JP2001235246A - Freezer - Google Patents

Freezer

Info

Publication number
JP2001235246A
JP2001235246A JP2000044674A JP2000044674A JP2001235246A JP 2001235246 A JP2001235246 A JP 2001235246A JP 2000044674 A JP2000044674 A JP 2000044674A JP 2000044674 A JP2000044674 A JP 2000044674A JP 2001235246 A JP2001235246 A JP 2001235246A
Authority
JP
Japan
Prior art keywords
stage compressor
stage
heat exchanger
refrigerant
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000044674A
Other languages
Japanese (ja)
Other versions
JP4449139B2 (en
Inventor
Takahiro Yamaguchi
貴弘 山口
Tomohiro Yabu
知宏 薮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000044674A priority Critical patent/JP4449139B2/en
Publication of JP2001235246A publication Critical patent/JP2001235246A/en
Application granted granted Critical
Publication of JP4449139B2 publication Critical patent/JP4449139B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To simplify a changing-over mechanism (22) for changing-over a single- stage compressing operation and double-stage compressing operation in a freezer (1) provided with double-stage compressing mechanisms (11, 21), enable a low cost formation to be attained and the circuit to be simplified and further concurrently a changing-over control to be easily carried out. SOLUTION: A changing-over between a single stage compressing operation and double-stage compressing operation is carried out by a four-way changing- over valve (22) in place of a plurality of solenoid valves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2段圧縮機構を備
えた冷凍装置に関し、特に、単段圧縮運転と2段圧縮運
転の切換構造を簡素化する技術に係るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system having a two-stage compression mechanism, and more particularly to a technique for simplifying a switching structure between a single-stage compression operation and a two-stage compression operation.

【0002】[0002]

【従来の技術】従来より、例えば特開平4−80545
号公報に示されているように、蒸発圧力が低くて高圧縮
比の運転が要求される冷凍装置では、2段圧縮式冷凍サ
イクルが採用されている。2段圧縮式冷凍サイクルの圧
縮機構は、低段側圧縮機と高段側圧縮機とから構成さ
れ、一方の圧縮機のみを使用する単段圧縮運転と、両方
の圧縮機を直列に使用する2段圧縮運転とを切り換える
ことができるように構成されている。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. 4-80545
As described in the publication, a two-stage compression refrigeration cycle is employed in a refrigeration system that requires a low evaporation pressure and a high compression ratio operation. The compression mechanism of the two-stage compression refrigeration cycle is composed of a low-stage compressor and a high-stage compressor, and uses a single-stage compression operation using only one compressor and uses both compressors in series. It is configured to be able to switch between two-stage compression operation.

【0003】そして、単段圧縮運転と2段圧縮運転とを
切り換えるための切換機構としては、その冷媒回路の回
路構成に応じて、各圧縮機の吐出側や吸入側に電磁弁を
複数個(例えば合計で2〜3個程度)設けて、これらを
適宜開閉することによって圧縮段数の切り換えを行うよ
うにしている。
[0003] As a switching mechanism for switching between the single-stage compression operation and the two-stage compression operation, a plurality of solenoid valves are provided on the discharge side and the suction side of each compressor (depending on the circuit configuration of the refrigerant circuit). For example, a total of about two to three are provided, and the number of compression stages is switched by appropriately opening and closing them.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような従
来の構成では、単段圧縮運転と2段圧縮運転とを切り換
えるために複数の電磁弁が必要であることから、コスト
が高くなり、回路構成も複雑になる問題があった。ま
た、運転中にこれらの電磁弁が全て閉じているような状
態が発生するのを避けるために、圧縮段数の切り換え時
に各電磁弁を同時に開閉する必要があり、開閉制御の信
頼性を確保する必要もあった。
However, in such a conventional configuration, a plurality of solenoid valves are required to switch between the single-stage compression operation and the two-stage compression operation. There was a problem that the configuration was complicated. Also, in order to avoid a situation in which all of these solenoid valves are closed during operation, it is necessary to open and close each solenoid valve at the same time when the number of compression stages is switched, thereby ensuring the reliability of the opening and closing control. There was also a need.

【0005】本発明は、このような問題点に鑑みて創案
されたものであり、その目的とするところは、単段圧縮
運転と2段圧縮運転とを切り換える切換機構を簡素化し
て、低コスト化と回路の簡素化を可能にし、同時に切換
制御も容易に行えるようにすることである。
The present invention has been made in view of the above problems, and has as its object to simplify a switching mechanism for switching between a single-stage compression operation and a two-stage compression operation to reduce cost. Therefore, the switching control can be easily performed at the same time.

【0006】[0006]

【課題を解決するための手段】本発明は、単段圧縮運転
と2段圧縮運転の切り換えを複数の電磁弁の代わりに一
つの四路切換弁で行うようにしたものである。
According to the present invention, the switching between the single-stage compression operation and the two-stage compression operation is performed by one four-way switching valve instead of a plurality of solenoid valves.

【0007】具体的に、本発明が講じた解決手段は、低
段側圧縮機(11)と高段側圧縮機(21)とからなる2段圧縮
機構(11,21) と、2段圧縮運転と単段圧縮運転とを切り
換える切換機構(22)とを備えて冷凍サイクルを行う冷凍
装置を前提としている。そして、切換機構(22)が、低段
側圧縮機(11)と高段側圧縮機(21)と所定の熱交換器(31)
とに接続されて、低段側圧縮機(11)と高段側圧縮機(21)
と所定の熱交換器(31)とが順に連通する第1連通状態
と、低段側圧縮機(11)と所定の熱交換器(31)とが連通す
る第2連通状態とに設定可能な四路切換弁により構成さ
れている。
Specifically, a solution taken by the present invention is a two-stage compression mechanism (11, 21) comprising a low-stage compressor (11) and a high-stage compressor (21), and a two-stage compression mechanism. It is premised on a refrigerating apparatus that includes a switching mechanism (22) for switching between operation and single-stage compression operation and performs a refrigeration cycle. Then, the switching mechanism (22) includes a low-stage compressor (11), a high-stage compressor (21), and a predetermined heat exchanger (31).
Connected to the low-stage compressor (11) and the high-stage compressor (21)
And a predetermined heat exchanger (31) in order, and a second communication state in which the low-stage compressor (11) communicates with the predetermined heat exchanger (31). It is constituted by a four-way switching valve.

【0008】上記構成において、四路切換弁(22)は、第
1連通状態において低段側圧縮機(11)の吐出側と高段側
圧縮機(21)の吸入側とが連通し、高段側圧縮機(21)の吐
出側と所定の熱交換器(31)とが連通する一方、第2連通
状態において低段側圧縮機(11)の吐出側または吸入側と
所定の熱交換器(31)とが連通し、高段側圧縮機(21)の吸
入側と吐出側とが連通するように構成することができ
る。
In the above configuration, the four-way switching valve (22) communicates with the discharge side of the low-stage compressor (11) and the suction side of the high-stage compressor (21) in the first communication state. While the discharge side of the stage side compressor (21) communicates with the predetermined heat exchanger (31), in the second communication state, the discharge side or suction side of the low stage side compressor (11) communicates with the predetermined heat exchanger. (31), and the suction side and the discharge side of the high-stage compressor (21) can be configured to communicate with each other.

【0009】また、上記構成においては、低段側圧縮機
(11)に接続されたガスライン(40G)に高段側圧縮機(21)
から四路切換弁(22)をバイパスして接続された過圧開放
通路(44)を設け、この過圧開放通路(44)に、高段側圧縮
機(21)から上記ガスライン(40G) への冷媒の流通のみを
許容する逆止弁(45)を設けることが好ましい。
Further, in the above configuration, the low-stage compressor is provided.
High-stage compressor (21) in gas line (40G) connected to (11)
An over-pressure release passage (44) connected by bypassing the four-way switching valve (22) is provided in the over-pressure release passage (44) from the high-stage compressor (21) to the gas line (40G). It is preferable to provide a check valve (45) that allows only the flow of the refrigerant to the air.

【0010】−作用− 上記解決手段では、切換機構である四路切換弁(22)が第
1連通状態の時には、低段側圧縮機(11)の吐出ガスが該
四路切換弁(22)を介して高段側圧縮機(21)に吸入され、
2段圧縮されて所定の熱交換器(31)へ供給される。この
場合、所定の熱交換器(31)は、例えば空気調和装置にお
いて暖房運転時に凝縮器となる室内熱交換器などであ
る。そして、冷媒はこの熱交換器で凝縮した後、冷凍サ
イクルの残りの行程、つまり膨張機構による膨張行程
と、蒸発器(この場合には室外熱交換器)による蒸発行
程とを行って、低段側圧縮機(11)に吸入される。
In the above solution, when the four-way switching valve (22), which is a switching mechanism, is in the first communication state, the discharge gas of the low-stage compressor (11) is supplied to the four-way switching valve (22). Through the high-stage compressor (21),
It is compressed in two stages and supplied to a predetermined heat exchanger (31). In this case, the predetermined heat exchanger (31) is, for example, an indoor heat exchanger that becomes a condenser during a heating operation in an air conditioner. Then, after the refrigerant is condensed in this heat exchanger, the remaining steps of the refrigeration cycle, that is, the expansion step by the expansion mechanism and the evaporation step by the evaporator (in this case, the outdoor heat exchanger) are performed, and the low-stage It is sucked into the side compressor (11).

【0011】一方、第2連通状態の時には、低段側圧縮
機(11)と所定の熱交換器(31)とが連通し、高段側圧縮機
(21)は吸入側と吐出側とが連通する状態となる。このと
き、高段側圧縮機(21)は停止し、低段側圧縮機(11)の吐
出側または吸入側が所定の熱交換器(31)と連通する単段
圧縮運転の状態となる。したがって、所定の熱交換器(3
1)を上記空気調和装置の室内熱交換器とした場合には、
該室内熱交換器を凝縮器とし、上記室外熱交換器を蒸発
器とする暖房運転と、逆に室外熱交換器を凝縮器とし、
室内熱交換器を蒸発器とする冷房運転を行うことができ
る。
On the other hand, in the second communication state, the low-stage compressor (11) communicates with the predetermined heat exchanger (31), and the high-stage compressor
(21) is a state where the suction side and the discharge side communicate with each other. At this time, the high-stage compressor (21) stops, and a single-stage compression operation in which the discharge side or the suction side of the low-stage compressor (11) communicates with the predetermined heat exchanger (31) is established. Therefore, for a given heat exchanger (3
When 1) is the indoor heat exchanger of the above air conditioner,
The indoor heat exchanger as a condenser, heating operation with the outdoor heat exchanger as an evaporator, and conversely, the outdoor heat exchanger as a condenser,
A cooling operation using the indoor heat exchanger as an evaporator can be performed.

【0012】また、単段圧縮運転時には高段側圧縮機(2
1)が使用されず、該高段側圧縮機(21)の吐出側と吸入側
とが連通した状態となるが、過圧開放通路(44)を設けて
おくことにより、高段側圧縮機(21)内に溜まった液冷媒
が周囲温度の上昇などで蒸発したときには、該冷媒を高
段側圧縮機(21)からガスライン(40G) に逃がすことがで
きる。また、高段側圧縮機(21)内に液冷媒が溜まってい
るときには、クランクケースヒータなどで必要に応じて
加熱することによって冷媒を回路内に送り出すこともで
きる。
Also, during single-stage compression operation, the high-stage compressor (2
1) is not used and the discharge side and the suction side of the high-stage compressor (21) are in communication with each other, but by providing the overpressure release passage (44), the high-stage compressor When the liquid refrigerant accumulated in (21) evaporates due to an increase in ambient temperature or the like, the refrigerant can escape from the high-stage compressor (21) to the gas line (40G). Further, when the liquid refrigerant is accumulated in the high-stage compressor (21), the refrigerant can be sent out into the circuit by heating as necessary with a crankcase heater or the like.

【0013】[0013]

【発明の効果】このように、上記解決手段によれば、複
数の電磁弁の代わりに四路切換弁(22)を一つ用いて単段
圧縮運転と2段圧縮運転とを切り換えるようにしてい
る。したがって、低コスト化と回路の簡素化が可能とな
る。また、四路切換弁(22)を一つ用いているだけである
ため、該四路切換弁(22)につながった全ての通路が同時
に閉鎖されることはない。つまり、難しい制御を行わな
くても運転の切り換えを高い信頼性で行うことができ
る。
As described above, according to the above-described solution, a single-stage compression operation and a two-stage compression operation are switched by using one four-way switching valve (22) instead of a plurality of solenoid valves. I have. Therefore, the cost can be reduced and the circuit can be simplified. Further, since only one four-way switching valve (22) is used, all the passages connected to the four-way switching valve (22) are not simultaneously closed. In other words, operation switching can be performed with high reliability without performing difficult control.

