JP2001234242A - Method for producing high toughness and high tensile strength steel fine in crystal grain - Google Patents

Method for producing high toughness and high tensile strength steel fine in crystal grain

Info

Publication number
JP2001234242A
JP2001234242A JP2000043983A JP2000043983A JP2001234242A JP 2001234242 A JP2001234242 A JP 2001234242A JP 2000043983 A JP2000043983 A JP 2000043983A JP 2000043983 A JP2000043983 A JP 2000043983A JP 2001234242 A JP2001234242 A JP 2001234242A
Authority
JP
Japan
Prior art keywords
temperature
rolling
crystal grains
toughness
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000043983A
Other languages
Japanese (ja)
Other versions
JP4405026B2 (en
Inventor
Masaaki Fujioka
政昭 藤岡
Yoshio Abe
義男 阿部
Kojin Hagiwara
行人 萩原
Mitsuru Sato
満 佐藤
Tomoyuki Yokota
智之 横田
Yoshitaka Adachi
吉隆 足立
Akihiro Matsuzaki
明博 松崎
Narikazu Matsukura
功和 枩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
JFE Engineering Corp
Nippon Steel Corp
Original Assignee
Kobe Steel Ltd
Nippon Steel Corp
Sumitomo Metal Industries Ltd
Kawasaki Steel Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nippon Steel Corp, Sumitomo Metal Industries Ltd, Kawasaki Steel Corp, NKK Corp, Nippon Kokan Ltd filed Critical Kobe Steel Ltd
Priority to JP2000043983A priority Critical patent/JP4405026B2/en
Publication of JP2001234242A publication Critical patent/JP2001234242A/en
Application granted granted Critical
Publication of JP4405026B2 publication Critical patent/JP4405026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a producing method for high toughness and high tensile strength steel fine in crystal grains capable of obtaining a remarkable fine- grained structure. SOLUTION: In this producing method for high toughness and high tensile strength steel fine in crystal grains, at the time of casting a slab containing, by mass, 0.05 to 0.8% C, 0.01 to 0.5% Si, 0.5 to 5% Mn, and the balance Fe with inevitable impurities, cooling the same to <=600 deg.C after rolling or as it is without rolling and thereafter performing hot rolling, reheating and the subsequent rolling are performed at 550 deg.C to Ac1 point, and the rolling is performed for one pass in which the draft of one pass is controlled to >=30% or for continuous two or more passes in which the time between the passes is controlled to <=10 sec under the conditions that the strain rate is 0.1 to 200/sec, and the total strain quantity is 1 to 10. Preferably, in the hot rolling, the rolling for one or more passes including the final pass is performed at >Ac1 point to Ac1 point+30 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱間圧延によって
製造される鋼製品(薄鋼板、厚鋼板、線材、型鋼、棒
鋼、鋼管など)において、その基本特性たる強度、靭
性、延性に優れた高靱性高張力鋼の製造方法に関するも
のである。
The present invention relates to a steel product (a thin steel plate, a thick steel plate, a wire rod, a shape steel bar, a steel bar, a steel pipe, etc.) manufactured by hot rolling, which has excellent basic properties such as strength, toughness and ductility. The present invention relates to a method for producing a high-toughness high-tensile steel.

【0002】[0002]

【従来の技術】近年、鋼製品の軽量化、鋼構造物の使用
条件の過酷化にともない、より強靭で安全性の高い鋼の
開発が求められている。この様な要求に対し、従来、鋼
板の製造方法を改善し、金属組織の結晶粒の細粒化を図
り、鋼の強度、靭性を改善するための圧延方法が開発さ
れてきた。この様な方法の例としては、いわゆる制御圧
延法が上げられ、加速冷却法と組み合わせた製造法とし
て、特開昭63−223124号公報や特開昭63−1
28117号公報などに示されている。
2. Description of the Related Art In recent years, with the reduction in the weight of steel products and the severer operating conditions of steel structures, the development of tougher and more secure steel has been required. To meet such demands, rolling methods have been developed to improve the method of manufacturing steel sheets, refine crystal grains of the metal structure, and improve the strength and toughness of steel. As an example of such a method, there is a so-called controlled rolling method. As a production method combined with an accelerated cooling method, Japanese Patent Application Laid-Open Nos. 63-223124 and 63-1
No. 28117, for example.

【0003】これら従来法に示されている制御圧延法で
は、比較的高温のオーステナイト(以下、γと略記)の
再結晶温度域において圧延パス間で生じる静的再結晶を
利用し、γ粒を細粒化する。次いで、鋼板の温度が低下
するのを待ち、γの再結晶が生じない温度域(未再結晶
温度域)で、再び圧延を行うことによってγの結晶中に
転位などの欠陥を導入することが行われている。この様
な欠陥は、γがフェライト等に変態するに際して、γ粒
界と同様に、フェライト等の変態生成組織の核生成場所
となるため、冷却時に多数の結晶粒を一斉に生成させ、
金属組織をいっそう微細にすることが可能だからであ
る。しかし、このような方法で得られるフェライトの粒
径は小さいといってもせいぜい5μm程度であり、より
結晶粒を微細化する方法が求められている。特に700
MPa以上の高強度鋼では5μm程度の粒径では、細粒
化の効果だけで十分な靱性が得られなかった。
In the controlled rolling method shown in these conventional methods, static recrystallization generated between rolling passes in a recrystallization temperature region of relatively high temperature austenite (hereinafter abbreviated as γ) is used to reduce γ grains. Finely granulate. Then, waiting for the temperature of the steel sheet to decrease, it is possible to introduce defects such as dislocations into the crystal of γ by performing rolling again in a temperature range in which recrystallization of γ does not occur (non-recrystallization temperature range). Is being done. Such a defect, when γ is transformed into ferrite or the like, becomes a nucleation site of a transformation formation structure such as ferrite like the γ grain boundary, so that a large number of crystal grains are generated at the same time upon cooling,
This is because the metal structure can be made finer. However, the grain size of ferrite obtained by such a method is at most about 5 μm even though it is small, and there is a demand for a method of making crystal grains finer. Especially 700
In the case of high-strength steels of MPa or higher, sufficient toughness could not be obtained only by the effect of grain refinement at a particle size of about 5 μm.

【0004】[0004]

【発明が解決しようとする課題】本発明は、720MP
aを超え、さらには800MPaを超える高張力鋼にお
いても制御圧延や加速冷却といった従来の結晶粒微細化
手段では得られないような顕著な細粒を得ることができ
る加工、冷却方法により、平均粒径で2μm以下の細粒
を実現し、コスト的にも極めて有利な高靱性高張力鋼の
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a 720MP
a, and even in high-tensile steel exceeding 800 MPa, the average grain size can be obtained by a processing and cooling method capable of obtaining remarkable fine grains that cannot be obtained by conventional grain refining means such as controlled rolling and accelerated cooling. It is an object of the present invention to provide a method for producing high-toughness and high-strength steel that realizes fine grains having a diameter of 2 μm or less and is extremely advantageous in terms of cost.

【0005】[0005]

【課題を解決するための手段】そこで発明者らは、上記
のような変態を利用した細粒化の限界を打破し、著しく
細粒化されたフェライト組織を得ることができ、720
MPaを超えるような高張力鋼においても、細粒化効果
だけで十分な靱性向上をもたらす以下のような製造方法
を完成させたものである。 (1)質量%で、C:0.05〜0.8%、Si:0.
01〜0.5%、Mn:0.5〜5%を含有し、残部が
Feおよび不可避的不純物からなる鋳片を鋳造し、圧延
を行うかもしくは圧延することなくそのまま600℃以
下に冷却した後、熱間圧延を行うに際して、再加熱とそ
れに続く圧延を、550℃〜Ac1 点の温度で行い、ま
た、その圧延を、1パスの圧下率を30%以上として1
パスまたはパス間時間を10秒以内とする連続する2パ
ス以上で、歪速度:0.1〜200/秒、総歪量:1以
上10以下となる条件で行うことを特徴とする結晶粒の
微細な高靱性高張力鋼の製造方法。
Accordingly, the inventors have overcome the limit of grain refinement utilizing the above-mentioned transformation, and can obtain a ferrite structure with extremely small grain size.
The present invention has completed the following manufacturing method which can sufficiently improve the toughness only by the grain refining effect even in a high-strength steel exceeding MPa. (1) In mass%, C: 0.05 to 0.8%, Si: 0.
A cast slab containing 01 to 0.5% and Mn: 0.5 to 5%, the balance being Fe and unavoidable impurities, was cast and cooled to 600 ° C. or lower without rolling or rolling. Thereafter, when hot rolling is performed, reheating and subsequent rolling are performed at a temperature of 550 ° C. to Ac 1 point, and the rolling is performed by setting a rolling reduction of one pass to 30% or more and 1%.
The crystal grain is characterized in that it is performed in two or more consecutive passes with a pass or inter-pass time of 10 seconds or less, under the conditions that the strain rate is 0.1 to 200 / sec and the total strain amount is 1 or more and 10 or less. A method for producing fine high-toughness high-tensile steel.

【0006】(2)熱間圧延において、再加熱を、55
0℃〜Ac1 点の温度で行い、最終パスを含む1パス以
上の圧延を、Ac1 点超〜Ac1 点+30℃の温度で行
うことを特徴とする前記(1)に記載の結晶粒の微細な
高靱性高張力鋼の製造方法。 (3)熱間圧延の再加熱において、その昇温速度を0.
1〜50℃/秒とすることを特徴とする前記(1)また
は(2)に記載の結晶粒の微細な高靱性高張力鋼の製造
方法。
(2) In the hot rolling, reheating is performed by 55
Performed at 0 ° C. to Ac 1 point temperature, one or more passes of rolling including final pass, the crystal grains according to above, wherein the carried out at a temperature of Ac 1 point super to Ac 1 point + 30 ° C. (1) Production method of fine high toughness and high strength steel. (3) In the reheating of the hot rolling, the heating rate is set to 0.1.
The method for producing a high-toughness high-strength steel with fine crystal grains according to the above (1) or (2), wherein the temperature is 1 to 50 ° C./sec.

【0007】(4)熱間圧延の再加熱に先だって、Ac
3 点〜1450℃に加熱し、圧延を行うかもしくは圧延
することなくそのまま0.2〜80℃/秒の冷却速度で
600℃以下に冷却する均一化処理を、さらに行うこと
を特徴とする前記(1)〜(3)のいずれかに記載の結
晶粒の微細な高靱性高張力鋼の製造方法。 (5)熱間圧延後90秒以内に、0.2〜80℃/秒の
冷却速度で600℃以下に強制冷却することを特徴とす
る前記(1)〜(4)のいずれかに記載の結晶粒の微細
な高靱性高張力鋼の製造方法。
(4) Prior to reheating in hot rolling, Ac
The method according to the above-mentioned, further comprising performing a homogenization treatment of heating to 3 points to 1450 ° C. and performing rolling or cooling to 600 ° C. or less at a cooling rate of 0.2 to 80 ° C./sec as it is without rolling. (1) The method for producing a high-toughness high-tensile steel having fine crystal grains according to any one of (1) to (3). (5) The method according to any one of (1) to (4), wherein forcible cooling is performed at a cooling rate of 0.2 to 80 ° C./sec to 600 ° C. or less within 90 seconds after hot rolling. A method for producing high-toughness high-strength steel with fine crystal grains.

【0008】(6)熱間圧延後600℃以下に放冷もし
くは0.2〜80℃/秒の冷却速度で強制冷却した後
に、550℃〜Ac1 点+30℃に加熱する再結晶処理
を、さらに行うことを特徴とする前記(1)〜(5)の
いずれかに記載の結晶粒の微細な高靱性高張力鋼の製造
方法。 (7)熱間圧延後300秒以内に、600℃以下に冷却
することなく550℃〜Ac1 点+30℃に保持する再
結晶処理を、さらに行うことを特徴とする前記(1)〜
(5)のいずれかに記載の結晶粒の微細な高靱性高張力
鋼の製造方法。
(6) After hot rolling, the steel sheet is allowed to cool to 600 ° C. or less or forcibly cool at a cooling rate of 0.2 to 80 ° C./sec, and then heat to 550 ° C. to one point of Ac + 30 ° C. The method according to any one of (1) to (5), wherein the method is further performed. (7) Within 300 seconds after the hot rolling, a recrystallization treatment for maintaining the temperature at 550 ° C. to one point of Ac + 30 ° C. without cooling to 600 ° C. or less is further performed.
(5) The method for producing a high-toughness high-strength steel having fine crystal grains according to any one of (5) and (5).

【0009】(8)再結晶処理において、保持温度:5
50〜850℃、保持温度までの昇温または降温速度:
0.5〜50℃/秒、保持時間:300秒以内とし、そ
の後600℃以下に放冷または0.1〜80℃/秒の冷
却速度で強制冷却することを特徴とする前記(6)また
は(7)に記載の結晶粒の微細な高靱性高張力鋼の製造
方法。 (9)室温まで冷却後、300℃〜Ac1 点+30℃の
温度の温度で焼き戻しを、さらに行うことを特徴とする
前記(1)〜(8)のいずれかに記載の結晶粒の微細な
高靱性高張力鋼の製造方法。
(8) In the recrystallization treatment, the holding temperature: 5
50 to 850 ° C, heating or cooling rate up to holding temperature:
(6) or the above (6), wherein the temperature is 0.5 to 50 ° C./sec, and the holding time is 300 seconds or less, and then the solution is allowed to cool to 600 ° C. or less or to forcibly cool at a cooling rate of 0.1 to 80 ° C./sec. (7) The method for producing a high-toughness high-tensile steel having fine crystal grains according to (7). (9) After cooling to room temperature, tempering is further performed at a temperature of 300 ° C. to one point of Ac + 30 ° C., wherein the crystal grains according to any one of (1) to (8) are further refined. Method for producing high-toughness high-strength steel.

【0010】(10)鋳片が、質量%で、N:0.00
2〜0.1%と、Ti:0.003〜0.6%、Nb:
0.003〜0.5%、V:0.001〜0.5%の1
種または2種以上とを、さらに含有し、かつ、C%≧
0.05+12×(Ti%/48+Nb/93%+V%
/23−N%/14)を満たすことを特徴とする前記
(1)〜(9)のいずれかに記載の結晶粒の微細な高靱
性高張力鋼の製造方法。 (11)鋳片が、質量%で、Mo:0.01〜1%、N
i:0.01〜5%、Cr:0.01〜3%、Cu:
0.01〜3%、B:0.0001〜0.003%の1
種または2種以上を、さらに含有することを特徴とする
前記(1)〜(10)のいずれかに記載の結晶粒の微細
な高靱性高張力鋼の製造方法。 (12)鋳片が、質量%で、REM:0.002〜0.
1%、Ca:0.0003〜0.003%の1種または
2種以上を、さらに含有することを特徴とする前記
(1)〜(11)のいずれかに記載の結晶粒の微細な高
靱性高張力鋼の製造方法である。
(10) The slab is N: 0.00 in mass%.
2 to 0.1%, Ti: 0.003 to 0.6%, Nb:
0.003 to 0.5%, V: 0.001 to 0.5% 1
Species or two or more species, and C% ≧
0.05 + 12 × (Ti% / 48 + Nb / 93% + V%
/ 23-N% / 14), wherein the method for producing a high-toughness high-strength steel with fine crystal grains according to any one of the above (1) to (9). (11) The slab is in mass%, Mo: 0.01 to 1%, N
i: 0.01 to 5%, Cr: 0.01 to 3%, Cu:
0.01 to 3%, B: 0.0001 to 0.003% 1
The method for producing a high-toughness high-strength steel with fine crystal grains according to any one of the above (1) to (10), further comprising a seed or two or more kinds. (12) The slab is REM: 0.002-0.
1%, Ca: 0.0003 to 0.003%, and further contains one or more of them. This is a method for producing a tough high strength steel.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳細に説明
する。まず、従来の制御圧延による細粒化方法を冶金的
な見地から検討してみると前述したように、主に以下の
効果によるものであると考えられる。 比較的高温のオーステナイト(以下、γと略記)の再
結晶温度域において圧延パス間で生じる静的再結晶を利
用し、γ粒を細粒化する。 さらに、比較的低温であるところのγの再結晶が生じ
ない温度域(未再結晶温度域)で圧延を行うことによっ
て、γの結晶中に転位などの欠陥を多数導入する。 上記のようなγ粒界や転位などの欠陥は、γがフェラ
イト等に変態するに際して、変態生成組織の核生成場所
となるため、金属組織を微細にする。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. First, when a conventional method of grain refinement by controlled rolling is examined from a metallurgical point of view, as described above, it is considered that mainly the following effects are obtained. Γ grains are refined by utilizing static recrystallization that occurs between rolling passes in a recrystallization temperature range of relatively high austenite (hereinafter abbreviated as γ). Further, by performing rolling at a relatively low temperature range in which recrystallization of γ does not occur (non-recrystallization temperature range), a number of defects such as dislocations are introduced into the γ crystal. The defects such as the γ grain boundaries and dislocations described above serve as nucleation sites of a transformation formation structure when γ is transformed into ferrite or the like, and thus make the metal structure fine.

【0012】これらのうち〜はいずれもフェライト
等の変態生成組織の核生成場所を提供するものであっ
て、これにより最終的なフェライトの結晶粒径を微細に
するものであり、いずれもオーステナイトからフェライ
トへの変態時に発生するフェライト粒数を増加させ微細
化を図る。しかし、このような変態を利用した微細化で
は通常の鋼のオーステナイトからフェライトへの変態開
始温度は750℃から800℃と比較的高温であり結晶
粒成長が速いためにせいぜい5μm程度の結晶粒しか得
られない。また、強制冷却によりフェライト変態の温度
を強制的に低下させることができるが、このような場合
には生成するフェライトが針状であったり、ベイナイト
が生成するなど靱性の観点から好ましくない組織とな
る。
All of these provide a nucleation site of a transformation formation structure such as ferrite, thereby making the final ferrite crystal grain size fine. Increase the number of ferrite grains generated at the time of transformation to ferrite to achieve miniaturization. However, in the refinement utilizing such transformation, the transformation initiation temperature of ordinary steel from austenite to ferrite is relatively high, from 750 ° C. to 800 ° C., and the crystal growth is fast. I can't get it. Further, the temperature of the ferrite transformation can be forcibly reduced by forced cooling, but in such a case, the ferrite to be formed is acicular, or a structure that is not preferable from the viewpoint of toughness such as formation of bainite is obtained. .

【0013】本発明の根幹となる技術の要点は以下の通
りである。 (1)フェライトの動的再結晶による微細化 フェライトの動的再結晶により結晶粒は1μm以下に微
細化できる。このときの、微細かつ均一なフェライト粒
を得るためには以下のような前処理、加工および冷却に
関する条件が必要である。まず、動的再結晶を生じせし
める加工前の組織は、フェライト中にセメンタイトが分
散した混合組織が望ましいことが見出された。これは、
第2相とフェライトの間の変形抵抗差のためフェライト
がより加工されやすくなることと加工によりフェライト
が伸延、再結晶する際に第2相による分断やピンニング
効果により、再結晶後の粒成長、合体も押さえられる為
と考えられる。
The essential points of the technology which is the basis of the present invention are as follows. (1) Refinement by Dynamic Recrystallization of Ferrite Crystal grains can be refined to 1 μm or less by dynamic recrystallization of ferrite. At this time, in order to obtain fine and uniform ferrite grains, the following conditions regarding pretreatment, processing and cooling are necessary. First, it has been found that a mixed structure in which cementite is dispersed in ferrite is desirable as a structure before processing that causes dynamic recrystallization. this is,
Due to the difference in deformation resistance between the second phase and the ferrite, the ferrite is more easily processed, and when the ferrite is elongated and recrystallized by the processing, the second phase breaks and the pinning effect causes grain growth after recrystallization, It is thought that coalescence is also suppressed.

【0014】このような前組織としてはフェライトとパ
ーライトに比較してフェライトとベイナイトまたはマル
テンサイトとの混合組織もしくはパーライト、ベイナイ
トもしくは焼き戻しマルテンサイト組織の様な微細にセ
メンタイトが分散した組織が望ましい。この様な状態
で、フェライトを再結晶させる為の加工を行うAc1
以下550℃以上の温度へ再加熱することが必要である
ことが判った。また、この再加熱に先だっては、鋼片を
そのまま用いるか一度Ac3 〜1450℃で一度再加熱
し、その後に0.2〜80℃/秒の冷却速度で室温〜6
00℃冷却することは、鋼片の均一化などにより細粒化
にさらに有効に作用するものと考えられる。特に、60
0℃以下の温度まで冷却するのは加工前の組織を特にベ
イナイトあるいはマルテンサイトを含む組織とするため
である。
As such a prestructure, a mixed structure of ferrite and bainite or martensite, or a structure in which fine cementite is dispersed, such as a pearlite, bainite or tempered martensite structure, is preferable as compared with ferrite and pearlite. In such a state, processing for recrystallizing ferrite is performed at Ac 1 ° C.
It was found that it was necessary to reheat to a temperature of 550 ° C. or higher. Prior to this reheating, the steel slab is used as it is, or once again at Ac 3 to 1450 ° C., and then at room temperature to 6 at a cooling rate of 0.2 to 80 ° C./sec.
It is considered that cooling at 00 ° C. acts more effectively on grain refinement by making the steel slab uniform. In particular, 60
The reason for cooling to a temperature of 0 ° C. or less is to make the structure before processing into a structure containing bainite or martensite.

【0015】次に、このようにして得られた組織(フェ
ライトとセメンタイトとの混合組織)を再加熱して、加
工を行いフェライトを微細に再結晶させるのであるが、
この時の再加熱温度は、フェライトとセメンタイトの2
相が共存する温度でなければならず、これを安定的に達
成するには加工前の加熱温度は、Ac1 以下であること
が必要である。また、加工による動的再結晶後の粒成長
をセメンタイトが抑制する観点からも加工温度はAc1
以下であることが望ましい。しかし、加工温度が低すぎ
ると原子の拡散が著しく遅延し安定的に動的再結晶を生
じさせられないこのような観点から550℃以上の温度
で加工することが必要である。また、上記したような温
度に加熱するにあたっては、第2相粒子であるセメンタ
イトを過度に粗大化させないために急速加熱を適用する
ことが望ましい。
Next, the structure (mixed structure of ferrite and cementite) thus obtained is reheated and processed to finely recrystallize the ferrite.
At this time, the reheating temperature was set to 2 for ferrite and cementite.
The temperature must be such that the phases coexist, and in order to stably achieve this, the heating temperature before processing must be Ac 1 or less. The processing temperature is set to Ac 1 from the viewpoint that cementite suppresses grain growth after dynamic recrystallization by processing.
It is desirable that: However, if the processing temperature is too low, the diffusion of atoms is significantly delayed and dynamic recrystallization cannot be stably generated. From such a viewpoint, it is necessary to process at a temperature of 550 ° C. or more. When heating to the above-mentioned temperature, it is desirable to apply rapid heating in order not to excessively coarsen cementite as the second phase particles.

【0016】また、加工における歪み量および歪み速度
は安定的に動的再結晶を生じさせ、かつ再結晶後の結晶
粒径を微細にできるように設定することが必要である。
動的再結晶は加工による歪み量がある値以上に大きな場
合に限って発生し、歪み速度は遅いほど生成しやすい。
我々は加工量としては1パスあたり30%以上の大歪加
工かつ総歪量で1〜10程度によって安定的に再結晶し
1μm以下の微細化が達成されることを見出した。また
歪速度については、歪み速度が遅い場合には、得られる
結晶粒は歪み速度が速い場合比較して大きい傾向がある
が、歪み速度が大きすぎると動的再結晶が生じず、加工
時の荷重も極めて大きくなる。このような特性を鑑み、
動的再結晶により均一かつ微細な金属組織を得る条件を
実験的に検討した結果、本願発明の温度範囲では概ね1
以上の歪みが必要で、適当な歪み速度の範囲は概ね0.
1〜200/秒であることが判った。
Further, it is necessary to set the amount of strain and the strain rate in processing so that dynamic recrystallization can be stably generated and the crystal grain size after recrystallization can be made fine.
Dynamic recrystallization occurs only when the amount of strain due to processing is larger than a certain value, and the lower the strain rate, the more easily it is generated.
We have found that a large amount of processing of 30% or more per pass and a total amount of strain of about 1 to 10 can stably recrystallize and achieve miniaturization of 1 μm or less per pass. Regarding the strain rate, when the strain rate is low, the obtained crystal grains tend to be larger than when the strain rate is high, but when the strain rate is too high, dynamic recrystallization does not occur, and during processing, The load also becomes extremely large. In view of these characteristics,
As a result of experimentally examining the conditions for obtaining a uniform and fine metal structure by dynamic recrystallization, it was found that the temperature range was approximately 1 in the temperature range of the present invention.
The above strain is required, and the range of the appropriate strain rate is approximately 0.
It was found to be 1 to 200 / sec.

【0017】次に、上記の加工は1パスで行っても2パ
ス以上で行ってもパス間時間を短時間とすればその効果
は基本的に変わらない。本願発明の温度範囲では加工温
度が比較的低くパス間での回復がそれほど速くなくパス
間時間を10秒以内とすれば、その間の回復は小さく、
多パスでの歪みがほぼ累積するからである。但し、1パ
ス当たりの圧下率を増加させパス数を低減させるほど細
粒化効果および再結晶を誘起する効果は大きい。次に、
上記の加工により加工直後には極めて微細なフェライト
組織を得ることができるが、これを加工終了後、速やか
に冷却するはフェライトの結晶粒成長を抑制を可能と
し、より微細な組織を得ることを可能とする。
Next, whether the above processing is performed in one pass or in two or more passes, the effect is basically the same if the time between passes is short. In the temperature range of the present invention, if the processing temperature is relatively low and the recovery between passes is not so fast and the time between passes is set to 10 seconds or less, the recovery during that time is small,
This is because distortions in multiple passes almost accumulate. However, as the rolling reduction per pass is increased and the number of passes is reduced, the grain refinement effect and the effect of inducing recrystallization are greater. next,
By the above processing, an extremely fine ferrite structure can be obtained immediately after the processing.However, after the processing is completed, the cooling is promptly performed so that the crystal growth of the ferrite can be suppressed, and a finer structure can be obtained. Make it possible.

【0018】なお、上記加工により通常は再結晶を試料
全体に誘起し、細粒組織を得ることができるが、加工条
件や成分により、一部に再結晶を誘起できない場合があ
るこの場合には、圧延終了後に一度冷却した後に再結晶
処理を行うことにより組織を微細化することができる。
この再結晶処理は通常のは通常の昇温速度によっても行
うことができるが、圧延後に冷却することなく連続的に
かつ急速加熱によって行うことが細粒化の点で有効であ
る。これは、通常の再結晶処理ではその昇温過程や保持
中に過度に再結晶が生じ、粒成長が生じてしまうからで
あって、同時に進行するセメンタイト等の第2相粒子の
成長も細粒化にとって好ましくないことが判明したから
である。また、加工時の第2相を調質、軟化させるため
に加工、冷却後に焼き戻しを行うことで結晶粒の非常に
微細な鋼の製造ができる。
In general, recrystallization is induced in the whole sample by the above-mentioned processing, and a fine grain structure can be obtained. However, recrystallization may not be induced in some parts depending on processing conditions and components. The structure can be refined by performing a recrystallization treatment after cooling once after the end of rolling.
This recrystallization treatment can be usually carried out at a normal heating rate, but it is effective from the viewpoint of grain refining that the recrystallization treatment is carried out continuously and by rapid heating without cooling after rolling. This is because in the ordinary recrystallization treatment, excessive recrystallization occurs during the temperature raising process or during the holding, and the grain growth occurs. At the same time, the growth of the second phase particles such as cementite is also fine. This is because it was found to be unfavorable for chemical conversion. In addition, by processing and cooling to temper and soften the second phase during processing, it is possible to produce steel with extremely fine crystal grains.

【0019】(2)Tiによる粒成長抑制 上記の細粒化方法に対して、TiおよびNの添加および
これらの添加量に応じて炭素量を適正化することにより
TiNやTiCの加工転移の増加や結晶粒成長の抑制等
により顕著な細粒化効果を発現することが見出された。
このような多量のTiやNの添加は従来には靭性の観点
から好ましくないと考えられていたが、今回得られたよ
うな顕著な細粒組織においてはその影響は極めて小さい
ことを見出した。Tiの窒化物は1200℃以上の高温
まで安定に存在し、オーステナイトの細粒化に寄与す
る。また、Tiの炭化物はフェライト中に極めて微細に
析出する。この両者を適正な割合で鋼中に分散させると
ともに、さらにセメンタイトを形成するための炭素量を
確保することによって、フェライトの再結晶粒を極めて
微細に生成し得ることが見出された。さらに、NbやV
の添加もTiのような窒化物の効果は期待できないが炭
化物の形成により一定の効果を得ることができることも
知見された。
(2) Suppression of grain growth by Ti In contrast to the above-mentioned grain refining method, the addition of Ti and N and the optimization of the amount of carbon according to the added amount increase the processing transition of TiN and TiC. It has been found that a remarkable grain refinement effect is exhibited by suppressing the growth of crystal grains and the like.
Conventionally, the addition of such a large amount of Ti or N has been considered to be undesirable from the viewpoint of toughness. However, it has been found that the effect is extremely small in a remarkable fine grain structure obtained in this case. The nitride of Ti exists stably up to a high temperature of 1200 ° C. or more, and contributes to austenite grain refinement. Also, Ti carbides are extremely finely precipitated in ferrite. It has been found that recrystallized ferrite grains can be formed extremely finely by dispersing both of these in an appropriate ratio in steel and securing a sufficient amount of carbon for forming cementite. Furthermore, Nb and V
It has also been found that the effect of a nitride such as Ti cannot be expected from the addition of Ti, but a certain effect can be obtained by forming carbides.

【0020】(3)上記の製造過程において圧延の最終
パスを含む1パス以上をγ、αの2相温度域にて行うこ
とやその後の再結晶処理や焼き戻しなどをγ、αの2相
温度域で付加的に行うことは、その際にαからγに濃縮
した炭素原子の効果により冷却後の金属組織中に高炭素
濃度のマルテンサイト相を微細に分散させることができ
る。これは通常の結晶粒径を有する鋼では加工硬化を大
きくするが靭性を顕著に劣化させることことが知られて
いる。しかしながら、本発明のごときに極めて微細な結
晶粒径を有する場合には靭性の劣化が極めて少ないこと
が判明した。これにより、結晶粒の微細な鋼では降伏強
度が高いために加工硬化が小さくく引っ張り試験におけ
る一様伸びが小さいという欠点が、本処理によって、払
拭されることが見出された。
(3) In the above manufacturing process, one or more passes including the final pass of rolling are performed in the two-phase temperature range of γ and α, and the subsequent recrystallization treatment and tempering are performed in two phases of γ and α. The additional operation in the temperature range allows the high-carbon-concentration martensite phase to be finely dispersed in the metal structure after cooling due to the effect of carbon atoms concentrated from α to γ. This is known to increase work hardening in steel having a normal crystal grain size, but to significantly deteriorate toughness. However, it has been found that when having a very fine crystal grain size as in the present invention, deterioration of toughness is extremely small. As a result, it has been found that this treatment eliminates the drawback that steel with fine crystal grains has low work hardening due to high yield strength and low uniform elongation in a tensile test.

【0021】上記したような発見に基づき、本願の細粒
鋼の製造条件を明確にした。以下には、各成分、製造条
件の限定の理由について述べる。Cは、鋼の強化を行う
のに有効な元素であり0.05未満では十分な強度が得
られない。一方、その含有量が0.75%を越えると、
溶接性を劣化させる。また、細粒化効果を顕著に得るた
めには金属組織中にセメンタイトの分散を行う必要があ
り、このような観点から添加すべき炭素量は、C%≧
0.05+12×(Ti%/48+Nb%/93+V%
/23−N%/14)を満たす必要がある。Siは、脱
酸元素として、また、鋼の強化元素として有効である
が、0.01%未満の含有量ではその効果がない。一
方、0.5%を越えると、鋼の表面性状を損なう。
Based on the above findings, the production conditions for the fine-grained steel of the present application were clarified. In the following, each component and the reason for limiting the production conditions will be described. C is an element effective for strengthening steel, and if it is less than 0.05, sufficient strength cannot be obtained. On the other hand, if the content exceeds 0.75%,
Deteriorates weldability. Further, in order to obtain a remarkable grain refining effect, it is necessary to disperse cementite in the metal structure. From such a viewpoint, the amount of carbon to be added is C% ≧
0.05 + 12 × (Ti% / 48 + Nb% / 93 + V%
/ 23-N% / 14). Although Si is effective as a deoxidizing element and as a strengthening element for steel, it is not effective at a content of less than 0.01%. On the other hand, if it exceeds 0.5%, the surface properties of the steel are impaired.

【0022】Mnは、鋼の強化および焼き入れ性を向上
させ圧延前の組織を適正に導くのに有効な元素であり、
0.5%未満では十分な効果が得られない。一方、その
含有量が5%を越えると鋼の加工性を劣化させる。N
は、Tiと窒化物を形成し、オーステナイトの細粒化お
よびフェライトの再結晶粒の微細化に有効に作用するた
め靭性を劣化させない範囲で添加する。このような観点
からその上限を0.1%、下限を0.002%とする。
また、過剰の窒素添加を抑制し靭性を良好に保つために
炭素、窒素の添加量がC%≧0.05+12×(Ti%
/48+Nb%/93+V%/23−N%/14)を満
たす必要がある。
Mn is an element effective for improving the strength and hardenability of steel and appropriately leading the structure before rolling.
If it is less than 0.5%, a sufficient effect cannot be obtained. On the other hand, if the content exceeds 5%, the workability of steel deteriorates. N
Is added within a range that does not deteriorate toughness because it forms a nitride with Ti and effectively acts on refinement of austenite and refinement of recrystallized grains of ferrite. From such a viewpoint, the upper limit is set to 0.1% and the lower limit is set to 0.002%.
Further, in order to suppress excessive nitrogen addition and maintain good toughness, the addition amount of carbon and nitrogen is C% ≧ 0.05 + 12 × (Ti%
/ 48 + Nb% / 93 + V% / 23-N% / 14).

【0023】Ti、Nb、Vは、結晶粒の微細化と析出
強化の面で有効に機能する。特に、これらによる結晶粒
の微細化の効果は顕著なので靭性を劣化させない範囲で
使用する。このような観点からその添加量の上限をT
i:0.6%、Nb:0.5%、V:0.5%とする。
また、その添加量の下限をTi:0.003%、Nb:
0.003%、V:0.001%とするのは、これ未満
では効果がないからである。また、その細粒化効果をよ
り顕著にするためには、Nの添加を行いかつ炭素、窒素
含有量との関係C%≧0.05+12×(Ti%/48
+Nb%/93+V%/23−N%/14)を満たす必
要がある。
Ti, Nb and V function effectively in terms of crystal grain refinement and precipitation strengthening. In particular, since the effect of refining the crystal grains by these is remarkable, it is used in a range where the toughness is not deteriorated. From such a viewpoint, the upper limit of the addition amount is T
i: 0.6%, Nb: 0.5%, V: 0.5%.
Further, the lower limit of the addition amount is Ti: 0.003%, Nb:
0.003% and V: 0.001% are because there is no effect below this. Further, in order to make the effect of grain refinement more remarkable, N is added and the relationship between the content of carbon and nitrogen is C% ≧ 0.05 + 12 × (Ti% / 48
+ Nb% / 93 + V% / 23-N% / 14).

【0024】Cu,Ni,Cr,Mo,Bは、いずれも
鋼の焼入れ性を向上させる元素であり、本発明の場合、
その添加により鋼の強度を高めることができる。しか
し、過度の添加は鋼の靭性および溶接性を損なうため、
0.01%≦Cu≦3%、0.01%≦Ni≦5%、
0.01%≦Cr≦3%、0.01%≦Mo≦1%、
0.0001%≦B≦0.003%に限定する。Cu,
Ni,Cr,Moのそれぞれの下限を0.01%、Bの
下限を0.0001%としたのはこれ未満では効果がな
いからである。
Cu, Ni, Cr, Mo, and B are all elements that improve the hardenability of steel.
The addition can increase the strength of the steel. However, excessive addition impairs the toughness and weldability of the steel,
0.01% ≦ Cu ≦ 3%, 0.01% ≦ Ni ≦ 5%,
0.01% ≦ Cr ≦ 3%, 0.01% ≦ Mo ≦ 1%,
It is limited to 0.0001% ≦ B ≦ 0.003%. Cu,
The lower limits of Ni, Cr, and Mo are set to 0.01%, and the lower limit of B is set to 0.0001%.

【0025】REM、Caは、Sの無害化に有効である
が、添加量が少ないとその効果が無く、また、過度の添
加は靭性を損なうためREMについては0.002〜
0.10%、Caについては0.0003〜0.003
%に限定する。なお、Alは、脱酸元素として添加さ
れ、特に規定しないが、0.001%未満の含有量では
その効果がなく、0.1%を越えると、鋼の表面性状を
劣化させるため、0.001〜0.1%の範囲で添加さ
れることが好ましい。その他、不可避的不純物である
P、Sの含有量はそれぞれ0.02%以下、0.008
%以下とすることが、また、O:0.0005〜0.0
02%の範囲とし、Zr:0.001〜0.3%、T
a:0.001〜0.3%、Hf:0.001〜0.3
%を、必要に応じ添加することが好ましい。
REM and Ca are effective in detoxifying S. However, if the amount of addition is small, the effect is not obtained, and excessive addition impairs the toughness.
0.10%, 0.0003 to 0.003 for Ca
%. Note that Al is added as a deoxidizing element and is not particularly limited. However, if its content is less than 0.001%, it has no effect, and if it exceeds 0.1%, the surface properties of steel are deteriorated. It is preferably added in the range of 001 to 0.1%. In addition, the contents of inevitable impurities P and S are 0.02% or less and 0.008% or less, respectively.
%: O: 0.0005 to 0.0
02%, Zr: 0.001 to 0.3%, T
a: 0.001 to 0.3%, Hf: 0.001 to 0.3
% Is preferably added as needed.

【0026】次に、本発明における製造条件に付いて述
べる。本発明はいかなる鋳造条件で鋳造された鋼片につ
いても有効であるので、特に鋳造条件を特定する必要は
ない。また、本発明の根幹となる加工の方法は、一度、
変態を完了させた後で550℃〜Ac1 に加熱し、その
温度域でフェライトの動的再結晶を生じさせる加工を行
う方法(請求項1に関する方法)とその一部をAc1
〜Ac1 +30℃の範囲で行う方法(請求項2に関する
方法)があり、Ti、炭素および窒素の量を適正に制御
することによりさらに顕著な細粒化が得られること、さ
らにはそれぞれその処理に先だって、組織微細化のため
の再加熱・加工処理や均一化のための均熱・加工処理を
行うものである。
Next, the manufacturing conditions in the present invention will be described. Since the present invention is effective for billets cast under any casting conditions, there is no need to specify the casting conditions. In addition, the processing method that is the basis of the present invention, once,
After the transformation is completed, the method is heated to 550 ° C. to Ac 1 , and a process for causing dynamic recrystallization of ferrite in the temperature range (the method according to claim 1) and a part of the method is performed for more than Ac 1 to Ac There is a method performed in the range of 1 + 30 ° C. (a method according to claim 2), in which more remarkable grain refinement can be obtained by appropriately controlling the amounts of Ti, carbon, and nitrogen, and further, before each treatment. In addition, reheating and processing for refining the structure and soaking and processing for uniformity are performed.

【0027】請求項1に示す方法の場合には、請求項1
もしくは請求項10〜12に示す鋼を、一度冷却するこ
となく圧延を行った後かあるいはそのまま圧延をせず、
一度600℃以下の温度まで冷却し、通常の加熱もしく
は必要に応じて請求項3に示す0.1〜50℃/秒の急
速加熱によって、Ac1 以下550℃以上の温度に再加
熱し、Ac1 以下550℃以上の温度で熱間圧延を行う
に際して、一連の熱間圧延のうち、1パスの圧下率を3
0%以上として、1パスまたはパス間時間を10秒以内
とした連続する2パス以上の圧延をAc1 以下550℃
以上の温度かつ圧延の歪速度を0.1〜200/秒と
し、その総歪量を1以上10以下となる条件で熱間圧延
を行う。
In the case of the method described in claim 1, claim 1
Or the steel shown in claims 10 to 12, after rolling without cooling once or without rolling as it is,
Once cooled to a temperature of 600 ° C. or less, and reheated to a temperature of Ac 1 or less and 550 ° C. or more by ordinary heating or, if necessary, by rapid heating of 0.1 to 50 ° C./sec according to claim 3, Ac When performing hot rolling at a temperature of 1 to 550 ° C. or higher, the rolling reduction of one pass in a series of hot rolling is 3
Rolling of two or more passes in a single pass or two or more passes in which the time between passes is set to 10 seconds or less at 0% or more at 550 ° C. below Ac 1
The hot rolling is performed at the above temperature and the rolling strain rate of 0.1 to 200 / sec, and the total strain amount is 1 or more and 10 or less.

【0028】熱間圧延後は、特に規定しないが、放冷も
しくは請求項5に示す熱間加工終了後90秒以内に室温
〜600℃の温度まで0.2℃/秒〜80℃/秒以下の
冷却速度で強制冷却し、さらに、必要に応じて、冷却後
もしくは熱間圧延直後に請求項6または請求項7または
請求項8に示す再結晶処理をおこなう。また、その後さ
らに、必要に応じて、請求項9に示す300℃〜Ac1
+30℃の温度で焼き戻しを行う。また、熱間圧延前に
行うAc1 以下550℃以上の温度の再加熱に先だっ
て、鋼片を鋳造後一度600℃以下の温度まで冷却した
後に、Ac3 〜1450℃の温度に再加熱し、Ar3
上の温度から600℃以下の温度まで0.2〜80℃/
秒で冷却する請求項4に示す前処理を行う。
After the hot rolling, the temperature is not particularly specified, but is allowed to be from room temperature to 600 ° C. within a range of from 0.2 ° C./sec to 80 ° C./sec. And then, if necessary, a recrystallization treatment as described in claim 6, 7, or 8 after cooling or immediately after hot rolling. Further, after that, if necessary, a temperature of 300 ° C. to Ac 1 according to claim 9 may be used.
Tempering is performed at a temperature of + 30 ° C. Further, prior to reheating at a temperature of 550 ° C. or higher below Ac 1 performed before hot rolling, the steel slab is once cooled to a temperature of 600 ° C. or lower after casting, and then reheated to a temperature of Ac 3 to 1450 ° C. From a temperature of Ar 3 or more to a temperature of 600 ° C. or less, 0.2 to 80 ° C. /
The pretreatment according to claim 4 is performed in which cooling is performed in seconds.

【0029】まずここで、Ac1 以下550℃以上の温
度で大歪による熱間加工を行うに際して、鋳片を鋳造
後、一度冷却することなく圧延を行った後かあるいはそ
のまま圧延をせずに一度600℃以下の温度まで冷却し
た後に、再びAc1 以下550℃以上の温度に再加熱し
て行うのは、鋳造後に直接熱間加工を行ってから冷却し
ても熱間加工を行わずして冷却しても、一度600℃以
下に冷却して完全に金属組織を変態させから再びAc1
以下550℃以上の温度に再加熱すれば、鋼の金属組織
はフェライトとベイナイト、マルテンサイトの混合組織
あるいはパーライト、ベイナイト、焼き戻しマルテンサ
イトとなり、フェライト中にセメンタイトが微細に分散
した金属組織となり本発明の基本的な要件を満たすから
である。Ac1 を超える温度ではセメンタイトがオース
テナイに変態し、フェライト、セメンタイトの2相組織
とならないからである。また550℃以上とするのは、
これ未満の温度では、引き続いて実施する加工により鋼
が再結晶しないからである。
First, when hot working with large strain is performed at a temperature of not more than Ac 1 and not less than 550 ° C., after casting a slab, it is rolled once without cooling or without rolling. Once cooled to a temperature of 600 ° C. or less and then reheated to a temperature of Ac 1 or less and 550 ° C. or more, hot working is performed directly after casting, and then hot working is not performed. It is cooled Te, again because then transformed completely metal structure is cooled once 600 ° C. or less Ac 1
When the steel is reheated to a temperature of 550 ° C. or higher, the metal structure of the steel becomes a mixed structure of ferrite and bainite and martensite, or pearlite, bainite and tempered martensite, and becomes a metal structure in which cementite is finely dispersed in ferrite. This is because the basic requirements of the invention are satisfied. At temperatures above Ac 1 cementite transforms into austenite, because not ferrite, a two-phase structure of the cementite. The temperature of 550 ° C. or higher is
If the temperature is lower than this, the steel is not recrystallized by the subsequent processing.

【0030】また、請求項3でAc1 以下550℃以上
の温度への加熱を0.1〜50℃/秒の急速加熱によっ
て行うのは、この昇温過程で生じるセメンタイトの粗大
化を抑制するためであり、0.1℃/秒未満ではその成
長を抑制し得ないからであって、50℃/秒超の昇温速
度は通常の加熱装置では得にくいからである。次に、フ
ェライトの動的再結晶生じさせる加工は、Ac1 以下〜
550℃で行う必要がある。これは、Ac1 を超えるの
温度では、セメンタイトのオーステナイトへの逆変態に
よりセメンタイトによるフェライトへの加工歪導入促進
や粒成長抑制効果を十分に受けられないからである。ま
た、Ac1 点を超える温度は概ね700℃を超える場合
が多く、動的再結晶したフェライトは粒成長しやすく、
加工温度が高くなるに従い粗大かする傾向があり、加工
温度はできるだけ低い方が好ましいからである。しかし
ながら、加工温度が低すぎると原子の拡散が生じにくく
なり、再結晶が起こりにくくなる。このような場合、加
工されたフェライト粒は単に扁平するだけとなり、微細
な整粒組織が得られない。そこで、安定的にフェライト
の動的再結晶が生じるためには550℃以上の温度域で
加工を行う必要がある。
In the third aspect, the heating to the temperature of not more than Ac 1 and not less than 550 ° C. is performed by rapid heating at a rate of 0.1 to 50 ° C./sec. This is because the growth cannot be suppressed at a rate of less than 0.1 ° C./sec, and it is difficult to obtain a heating rate of more than 50 ° C./sec with a normal heating device. Next, processing for causing dynamic recrystallization of ferrite is performed from Ac 1 or less.
It must be performed at 550 ° C. This is because a temperature of more than Ac 1, because not enough undergo working strain introduced accelerated and grain growth inhibiting effect on the ferrite by cementite by reverse transformation to cementite austenite. Further, the temperature exceeding the Ac 1 point generally exceeds 700 ° C. in many cases, and the dynamically recrystallized ferrite tends to grow grains,
This is because the processing temperature tends to increase as the processing temperature increases, and the processing temperature is preferably as low as possible. However, if the processing temperature is too low, diffusion of atoms hardly occurs, and recrystallization hardly occurs. In such a case, the processed ferrite grains simply flatten, and a fine sized grain structure cannot be obtained. Therefore, in order to stably generate dynamic recrystallization of ferrite, it is necessary to perform processing in a temperature range of 550 ° C. or more.

【0031】次に、Ac1 〜550℃での加工における
歪み量は、この温度域で加工中に組織全体に再結晶が生
じ、かつ再結晶後の結晶粒径が微細であることが必要で
ある。組織全体に再結晶が生じるためには加工量が一定
量以上必要であり、このような観点から一連の加工によ
る総歪み量は1以上が必要である。また、歪み量は1以
上確保されれば、大きければ大きいほど細粒化の観点で
好ましいが、通常の圧延等の加工においては10以上の
歪み量を確保するのは難しい。そこで本発明では与える
歪み量の上限を10とした。また、1パスあたりの加工
量は、大きいほど導入した加工の効果が散逸せず微細化
に有効であり、特に30%以上加工量の場合に1μm以
下の細粒組織が得られるので30%以上と限定した。
Next, the amount of strain in the processing at Ac 1 to 550 ° C. requires that the entire structure be recrystallized during the processing in this temperature range and that the crystal grain size after the recrystallization be fine. is there. In order for recrystallization to occur in the entire structure, a processing amount is required to be a certain amount or more, and from such a viewpoint, a total distortion amount by a series of processings needs to be one or more. Further, as long as the distortion amount is 1 or more, the larger the distortion amount, the more preferable in terms of grain refinement. However, it is difficult to secure a distortion amount of 10 or more in ordinary processing such as rolling. Therefore, in the present invention, the upper limit of the amount of distortion to be applied is set to 10. The larger the processing amount per pass, the more effective the effect of the introduced processing does not dissipate and is effective for miniaturization. In the case of a processing amount of 30% or more, a fine grain structure of 1 μm or less is obtained. And limited.

【0032】また、加工時の歪み速度は小さいほど動的
再結晶は生じやすく、歪み速度が大きいほど生じにく
い。一方、歪み速度が小さいと加工中の転位の減少(動
的回復)が大きく、その結果、再結晶後に得られる結晶
粒径は大きく、歪み速度が大きいほど結晶粒径は小さ
い。このような動的再結晶の生じ易さと再結晶後の結晶
粒径の両者を考慮すると歪み速度には適正な範囲が存在
する。この観点から加工中の歪み速度は0.1/秒以上
200/秒以下と限定した。0.1/秒未満では加工に
要する時間が長すぎこの間に転位の回復が生じてしま
い、フェライト中に多数の転位を導入することができ
ず、動的再結晶が生じたとしても微細な結晶粒を得られ
ないからである。また、加工時の歪み速度を200/秒
以下としたのはこれ以上に歪み速度では、Ac1 〜55
0℃の温度域で動的再結晶を生じさせるのが難しいから
である。また、上記の圧延は、1パスで行うことが望ま
しいが、多パスで行う場合には、パス間時間を10秒以
内とすることが必要である。これはパス間時間を10秒
超とするとパス間でフェライトの回復が生じてしまい歪
みの累積効果が得られないからである。
In addition, dynamic recrystallization is more likely to occur as the strain rate during processing is lower, and less likely to occur as the strain rate is higher. On the other hand, when the strain rate is low, the reduction of dislocation during processing (dynamic recovery) is large, and as a result, the crystal grain size obtained after recrystallization is large, and the crystal grain size is small as the strain rate is high. Considering both the susceptibility of such dynamic recrystallization and the crystal grain size after recrystallization, there is an appropriate range for the strain rate. From this viewpoint, the strain rate during processing is limited to 0.1 / sec or more and 200 / sec or less. If the rate is less than 0.1 / sec, the time required for processing is too long, and the recovery of dislocations occurs during this time, so that many dislocations cannot be introduced into the ferrite, and even if dynamic recrystallization occurs, fine crystal This is because grains cannot be obtained. In addition, the reason why the strain rate at the time of processing is set to 200 / sec or less is that when the strain rate is higher than this, Ac 1 to 55 is used.
This is because it is difficult to cause dynamic recrystallization in a temperature range of 0 ° C. In addition, it is desirable that the above-described rolling be performed in one pass, but when performing the rolling in multiple passes, it is necessary to set the inter-pass time to within 10 seconds. This is because if the inter-pass time is longer than 10 seconds, ferrite is recovered between the passes and the effect of accumulating strain cannot be obtained.

【0033】次に、動的再結晶を生ぜしめる一連の熱間
加工に引き続いて、請求項5に示す強制冷却を行う方法
について説明する。まず、強制冷却の効果は、加工後に
得られた微細なフェライト組織がその後の放冷の間に結
晶粒成長によって成長し、微細組織が損なわれることを
抑制するためである。本発明においてはこのような観点
から動的変態を生じさせる熱間加工に引き続いて、90
秒以内に強制冷却を開始し、600℃以下の温度までを
0.2〜80℃/秒で冷却を行うことの有効性を規定し
ている。ここで、冷却開始を加工終了から90秒以内と
したのは、加工時に動的再結晶により生成した微細なフ
ェライト組織が粒成長によって粗大化するのを防止する
ために可及的に速やかに冷却を開始することを意味する
もので、これを超えてからの冷却ではその効果が最大限
に発揮されず、加工後に放冷した場合とあまり変わらな
くなり、強制冷却の効果が顕著に現れないからである。
Next, a method for performing forced cooling according to claim 5 will be described following a series of hot working operations that cause dynamic recrystallization. First, the effect of the forced cooling is to suppress that the fine ferrite structure obtained after processing grows by crystal grain growth during the subsequent cooling, and the fine structure is not damaged. In the present invention, following the hot working for producing the dynamic transformation from such a viewpoint, 90 °
It defines the effectiveness of starting forced cooling within seconds and cooling to a temperature of 600 ° C. or lower at 0.2 to 80 ° C./second. Here, the reason for starting the cooling within 90 seconds from the end of the processing is to cool down as quickly as possible in order to prevent the fine ferrite structure generated by dynamic recrystallization during the processing from becoming coarse due to grain growth. This means that cooling beyond this does not maximize its effect, it is not much different from cooling down after processing, and the effect of forced cooling does not appear significantly is there.

【0034】つぎに、冷却の終了温度を600℃以下と
したのは、600℃超の温度ではまだ温度が高すぎ、原
子の拡散も容易に生じ、加工によって得られた微細なフ
ェライト組織やセメンタイトの粒成長を抑制できないか
らであり、室温以上としたのはこれ以下の温度への冷却
は通常の水冷等では容易に実施できないからである。ま
た、請求項6、7には上記のような圧延後の放冷もしく
は強制冷却を行った後に動的再結晶が、完全に得られな
かった場合に付加的に適用される再結晶処理方法を示
す。このような完全に再結晶が得られなかった部分は強
度に加工されたフェライト組織であり、その後の再加熱
により再結晶を誘起することができる。このような再結
晶処理は請求項6に示すような550℃〜Ac1 +30
℃の範囲で実施する。このような範囲に限定するのは5
50℃未満では再結晶を誘起することができず、Ac1
+30℃超では過度に再結晶が進み、結晶粒が粗大化し
てしまうからである。
Next, the reason why the cooling end temperature is set to 600 ° C. or less is that if the temperature exceeds 600 ° C., the temperature is still too high, atoms easily diffuse, and a fine ferrite structure or cementite obtained by processing. This is because grain growth cannot be suppressed, and the reason why the temperature is set to room temperature or higher is that cooling to a temperature lower than room temperature cannot be easily performed by ordinary water cooling or the like. Claims 6 and 7 describe a recrystallization treatment method that is additionally applied when dynamic recrystallization is not completely obtained after cooling or forced cooling after rolling as described above. Show. Such a part where recrystallization was not completely obtained is a ferrite structure that has been worked to a high degree, and recrystallization can be induced by reheating. Such recrystallization treatment is performed at 550 ° C. to Ac 1 +30 as described in claim 6.
Perform in the range of ° C. It is 5 to limit to such a range
Can not induce recrystallization is less than 50 ° C., Ac 1
If the temperature exceeds + 30 ° C., recrystallization proceeds excessively and crystal grains become coarse.

【0035】このような再結晶処理は請求項7に示すよ
うな急速加熱により実施することが望ましいことが判っ
ている。これは、急速加熱することにより短時間で再結
晶処理を終了し、結晶粒が無駄に成長することを回避で
きるためである。この際昇温過程でセメンタイトやその
他の析出物の粗大化を抑制できることによって、さらに
結晶粒の粗大化を抑制する効果も重畳しているものと考
えられる。ここで昇温速度の下限を0.5℃/秒とした
のはこれ以下では急速加熱の効果が得られないためであ
り、上限を50℃/秒としたのは、これ以上の昇温速度
は現状の設備制約等から容易に得られないからである。
また、処理温度の上限が850℃の高温まで可能なのは
急速加熱だからである。また、再結晶処理時間を300
秒以下と限定したのはこれ以上では、この保持中に結晶
粒の粗大化が生じ急速加熱を行った効果が消滅してしま
うためである。
It has been found that such recrystallization treatment is desirably carried out by rapid heating as defined in claim 7. This is because the rapid reheating can complete the recrystallization process in a short time, thereby avoiding unnecessary growth of crystal grains. At this time, it can be considered that the coarsening of cementite and other precipitates can be suppressed in the process of raising the temperature, and the effect of further suppressing the coarsening of crystal grains is also superimposed. The reason why the lower limit of the heating rate is set to 0.5 ° C./sec is that the effect of rapid heating cannot be obtained below this, and the upper limit is set to 50 ° C./sec. Is not easily obtained due to the current facility restrictions.
Further, the upper limit of the processing temperature can be as high as 850 ° C. because of rapid heating. In addition, the recrystallization processing time is 300
The reason for limiting the time to less than the second is that if the time is longer than this, the crystal grains become coarse during the holding, and the effect of the rapid heating disappears.

【0036】また、このような再結晶処理をより有効に
実施するためには請求項6、7のように圧延後に一度冷
却を行うのではなく、請求項8に示すごとく、圧延終了
後可及的速やかに0.5〜50℃/秒の昇温速度で55
0〜850℃の温度で300秒以内の時間に終了するこ
とが必要である。このように圧延直後に再結晶処理を行
うのは、圧延後の冷却中や再結晶処理の昇温過程で析出
物の粗大化が生じ、ひいては再結晶処理中に結晶粒の粗
大化が生じてしまうからである。ここで昇温速度の下限
を0.5℃/秒としたのはこれ以下では急速加熱の効果
が得られないためであり、上限を50℃/秒としたの
は、これ以上の昇温速度は現状の設備制約等から容易に
得られないからである。また、処理温度の上限が850
℃の高温まで可能なのは急速加熱だからである。また、
再結晶処理時間を300秒以下と限定したのはこれ以上
では、この保持中に結晶粒の粗大化が生じ急速加熱を行
った効果が消滅してしまうためである。
In order to carry out such a recrystallization treatment more effectively, cooling is not performed once after rolling as in claims 6 and 7, but as soon as rolling is completed, as in claim 8, At a heating rate of 0.5 to 50 ° C./sec.
It is necessary to finish at a temperature of 0 to 850 ° C. within a time of 300 seconds or less. The reason for performing the recrystallization treatment immediately after the rolling in this way is that during the cooling after the rolling or during the temperature rise of the recrystallization treatment, the coarsening of the precipitate occurs, and thus the crystal grains are coarsened during the recrystallization treatment. It is because. The reason why the lower limit of the heating rate is set to 0.5 ° C./sec is that the effect of rapid heating cannot be obtained below this, and the upper limit is set to 50 ° C./sec. Is not easily obtained due to the current facility restrictions. The upper limit of the processing temperature is 850.
This is because rapid heating is possible up to a high temperature of ° C. Also,
The reason why the recrystallization treatment time is limited to 300 seconds or less is that if it is longer than this, crystal grains become coarse during this holding, and the effect of rapid heating disappears.

【0037】次に、請求項5の強制冷却を行った場合や
請求項7および8の再結晶処理後に強制冷却を行った際
にはフェライト中に固溶している炭素原子がセメンタイ
トとして析出せず室温でもフェライト中に過飽和となっ
て固溶し、著しい靭性の劣化を生じさせる可能性があ
る。このような場合、300℃〜Ac1 +30℃の温度
で焼き戻しを行うことによって、固溶炭素をセメンタイ
トとして析出させ強度靭性の優れた金属組織とすること
ができる。焼き戻し処理はこのような目的のために実施
するものであり、300℃未満では温度が低すぎ炭素原
子が容易に拡散せず焼き戻しが短時間で実施できないか
らであり、Ac1 +30℃以下としたのはこれを超える
と逆変態が大量に生じてしまい、せっかく生成した微細
組織を破壊してしまうからである。
Next, when forced cooling is performed in claim 5 or when forced cooling is performed after the recrystallization treatment in claims 7 and 8, carbon atoms dissolved in ferrite precipitate as cementite. However, even at room temperature, it may become supersaturated in ferrite and form a solid solution to cause significant deterioration in toughness. In such a case, by performing tempering at a temperature of 300 ° C. to Ac 1 + 30 ° C., solid solution carbon is precipitated as cementite, and a metal structure having excellent strength toughness can be obtained. Is intended the process tempering to be carried out for this purpose, is less than 300 ° C. is because tempering not readily diffuse carbon atoms temperature is too low can not be performed in a short time, Ac 1 + 30 ° C. or less The reason for this is that if it exceeds this, a large amount of reverse transformation will occur, destroying the fine structure that has been generated.

【0038】請求項1に示す方法の場合の最後に、上記
したようなAc1 以下550℃以上の温度に再加熱した
際の金属組織を微細化に有利なフェライトと微細なセメ
ンタイトの混合組織状態とするためには、Ac1 以下5
50℃以上の温度への再加熱に先だって、請求項4に示
すように鋼片を、一度Ac3 〜1450℃に加熱し、A
3 点以上の温度から0.2〜80℃/秒の冷却速度で
冷却することを選択することが可能である。ここで再加
熱温度をAc3 〜1450℃とするのは、固溶原子の拡
散を促し、金属組織を均一化する目的とオーステナイト
粒径を比較的大きくし冷却後の金属組織をフェライトと
ベイナイト、マルテンサイトの混合組織もしくはパーラ
イト、特に好ましいベイナイト、あるいはマルテンサイ
トとしやすいためである。
Finally, in the case of the method according to the first aspect, a mixed structure state of ferrite and fine cementite, which is advantageous for refining the metal structure when reheated to a temperature of 550 ° C. or lower below Ac 1 as described above. to a, Ac 1 or less 5
Prior to reheating to a temperature of 50 ° C. or higher, the steel slab is heated once to Ac 3 to 1450 ° C.
It is possible to choose from r 3 points or more temperature at a cooling rate of 0.2 to 80 ° C. / sec. Here, the reason for setting the reheating temperature to Ac 3 to 1450 ° C. is to promote the diffusion of solid solution atoms, to make the metal structure uniform, to make the austenite grain size relatively large, and to cool the metal structure after cooling to ferrite and bainite. This is because a mixed structure of martensite or pearlite, particularly preferred bainite or martensite is easily formed.

【0039】これをAc1 以下550℃以上の温度へ再
加熱することによって、加工前の金属組織として所望さ
れるフェライトとセメンタイトの微細分散組織が得られ
る。また、このような温度範囲で再加熱するのは、添加
したTi等の元素を一度固溶させ、引き続く冷却中にフ
ェライト中に微細に析出させる効果があるからである。
このような効果はAc3 以上の温度で得られるので加熱
温度はAc3 以上に限定するが、特に1150℃以上の
温度で顕著であり、これ以上の加熱温度が望ましい。し
かしながら1450℃以上に加熱すると金属組織の粗大
化が顕著となり、後の金属組織微細化に好ましくないか
らである。
By reheating this to a temperature not higher than Ac 1 and not lower than 550 ° C., a fine dispersion structure of ferrite and cementite which is desired as a metal structure before working can be obtained. The reason for reheating in such a temperature range is that the added element such as Ti is dissolved once and has an effect of precipitating finely in ferrite during the subsequent cooling.
Such effects heating temperature so obtained Ac 3 above temperature is limited to Ac 3 or more, and remarkable in particular 1150 ° C. or higher, more heating temperature is desirable. However, when heated to 1450 ° C. or more, the coarsening of the metal structure becomes remarkable, which is not preferable for the subsequent finer metal structure.

【0040】また、均熱化処理後に0.2〜80℃/秒
の冷却速度で冷却を行うのは、均熱処理により均一に拡
散したTi等の原子をできるだけそのままの状態に保持
したいからである。このような冷却条件の限定の理由
は、冷却速度0.2℃/秒未満では、フェライト変態時
に生じるTi等の元素の分配(フェライト−オーステナ
イト間で生じる元素の移動)や析出物の粗大化を回避で
きないからであり、これを回避するためには、冷却速度
は速いほうがよいが、現在の設備能力では80℃/秒超
の冷却速度は得難いからである。
The reason why the cooling is performed at a cooling rate of 0.2 to 80 ° C./sec after the soaking treatment is to keep the atoms such as Ti diffused uniformly by the soaking treatment as much as possible. . The reason for limiting such cooling conditions is that, at a cooling rate of less than 0.2 ° C./sec, the distribution of elements such as Ti (transfer of elements generated between ferrite and austenite) and the coarsening of precipitates occur during ferrite transformation. This is because it cannot be avoided. To avoid this, it is better to use a high cooling rate, but it is difficult to obtain a cooling rate exceeding 80 ° C./sec with the current facility capacity.

【0041】次に、請求項2に示す方法の場合について
説明する。請求項2に示す方法の場合には、鋼片を鋳造
後、冷却すること無くそのまま熱間圧延を開始しても一
度600℃以下の温度まで冷却した鋳片をAc1 点〜5
50℃に再加熱した後に圧延を開始する点では請求項1
と同一である。また、必要に応じて請求項3に示す0.
1〜50℃/秒の急速加熱によって、550℃以上Ac
1 以下の温度に再加熱を行う点、その再加熱の後の一連
の熱間加工のうち、1パスの圧下率を30%以上として
1パスまたはパス間時間を10秒以内とした連続する2
パス以上の加工を圧延の歪速度を0.1〜200/秒と
し、その総歪量を1以上10以下となる条件で加工を行
い、その後、放冷もしくは請求項5に示す熱間加工終了
後90秒以内に室温〜600℃の温度まで0.2℃/秒
〜80℃/秒以下の冷却速度で強制冷却し、必要に応じ
て請求項6または請求項7または請求項8に示す再結晶
処理をおこなう。
Next, the case of the method described in claim 2 will be described. In the case of the method according to the second aspect, after casting the steel slab, even if the hot rolling is started without cooling without cooling, the cast slab once cooled to a temperature of 600 ° C. or less is obtained from Ac 1 point to 5 points.
Claim 1 in that rolling is started after reheating to 50 ° C.
Is the same as In addition, if necessary, the.
Ac at 550 ° C or higher by rapid heating at 1 to 50 ° C / sec
The point of reheating to a temperature of 1 or less, a series of hot working after the reheating, a continuous reduction in which the rolling reduction of one pass is 30% or more and the time of one pass or the time between passes is 10 seconds or less.
The processing is performed under the condition that the strain rate of rolling is 0.1 to 200 / sec and the total strain amount is 1 or more and 10 or less, and then the cooling is performed or the hot working is completed. Within 90 seconds thereafter, it is forcibly cooled to a temperature of room temperature to 600 ° C. at a cooling rate of 0.2 ° C./sec to 80 ° C./sec or less, and if necessary, re-cooled according to claim 6, claim 7 or claim 8. Perform crystallization treatment.

【0042】さらに、必要に応じて請求項9に示す30
0℃〜Ac1 +30℃の温度で焼き戻しを行う。また、
上記Ac1 以下550℃以上の温度に再加熱に先だっ
て、鋼片を一度600℃以下の温度まで冷却した後に再
びAc3 〜1450℃の温度に再加熱し、Ar3 以上の
温度から600℃以下の温度まで0.2〜80℃/秒で
冷却する請求項4に示す前処理を行う点などは全く同一
である。請求項2の方法が請求項1の方法と異なる点
は、再加熱後に実施する1パスの圧下率を30%以上と
して行う1パスまたはパス間時間を10秒以内とした連
続する2パス以上の圧延を、歪速度を0.1〜200/
秒、総歪量を1以上10以下となる条件で行うだけでな
く、最終圧延パスを含む少なくとも1パス以上の圧延終
了温度をAc1 点を超えAc1 +30℃以下とすること
を特徴とする。
Further, if necessary, the present invention may be applied to a method as set forth in claim 9.
Tempering is performed at a temperature of 0 ° C. to Ac 1 + 30 ° C. Also,
Prior to reheating to a temperature of 550 ° C. or higher below Ac 1 , the steel slab is once cooled to a temperature of 600 ° C. or lower and then reheated to a temperature of Ac 3 to 1450 ° C. again, from a temperature of Ar 3 or higher to 600 ° C. or lower. The pretreatment described in claim 4 is performed at a rate of 0.2 to 80 ° C./sec. The method of claim 2 is different from the method of claim 1 in that one pass performed after reheating is performed at a reduction rate of 30% or more for one pass or two or more consecutive passes in which the time between passes is set to 10 seconds or less. Rolling was performed at a strain rate of 0.1 to 200 /
Sec, not only performed in a total amount of strain conditions to be 1 to 10, characterized in that at least one pass or more rolling end temperature includes a final rolling pass than Ac 1 + 30 ° C. greater than the Ac 1 point .

【0043】このようなAc1 点を超える温度への昇温
は、大歪圧延による加工発熱の増加という特徴的な現象
によって実施可能である。すなわち、圧延中に加えられ
る歪エネルギーが熱エネルギーに変換され鋼板の温度が
上昇するもので、この加工発熱を最大限に利用するため
には、1パス以上のパスの圧下率を50%以上とするこ
とが好ましい。このように、加工発熱を利用することに
より、再加熱温度をAc1 点を超える温度にすることな
く、熱間圧延中の温度をAc1 点を超えAc1 +30℃
以下の温度にし、以下に述べるように部分的なオーステ
ナイト化による硬質相を導入し、材質をさらに向上させ
ることが可能である。最終圧延パスを含む少なくとも1
パス以上の圧延終了温度をAc1 点を超えAc1 +30
℃以下とするためには、上記のように加工発熱を利用す
ることが、特殊な設備や製造プロセスを必要としないの
で好ましいといえるが、熱間圧延中に誘導加熱するなど
加工発熱以外の方法によってもよく、熱間圧延中の鋼板
をAc1 点を超えAc1 +30℃以下にする具体的な方
法については、本発明はそれを特に制限するものではな
い。
Such a temperature rise to a temperature exceeding the Ac 1 point can be performed by a characteristic phenomenon of an increase in the heat generated during processing due to large strain rolling. That is, the strain energy applied during rolling is converted into heat energy and the temperature of the steel sheet rises. In order to make the most of this processing heat, the rolling reduction of one or more passes is set to 50% or more. Is preferred. Thus, by utilizing the process heat generation, the reheating temperature without a temperature above a point Ac, Ac 1 + 30 ° C. exceeds Ac 1 point of the temperature during hot rolling
It is possible to further improve the material by setting the temperature below and introducing a hard phase by partial austenitization as described below. At least one including the final rolling pass
Ac 1 +30 exceed the Ac 1 point of the end of rolling temperature equal to or higher than the path
In order to reduce the temperature to below ℃, it is preferable to use the heat generated by processing as described above because special equipment and a manufacturing process are not required. However, methods other than heat generated by processing such as induction heating during hot rolling are preferable. The present invention does not particularly limit a specific method of setting the steel sheet during hot rolling to a temperature exceeding the Ac 1 point and not more than Ac 1 + 30 ° C.

【0044】上記したように最終圧延パスを含む少なく
とも1パス以上の圧延終了温度をAc1 点を超えAc1
+30℃以下で圧延する目的は、請求項1の方法で示し
た結晶粒の微細な金属組織を、Ac1 点を超えAc1
30℃以下の温度で圧延を終了することにより、微細金
属組織中に微量のオーステナイト化する部分を生ぜし
め、その後の冷却によりその部分を高炭素のマルテンサ
イトもしくはベイナイトなどの硬質相に変態させるため
である。
[0044] at least one pass or more rolling end temperature includes a final rolling pass as described above exceeds the Ac 1 point Ac 1
+ 30 ° C. The purpose of rolling below, the crystal grains of the fine metal structure shown by the method of claim 1, Ac beyond a point Ac 1 +
By terminating the rolling at a temperature of 30 ° C. or less, a small amount of austenite is generated in the fine metal structure, and the subsequent cooling transforms the portion into a hard phase such as high carbon martensite or bainite. It is.

【0045】このような硬質相は最終的な鋼材の引っ張
り特性を改善する。これは以下のような理由によるもの
である。まず、結晶粒の微細な鋼の引っ張り特性は、結
晶粒の微細さによる降伏応力の上昇により加工硬化係数
が低下し、均一伸びが低下するという欠点がある。一
方、材料中に導入された硬質相は材料の引っ張り強度を
上昇させ、材料の加工硬化係数を上昇させる結果として
材料の均一伸びを上昇させる。しかし、このような硬質
相は変形時の材料中の応力集中を誘起し靭性が低下する
と考えられている。
[0045] Such a hard phase improves the tensile properties of the final steel material. This is due to the following reasons. First, the tensile properties of steel having fine crystal grains are disadvantageous in that the work hardening coefficient decreases due to an increase in yield stress due to the fine crystal grains, and uniform elongation decreases. On the other hand, the hard phase introduced into the material increases the tensile strength of the material, which increases the work hardening coefficient of the material and consequently increases the uniform elongation of the material. However, it is considered that such a hard phase induces stress concentration in the material at the time of deformation and lowers toughness.

【0046】しかしながら、本願発明においては、細粒
化効果が顕著であり、このような場合でも靭性の劣化が
ほとんど見られないことが判明した。そこで、本願では
請求項2に示すように一連の圧延のうち少なくとも1パ
スの加工後の温度をAc1 点を超えAc1 +30℃以下
の温度で実施することにより、微細金属組織中にこれも
微細な高炭素のマルテンサイトもしくはベイナイトなど
の硬質相を導入し、細粒鋼の均一伸びを改善することが
可能となった。ここで、Ac1 点を超える温度が必要な
理由はこれ以下では部分的なγ化が生じず、上記したよ
うな硬質相を形成できないからである。また、Ac1
30℃以下の温度としたのはこれ以上の温度では硬質相
の体積分率が高すぎ靭性を劣化させるからであるととも
に結晶粒の成長を生じさせてしまうからである。
However, in the present invention, it was found that the effect of grain refinement was remarkable, and even in such a case, deterioration of toughness was hardly observed. Therefore, by the application carried out in claim 2 the temperature after processing at least one pass of the series of rolling as shown in exceeding the Ac 1 point Ac 1 + 30 ° C. below the temperature, which is also a fine metal structure By introducing a hard phase such as fine high-carbon martensite or bainite, it has become possible to improve the uniform elongation of fine-grained steel. Here, the reason why the temperature exceeding the Ac 1 point is required is that below this temperature, partial gamma formation does not occur, and the hard phase as described above cannot be formed. In addition, Ac 1 +
The reason why the temperature is set to 30 ° C. or lower is that if the temperature is higher than 30 ° C., the volume fraction of the hard phase is so high that the toughness is deteriorated and also the crystal grains grow.

【0047】[0047]

【実施例】次に、本発明の実施例によって発明の有効性
を示す。表1は実施例の鋼の成分を示すものである。な
お、表中で、塗色をつけて示した番号の鋼は比較鋼であ
ることを示しており、本発明に一致しない項目を塗色を
つけて示してある。次にこのような成分の鋼を用い種々
の製造条件で製造した鋼片について得られた結晶粒径、
硬度、降伏強度(YS)、引っ張り強度(TS)、シャ
ルピー衝撃試験の延性−脆性遷移温度(vTrs)を製
造条件とともに表2〜4に示す。いずれも鋼の加工後の
板厚は3〜10mmである。また、表中で硬度のみを測
定した鋼については硬度から推定される強度を引っ張り
強度欄に示した。
Next, the effectiveness of the present invention will be described with reference to examples of the present invention. Table 1 shows the components of the steels of the examples. In the table, the steels with the numbers shown with paint colors indicate comparative steels, and items that do not correspond to the present invention are shown with paint colors. Next, the grain size obtained for steel slabs manufactured under various manufacturing conditions using steel having such a composition,
The hardness, the yield strength (YS), the tensile strength (TS), and the ductile-brittle transition temperature (vTrs) of the Charpy impact test are shown in Tables 2 to 4 together with the production conditions. In all cases, the thickness of the steel after processing is 3 to 10 mm. In the table, the strength estimated from the hardness is shown in the tensile strength column for the steels for which only the hardness was measured.

【0048】[0048]

【表1】 [Table 1]

【0049】[0049]

【表2】 [Table 2]

【0050】[0050]

【表3】 [Table 3]

【0051】[0051]

【表4】 [Table 4]

【0052】いずれの鋼の場合も本発明法の要件を満た
す鋼は結晶粒径が2μmと非常に微細であり、強度、靭
性も良好な特性を有する。これに対し、本発明の要件を
満たさない鋼では結晶粒径が2μmより大きいか扁平粒
あるいは硬度の高い高炭素マルテンサイトを含有するも
のであった。扁平粒あるいは高炭素マルテンサイトを含
む鋼では強度が高くても靭性の劣化が顕著である。以上
のことより、本発明法により結晶粒径が非常に微細な鋼
の製造が可能であり、強度、靭性に優れた高靱性高張力
鋼を製造することが可能であることが明らかであり、本
発明は有効である。
In any case, the steel satisfying the requirements of the present invention has a very fine crystal grain size of 2 μm, and has good strength and toughness. On the other hand, steels that do not satisfy the requirements of the present invention have high crystallinity of high carbon martensite having a crystal grain size of more than 2 μm, flat grains or high hardness. In steel containing flat grains or high carbon martensite, the toughness is significantly deteriorated even if the strength is high. From the above, it is clear that it is possible to produce a steel having a very fine grain size by the method of the present invention, and it is possible to produce a high-toughness high-strength steel excellent in strength and toughness, The present invention is effective.

【0053】[0053]

【発明の効果】以上述べたように、本発明の製造方法に
よれば結晶粒径が非常に微細な鋼の製造が可能であり、
特に720MPaを超える高張力鋼においても靭性にも
優れた高靱性高張力鋼を安価に生産できる製造方法を提
供することができる。
As described above, according to the production method of the present invention, it is possible to produce steel having a very fine crystal grain size.
In particular, it is possible to provide a manufacturing method capable of inexpensively producing a high-toughness high-strength steel excellent in toughness even in a high-tensile steel exceeding 720 MPa.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/58 C22C 38/58 (71)出願人 000001258 川崎製鉄株式会社 兵庫県神戸市中央区北本町通1丁目1番28 号 (71)出願人 000001199 株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町1丁目3番18号 (72)発明者 藤岡 政昭 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 阿部 義男 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 萩原 行人 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 佐藤 満 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 横田 智之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 足立 吉隆 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内 (72)発明者 松崎 明博 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 枩倉 功和 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4K032 AA02 AA04 AA05 AA06 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 BA01 BA02 BA03 CA01 CA02 CA03 CA05 CC02 CD01 CD02 CD03 CD05 CF01 CF02 CF03 4K037 EA01 EA02 EA05 EA06 EA07 EA09 EA11 EA13 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EA36 EB05 FA01 FA02 FA03 FB04 FB05 FD01 FD02 FD03 FD04 FD05 FF01 FF02 JA03 JA06──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/58 C22C 38/58 (71) Applicant 000001258 Kawasaki Steel Corp. Kitahonmachidori, Chuo-ku, Kobe-shi, Hyogo 1-1-28 (71) Applicant 000001199 Kobe Steel, Ltd. 1-3-18, Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture (72) Inventor Masaaki Fujioka 20-1 Shintomi, Futtsu City, Chiba Prefecture Nippon Steel Corporation (72) Inventor Yoshio Abe 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation (72) Inventor Yukito Hagiwara 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel (72) Inventor Mitsuru Sato 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Headquarters (72) Inventor Tomoyuki Yokota Chiyoda, Tokyo 1-2-2, Marunouchi-ku, Japan Nippon Kokan Co., Ltd. (72) Yoshitaka Adachi Inventor, 4-5-33 Kitahama, Chuo-ku, Osaka-shi Sumitomo Metal Industries, Ltd. (72) Inventor Akihiro Matsuzaki Chiba, Chiba 1 Kawasaki-cho, Chuo-ku, Kawasaki Steel Engineering Co., Ltd. (72) Inventor Kowa Masukura 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo F-term Kobe Steel Engineering Co., Ltd. ) 4K032 AA02 AA04 AA05 AA06 AA08 AA11 AA12 AA14 AA15 AA16 AA17 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA35 AA36 AA40 BA01 BA02 BA03 CA01 CA02 CA03 CA05 CC02 CD01 EA01 CF02 EA01 EA17 EA18 EA19 EA20 EA23 EA25 EA27 EA31 EA32 EA36 EB05 FA01 FA02 FA03 FB04 FB05 FD01 FD02 FD03 FD04 FD05 FF01 FF02 JA03 JA06

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C :0.05〜0.8%、 Si:0.01〜0.5%、 Mn:0.5〜5% を含有し、残部がFeおよび不可避的不純物からなる鋳
片を鋳造し、圧延を行うかもしくは圧延することなくそ
のまま600℃以下に冷却した後、熱間圧延を行うに際
して、再加熱とそれに続く圧延を、550℃〜Ac1
の温度で行い、また、その圧延を、1パスの圧下率を3
0%以上として1パスまたはパス間時間を10秒以内と
する連続する2パス以上で、歪速度:0.1〜200/
秒、総歪量:1以上10以下となる条件で行うことを特
徴とする結晶粒の微細な高靱性高張力鋼の製造方法。
1. A mass% of C: 0.05 to 0.8%, Si: 0.01 to 0.5%, Mn: 0.5 to 5%, the balance being Fe and unavoidable impurities. After casting a slab consisting of, and after being rolled or cooled as it is without rolling to 600 ° C. or less, when performing hot rolling, reheating and subsequent rolling are performed at a temperature of 550 ° C. to Ac 1 point. The rolling was carried out, and the rolling reduction in one pass was 3
0% or more, with one pass or two or more consecutive passes with an inter-pass time of 10 seconds or less, at a strain rate of 0.1 to 200 /
A method for producing a high-toughness high-strength steel with fine crystal grains, wherein the method is performed under the condition that the second and the total strain amount are 1 to 10 inclusive.
【請求項2】 熱間圧延において、再加熱を、550℃
〜Ac1 点の温度で行い、最終パスを含む1パス以上の
圧延を、Ac1 点超〜Ac1 点+30℃の温度で行うこ
とを特徴とする請求項1に記載の結晶粒の微細な高靱性
高張力鋼の製造方法。
2. In the hot rolling, reheating is performed at 550 ° C.
Carried out at a temperature of to Ac 1 point, one pass or more rolling including final pass, claim 1 in crystal grains fine in wherein carried out at a temperature of Ac 1 point super to Ac 1 point + 30 ° C. Manufacturing method of high toughness and high strength steel.
【請求項3】 熱間圧延の再加熱において、その昇温速
度を0.1〜50℃/秒とすることを特徴とする請求項
1または2に記載の結晶粒の微細な高靱性高張力鋼の製
造方法。
3. The fine toughness and high tensile strength of crystal grains according to claim 1, wherein the rate of temperature rise is 0.1 to 50 ° C./sec during reheating in hot rolling. Steel production method.
【請求項4】 熱間圧延の再加熱に先だって、Ac3
〜1450℃に加熱し、圧延を行うかもしくは圧延する
ことなくそのまま0.2〜80℃/秒の冷却速度で60
0℃以下に冷却する均一化処理を、さらに行うことを特
徴とする請求項1〜3のいずれかに記載の結晶粒の微細
な高靱性高張力鋼の製造方法。
4. Prior to reheating in hot rolling, the material is heated to an Ac temperature of 3 to 1450 ° C. and rolled or without rolling at a cooling rate of 0.2 to 80 ° C./sec.
The method for producing a high-toughness high-strength steel with fine crystal grains according to any one of claims 1 to 3, further comprising performing a homogenization treatment of cooling to 0 ° C or lower.
【請求項5】 熱間圧延後90秒以内に、0.2〜80
℃/秒の冷却速度で600℃以下に強制冷却することを
特徴とする請求項1〜4のいずれかに記載の結晶粒の微
細な高靱性高張力鋼の製造方法。
5. Within 90 seconds after hot rolling, 0.2-80
The method for producing a high-toughness high-strength steel with fine crystal grains according to any one of claims 1 to 4, wherein forced cooling is performed at a cooling rate of 600C / sec to 600C or less.
【請求項6】 熱間圧延後600℃以下に放冷もしくは
0.2〜80℃/秒の冷却速度で強制冷却した後に、5
50℃〜Ac1 点+30℃に加熱する再結晶処理を、さ
らに行うことを特徴とする請求項1〜5のいずれかに記
載の結晶粒の微細な高靱性高張力鋼の製造方法。
6. After hot rolling, the steel sheet is allowed to cool to 600 ° C. or less or to forcibly cool at a cooling rate of 0.2 to 80 ° C./sec.
The method for producing a high-toughness high-strength steel with fine crystal grains according to any one of claims 1 to 5, further comprising performing a recrystallization treatment of heating to 50 ° C to one point of Ac + 30 ° C.
【請求項7】 熱間圧延後300秒以内に、600℃以
下に冷却することなく550℃〜Ac1 点+30℃に保
持する再結晶処理を、さらに行うことを特徴とする請求
項1〜5のいずれかに記載の結晶粒の微細な高靱性高張
力鋼の製造方法。
7. A recrystallization treatment is further performed within 300 seconds after hot rolling, in which the temperature is kept at 550 ° C. to one point of Ac + 30 ° C. without cooling to 600 ° C. or less. The method for producing a high-toughness high-strength steel with fine crystal grains according to any one of the above.
【請求項8】 再結晶処理において、保持温度:550
〜850℃、保持温度までの昇温または降温速度:0.
5〜50℃/秒、保持時間:300秒以内とし、その後
600℃以下に放冷または0.1〜80℃/秒の冷却速
度で強制冷却することを特徴とする請求項6または7に
記載の結晶粒の微細な高靱性高張力鋼の製造方法。
8. The recrystallization treatment has a holding temperature of 550.
To 850 ° C., the rate of temperature rise or fall to the holding temperature: 0.
8. The method according to claim 6, wherein the temperature is 5 to 50 ° C./sec, the holding time is 300 seconds or less, and then the solution is allowed to cool to 600 ° C. or less or to be forcibly cooled at a cooling rate of 0.1 to 80 ° C./sec. Method for producing high-toughness high-strength steel with fine crystal grains.
【請求項9】 室温まで冷却後、300℃〜Ac1 点+
30℃の温度の温度で焼き戻しを、さらに行うことを特
徴とする請求項1〜8のいずれかに記載の結晶粒の微細
な高靱性高張力鋼の製造方法。
9. After cooling to room temperature, 300 ° C. to Ac 1 point +
The method for producing a high-toughness high-strength steel with fine crystal grains according to any one of claims 1 to 8, wherein tempering is further performed at a temperature of 30 ° C.
【請求項10】 鋳片が、質量%で、 N :0.002〜0.1%と、 Ti:0.003〜0.6%、 Nb:0.003〜0.5%、 V :0.001〜0.5% の1種または2種以上とを、さらに含有し、かつ、C%
≧0.05+12×(Ti%/48+Nb/93%+V
%/23−N%/14)を満たすことを特徴とする請求
項1〜9のいずれかに記載の結晶粒の微細な高靱性高張
力鋼の製造方法。
10. The cast slab is represented by mass%, N: 0.002 to 0.1%, Ti: 0.003 to 0.6%, Nb: 0.003 to 0.5%, V: 0. 0.001 to 0.5%, and C%
≧ 0.05 + 12 × (Ti% / 48 + Nb / 93% + V
% / 23-N% / 14), the method for producing a high-toughness high-strength steel having fine crystal grains according to any one of claims 1 to 9.
【請求項11】 鋳片が、質量%で、 Mo:0.01〜1%、 Ni:0.01〜5%、 Cr:0.01〜3%、 Cu:0.01〜3%、 B :0.0001〜0.003% の1種または2種以上を、さらに含有することを特徴と
する請求項1〜10のいずれかに記載の結晶粒の微細な
高靱性高張力鋼の製造方法。
11. The slab is represented by mass%: Mo: 0.01 to 1%, Ni: 0.01 to 5%, Cr: 0.01 to 3%, Cu: 0.01 to 3%, B The method for producing a high-toughness high-strength steel with fine crystal grains according to any one of claims 1 to 10, further comprising one or more of 0.0001 to 0.003%. .
【請求項12】 鋳片が、質量%で、 REM:0.002〜0.1%、 Ca:0.0003〜0.003% の1種または2種以上を、さらに含有することを特徴と
する請求項1〜11のいずれかに記載の結晶粒の微細な
高靱性高張力鋼の製造方法。
12. The slab further comprises one or more of REM: 0.002 to 0.1% and Ca: 0.0003 to 0.003% by mass. The method for producing a high-toughness high-strength steel having fine crystal grains according to any one of claims 1 to 11.
JP2000043983A 2000-02-22 2000-02-22 Method for producing high-tensile strength steel with fine grain Expired - Fee Related JP4405026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043983A JP4405026B2 (en) 2000-02-22 2000-02-22 Method for producing high-tensile strength steel with fine grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043983A JP4405026B2 (en) 2000-02-22 2000-02-22 Method for producing high-tensile strength steel with fine grain

Publications (2)

Publication Number Publication Date
JP2001234242A true JP2001234242A (en) 2001-08-28
JP4405026B2 JP4405026B2 (en) 2010-01-27

Family

ID=18566817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043983A Expired - Fee Related JP4405026B2 (en) 2000-02-22 2000-02-22 Method for producing high-tensile strength steel with fine grain

Country Status (1)

Country Link
JP (1) JP4405026B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166036A (en) * 2001-11-28 2003-06-13 Koyo Seiko Co Ltd Steering rack steel and manufacturing method therefor
JP2009024227A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp Dual-phase steel sheet superior in formability, and manufacturing method therefor
US7740722B2 (en) 2003-01-23 2010-06-22 Jtekt Corporation Steel for use in high strength pinion shaft and manufacturing method thereof
KR100973922B1 (en) 2003-06-23 2010-08-03 주식회사 포스코 Non-Annealing Steel Having Ferrite Formed by Strain Induced Dynamic Transformation and Method for Manufacturing the Steel
JP2010242172A (en) * 2009-04-07 2010-10-28 National Institute For Materials Science Steel plate and method for manufacturing the same
US20110067787A1 (en) * 2008-05-13 2011-03-24 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
US8404060B2 (en) 2007-02-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
EP2641989A2 (en) * 2010-11-19 2013-09-25 Posco High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
JP2015503676A (en) * 2011-12-28 2015-02-02 ポスコ Wear-resistant steel with excellent toughness and weldability
KR101767822B1 (en) 2016-03-31 2017-08-14 주식회사 포스코 High strength wire rod and steel wire having excellent corrosion resistance and method for manufacturing thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166036A (en) * 2001-11-28 2003-06-13 Koyo Seiko Co Ltd Steering rack steel and manufacturing method therefor
US7740722B2 (en) 2003-01-23 2010-06-22 Jtekt Corporation Steel for use in high strength pinion shaft and manufacturing method thereof
DE102004003541B4 (en) * 2003-01-23 2013-02-21 Jtekt Corp. Steel for use in a high-strength pinion shaft and manufacturing method therefor
KR100973922B1 (en) 2003-06-23 2010-08-03 주식회사 포스코 Non-Annealing Steel Having Ferrite Formed by Strain Induced Dynamic Transformation and Method for Manufacturing the Steel
US9034118B2 (en) 2005-08-04 2015-05-19 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
US8404060B2 (en) 2007-02-02 2013-03-26 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot-rolled sheet having fine-grained ferrite, and hot-rolled sheet
JP2009024227A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp Dual-phase steel sheet superior in formability, and manufacturing method therefor
US8974612B2 (en) * 2008-05-13 2015-03-10 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
US20110067787A1 (en) * 2008-05-13 2011-03-24 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
US10227682B2 (en) 2008-05-13 2019-03-12 The Japan Steel Works, Ltd. High-strength low-alloy steel excellent in high-pressure hydrogen environment embrittlement resistance characteristics and method for producing the same
JP2010242172A (en) * 2009-04-07 2010-10-28 National Institute For Materials Science Steel plate and method for manufacturing the same
EP2641989A4 (en) * 2010-11-19 2014-11-19 Posco High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
JP2014503684A (en) * 2010-11-19 2014-02-13 ポスコ Cold drawn high toughness non-heat treated wire and method for producing the same
US9394580B2 (en) 2010-11-19 2016-07-19 Posco High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
EP2641989A2 (en) * 2010-11-19 2013-09-25 Posco High-toughness cold-drawn non-heat-treated wire rod, and method for manufacturing same
JP2015503676A (en) * 2011-12-28 2015-02-02 ポスコ Wear-resistant steel with excellent toughness and weldability
US9708698B2 (en) 2011-12-28 2017-07-18 Posco Wear resistant steel having excellent toughness and weldability
KR101767822B1 (en) 2016-03-31 2017-08-14 주식회사 포스코 High strength wire rod and steel wire having excellent corrosion resistance and method for manufacturing thereof

Also Published As

Publication number Publication date
JP4405026B2 (en) 2010-01-27

Similar Documents

Publication Publication Date Title
JPH07138704A (en) High strength and high ductility dual-phase stainless steel and its production
JP4006112B2 (en) Method for producing fine-grained high-tensile steel
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP4529549B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent ductility and hole-expansion workability
JP2003253331A (en) Method for manufacturing high-tensile-strength steel with high toughness and high ductility
JP2003160811A (en) Method for manufacturing tempered high-tensile- strength steel sheet superior in toughness
JP2024513209A (en) Low carbon low alloy Q&amp;P steel or hot dip galvanized Q&amp;P steel with tensile strength ≧1180MPa and manufacturing method thereof
JP2001288512A (en) Method of producing high tensile strength steel excellent in toughness and ductility
JP2000199034A (en) High tensile strength hot rolled steel plate excellent in workability and its production
JP2005213603A (en) High workability high strength cold rolled steel plate and its manufacturing method
JP2001207220A (en) Method for producing high strength hot rolled steel sheet for electric same welded tube excellent in low temperature toughness and weldability
JP2001234242A (en) Method for producing high toughness and high tensile strength steel fine in crystal grain
JP2002020832A (en) High tensile strength steel excellent in high temperature strength and its production method
JP2003147479A (en) Non-heatteated high strength and high toughness forging, and production method therefor
JP2001234238A (en) Producing method for highly wear resistant and high toughness rail
JP2003147482A (en) Non-heatteated high strength and high toughness forging, and production method therefor
JP2002226915A (en) Manufacturing method of rail with high wear resistance and high toughness
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JP2002003985A (en) High tensile steel excellent in strength at high temperature, and its manufacturing method
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP3246993B2 (en) Method of manufacturing thick steel plate with excellent low temperature toughness
JPH04358023A (en) Production of high strength steel
JP2002275576A (en) Low yield ratio steel for low temperature use and production method therefor
JP2003147481A (en) Non-heatteated high strength and high toughness steel for forging, method of producing the steel, and method of producing forging
JP2618933B2 (en) Steel plate for heat treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091104

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees