JPH0321470Y2 - - Google Patents

Info

Publication number
JPH0321470Y2
JPH0321470Y2 JP6102484U JP6102484U JPH0321470Y2 JP H0321470 Y2 JPH0321470 Y2 JP H0321470Y2 JP 6102484 U JP6102484 U JP 6102484U JP 6102484 U JP6102484 U JP 6102484U JP H0321470 Y2 JPH0321470 Y2 JP H0321470Y2
Authority
JP
Japan
Prior art keywords
liquid
sample
diffusion
standard gas
liquid reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6102484U
Other languages
Japanese (ja)
Other versions
JPS60173050U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6102484U priority Critical patent/JPS60173050U/en
Publication of JPS60173050U publication Critical patent/JPS60173050U/en
Application granted granted Critical
Publication of JPH0321470Y2 publication Critical patent/JPH0321470Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【考案の詳細な説明】 本考案は、液溜め密閉容器に内部の試料拡散路
がこの液溜め密閉容器内と連通する拡散管が連結
され、前記液溜め密閉容器内の試料液の蒸気を前
記拡散管の拡散路を拡散させた後、外部に流出さ
せこの流出蒸気を希釈ガスに混合して標準ガスを
得るようにした標準ガス製造用装置に関し、更に
詳述すると、気体通過性を有するメンブレンを利
用することにより、ppb〜ppmレベルの標準ガス
を安定に得ることができ、しかも取り扱いが簡単
な標準ガス製造用装置に関する。
[Detailed description of the invention] In the present invention, a diffusion tube whose internal sample diffusion path communicates with the inside of the liquid reservoir sealed container is connected to the liquid reservoir sealed container, and the vapor of the sample liquid in the liquid reservoir sealed container is transferred to the liquid reservoir sealed container. Regarding a standard gas production device that diffuses through a diffusion path of a diffusion tube and then flows out to the outside and mixes the outflow vapor with dilution gas to obtain a standard gas, in more detail, a membrane having gas permeability is used. The present invention relates to an apparatus for producing a standard gas that can stably obtain a standard gas at a ppb to ppm level by using the above, and is easy to handle.

従来より、気体の拡散や浸透を利用して標準ガ
スを得る方法として、パーミエーシヨンチユーブ
やデイフユージヨンチユーブといつた標準ガス発
生用装置を用いる方法が知られている。
BACKGROUND ART Conventionally, as a method of obtaining a standard gas by utilizing gas diffusion or osmosis, a method using a standard gas generating device such as a permeation tube or a diffusion tube has been known.

パーミエーシヨンチユーブを用いる方法は、四
フツ化エチレン樹脂チユーブ等のパーミエーシヨ
ンチユーブ内に試料液を封入し、このパーミエー
シヨンチユーブに試料を浸透させ、拡散させるも
ので、試料がチユーブに浸透した後外壁から拡散
する量が温度により一定になることを利用して所
定濃度の標準ガスを得る方法である。しかし、パ
ーミエーシヨンチユーブは取り扱いは容易である
が、浸透現象を利用するため使用開始後安定する
までに時間がかかり、またこの方法はppb〜数
ppm程度の濃度の標準試料を得るのには適してい
るが、ppmレベルの濃度の標準試料を得るのには
適していない。
The method using a permeation tube involves sealing the sample liquid in a permeation tube such as a tetrafluoroethylene resin tube, and allowing the sample to permeate and diffuse into the permeation tube. This is a method to obtain a standard gas of a predetermined concentration by utilizing the fact that the amount of gas that diffuses from the outer wall after heating remains constant depending on the temperature. However, although permeation tubes are easy to handle, they take time to become stable after use because they utilize an osmotic phenomenon, and this method is limited to ppb to several ppb.
It is suitable for obtaining standard samples with concentrations on the ppm level, but not suitable for obtaining standard samples with concentrations on the ppm level.

また、デイフユージヨンチユーブを用いる方法
は、液溜め容器内の試料液の蒸気を拡散管内の試
料拡散路を拡散させた後外部に流出させるもの
で、一定温度のもとで試料の蒸気が一定の内径を
有する拡散管内を拡散する速度が一定であること
を利用する方法であり、液の蒸気圧が5〜400mm
Hgの範囲で希釈ガス流量が2/min以下であ
れば使用できるとされppmレベルの標準ガスが得
られるものである。しかし、デイフユージヨンチ
ユーブは気相と液相とが直接接触しているので液
面変化の影響があり、また拡散管内壁や液溜め容
器内壁に余分な試料が付着した場合安定な蒸気の
発生が得られないため、液補給時、秤量時に拡散
管や液溜めの内壁に液が付着しないようにする必
要があると共に、静置して使用する必要があり、
取り扱いが面倒である上、標準ガスの発生量をあ
まり低くできないという問題がある。
In addition, in the method using a diffusion tube, the vapor of the sample liquid in the liquid reservoir is diffused through the sample diffusion path in the diffusion tube and then flows out to the outside. This method utilizes the fact that the speed of diffusion in a diffusion tube with a constant inner diameter is constant, and the vapor pressure of the liquid is 5 to 400 mm.
If the diluent gas flow rate is 2/min or less in the Hg range, it can be used and a ppm level standard gas can be obtained. However, because the vapor and liquid phases in the diffusion tube are in direct contact, changes in the liquid level may affect the diffusion tube, and if excess sample adheres to the inner wall of the diffusion tube or the liquid reservoir, stable vapor flow may occur. Therefore, it is necessary to prevent the liquid from adhering to the inner wall of the diffusion tube or liquid reservoir when replenishing the liquid or weighing it, and it is also necessary to leave it stationary before use.
In addition to being troublesome to handle, there are problems in that the amount of standard gas generated cannot be reduced very much.

本考案は、上記事情に鑑みなされたもので、内
部に試料液を入れる液溜め密閉容器と、この液溜
め密閉容器に連結され、内部の試料拡散路が前記
液溜め密閉容器内と連通する拡散管とを有し、前
記液溜め密閉容器内の試料液の蒸気が前記拡散管
の試料拡散路を拡散した後外部に流出するように
した標準ガス製造用装置において、前記液溜め密
閉容器内を、試料液の蒸気が通過し得るメンブレ
ンで仕切ることにより液溜め密閉容器内に液溜め
室を形成して、この液溜め室内に入れた試料液の
蒸気が前記メンブレンを透過した後拡散管の試料
拡散路を拡散するようにしたことにより、ppb〜
ppmレベルという幅広い濃度の標準ガスを安定に
得ることができ、かつ液面変化の影響がなく、し
かも取り扱いが容易な標準ガス発生用装置を提供
することを目的とする。
The present invention was developed in view of the above circumstances, and includes a liquid reservoir sealed container into which a sample liquid is placed, and a diffusion passage connected to the liquid reservoir sealed container, with an internal sample diffusion path communicating with the inside of the liquid reservoir sealed container. In the standard gas production apparatus, the vapor of the sample liquid in the liquid reservoir airtight container diffuses through the sample diffusion path of the diffusion tube and then flows out. A liquid reservoir chamber is formed in the liquid reservoir sealed container by partitioning it with a membrane through which the vapor of the sample liquid can pass, and after the vapor of the sample liquid placed in this liquid reservoir chamber passes through the membrane, it is removed from the sample in the diffusion tube. By making the diffusion path diffuse, ppb~
The purpose of the present invention is to provide a standard gas generation device that can stably obtain a standard gas with a wide range of concentrations such as the ppm level, is not affected by changes in liquid level, and is easy to handle.

以下、本考案の一実施例につき図面を参照して
更に詳しく説明する。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings.

第1図において1は本考案の一実施例に係る標
準ガス発生用装置を示すもので、この標準ガス発
生用装置1はほぼ中空円柱状のガラス製液溜め密
閉容器2と、この液溜め密閉容器2上壁に突設さ
れ、内部に形成された試料拡散路3が液溜め密閉
容器2内に連通する円筒状のガラス製拡散管4と
を有するものである。前記液溜め密閉容器2内ほ
ぼ中央には試料液が通過せずかつ試料液の蒸気が
通過し得るメンブレン5が水平に張り渡されて配
設されており、このメンブレン5によつて液溜め
容器2内が液密に仕切られてメンブレン5下方に
液溜め室6が形成されている。また、液溜め密閉
容器2側壁の上記メンブレン5配設位置のやや下
方には試料液注入口7が穿設され、この試料液注
入口7には栓8が挿入されている。
In Fig. 1, reference numeral 1 indicates a standard gas generation device according to an embodiment of the present invention. It has a cylindrical glass diffusion tube 4 which is protruded from the upper wall of the container 2 and has a sample diffusion path 3 formed inside that communicates with the inside of the liquid reservoir sealed container 2 . A membrane 5, which does not allow the sample liquid to pass through but allows the vapor of the sample liquid to pass through, is horizontally stretched approximately in the center of the liquid reservoir sealed container 2. A liquid reservoir chamber 6 is formed below the membrane 5 by partitioning the inside of the chamber 2 in a liquid-tight manner. Further, a sample liquid inlet 7 is bored in the side wall of the liquid reservoir closed container 2 slightly below the membrane 5 arrangement position, and a stopper 8 is inserted into this sample liquid inlet 7.

上記標準ガス発生用装置1を使用する場合、ま
ず試料液注入口7から液溜め密閉容器2内の液溜
め室6に試料液を注入した後、試料液注入口7に
栓8を挿入する。次に、この標準ガス発生用装置
1を恒温ホルダー等の標準ガス製造機構に配置
し、液溜め室6内の試料液9の蒸気がメンブレン
5を通過した後、この蒸気を拡散管4の試料拡散
路3内に拡散させて拡散管4外に流出させ、これ
を希釈ガスにより希釈して標準ガスを得るもので
ある。
When using the standard gas generation device 1 described above, first, a sample liquid is injected from the sample liquid injection port 7 into the liquid storage chamber 6 in the liquid storage sealed container 2, and then the stopper 8 is inserted into the sample liquid injection port 7. Next, this standard gas generation device 1 is placed in a standard gas production mechanism such as a constant temperature holder, and after the vapor of the sample liquid 9 in the liquid storage chamber 6 passes through the membrane 5, this vapor is transferred to the sample in the diffusion tube 4. The gas is diffused into the diffusion path 3 and flows out of the diffusion tube 4, and then diluted with a diluent gas to obtain a standard gas.

上記標準試料製造装置1においては、液溜め密
閉容器2内を試料液の蒸気が通過し得るメンブレ
ン5で仕切つて液密な液溜め室6を形成し、この
液溜め室6内の試料液9の蒸気が前記メンブレン
5を通過した後、拡散管4内の試料拡散路3を拡
散するようにしたので、試料液9と希釈ガスとが
直接接触することがなく、メンブレン5の厚さ、
孔径、表面積等を調整することによつてppb〜
ppmオーダーの種々の濃度を有する標準ガスを得
ることができると共に、固定配置されたメンブレ
ン5が液面の如き作用を示し、このメンブレン5
から試料蒸気が拡散する状態となるため、液面変
化の影響を受けず、所定濃度の標準ガスを安定に
得ることができる。また、試料液9が液溜め室6
内に入れられているため、静置使用する必要が必
ずしもなく、取り扱いが簡単である上、倒立させ
たり、傾斜させて使用することも可能である。更
に、上記装置1においては、液溜め密閉容器2側
壁のメンブレン5配設位置のやや下方に試料液注
入口7を穿設してこの試料液注入口7から液溜め
室6内に試料液9を注入するようにしたので、試
料液9の注入時や補給時等に試料液が拡散管4内
壁等に付着することがなく、取り扱いが簡単であ
ると共に、使用開始後比較的短時間で安定する。
In the above-mentioned standard sample manufacturing apparatus 1, a liquid-tight liquid storage chamber 6 is formed by partitioning the inside of the liquid storage sealed container 2 with a membrane 5 through which the vapor of the sample liquid can pass, and the sample liquid 9 in this liquid storage chamber 6 is After the vapor passes through the membrane 5, it is diffused through the sample diffusion path 3 in the diffusion tube 4, so that the sample liquid 9 and the diluent gas do not come into direct contact with each other, and the thickness of the membrane 5,
ppb ~ by adjusting pore size, surface area, etc.
Standard gases having various concentrations on the order of ppm can be obtained, and the fixedly arranged membrane 5 acts like a liquid surface.
Since the sample vapor is in a state of diffusion, it is not affected by changes in the liquid level and a standard gas of a predetermined concentration can be stably obtained. In addition, the sample liquid 9 is stored in the liquid reservoir chamber 6.
Since it is placed inside the device, it is not necessarily necessary to use it stationary, and it is easy to handle, and it can also be used upside down or tilted. Furthermore, in the above-mentioned apparatus 1, a sample liquid inlet 7 is provided in the side wall of the liquid reservoir sealed container 2, slightly below the membrane 5 arrangement position, and the sample liquid 9 is introduced into the liquid reservoir chamber 6 from this sample liquid inlet 7. Since the sample solution is injected, the sample solution does not adhere to the inner wall of the diffusion tube 4 when injecting or replenishing the sample solution 9, making it easy to handle and stabilizing in a relatively short time after starting use. do.

なお、上記装置においては液溜め密閉容器2側
壁に試料液注入口7を穿設してここから液溜め室
6内に試料液9を注入するようにしたが、液溜め
室6内に試料液を入れる手段はこれに限られず、
例えば第2図に示すように液溜め密閉容器2のメ
ンブレン配設位置やや下方にすり合わせ部10を
形成することにより液溜め密閉容器2をメンブレ
ン配設位置やや下方を境界として上側容器2aと
下側容器2bとに分割し、下側容器2b開口部か
ら下側容器2bに試料液9を注入した後、下側容
器2bに上側容器2aを載せることにより、液溜
め室6内に試料液9を入れるようにしてもよく、
更に他の手段を用いても差支えない。
In the above device, the sample liquid inlet 7 is drilled in the side wall of the liquid reservoir sealed container 2, and the sample liquid 9 is injected into the liquid reservoir chamber 6 from there. The means to enter are not limited to this,
For example, as shown in FIG. 2, by forming a fitting part 10 slightly below the membrane installation position of the liquid reservoir sealed container 2, the liquid storage closed container 2 can be connected to the upper container 2a and the lower side with the boundary slightly below the membrane installation position. After injecting the sample liquid 9 into the lower container 2b from the opening of the lower container 2b, the upper container 2a is placed on the lower container 2b, and the sample liquid 9 is poured into the liquid reservoir chamber 6. You can also put
Furthermore, other means may also be used.

また、本考案においては試料液の蒸気が通過し
得るメンブレンの材質は特に制限されないが、気
孔を有し、しかも試料液に濡れないもの、例えば
テフロンメンブレン、シリコンメンブレン、ガラ
ス繊維メンブレン等が好適に使用し得る。この場
合、気孔の孔径が0.1〜100μmのもの、メンブレ
ン厚さが0.01〜0.1のものを用いることが好まし
い。なお、液溜め密閉容器内にメンブレンを配設
する手段も特に制限されず、接着等の手段により
配設することができる。
In addition, in the present invention, there is no particular restriction on the material of the membrane through which the vapor of the sample liquid can pass, but materials that have pores and do not get wet with the sample liquid, such as Teflon membranes, silicone membranes, glass fiber membranes, etc., are preferred. Can be used. In this case, it is preferable to use a membrane having a pore diameter of 0.1 to 100 μm and a membrane thickness of 0.01 to 0.1. Note that the means for disposing the membrane within the liquid reservoir closed container is not particularly limited, and may be disposed by means such as adhesion.

なお、本考案の標準ガス発生用装置を使用した
場合、標準ガス濃度は周囲温度、希釈ガス流量、
拡散管の長さ、試料拡散路断面積などによつて決
定され、またメンブレンの厚さ、孔径、表面積な
どによつて標準ガス濃度を設定できるものであ
る。
In addition, when using the standard gas generation device of this invention, the standard gas concentration depends on the ambient temperature, dilution gas flow rate,
It is determined by the length of the diffusion tube, the cross-sectional area of the sample diffusion path, etc., and the standard gas concentration can be set by the thickness, pore diameter, surface area, etc. of the membrane.

この場合、本考案の標準ガス発生用装置におい
ては、液溜め密閉容器2と拡散管4とを着脱可能
に連結して拡散管4を交換可能とし、液溜め密閉
容器2に取り付ける拡散管4を種々の長さ、拡散
路断面積を有するものに変えることができ、これ
により同じ液溜め密閉容器2を用いて種々の濃度
の標準ガスを得ることができる。即ち、標準ガス
の発生濃度は後述する(1)式により決定されるが、
ここでDrは拡散管4の長さ及び拡散路断面積、
希釈ガス温度、試料蒸気圧力で決まる。従つて、
標準ガスの発生濃度は希釈ガスの流量、温度を変
えたり、拡散管4の長さ、拡散路断面積を変える
ことにより変化させることができるが、希釈ガス
流量を一定にしたまま希釈ガス温度を変えて標準
ガス濃度を変化させると温度の変更後安定するま
でに時間がかかる。これに対し、上述したように
拡散管4を交換可能に形成した場合は、例えば液
溜め密閉容器2を一試料につき一つとし、これに
種々の長さ、拡散路断面積を有する拡散管を取り
付けることにより、希釈ガス流量を一定にしたま
まで簡単に種々の濃度の標準ガスが得られるもの
である。なお、液溜め密閉容器2と拡散管4とを
着脱可能に連結する手段は特に制限されないが、
例えば第3図に示すように拡散管4の基端側にフ
エルル・フロント4a及びフエルル・リア4bを
配設すると共に、この拡散管4基端側を液溜め密
閉容器2に形成された拡散管挿入部2aと挿入孔
2bに挿入し、更に中央に拡散管嵌挿孔Aが穿設
された袋ナツトBを上記拡散管挿入部2aのねじ
山2cに噛合することにより拡散管4挿入箇所を
固定、シールする方法や、第4図に示すように拡
散管4基端側を拡散管挿入部2aの挿入孔2bに
挿入し、更に中央に拡散管嵌挿孔Aが穿設されか
つ内部にOリングCが配設された袋ナツトBを拡
散管挿入部2aのねじ山2cを噛合することによ
り拡散管4挿入箇所を固定、シールする方法等が
好適に採用され、これによつて単に拡散管4をす
り合せ方式で液溜め密閉容器2に挿入した場合の
如く試料液の蒸気が液溜め密閉容器2と拡散管4
との接触部から拡散するのを良好に防止すること
ができる。
In this case, in the standard gas generation device of the present invention, the liquid reservoir sealed container 2 and the diffusion tube 4 are removably connected to make the diffusion tube 4 replaceable, and the diffusion tube 4 attached to the liquid reservoir sealed container 2 is connected to the diffusion tube 4 in a detachable manner. It can be changed to one having various lengths and diffusion path cross-sectional areas, thereby making it possible to obtain standard gases of various concentrations using the same liquid reservoir sealed container 2. In other words, the concentration of the standard gas generated is determined by equation (1), which will be described later.
Here, Dr is the length of the diffusion tube 4 and the cross-sectional area of the diffusion path,
Determined by dilution gas temperature and sample vapor pressure. Therefore,
The concentration of the standard gas generated can be changed by changing the flow rate and temperature of the diluent gas, the length of the diffusion tube 4, and the cross-sectional area of the diffusion path. If you change the standard gas concentration by changing the temperature, it will take time to stabilize after changing the temperature. On the other hand, if the diffusion tube 4 is formed to be replaceable as described above, for example, one liquid reservoir sealed container 2 is provided for each sample, and diffusion tubes having various lengths and diffusion path cross-sectional areas are attached to this. By installing it, standard gases of various concentrations can be easily obtained while keeping the dilution gas flow rate constant. Note that the means for removably connecting the liquid reservoir sealed container 2 and the diffusion tube 4 is not particularly limited;
For example, as shown in FIG. 3, a ferrule front 4a and a ferrule rear 4b are arranged on the base end side of the diffusion tube 4, and the diffusion tube 4 is connected to the base end of the diffusion tube 4 formed in the liquid reservoir sealed container 2. The diffusion tube 4 is inserted into the insertion portion 2a and the insertion hole 2b, and a cap nut B having a diffusion tube insertion hole A drilled in the center is engaged with the screw thread 2c of the diffusion tube insertion portion 2a. As shown in Fig. 4, the proximal end of the diffusion tube 4 is inserted into the insertion hole 2b of the diffusion tube insertion part 2a, and a diffusion tube insertion hole A is drilled in the center and the inside is fixed and sealed. A method is preferably adopted in which the insertion point of the diffusion tube 4 is fixed and sealed by engaging the cap nut B equipped with the O-ring C with the screw thread 2c of the diffusion tube insertion portion 2a. When the tube 4 is inserted into the liquid reservoir sealed container 2 by rubbing, the vapor of the sample liquid flows between the liquid reservoir sealed container 2 and the diffusion tube 4.
It is possible to effectively prevent diffusion from the contact area.

第5図は本考案の標準ガス製造用装置の使用例
を示すものである。
FIG. 5 shows an example of the use of the standard gas production apparatus of the present invention.

第5図において11は箱型の恒温ホルダで、こ
の恒温ホルダ11上壁には標準ガス製造用装置装
着孔12が穿設されていると共に、この装着孔1
2に本考案標準ガス製造用装置1の下部(第5図
においては上部)が気密に取り付けられており、
これにより標準ガス製造装置1が恒温ホルダ11
内で倒立状態となるよう恒温ホルダ11に接着さ
れている。なお、上記標準ガス製造用装置1は第
1図に示した装置とほぼ同一構成のものであり、
同一構成部分には同一参照符号を付してその説明
を省略するが、本装置においては恒温ホルダ11
外に露出した液溜め密閉容器2の下壁(第5図に
おいては上壁)に試料液注入口7が穿設され、こ
の試料液注入口7に栓8が挿入されており、この
試料液注入口7から液溜め室6内に試料液を注入
するようになつている。また、前記恒温ホルダ1
1の一側壁11a上部には希釈ガス流入口13が
形成されていると共に、上記一側壁11aに対向
する他端壁11bの下部には希釈ガス流出口14
が形成されており、希釈ガス流入口13から恒温
ホルダ11内に流入した希釈ガスは、恒温ホルダ
11内を流通した後、希釈ガス流出口14から恒
温ホルダ11外に出するようになつている。
In FIG. 5, reference numeral 11 denotes a box-shaped constant temperature holder, and the upper wall of this constant temperature holder 11 is provided with a standard gas production device mounting hole 12.
The lower part (the upper part in Fig. 5) of the standard gas production apparatus 1 of the present invention is airtightly attached to 2.
As a result, the standard gas production device 1 becomes the constant temperature holder 11.
It is glued to the constant temperature holder 11 so that it is in an inverted state inside. Note that the standard gas production apparatus 1 has almost the same configuration as the apparatus shown in FIG.
Identical components are given the same reference numerals and their explanations are omitted; however, in this device, the constant temperature holder 11
A sample liquid inlet 7 is bored in the lower wall (upper wall in FIG. 5) of the liquid reservoir airtight container 2 exposed to the outside, and a stopper 8 is inserted into this sample liquid inlet 7. A sample liquid is injected into the liquid reservoir chamber 6 from the injection port 7. In addition, the constant temperature holder 1
A diluent gas inlet 13 is formed in the upper part of one side wall 11a of the 1, and a dilute gas outlet 14 is formed in the lower part of the other end wall 11b opposite to the one side wall 11a.
The diluent gas that has flowed into the thermostatic holder 11 from the diluent gas inlet 13 flows through the thermostatic holder 11 and then flows out of the thermostatic holder 11 from the diluent gas outlet 14. .

第5図に示す装置を用いて標準ガスを製造する
場合、まず試料液注入口7から液溜め密閉容器2
内の液溜め室6に試料液を注入した後、試料液注
入口7に栓8を挿入する。次に、希釈ガス流入口
13から恒温ホルダ11内に連続的に希釈ガスを
導入すると、メンブレン5を通過した後拡散管4
の試料拡散路3を拡散して拡散管4外に流出した
液溜め室6内の試料液9の蒸気は、上記希釈ガス
により希釈された後、標準ガスとして希釈ガス流
出口14から流出するものである。
When producing a standard gas using the apparatus shown in FIG.
After injecting the sample liquid into the liquid reservoir chamber 6 inside, the stopper 8 is inserted into the sample liquid injection port 7. Next, when diluting gas is continuously introduced into the constant temperature holder 11 from the diluting gas inlet 13, after passing through the membrane 5, the diluting gas is introduced into the diffusion tube 4.
The vapor of the sample liquid 9 in the liquid storage chamber 6 which has diffused through the sample diffusion path 3 and flowed out of the diffusion tube 4 is diluted with the diluent gas, and then flows out from the dilution gas outlet 14 as a standard gas. It is.

第5図に示す装置においては、本考案標準ガス
発生用装置1を倒立状態で恒温ホルダ11に装着
し、しかも恒温ホルダ11外に露出した液溜め密
閉容器2下壁(第5図においては上壁)に試料液
注入口7を穿設してこの試料液注入口7から液溜
め室6内に試料液9を注入するようにしたので、
試料液9の注入時や補給時等に標準ガス発生用装
置1を恒温ホルダ11から取り外す必要がなく、
しかも試料液を拡散管4内壁に付着させることな
く注入、補給を行なうことができるものである。
In the apparatus shown in FIG. 5, the standard gas generation device 1 of the present invention is attached to a constant temperature holder 11 in an inverted state, and the lower wall of the liquid reservoir sealed container 2 (in FIG. 5, the upper A sample liquid inlet 7 is bored in the wall) and the sample liquid 9 is injected into the liquid reservoir chamber 6 from this sample liquid inlet 7.
There is no need to remove the standard gas generation device 1 from the thermostatic holder 11 when injecting the sample liquid 9 or replenishing it.
Moreover, the sample liquid can be injected and replenished without adhering to the inner wall of the diffusion tube 4.

以上説明したように、本考案に係る標準ガス発
生用装置は、内部に試料液を入れる液溜め密閉容
器と、この液溜め密閉容器に連結され、内部の試
料拡散路が前記液溜め密閉容器内と連通する拡散
管とを有し、前記液溜め密閉容器内の試料液の蒸
気が前記拡散管の試料拡散路を拡散した後外部に
流出するようにした標準ガス製造用装置におい
て、前記液溜め密閉容器内を、試料液の蒸気が通
過し得るメンブレンで仕切ることにより液溜め密
閉容器内に液溜め室を形成して、この液溜め室内
に入れた試料液の蒸気が前記メンブレンを透過し
た後拡散管の試料拡散路を拡散するようにしたこ
とにより、ppb〜ppmレベルという幅広い範囲の
濃度の標準ガスを安定に得ることができ、また試
料液が拡散管内壁に付着することもなく、取り扱
いが簡単なものである。
As explained above, the standard gas generation device according to the present invention includes a liquid reservoir sealed container into which a sample liquid is placed, and is connected to this liquid reservoir sealed container, and an internal sample diffusion path is connected to the liquid reservoir sealed container. In the standard gas production apparatus, the standard gas production apparatus has a diffusion tube communicating with the liquid reservoir, and the vapor of the sample liquid in the liquid reservoir closed container flows out after diffusing through the sample diffusion path of the diffusion tube. A liquid reservoir chamber is formed in the liquid reservoir airtight container by partitioning the inside of the sealed container with a membrane through which the vapor of the sample liquid can pass, and after the vapor of the sample liquid placed in this liquid reservoir chamber passes through the membrane. By making the sample diffusion path of the diffusion tube diffuse, it is possible to stably obtain a standard gas with a wide concentration range of ppb to ppm level, and the sample liquid does not adhere to the inner wall of the diffusion tube, making it easier to handle. is simple.

次に、本考案標準ガス発生用装置を用いた実験
例を示し、本考案の効果を具体的に説明する。
Next, an experimental example using the standard gas generation device of the present invention will be shown to specifically explain the effects of the present invention.

〔実験例〕[Experiment example]

拡散路断面積0.0314mm2、拡散管長さ6cmで、メ
ンブレンとしてテフロンメンブレン(フルオロポ
アFS−D10、径12φ)を使用した第1図に示す
如き装置の液溜め室にトルエンを注入し、希釈ガ
ス流量1/min、蒸気温度21〜22℃の条件で通
常の方法により標準ガスを製造し、メタン校正し
た全炭化水素計を用いて標準ガス中のトルエン濃
度を求めた。また、標準ガス発生用装置を倒立使
用した場合についても同様の実験を行なつた。な
お、濃度測定は検出器としてFIDを使用し、温度
80℃、水素27ml/min、試料10ml/min、助燃空
気400ml/minの測定条件で行なつた。
Toluene was injected into the reservoir chamber of the device shown in Figure 1, which had a diffusion path cross-sectional area of 0.0314 mm 2 , a diffusion tube length of 6 cm, and a Teflon membrane (Fluoropore FS-D10, diameter 12φ) as the membrane, and the diluent gas flow rate was adjusted. A standard gas was produced by a conventional method under conditions of 1/min and a steam temperature of 21 to 22°C, and the toluene concentration in the standard gas was determined using a methane-calibrated total hydrocarbon meter. Similar experiments were also conducted using the standard gas generation device in an inverted position. Note that concentration measurement uses FID as a detector, and temperature
The measurement conditions were 80°C, hydrogen 27ml/min, sample 10ml/min, and auxiliary combustion air 400ml/min.

その結果、拡散管の蒸気流出口を上に向けた場
合及び下に向けた場合のいずれも得られた標準ガ
ス中のトルエン濃度は0.66ppmであつた。このこ
とから、本考案の標準ガス発生用装置を用いるこ
とによりデイフユージヨンチユーブを使用し場合
と同程度の流量の標準ガスを得られ、しかも倒立
使用によつてその効果に変化が生じないことが認
められた。また、上記標準ガス発生用装置は試料
液の注入の際等に試料液が拡散管内壁に付着する
ことがなく、安定までに要する時間も3分以内と
短く、しかも静置使用る必要がなく、取り扱いが
極めて簡単なものであつた。
As a result, the toluene concentration in the standard gas obtained was 0.66 ppm both when the vapor outlet of the diffusion tube was directed upward and downward. Therefore, by using the standard gas generation device of the present invention, it is possible to obtain standard gas at a flow rate comparable to that obtained by using a diffusion tube, and the effect does not change even when used upside down. This was recognized. In addition, with the standard gas generation device mentioned above, the sample liquid does not adhere to the inner wall of the diffusion tube when injecting the sample liquid, the time required for stabilization is short, less than 3 minutes, and there is no need to use it stationary. It was extremely easy to handle.

なお、参考のため、デイフユージヨンチユーブ
を用いて通常の方法により標準ガスを製造する場
合について述べる。
For reference, a case will be described in which a standard gas is produced by a normal method using a diffusion tube.

デイフユージヨンチユーブによつて発生する標
準ガスの濃度は下記式(1)により算出される。
The concentration of the standard gas generated by the diffusion tube is calculated using the following formula (1).

C=Dr×KF ……(1) C:標準ガス濃度(ppm) Dr:拡散速度(ng/min) F:希釈ガス流量(ml/min) K:定数 ここで、Kはガス重量を容積変換する係数であ
る(下記式(2))。
C= Dr (formula (2) below).

K=22.4M×T273×P760 ……(2) M:試料液体の分子量 T:希釈ガス温度 P:大気圧(mmHg) 拡散速度Drは実際の試料の減少量を秤量によ
つて求め、下記式(3)により算出する。この場合、
デイフユージヨンチユーブを一定温度に保ち、一
定流量を流して測定する。
K = 22.4M × T273 × P760 ... (2) M: Molecular weight of sample liquid T: Diluent gas temperature P: Atmospheric pressure (mmHg) Diffusion rate D r is determined by weighing the actual amount of decrease in the sample, and is calculated as follows. Calculated using formula (3). in this case,
Measurements are made by keeping the diffuser tube at a constant temperature and flowing a constant flow rate.

Drm×109 ……(3) m:試料の減少量(g) T:秤量間隔(min) しかし、拡散定数は下記式(4)により推算され
る。
D r = m×10 9 T (3) m: sample reduction amount (g) T: weighing interval (min) However, the diffusion constant is estimated by the following formula (4).

Dr=1.90×104・T・Dp・M・AL・logPP−ρ
……(4) T:蒸気温度(〓) Dp:拡散定数 Dp=D(TTp 2 Pp(cm2/sec) M:試料分子量(g) A:拡散路断面積(cm2) L:拡散管長さ(cm) P:大気圧(mmHg) ρ:試料蒸気圧(mmHg at T) 従つて、内径2mm、長さ10cmの拡散管を有する
デイフユージヨンチユーブにトルエンを注入し、
希釈ガス流量1/min、蒸気温度303〓の条件
で標準ガスを製造した場合、 Dr=1.9×104・303.0.0849・92.13・0.031410
0.0215=3054(ng/min) C=3054×〓〓×〓〓×〓〓/1000=0.76ppm となり、また10ppmの標準ガスを1/minの流
量で得るためには拡散管内径5mm、拡散管長さ
4.75mmのデイフユージヨンチユーブを使用すれば
よいことになる。
D r =1.90×10 4・T・D p・M・AL・log PP−ρ
...(4) T: Steam temperature (〓) D p : Diffusion constant D p = D ( TT p ) 2 P p P (cm 2 /sec) M: Sample molecular weight (g) A: Diffusion path cross-sectional area (cm 2 ) L: Diffusion tube length (cm) P: Atmospheric pressure (mmHg) ρ: Sample vapor pressure (mmHg at T) Therefore, toluene was injected into a diffusion tube with an inner diameter of 2 mm and a length of 10 cm. death,
When standard gas is produced under the conditions of dilution gas flow rate 1/min and steam temperature 303〓, D r = 1.9×10 4・303.0.0849・92.13・0.031410
0.0215=3054 (ng/min) C=3054×〓〓×〓〓×〓〓/1000=0.76ppm, and in order to obtain 10ppm standard gas at a flow rate of 1/min, the inner diameter of the diffusion tube should be 5 mm and the length of the diffusion tube should be 5 mm. difference
All you need to do is use a 4.75mm differential tube.

従つて、デイフユージヨンチユーブはppmレベ
ルの標準ガスを大きい流量で得る場合には適して
いることが認められが、このデイフユージヨンチ
ユーブは試料液の注入の際等に試料液が拡散管内
壁に付着し易く、また静置使用する必要があるな
ど、取り扱いが面倒なものである。
Therefore, it is recognized that the diffuser tube is suitable for obtaining ppm level standard gas at a large flow rate. It is difficult to handle, as it tends to adhere to the inner wall of the pipe and needs to be left standing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ本考案の一実施例
に係る標準ガス製造用装置を示す断面図、第3図
及び第4図はそれぞれ液溜め密閉容器に拡散管を
着脱可能に連結する構造を示す一部省略断面図、
第5図は本考案標準ガス製造用装置を使用した標
準ガス発生装置の一例を示す概略断面図である。 1……本考案標準ガス製造用装置、2……液溜
め密閉容器、3……試料拡散路、4……拡散管、
5……メンブレン、6……液溜め室。
1 and 2 are cross-sectional views showing a standard gas production apparatus according to an embodiment of the present invention, and FIGS. 3 and 4 respectively show a structure in which a diffusion tube is removably connected to a liquid reservoir sealed container. A partially omitted sectional view showing
FIG. 5 is a schematic sectional view showing an example of a standard gas generation device using the standard gas production device of the present invention. 1...Standard gas production device of the present invention, 2...Liquid reservoir sealed container, 3...Sample diffusion path, 4...Diffusion tube,
5...membrane, 6...liquid reservoir chamber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 内部に試料液を入れる液溜め密閉容器と、この
液溜め密閉容器に連結され、内部の試料拡散路が
前記液溜め密閉容器内と連通する拡散管とを有
し、前記液溜め密閉容器内の試料液の蒸気が前記
拡散管の試料拡散路を拡散した後外部に流出する
ようにした標準ガス製造用装置において、前記液
溜め密閉容器内を、試料液の蒸気が通過し得るメ
ンブレンで仕切ることにより液溜め密閉容器内に
液溜め室を形成して、この液溜め室内に入れた試
料液の蒸気が前記メンブレンを透過した後拡散管
の試料拡散路を拡散するようにしたことを特徴と
する標準ガス製造用装置。
It has a liquid reservoir sealed container into which a sample liquid is placed, and a diffusion tube connected to this liquid reservoir sealed container and whose internal sample diffusion path communicates with the liquid reservoir sealed container. In the standard gas production device in which the vapor of the sample liquid diffuses through the sample diffusion path of the diffusion tube and then flows out to the outside, the inside of the liquid reservoir sealed container is partitioned with a membrane through which the vapor of the sample liquid can pass. A liquid storage chamber is formed in the liquid storage sealed container, and the vapor of the sample liquid introduced into the liquid storage chamber permeates the membrane and then diffuses through the sample diffusion path of the diffusion tube. Equipment for standard gas production.
JP6102484U 1984-04-25 1984-04-25 Standard gas production equipment Granted JPS60173050U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6102484U JPS60173050U (en) 1984-04-25 1984-04-25 Standard gas production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6102484U JPS60173050U (en) 1984-04-25 1984-04-25 Standard gas production equipment

Publications (2)

Publication Number Publication Date
JPS60173050U JPS60173050U (en) 1985-11-16
JPH0321470Y2 true JPH0321470Y2 (en) 1991-05-10

Family

ID=30588910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6102484U Granted JPS60173050U (en) 1984-04-25 1984-04-25 Standard gas production equipment

Country Status (1)

Country Link
JP (1) JPS60173050U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035635A (en) * 2001-07-19 2003-02-07 Fujitsu Ltd Gas preparation tube and gas preparation device

Also Published As

Publication number Publication date
JPS60173050U (en) 1985-11-16

Similar Documents

Publication Publication Date Title
CN105498640B (en) Multi-functional standard gas generating unit
US3521865A (en) Generation of accurately known vapor concentrations by permeation
JPH0321470Y2 (en)
JPH039001Y2 (en)
US6842998B2 (en) Membrane dryer
GB2029717A (en) Mixing apparatus for use in calibrating a vapour monitoring device
US3533272A (en) Preparation of gas mixtures
Shah et al. Separation of dyes in nonfoaming adsorptive bubble columns
JP3291691B2 (en) Pore size distribution measuring device
EP1043585A2 (en) Method and system for measuring partial pressure of material dissolved in liquid
Chalmers et al. Evaluation of a new thin film tonometer
JP2003269754A (en) Gas humidifier
JPS5917367Y2 (en) Mixed gas production equipment
SU913152A1 (en) Device for determination of gas diluted in liquid
JPS6059537B2 (en) Sampling device for volatile components in liquids
JPS6070336A (en) Method for yielding gas having constant concentration
RU2219517C2 (en) Batcher of flow of mixture of pair " substance-air " to form vapor-air mixture with specified concentration
Hartung et al. Studies in membrane permeability. I. The measurement of the permeability of membranes to solutes
JPS5717848A (en) Measuring method of ingredient in solution
SU997766A1 (en) Apparatus for preparative calibration of vapour gas mixtures
JPS6373135A (en) Impingement device
CN110124585B (en) Micro-flow standard gas generation device, system and method
Vishnevskii et al. Some performance aspects of porous membrane blood oxygenators
SU336563A1 (en) METHOD OF CREATING MICROCONCENTRATION OF FLUID VAPORS IN A GAS FLOW
SU1741105A1 (en) Device for producing of measured substance vapor supersaturation in gas flow