evaporator (45) provided downstream of the pump (44) in the bypass pipe (12) and evaporating a liquid, that is, water. Even in this case, the same operation and effect as described above can be obtained.

【0045】[0045]

【発明の効果】本発明によると、次のような効果を奏す
ることができる。請求項1記載の発明によると、高価な
装置を用いることなく、また被検体の形態を崩すことな
く、被検体のメソボアからマイクロボアの領域までの細
孔の径及びその分布状況を正確に測定することができ
る。
According to the present invention, the following effects can be obtained. According to the first aspect of the present invention, the diameter of the pores from the mesopore to the microbore region of the subject and the distribution thereof can be accurately measured without using an expensive apparatus and without losing the shape of the subject. can do.

【0046】請求項2記載の発明によると、非凝縮性ガ
スの供給系路(主供給管)と、それから分岐されたバイパ
ス系路とに流通させる非凝縮性ガスの流量を調節するこ
とにより、非凝縮性ガスと凝縮性ガスとの混合割合を簡
単に調節することができる。
According to the second aspect of the present invention, by adjusting the flow rate of the non-condensable gas flowing through the non-condensable gas supply system (main supply pipe) and the bypass system branched therefrom, The mixing ratio between the non-condensable gas and the condensable gas can be easily adjusted.

【0047】請求項3記載の発明によると、バイパス系
路に流れる非凝縮性ガスに凝縮性ガスをほぼ飽和状態に
近い状態で安定して供給することができるとともに、凝
縮性ガスの供給手段の構成を簡素化し、安価に製造する
ことができる。
According to the third aspect of the present invention, the condensable gas can be stably supplied to the non-condensable gas flowing through the bypass system in a state close to a substantially saturated state, and the condensable gas supply means can be supplied. The configuration can be simplified and the device can be manufactured at low cost.

【0048】請求項4記載の発明によると、バイパス系
路に供給される凝縮性ガスの供給状態を、単一のバブラ
ーを用いる場合より、より安定させることができ、測定
精度の向上に寄与することができる。
According to the fourth aspect of the present invention, the supply state of the condensable gas supplied to the bypass system can be made more stable than when a single bubbler is used, which contributes to improvement in measurement accuracy. be able to.

【0049】請求項5記載の発明によると、凝縮性ガス
の供給手段を、ポンプと蒸発器とからなる簡単な構造の
ものとすることができる。
According to the fifth aspect of the invention, the means for supplying the condensable gas can have a simple structure comprising a pump and an evaporator.

【0050】請求項6記載の発明によると、温度維持手
段を設けたことにより、温度の変動による測定値の乱れ
を防止することができ、測定精度の向上に寄与すること
ができる。
According to the sixth aspect of the present invention, the provision of the temperature maintaining means can prevent the disturbance of the measured value due to the temperature fluctuation, thereby contributing to the improvement of the measurement accuracy.

【0051】請求項7記載の発明によると、平衡状態に
近い状態で測定できるので、2次チャンバを減圧した場
合のような、毛管凝縮した凝縮性ガスが再度気化して、
測定精度を悪化させる等のおそれをなくすことができ、
測定精度を向上することができる。
According to the seventh aspect of the present invention, since the measurement can be performed in a state close to the equilibrium state, the condensable gas condensed by the capillary is vaporized again as in the case where the pressure in the secondary chamber is reduced, and
It is possible to eliminate the risk of deteriorating measurement accuracy, etc.
Measurement accuracy can be improved.

【0052】請求項8記載の発明によると、非凝縮性ガ
ス及び凝縮性ガスとして、安価で無害の窒素ガス及び水
蒸気を用いるので、経済性及び安全性に優れ、公害発生
のおそれが全くない。
According to the invention of claim 8, since inexpensive and harmless nitrogen gas and water vapor are used as the non-condensable gas and the condensable gas, it is excellent in economy and safety, and there is no possibility of generating pollution.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の外観図である。FIG. 1 is an external view of an embodiment of the present invention.

【図2】同じく、本体部分の概略構成と配管系統とを模
式的に示す図である。
FIG. 2 is a view schematically showing a schematic configuration of a main body and a piping system.

【図3】同じく、ホルダの他の例を示す拡大縦断面図で
ある。
FIG. 3 is an enlarged vertical sectional view showing another example of the holder.

【図4】同じく、供給手段の他の例を示す配管系統図で
ある。
FIG. 4 is a piping diagram showing another example of the supply means.

【符号の説明】[Explanation of symbols]

(1)本体 (2)チャンバ(1次チャンバ) (3)(3')ホルダ(保持手段)(内部が2次チャンバ) (3a')拡径段部 (4)キャップ (5)被検体 (6)閉塞部材 (7)検査ガス供給管(検査ガス供給手段) (8)余剰ガス排出菅 (9)通過ガス排出菅 (10)窒素ガス源 (11)主供給管(供給系路) (12)バイパス管(バイパス系路) (13)レギュレータ(圧力調整手段) (14)流量コントローラ(調節手段) (15)電磁弁 (16)流量コントローラ(調節手段) (17)(18)電磁弁 (19)(20)バブラー(供給手段) (21)入口管 (22)出口管 (23)電磁弁 (24)密閉容器 (25)水 (26)電磁弁 (27)給水管 (28)水源 (29)電磁弁 (30)リミットスイッチ (31)電磁弁 (32)ドレン管 (33)温度センサ (34)ヒートバス(温度維持手段) (35)トラップ (36)自動圧力コントローラ (37)電磁弁 (38)排気口 (39)トラップ (40)流量計(測定手段) (41)電磁弁 (42)(43)電磁弁 (44)ポンプ (45)蒸発器 (A)上部ケース (A1)扉 (B)下部ケース (C)ケーブル (D)コンビュータ (RH)温湿度計 (1) Main body (2) Chamber (Primary chamber) (3) (3 ') Holder (holding means) (Inside is secondary chamber) (3a') Enlarged step (4) Cap (5) Subject ( 6) Blocking member (7) Inspection gas supply pipe (inspection gas supply means) (8) Excess gas discharge pipe (9) Passing gas discharge pipe (10) Nitrogen gas source (11) Main supply pipe (supply line) (12 ) Bypass pipe (bypass system path) (13) Regulator (pressure adjusting means) (14) Flow controller (adjusting means) (15) Solenoid valve (16) Flow controller (adjusting means) (17) (18) Solenoid valve (19 (20) Bubbler (supply means) (21) Inlet pipe (22) Outlet pipe (23) Solenoid valve (24) Sealed vessel (25) Water (26) Solenoid valve (27) Water supply pipe (28) Water source (29) Solenoid valve (30) Limit switch (31) Solenoid valve (32) Drain pipe (33) Temperature sensor (34) Heat bath (temperature maintaining means) (35) Trap (36) Automatic pressure controller (37) Solenoid valve (38) Exhaust Mouth (39) Trap (40) Flow meter (measuring means) (41) Solenoid valve (42) (43) Solenoid valve (44) Pump (45) Evaporation (A) an upper case (A1) Door (B) a lower case (C) cable (D) Konbyuta (RH) Hygrometer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 細孔を有する被検体を、その細孔の一端
が1次チャンバに、かつ細孔の他端が2次チャンバにそ
れぞれ連通するようにして、被検体を保持する保持手段
と、 1次チャンバに非凝縮性ガスと凝縮性ガスとの混合気体
である検査ガスを供給する検査ガス供給手段と、 検査ガス供給手段中に設けられ、1次チャンバに供給さ
れる非凝縮性ガスと凝縮性ガスとの混合割合を調節する
調節手段と、 2次チャンバに接続され、被検体を通過した検査ガスの
量を経時的に測定する測定手段とを備えることを特徴と
する細孔径分布測定装置。
1. A holding means for holding a subject such that the subject having a pore is connected to the primary chamber at one end of the pore and to the secondary chamber at the other end of the pore. A test gas supply means for supplying a test gas which is a mixed gas of a non-condensable gas and a condensable gas to the primary chamber; a non-condensable gas provided in the test gas supply means and supplied to the primary chamber A pore size distribution comprising adjusting means for adjusting the mixing ratio of the gas and the condensable gas, and measuring means connected to the secondary chamber and measuring the amount of the test gas passing through the subject over time. measuring device.
【請求項2】 検査ガス供給手段が、非凝縮性ガスの供
給系路と、それから分岐されたバイパス系路とを有し、
このバイパス系路に、凝縮性ガスの供給手段を設けた請
求項1記載の細孔径分布測定装置。
2. The test gas supply means has a supply path of a non-condensable gas and a bypass path branched therefrom,
2. The pore size distribution measuring device according to claim 1, wherein condensable gas supply means is provided in the bypass system.
【請求項3】 凝縮性ガスの供給手段が、気化すること
により凝縮性ガスとなる液体を収容して、その中を非凝
縮性ガスが通過することにより、非凝縮性ガス中に凝縮
性ガスが混入するようにしたバブラーを有している請求
項2記載の細孔径分布測定装置。
3. The condensable gas supply means contains a liquid that becomes a condensable gas by vaporization, and the non-condensable gas passes through the liquid, thereby condensing the condensable gas into the non-condensable gas. 3. The pore size distribution measuring device according to claim 2, further comprising a bubbler in which is mixed.
【請求項4】 凝縮性ガスの供給手段が、バイパス系路
に直列に接続した複数のバブラーを有している請求項3
記載の細孔径分布測定装置。
4. The condensable gas supply means has a plurality of bubblers connected in series to a bypass line.
The pore size distribution measuring device according to the above.
【請求項5】 凝縮性ガスの供給手段が、気化すること
により凝縮性ガスとなる液体をバイパス系路に微少量ず
つ供給するポンプと、バイパス系路における前記ポンプ
の下流側に設けられ、前記液体を気化させる蒸発器とを
有している請求項2記載の細孔径分布測定装置。
5. A condensable gas supply means, which is provided on a pump that supplies a liquid that becomes condensable gas by evaporating into a bypass system by a small amount, and a pump that is provided downstream of the pump in the bypass system. The pore size distribution measuring device according to claim 2, further comprising an evaporator for vaporizing the liquid.
【請求項6】 検査ガス供給手段に、検査ガスの温度を
設定温度に維持する温度維持手段を設けた請求項1〜5
のいずれかに記載の細孔径分布測定装置。
6. The test gas supply means is provided with a temperature maintaining means for maintaining the temperature of the test gas at a set temperature.
The pore size distribution measuring device according to any one of the above.
【請求項7】 2次チャンバをほぼ大気圧に維持し、か
つ1次チャンバを大気圧より大きい値に維持する圧力調
整手段を設けた請求項1〜6のいずれかに記載の細孔径
分布測定装置。
7. The pore size distribution measurement according to claim 1, further comprising pressure adjusting means for maintaining the secondary chamber at substantially atmospheric pressure and maintaining the primary chamber at a value higher than atmospheric pressure. apparatus.
【請求項8】 非凝縮性ガスを窒素とし、かつ凝縮性ガ
スを水蒸気とした請求項1〜7のいずれかに記載の細孔
径分布測定装置。
8. The pore size distribution measuring apparatus according to claim 1, wherein the non-condensable gas is nitrogen, and the condensable gas is water vapor.
JP2000048723A 2000-02-25 2000-02-25 Pore size distribution measuring device Expired - Lifetime JP3291691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000048723A JP3291691B2 (en) 2000-02-25 2000-02-25 Pore size distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000048723A JP3291691B2 (en) 2000-02-25 2000-02-25 Pore size distribution measuring device

Publications (2)

Publication Number Publication Date
JP2001235417A true JP2001235417A (en) 2001-08-31
JP3291691B2 JP3291691B2 (en) 2002-06-10

Family

ID=18570768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000048723A Expired - Lifetime JP3291691B2 (en) 2000-02-25 2000-02-25 Pore size distribution measuring device

Country Status (1)

Country Link
JP (1) JP3291691B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024649A (en) * 2005-07-14 2007-02-01 Central Res Inst Of Electric Power Ind Pore diameter distribution measuring method
JP2008157826A (en) * 2006-12-25 2008-07-10 National Institute Of Advanced Industrial & Technology Method for discriminating transmission pore
JP2015108435A (en) * 2013-12-03 2015-06-11 有限会社 ホーセンテクノ Branch type humidity conditioning gas supply device using bellows type pressure adjustor
JP2015120111A (en) * 2013-12-24 2015-07-02 日立造船株式会社 Porous film evaluation device and porous film evaluation method
JP2017044654A (en) * 2015-08-28 2017-03-02 公益財団法人地球環境産業技術研究機構 Device and method for evaluating pore size
JP2017191073A (en) * 2016-04-15 2017-10-19 国立大学法人広島大学 Method for measuring amount of material, pore size distribution deriving method, device for measuring amount of material and pore size distribution deriving device
JP2019203825A (en) * 2018-05-24 2019-11-28 イーセップ株式会社 Pore diameter distribution measuring device for nanoporous membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103357274B (en) * 2013-07-15 2015-08-05 浙江斯科能科技股份有限公司 A kind of method for hollow fiber film yarn pore size determination and device thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024649A (en) * 2005-07-14 2007-02-01 Central Res Inst Of Electric Power Ind Pore diameter distribution measuring method
JP2008157826A (en) * 2006-12-25 2008-07-10 National Institute Of Advanced Industrial & Technology Method for discriminating transmission pore
JP2015108435A (en) * 2013-12-03 2015-06-11 有限会社 ホーセンテクノ Branch type humidity conditioning gas supply device using bellows type pressure adjustor
JP2015120111A (en) * 2013-12-24 2015-07-02 日立造船株式会社 Porous film evaluation device and porous film evaluation method
JP2017044654A (en) * 2015-08-28 2017-03-02 公益財団法人地球環境産業技術研究機構 Device and method for evaluating pore size
JP2017191073A (en) * 2016-04-15 2017-10-19 国立大学法人広島大学 Method for measuring amount of material, pore size distribution deriving method, device for measuring amount of material and pore size distribution deriving device
JP2019203825A (en) * 2018-05-24 2019-11-28 イーセップ株式会社 Pore diameter distribution measuring device for nanoporous membrane
JP7219435B2 (en) 2018-05-24 2023-02-08 イーセップ株式会社 Pore size distribution measuring device for nanoporous membrane

Also Published As

Publication number Publication date
JP3291691B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
CN104990827B (en) The measuring method and equipment of low volatility organic gas adsorbance on the adsorbent material
JP3291691B2 (en) Pore size distribution measuring device
JPH0481650A (en) Apparatus for preparing standard gas
JP2023030159A (en) Pressure control system
CN107824062B (en) Method and apparatus for generating a continuous flow of a carrier gas/steam mixture
US3533272A (en) Preparation of gas mixtures
US6896247B2 (en) X-ray analysis system with humidified sample
US6526803B1 (en) Apparatus and method for generating moisture standards in gases
CN112169668A (en) Dynamic volume saturated gas generator and generation system based on condensation saturation
JP2019203825A (en) Pore diameter distribution measuring device for nanoporous membrane
JPH10307095A (en) Odor measuring equipment
US5327779A (en) Vapor pressure measurement by gas saturation for mixture
CN107024412B (en) Aqueous high-purity argon gas monitors system and method
CN114428009B (en) Configuration equipment and method for high-volatility VOCs liquid standard substance
JPH07113605B2 (en) Gas analyzer
JPS6116928B2 (en)
JPH0110579Y2 (en)
JP4214436B2 (en) Component measuring device
CN111765918B (en) Moisture test calibration device and method under ultra-wide temperature
JP7212337B2 (en) Measuring method and measuring device by gas sensor
JP2769591B2 (en) Low-temperature liquefied gas moisture management method
SU1352356A1 (en) Device for determining aggregate organic carbon in water media
JPH0321470Y2 (en)
JPH0361848A (en) Alcohol concentration detector
SU607131A1 (en) Installation for obtaining predetermined vapour concentration in gas

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3291691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110329

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120329

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130329

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140329

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term