【0014】また、過圧開放通路(44)を設けると、高段
側圧縮機(21)内に溜まった冷媒を回路内に逃がすことが
できるので、液冷媒が加熱されて高段側圧縮機(21)内が
高圧になるのを防止でき、クランクケースヒータなどで
必要に応じて時々加熱すれば回路内における冷媒の循環
量が少なくなってしまうことも防止できる。
When the overpressure release passage (44) is provided, the refrigerant accumulated in the high-stage compressor (21) can escape into the circuit, so that the liquid refrigerant is heated and (21) It is possible to prevent the inside from becoming high pressure, and it is possible to prevent the circulation amount of the refrigerant in the circuit from being reduced by heating occasionally as necessary with a crankcase heater or the like.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0016】本発明の実施形態は、暖房運転時に単段圧
縮と2段圧縮とを切り替えることができ、冷房運転時に
は単段圧縮が行われる空気調和装置(1) において、単段
圧縮運転と2段圧縮運転とを切り換える切換機構として
四路切換弁を用いたものである。
According to the embodiment of the present invention, the single-stage compression operation and the two-stage compression can be switched during the heating operation, and the single-stage compression operation and the two-stage compression are performed in the air conditioner (1) in which the single-stage compression is performed during the cooling operation. A four-way switching valve is used as a switching mechanism for switching between the stage compression operation.

【0017】この空気調和装置(1) の具体的な回路構成
は以下のとおりである。
The specific circuit configuration of the air conditioner (1) is as follows.

【0018】すなわち、図1に示すように、この空気調
和装置は、室外ユニット(10)と、中間ユニット(20)と、
並列に接続された複数の室内ユニット(30)とから構成さ
れている。中間ユニット(20)は、単段圧縮方式の既設の
空気調和装置(1) において2段圧縮運転を可能にするも
ので、室外ユニット(10)と室内ユニット(30)を有する既
設の空気調和装置に増設することができるように構成さ
れている。
That is, as shown in FIG. 1, this air conditioner comprises an outdoor unit (10), an intermediate unit (20),
And a plurality of indoor units (30) connected in parallel. The intermediate unit (20) enables the two-stage compression operation in the existing air conditioner (1) of the single-stage compression system, and the existing air conditioner having the outdoor unit (10) and the indoor unit (30) It is configured so that it can be expanded.

【0019】室外ユニット(10)は、容量可変の低段側圧
縮機(11)と、冷房運転と暖房運転とを切り換える第1四
路切換弁(12)と、室外熱交換器(13)と、室外膨張弁(14)
とを備えている。中間ユニット(20)は、高段側圧縮機(2
1)と、暖房運転時に2段圧縮運転と単段圧縮運転とを切
り換える切換機構としての第2四路切換弁(22)と、中間
膨張弁(23)と、気液分離器(24)とを備えている。また、
各室内ユニット(30)は、室内熱交換器(31)と室内膨張弁
(32)とを備えている。そして、これらの機器が、冷媒配
管(40)によって順に接続されて蒸気圧縮式冷凍サイクル
を行うように構成され、また、低段側圧縮機(11)と高段
側圧縮機(12)とから2段圧縮機構(11,21) が構成されて
いる。なお、冷媒配管(40)は、各ユニット(10,20,30)間
において、配管継手(41)によって接続されている。
The outdoor unit (10) includes a low-stage compressor (11) having a variable capacity, a first four-way switching valve (12) for switching between a cooling operation and a heating operation, and an outdoor heat exchanger (13). , Outdoor expansion valve (14)
And The intermediate unit (20) is connected to the high-stage compressor (2
1), a second four-way switching valve (22) as a switching mechanism for switching between the two-stage compression operation and the single-stage compression operation during the heating operation, an intermediate expansion valve (23), and a gas-liquid separator (24). It has. Also,
Each indoor unit (30) consists of an indoor heat exchanger (31) and an indoor expansion valve.
(32). These devices are connected in order by a refrigerant pipe (40) and configured to perform a vapor compression refrigeration cycle, and include a low-stage compressor (11) and a high-stage compressor (12). A two-stage compression mechanism (11, 21) is constituted. The refrigerant pipe (40) is connected between the units (10, 20, 30) by a pipe joint (41).

【0020】具体的に、低段側圧縮機(11)及び高段側圧
縮機(21)は、吸入側と吐出側が、それぞれ、第1四路切
換弁(12)及び第2四路切換弁(22)の2つのポートに接続
されている。第1四路切換弁(12)と第2四路切換弁(22)
は1つのポート同士が接続され、第1四路切換弁(12)の
他の一つのポートが室外熱交換器(13)に、第2四路切換
弁(22)の他の一つのポートが室内熱交換器(31)に接続さ
れている。そして、各四路切換弁(12,22) を図1に実線
で示す状態に切り換えることにより、低段側圧縮機(11)
の吐出ガス冷媒が両四路切換弁(12,22) を介して高段側
圧縮機(21)に吸入されるようになっている。以上によ
り、室外熱交換器(13)と室内熱交換器(31)との間にガス
ライン(40G) が構成されている。
Specifically, the low-stage compressor (11) and the high-stage compressor (21) have a first four-way switching valve (12) and a second four-way switching valve on the suction side and the discharge side, respectively. It is connected to two ports of (22). First four-way switching valve (12) and second four-way switching valve (22)
Are connected to each other, one port of the first four-way switching valve (12) is connected to the outdoor heat exchanger (13), and the other port of the second four-way switching valve (22) is connected to the other port. It is connected to the indoor heat exchanger (31). By switching the four-way switching valves (12, 22) to the state shown by the solid line in FIG. 1, the low-stage compressor (11)
Is discharged into the high-stage compressor (21) through the two-way switching valve (12, 22). As described above, the gas line (40G) is formed between the outdoor heat exchanger (13) and the indoor heat exchanger (31).

【0021】このように、2段圧縮と単段圧縮とを切り
換える切換機構である第2四路切換弁(22)は、低段側圧
縮機(11)と高段側圧縮機(21)と室内熱交換器(31)とに接
続されている。そして、該第2四路切換弁(22)は、低段
側圧縮機(11)と高段側圧縮機(21)と室内熱交換器(31)と
が順に連通する第1連通状態と、低段側圧縮機(11)と室
内熱交換器(31)とが連通する第2連通状態とに設定可能
に構成されている。
As described above, the second four-way switching valve (22), which is a switching mechanism for switching between two-stage compression and single-stage compression, includes the low-stage compressor (11) and the high-stage compressor (21). It is connected to the indoor heat exchanger (31). The second four-way switching valve (22) has a first communication state in which the low-stage compressor (11), the high-stage compressor (21), and the indoor heat exchanger (31) sequentially communicate with each other; The low-stage compressor (11) and the indoor heat exchanger (31) are configured to be able to be set to a second communication state in which they communicate with each other.

【0022】より具体的には、第2四路切換弁(22)を第
1連通状態に設定すると、低段側圧縮機(11)の吐出側と
高段側圧縮機(21)の吸入側とが連通し、高段側圧縮機(2
1)の吐出側と室内熱交換器(31)とが連通する。また、該
第2四路切換弁(22)を第2連通状態に設定すると、低段
側圧縮機(11)の吐出側または吸入側と室内熱交換器(31)
とが連通し、高段側圧縮機(21)の吸入側と吐出側とが連
通する。
More specifically, when the second four-way switching valve (22) is set to the first communication state, the discharge side of the low-stage compressor (11) and the suction side of the high-stage compressor (21) And the high-stage compressor (2
The discharge side of 1) communicates with the indoor heat exchanger (31). When the second four-way switching valve (22) is set to the second communication state, the discharge side or the suction side of the low-stage compressor (11) and the indoor heat exchanger (31)
And the suction side and the discharge side of the high-stage compressor (21) communicate with each other.

【0023】一方、室内熱交換器(31)と室外熱交換器(1
3)との間の液ライン(40L) には、室内熱交換器(31)側か
ら順に、室内膨張弁(32)、中間膨張弁(23)、気液分離器
(24)、及び室外膨張弁(14)が設けられている。また、気
液分離器(24)のガス出口は、高段側圧縮機(21)への吸入
配管に両四路切換弁(12,22) の間で接続され、インジェ
クション通路(42)を構成している。このインジェクショ
ン通路(42)には、電磁弁などの開閉弁(43)が設けられて
いる。
On the other hand, the indoor heat exchanger (31) and the outdoor heat exchanger (1)
3), the indoor expansion valve (32), the intermediate expansion valve (23), and the gas-liquid separator in order from the indoor heat exchanger (31) side.
(24) and an outdoor expansion valve (14). The gas outlet of the gas-liquid separator (24) is connected to the suction pipe to the high-stage compressor (21) between the two four-way switching valves (12, 22) to form an injection passage (42). are doing. An opening / closing valve (43) such as a solenoid valve is provided in the injection passage (42).

【0024】さらに、両四路切換弁(12,22) の間のガス
ライン(40G) と、第2四路切換弁(22)と高段側圧縮機(2
1)の間の吸入配管とには、四路切換弁(22)をバイパスす
る過圧開放通路(44)が接続されている。この過圧開放通
路(44)には、逆止弁からなる過圧開放弁(45)が設けられ
ていて、高段側圧縮機(21)から上記ガスライン(40G)へ
の冷媒の流通のみを許容するようになっている。そし
て、単段圧縮時に高段側圧縮機(21)が停止しているとき
に、高段側圧縮機(21)が冷えて液冷媒が溜まるのを防止
するために、該高段側圧縮機(21)をクランクケースヒー
タなどの加熱手段(25)で加熱してガス冷媒を過圧開放通
路(44)から抜くようにしている。
Further, the gas line (40G) between the two four-way switching valves (12, 22), the second four-way switching valve (22) and the high-stage compressor (2
An overpressure release passage (44) that bypasses the four-way switching valve (22) is connected to the suction pipe during 1). The over-pressure release passage (44) is provided with an over-pressure release valve (45) formed of a check valve, so that only refrigerant flows from the high-stage compressor (21) to the gas line (40G). Is allowed. Then, when the high-stage compressor (21) is stopped during single-stage compression, the high-stage compressor (21) is cooled in order to prevent the liquid refrigerant from accumulating due to cooling. (21) is heated by heating means (25) such as a crankcase heater so that the gas refrigerant is discharged from the overpressure release passage (44).

【0025】なお、上記第2四路切換弁(22)には、例え
ばロータリー式の四路切換弁を用いることができる。ま
た、ロータリー式の四路切換弁は、電磁駆動方式やモー
タ駆動方式などを採用して、流路の切り換えを行うよう
に構成することができる。
As the second four-way switching valve (22), for example, a rotary four-way switching valve can be used. The rotary four-way switching valve may be configured to switch the flow path by employing an electromagnetic driving method, a motor driving method, or the like.

【0026】−運転動作− 次に、この空気調和装置(1) の運転動作について説明す
る。
-Operation- Next, the operation of the air conditioner (1) will be described.

【0027】まず、2段圧縮により暖房運転を行うとき
の動作について、冷媒の流れ方向を示した図2を参照し
て説明する。このとき、各四路切換弁(12,22) は図2に
実線で示した状態にセットされる。また、室内膨張弁(3
2)は全開に設定され、中間膨張弁(23)は高圧の冷媒を所
定の中間圧に減圧するように開度が設定され、室外膨張
弁(13)は中間圧の冷媒を所定の低圧に減圧するように開
度が設定される。以上の設定はガスインジェクションを
行う設定であり、このとき、インジェクション通路(42)
の開閉弁(43)は開かれている。
First, the operation when the heating operation is performed by the two-stage compression will be described with reference to FIG. 2 showing the flow direction of the refrigerant. At this time, each of the four-way switching valves (12, 22) is set to the state shown by the solid line in FIG. The indoor expansion valve (3
2) is set to fully open, the opening degree of the intermediate expansion valve (23) is set to reduce the high pressure refrigerant to a predetermined intermediate pressure, and the outdoor expansion valve (13) sets the intermediate pressure refrigerant to a predetermined low pressure. The opening is set to reduce the pressure. The above settings are for gas injection, and at this time, the injection passage (42)
Open / close valve (43) is open.

【0028】そして、低段側圧縮機(11)で低圧の冷媒が
1段圧縮されて吐出され、その吐出ガスが高段側圧縮機
(21)で2段圧縮される。高段側圧縮機(21)の吐出ガス冷
媒は、第2四路切換弁(22)を介して室内熱交換器(31)に
流入し、室内空気と熱交換して該室内空気を加熱する。
加熱された室内空気は図示しない室内ファンにより室内
へ吹き出され、室内に温風が供給される。
The low-pressure compressor (11) compresses the low-pressure refrigerant in one stage and discharges it, and discharges the discharged gas to the high-stage compressor.
In (21), two-stage compression is performed. The gas refrigerant discharged from the high-stage compressor (21) flows into the indoor heat exchanger (31) via the second four-way switching valve (22) and exchanges heat with the indoor air to heat the indoor air. .
The heated indoor air is blown into the room by an indoor fan (not shown), and warm air is supplied to the room.

【0029】室内熱交換器(31)での熱交換により凝縮し
た冷媒は、室内膨張弁(32)を通過した後、中間膨張弁(2
3)で一部が膨張して二相冷媒となって気液分離器(24)に
流入する。そして、気液分離器(24)で液冷媒とガス冷媒
とが分離され、液冷媒は気液分離器(24)を流出して室外
膨張弁(14)で減圧され、室外熱交換器(13)に流入する。
そして、室外熱交換器(13)では、冷媒が室外空気と熱交
換して加熱され、ガス冷媒に相変化して第1四路切換弁
(12)を通過し、低段側圧縮機(11)に吸入される。
The refrigerant condensed by the heat exchange in the indoor heat exchanger (31) passes through the indoor expansion valve (32) and then passes through the intermediate expansion valve (2).
A part expands in 3) and becomes a two-phase refrigerant and flows into the gas-liquid separator (24). Then, the liquid refrigerant and the gas refrigerant are separated by the gas-liquid separator (24), and the liquid refrigerant flows out of the gas-liquid separator (24), is decompressed by the outdoor expansion valve (14), and is discharged from the outdoor heat exchanger (13). ).
Then, in the outdoor heat exchanger (13), the refrigerant exchanges heat with outdoor air and is heated, and changes into a gaseous refrigerant and changes into a first four-way switching valve.
After passing through (12), it is sucked into the low-stage compressor (11).

【0030】一方、気液分離器(24)内のガス冷媒は、ガ
ス出口から流出し、インジェクション通路(42)を経て低
段側圧縮機(11)の吐出ガス冷媒と合流して、高段側圧縮
機(21)に吸入される。したがって、室内熱交換器(31)を
流れる冷媒の量が増加するため、暖房能力を高めること
ができる。なお、ガスインジェクションを行わない場合
は、中間膨張弁(23)を全開にセットし、インジェクショ
ン通路(42)の開閉弁(43)は「閉」にセットする。
On the other hand, the gas refrigerant in the gas-liquid separator (24) flows out of the gas outlet and merges with the discharge gas refrigerant of the low-stage compressor (11) through the injection passage (42) to form a high-stage gas refrigerant. It is sucked into the side compressor (21). Therefore, since the amount of the refrigerant flowing through the indoor heat exchanger (31) increases, the heating capacity can be increased. When gas injection is not performed, the intermediate expansion valve (23) is set fully open, and the on-off valve (43) of the injection passage (42) is set to "closed".

【0031】次に、単段圧縮の暖房運転について、冷媒
の流れ方向を示した図3を参照して説明する。このと
き、低段側圧縮機(11)を運転して高段側圧縮機(21)を停
止させ、両四路切換弁(12,22) を図3に実線で示した状
態にセットする。このとき、第1四路切換弁(12)は図2
と同じ状態であるが、第2四路切換弁(22)は図2では第
1連通状態であるのに対して第2連通状態に切り換えら
れている。そして、室内膨張弁(32)と中間膨張弁(23)を
全開として、インジェクション通路(42)の電磁弁(43)は
閉鎖する。
Next, a single-stage compression heating operation will be described with reference to FIG. 3 showing the flow direction of the refrigerant. At this time, the low-stage compressor (11) is operated to stop the high-stage compressor (21), and the two-way switching valves (12, 22) are set to the state shown by the solid line in FIG. At this time, the first four-way switching valve (12)
2, but the second four-way switching valve (22) is switched to the second communication state while being in the first communication state in FIG. Then, the indoor expansion valve (32) and the intermediate expansion valve (23) are fully opened, and the electromagnetic valve (43) in the injection passage (42) is closed.

【0032】このようにすると、低段側圧縮機(11)の吐
出ガスが、第1四路切換弁(12)と第2四路切換弁(22)と
を介して室内熱交換器(31)に流入し、室内熱交換器(31)
において室内空気を加熱する。そして、その際に凝縮し
た冷媒が、室内膨張弁(32)、中間膨張弁(23)及び気液分
離器(24)を通過し、室外膨張弁(14)で所定の低圧に減圧
して室外熱交換器(13)に流入する。この室外熱交換器(1
3)では冷媒が加熱され、ガス相に変化して低段側圧縮機
(11)に吸入される。単段圧縮の暖房運転は以上のサイク
ルを繰り返すことによって行われる。
With this arrangement, the gas discharged from the low-stage compressor (11) is supplied to the indoor heat exchanger (31) via the first four-way switching valve (12) and the second four-way switching valve (22). ) And flows into the indoor heat exchanger (31)
In the room air. The refrigerant condensed at that time passes through the indoor expansion valve (32), the intermediate expansion valve (23), and the gas-liquid separator (24), and is decompressed to a predetermined low pressure by the outdoor expansion valve (14). It flows into the heat exchanger (13). This outdoor heat exchanger (1
In 3), the refrigerant is heated and changes to the gas phase, and the low-stage compressor
Inhaled to (11). The single-stage compression heating operation is performed by repeating the above cycle.

【0033】2段圧縮または単段圧縮での暖房運転を行
って室外熱交換器(13)に着霜すると、図4に冷媒の流れ
を示すデフロスト運転が行われる。デフロスト運転時、
低段側圧縮機(11)の容量が高段側圧縮機(21)の容量より
も大きい状態で両圧縮機(11,21) が運転され、第1四路
切換弁(12)は図1の破線の状態に、第2四路切換弁(22)
は実線の状態にセットされる。また、室内膨張弁(32)は
全開に設定され、中間膨張弁(23)と室外膨張弁(14)は高
圧の液冷媒を所定の低圧に減圧するように開度が制御さ
れ、インジェクション通路(42)の電磁弁(43)は「開」に
設定される。
When frost is formed on the outdoor heat exchanger (13) by performing the heating operation in the two-stage compression or the single-stage compression, a defrost operation showing the flow of the refrigerant in FIG. 4 is performed. During defrost operation,
Both compressors (11, 21) are operated in a state where the capacity of the low-stage compressor (11) is larger than the capacity of the high-stage compressor (21), and the first four-way switching valve (12) is shown in FIG. The second four-way switching valve (22)
Is set to the state indicated by the solid line. Further, the indoor expansion valve (32) is set to fully open, the opening degree of the intermediate expansion valve (23) and the outdoor expansion valve (14) is controlled so as to reduce the high-pressure liquid refrigerant to a predetermined low pressure, and the injection passage ( The solenoid valve (43) of 42) is set to "open".

【0034】以上の設定で、図4に示しているように、
低段側圧縮機(11)の吐出ガスは、第1四路切換弁(12)を
介して室外熱交換器(13)に流入し、該室外熱交換器(13)
を加熱して除霜する。その際、図示しない室外ファンは
停止しており、冷媒は幾分冷却して室外熱交換器(13)か
ら流出し、室外膨張弁(14)で減圧してほぼガス相状態で
気液分離器(24)に流入する。
With the above settings, as shown in FIG.
The discharge gas of the low-stage compressor (11) flows into the outdoor heat exchanger (13) via the first four-way switching valve (12), and the outdoor heat exchanger (13)
Heat to defrost. At this time, the outdoor fan (not shown) is stopped, the refrigerant is cooled somewhat, flows out of the outdoor heat exchanger (13), is decompressed by the outdoor expansion valve (14), and is almost in a gas phase. (24).

【0035】一方、高段側圧縮機(21)の吐出ガスは、第
2四路切換弁(22)を介して室内熱交換器(31)に流入す
る。このとき、図示しない室内ファンは回っており、冷
媒と室内空気との熱交換が行われる。このため、室内へ
の温風の吹き出しが継続され、冷媒は凝縮して室内熱交
換器(31)から流出する。冷媒は、その後中間膨張弁(23)
で減圧して気液二相状態となり、気液分離器(24)に流入
して低段側の冷媒と混合する。
On the other hand, the gas discharged from the high-stage compressor (21) flows into the indoor heat exchanger (31) via the second four-way switching valve (22). At this time, the indoor fan (not shown) is rotating, and heat exchange between the refrigerant and the indoor air is performed. Therefore, the blowing of the warm air into the room is continued, and the refrigerant is condensed and flows out of the indoor heat exchanger (31). The refrigerant is then supplied to the intermediate expansion valve (23)
The pressure is reduced to a gas-liquid two-phase state, flows into the gas-liquid separator (24), and mixes with the low-stage refrigerant.

【0036】この冷媒は、気液分離器(24)内で低段側の
冷媒の余熱により加熱される。そして、気液分離器(24)
からガス冷媒が流出して低段側と高段側へ分流し、各圧
縮機(11,21) に吸入される。各圧縮機(11,21) に吸入さ
れた冷媒は再度圧縮されて吐出され、室外側と室内側で
以上のサイクルが繰り返して行われる。このように、本
実施形態では、室外熱交換器(13)を除霜しながら暖房運
転を継続することができる。
This refrigerant is heated by the residual heat of the low-stage refrigerant in the gas-liquid separator (24). And gas-liquid separator (24)
The gas refrigerant flows out of the compressor and splits into the lower stage and the higher stage, and is sucked into the compressors (11, 21). The refrigerant drawn into each of the compressors (11, 21) is compressed again and discharged, and the above cycle is repeated on the outside and the inside of the room. Thus, in the present embodiment, the heating operation can be continued while the outdoor heat exchanger (13) is being defrosted.

【0037】次に、冷房運転は、低段側圧縮機(11)のみ
を運転し、両四路切換弁(12,22) を図1の破線の状態に
切り換えて行う。このとき、室外膨張弁(14)と中間膨張
弁(23)は全開に設定され、室内膨張弁(32)は高圧の冷媒
を所定の低圧に減圧するように開度が制御される。ま
た、インジェクション通路(42)の電磁弁(43)は閉鎖され
る。以上の設定により、冷媒の流れ方向を図5に示して
いるように、冷媒が低段側圧縮機(11)、第1四路切換弁
(12)、室外熱交換器(13)、室外膨張弁(14)、気液分離器
(24)、中間膨張弁(23)、室内膨張弁(32)、室内熱交換器
(31)、第2四路切換弁(22)の順に流通して、室内熱交換
器(31)での熱交換の際に室内へ冷風が吹き出される。
Next, the cooling operation is performed by operating only the low-stage compressor (11) and switching the two-way switching valves (12, 22) to the state shown by the broken line in FIG. At this time, the outdoor expansion valve (14) and the intermediate expansion valve (23) are set to fully open, and the opening of the indoor expansion valve (32) is controlled so as to reduce the high-pressure refrigerant to a predetermined low pressure. Further, the solenoid valve (43) of the injection passage (42) is closed. With the above settings, the refrigerant flows in the low-stage compressor (11) and the first four-way switching valve as shown in FIG.
(12), outdoor heat exchanger (13), outdoor expansion valve (14), gas-liquid separator
(24), intermediate expansion valve (23), indoor expansion valve (32), indoor heat exchanger
(31), the second four-way switching valve (22) flows in this order, and cool air is blown into the room when heat is exchanged in the indoor heat exchanger (31).

【0038】なお、単段圧縮による暖房運転時や冷房運
転時など、高段側圧縮機(21)が停止しているときには、
高段側圧縮機(21)をクランクケースヒータなどの加熱手
段(25)で加熱してガス冷媒を過圧開放通路(44)からガス
ライン(40G) へ抜くことにより、高段側圧縮機(21)内に
液冷媒が溜まるのが防止される。また、高段側圧縮機(2
1)に溜まった液冷媒が周囲の温度上昇によって蒸発した
場合にも冷媒をガスライン(40G) に逃がすことができる
ので、高段側圧縮機(21)の圧力が異常に上昇することを
防止できる。
When the high-stage compressor (21) is stopped, such as during a heating operation or a cooling operation by single-stage compression,
The high-stage compressor (21) is heated by a heating means (25) such as a crankcase heater and the gas refrigerant is drawn from the overpressure release passage (44) to the gas line (40G). The liquid refrigerant is prevented from accumulating in 21). The high-stage compressor (2
Even if the liquid refrigerant accumulated in 1) evaporates due to an increase in ambient temperature, the refrigerant can escape to the gas line (40G), preventing the pressure of the high-stage compressor (21) from rising abnormally. it can.

【0039】−実施形態の効果− 以上説明したように、本実施形態では単段圧縮運転と2
段圧縮運転とを切り換える機構として、複数の電磁弁の
代わりに一つの第2四路切換弁(22)を切換機構として用
いているので、複数の電磁弁を用いる場合と比較して低
コスト化と回路の簡素化が可能となる。また、切換機構
である第2四路切換弁(22)に電磁駆動方式を採用した場
合でも、複数の電磁弁を用いる場合より個数を少なくで
きるので、同じ電磁方式であっても低コスト化を図るこ
とが可能である。
-Effects of Embodiment- As described above, in this embodiment, the single-stage compression operation and 2
As a mechanism for switching between the two-stage compression operation, a single second four-way switching valve (22) is used as a switching mechanism instead of a plurality of solenoid valves, so that the cost is reduced as compared with the case of using a plurality of solenoid valves. And the circuit can be simplified. In addition, even when the electromagnetic drive system is employed for the second four-way switching valve (22), which is a switching mechanism, the number can be reduced as compared with the case where a plurality of electromagnetic valves are used, so that cost reduction can be achieved even with the same electromagnetic system. It is possible to plan.

【0040】また、上記実施形態では切換機構として四
路切換弁(22)を用いているため、該四路切換弁(22)につ
ながった全ての通路が同時に閉鎖されることがなくな
る。このため、難しい制御を行わなくても単段圧縮運転
と2段圧縮運転の切り換えを高い信頼性で行うことがで
きる。
In the above embodiment, since the four-way switching valve (22) is used as the switching mechanism, all the paths connected to the four-way switching valve (22) are not closed at the same time. Therefore, the switching between the single-stage compression operation and the two-stage compression operation can be performed with high reliability without performing difficult control.

【0041】さらに、過圧開放通路(44)を設けて、高段
側圧縮機(21)内に溜まった冷媒をガスライン(40G) に逃
がすことができるようにしているので、周囲温度の上昇
によって高段側圧縮機(21)内が異常に高圧になるのを防
止できるとともに、高段側圧縮機(21)の冷媒をクランク
ケースヒータ(25)などで必要に応じて時々加熱すれば冷
媒を回路内に送り出せるので、回路内の冷媒循環量が少
なくなってしまうことも防止できる。
Further, an overpressure release passage (44) is provided to allow the refrigerant accumulated in the high-stage compressor (21) to escape to the gas line (40G). It is possible to prevent the inside of the high-stage compressor (21) from becoming abnormally high pressure, and to heat the refrigerant of the high-stage compressor (21) occasionally as necessary with a crankcase heater (25) or the like. Can be sent out into the circuit, so that the amount of circulating refrigerant in the circuit can be prevented from being reduced.

【0042】[0042]

【発明のその他の実施の形態】本発明は、上記実施形態
について、以下のような構成としてもよい。
Other Embodiments of the Invention The present invention may be configured as follows with respect to the above embodiment.

【0043】例えば、上記実施形態では冷暖房が可能な
空気調和装置(1) において暖房時に単段圧縮運転と2段
圧縮運転とを切り換えられるように構成しているが、本
発明は、暖房運転のみが可能な空気調和装置や、空気調
和装置以外の冷凍装置などでも適用可能である。また、
上記実施形態の回路構成は単なる一例にすぎず、例えば
中間ユニット(20)を用いず、室外ユニット(10)内に2段
圧縮機構(11,21) を備えた構成としてもよい。このよう
に、本発明は要するに単段圧縮運転と2段圧縮運転とを
四路切換弁を用いて切り換えられるようになっていれ
ば、具体的な構成は任意に定めればよい。
For example, in the above embodiment, the air-conditioning apparatus (1) capable of cooling and heating is configured to be able to switch between the single-stage compression operation and the two-stage compression operation during heating. The present invention can also be applied to an air conditioner capable of performing the above-described method, a refrigeration device other than the air conditioner, and the like. Also,
The circuit configuration of the above-described embodiment is merely an example. For example, the intermediate unit (20) may not be used, and the outdoor unit (10) may include a two-stage compression mechanism (11, 21). Thus, in the present invention, the specific configuration may be arbitrarily determined as long as the single-stage compression operation and the two-stage compression operation can be switched using the four-way switching valve.

【0044】さらに、第2四路切換弁(22)としては、電
磁駆動方式やモータ駆動方式のロータリー式四路切換弁
を例示したが、駆動方式や切換構造などはこれらに限定
されるものではなく、任意の方式や構造を適宜選択すれ
ばよい。
Furthermore, as the second four-way switching valve (22), a rotary four-way switching valve of an electromagnetic drive type or a motor drive type has been exemplified, but the drive type and the switching structure are not limited to these. Instead, an arbitrary method or structure may be appropriately selected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る空気調和装置の冷媒回
路図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner according to an embodiment of the present invention.

【図2】図1の空気調和装置において2段圧縮により暖
房運転を行うときの動作を示す運転状態図である。
FIG. 2 is an operation state diagram showing an operation when performing a heating operation by two-stage compression in the air-conditioning apparatus of FIG.

【図3】図1の空気調和装置において単段圧縮により暖
房運転を行うときの動作を示す運転状態図である。
FIG. 3 is an operation state diagram showing an operation when performing a heating operation by single-stage compression in the air-conditioning apparatus of FIG. 1;

【図4】図1の空気調和装置においてデフロスト運転を
行うときの動作を示す運転状態図である。
FIG. 4 is an operation state diagram showing an operation when performing a defrost operation in the air-conditioning apparatus of FIG. 1;

【図5】図1の空気調和装置において冷房運転を行うと
きの動作を示す運転状態図である。
FIG. 5 is an operation state diagram showing an operation when performing a cooling operation in the air-conditioning apparatus of FIG. 1;

【符号の説明】[Explanation of symbols]

(1) 空気調和装置(冷凍装置) (10) 室外ユニット (11) 低段側圧縮機 (12) 第1四路切換弁 (13) 室外熱交換器 (14) 室外膨張弁 (20) 中間ユニット (21) 高段側圧縮機 (22) 第2四路切換弁(切換機構) (23) 中間膨張弁 (24) 気液分離器 (25) 加熱手段 (30) 室内ユニット (31) 室内熱交換器 (32) 室内膨張弁 (40) 冷媒配管 (40G) ガスライン (40L) 液ライン (41) 配管継手 (42) インジェクション通路 (43) 開閉弁 (44) 過圧開放通路 (45) 過圧開放弁 (1) Air conditioner (refrigerator) (10) Outdoor unit (11) Low stage compressor (12) First four-way switching valve (13) Outdoor heat exchanger (14) Outdoor expansion valve (20) Intermediate unit (21) High-stage compressor (22) Second four-way switching valve (switching mechanism) (23) Intermediate expansion valve (24) Gas-liquid separator (25) Heating means (30) Indoor unit (31) Indoor heat exchange (32) Indoor expansion valve (40) Refrigerant piping (40G) Gas line (40L) Liquid line (41) Piping joint (42) Injection passage (43) Open / close valve (44) Overpressure release passage (45) Overpressure release valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低段側圧縮機(11)と高段側圧縮機(21)と
からなる2段圧縮機構(11,21) と、2段圧縮運転と単段
圧縮運転とを切り換える切換機構(22)とを備え、冷凍サ
イクルを行うように構成された冷凍装置であって、 切換機構(22)は、低段側圧縮機(11)と高段側圧縮機(21)
と所定の熱交換器(31)とに接続されて、低段側圧縮機(1
1)と高段側圧縮機(21)と所定の熱交換器(31)とが順に連
通する第1連通状態と、低段側圧縮機(11)と所定の熱交
換器(31)とが連通する第2連通状態とに設定可能な四路
切換弁により構成されている冷凍装置。
1. A two-stage compression mechanism (11, 21) comprising a low-stage compressor (11) and a high-stage compressor (21), and a switching mechanism for switching between a two-stage compression operation and a single-stage compression operation. (22), and configured to perform a refrigeration cycle, the switching mechanism (22), the low-stage compressor (11) and the high-stage compressor (21)
And a predetermined heat exchanger (31).
1), a first communication state in which the high-stage compressor (21) and the predetermined heat exchanger (31) communicate sequentially, and a low-stage compressor (11) and the predetermined heat exchanger (31). A refrigeration apparatus including a four-way switching valve that can be set to a second communication state in which communication is performed.
【請求項2】 四路切換弁(22)は、第1連通状態におい
て低段側圧縮機(11)の吐出側と高段側圧縮機(21)の吸入
側とが連通し、高段側圧縮機(21)の吐出側と所定の熱交
換器(31)とが連通する一方、第2連通状態において低段
側圧縮機(11)の吐出側または吸入側と所定の熱交換器(3
1)とが連通し、高段側圧縮機(21)の吸入側と吐出側とが
連通するように構成されている請求項1記載の冷凍装
置。
2. The four-way switching valve (22) communicates with the discharge side of the low-stage compressor (11) and the suction side of the high-stage compressor (21) in the first communication state, While the discharge side of the compressor (21) communicates with the predetermined heat exchanger (31), in the second communication state, the discharge side or suction side of the low-stage compressor (11) communicates with the predetermined heat exchanger (3).
The refrigeration apparatus according to claim 1, wherein the refrigeration apparatus is configured so that the suction side and the discharge side of the high-stage compressor (21) communicate with each other.
【請求項3】 低段側圧縮機(11)に接続されたガスライ
ン(40G) に高段側圧縮機(21)から四路切換弁(22)をバイ
パスして接続された過圧開放通路(44)を備え、該過圧開
放通路(44)には、高段側圧縮機(21)から上記ガスライン
(40G) への冷媒の流通のみを許容する逆止弁(45)が設け
られている請求項2記載の冷凍装置。
3. An over-pressure release passage connected to a gas line (40G) connected to the low-stage compressor (11) from the high-stage compressor (21) by bypassing the four-way switching valve (22). (44), and the overpressure release passage (44) is connected to the gas line from the high-stage compressor (21).
The refrigeration apparatus according to claim 2, further comprising a check valve (45) that allows only the flow of the refrigerant to the (40G).
JP2000044674A 2000-02-22 2000-02-22 Refrigeration equipment Expired - Fee Related JP4449139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000044674A JP4449139B2 (en) 2000-02-22 2000-02-22 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000044674A JP4449139B2 (en) 2000-02-22 2000-02-22 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001235246A true JP2001235246A (en) 2001-08-31
JP4449139B2 JP4449139B2 (en) 2010-04-14

Family

ID=18567399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000044674A Expired - Fee Related JP4449139B2 (en) 2000-02-22 2000-02-22 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4449139B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411308A2 (en) * 2002-10-18 2004-04-21 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
EP1748191A1 (en) * 2005-07-29 2007-01-31 Patrice Saillard Compression unit and thermal system including such a unit
JP2007147213A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2007147230A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2007147242A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Air conditioner
JP2007155145A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
JP2007232280A (en) * 2006-03-01 2007-09-13 Daikin Ind Ltd Refrigeration unit
CN102109240A (en) * 2009-12-25 2011-06-29 三洋电机株式会社 Cooling device
CN102251965A (en) * 2010-05-19 2011-11-23 珠海格力节能环保制冷技术研究中心有限公司 Compressor capable of performing one-stage and double-stage switching, and control method thereof
JP2012042114A (en) * 2010-08-18 2012-03-01 Denso Corp Two-stage pressure buildup refrigeration cycle
KR101321545B1 (en) 2009-04-23 2013-10-25 엘지전자 주식회사 Air conditioner
CN104501437A (en) * 2014-11-25 2015-04-08 珠海格力电器股份有限公司 Heat pump system and method for operating the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101859233B1 (en) 2012-01-09 2018-05-17 엘지전자 주식회사 A cascade heat pump and a driving method for the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411308A2 (en) * 2002-10-18 2004-04-21 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
EP1411308A3 (en) * 2002-10-18 2004-06-30 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
US6945066B2 (en) 2002-10-18 2005-09-20 Matsushita Electric Industrial Co., Ltd. Refrigeration cycle apparatus
EP1748191A1 (en) * 2005-07-29 2007-01-31 Patrice Saillard Compression unit and thermal system including such a unit
FR2889296A1 (en) * 2005-07-29 2007-02-02 Patrice Saillard COMPRESSION UNIT COMPRISING THESE COMPRESSORS AND THERMAL INSTALLATION COMPRISING SUCH A UNIT
JP2007155145A (en) * 2005-11-30 2007-06-21 Daikin Ind Ltd Refrigerating device
JP2007147230A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2007147242A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Air conditioner
JP2007147213A (en) * 2005-11-30 2007-06-14 Daikin Ind Ltd Refrigerating device
JP2007232280A (en) * 2006-03-01 2007-09-13 Daikin Ind Ltd Refrigeration unit
KR101321545B1 (en) 2009-04-23 2013-10-25 엘지전자 주식회사 Air conditioner
CN102109240A (en) * 2009-12-25 2011-06-29 三洋电机株式会社 Cooling device
CN102251965A (en) * 2010-05-19 2011-11-23 珠海格力节能环保制冷技术研究中心有限公司 Compressor capable of performing one-stage and double-stage switching, and control method thereof
CN102251965B (en) * 2010-05-19 2013-08-28 珠海格力节能环保制冷技术研究中心有限公司 Compressor capable of performing one-stage and double-stage switching, and control method thereof
JP2012042114A (en) * 2010-08-18 2012-03-01 Denso Corp Two-stage pressure buildup refrigeration cycle
CN104501437A (en) * 2014-11-25 2015-04-08 珠海格力电器股份有限公司 Heat pump system and method for operating the same

Also Published As

Publication number Publication date
JP4449139B2 (en) 2010-04-14

Similar Documents

Publication Publication Date Title
US20090126399A1 (en) Refigeration system
JP4441965B2 (en) Air conditioner
JP5506185B2 (en) Air conditioner
JP7116346B2 (en) Heat source unit and refrigerator
JP4449139B2 (en) Refrigeration equipment
KR20040094099A (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
JP2004037006A (en) Freezing device
KR100511287B1 (en) Air conditioner capable of defrosting and heating operation simultaneously and out door unit with self defrosting cycle for air conditioner
JP2001235245A (en) Freezer
JP5334554B2 (en) Air conditioner
JP4123257B2 (en) Refrigeration equipment
WO2020262624A1 (en) Refrigeration device
JP5976459B2 (en) Air conditioner
JP2001056156A (en) Air conditioning apparatus
JPH01247967A (en) Multi-room type air-conditioner
JP2001108345A (en) Two stage compression freezer/refrigerator
KR101151529B1 (en) Refrigerant system
JP3998035B2 (en) Refrigeration equipment
JP2010002112A (en) Refrigerating device
JP2007232280A (en) Refrigeration unit
WO2018074370A1 (en) Refrigeration system and indoor unit
JP4277354B2 (en) Air conditioner
JP3698132B2 (en) Air conditioner
JP4023386B2 (en) Refrigeration equipment
CN109237645B (en) Air conditioning system and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100118

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees